kern_synch.c revision 1.156 1 1.156 rpaulo /* $NetBSD: kern_synch.c,v 1.156 2005/12/20 19:26:15 rpaulo Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.148 mycroft * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.63 thorpej * NASA Ames Research Center.
10 1.148 mycroft * This code is derived from software contributed to The NetBSD Foundation
11 1.148 mycroft * by Charles M. Hannum.
12 1.63 thorpej *
13 1.63 thorpej * Redistribution and use in source and binary forms, with or without
14 1.63 thorpej * modification, are permitted provided that the following conditions
15 1.63 thorpej * are met:
16 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer.
18 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
19 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
20 1.63 thorpej * documentation and/or other materials provided with the distribution.
21 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
22 1.63 thorpej * must display the following acknowledgement:
23 1.63 thorpej * This product includes software developed by the NetBSD
24 1.63 thorpej * Foundation, Inc. and its contributors.
25 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
26 1.63 thorpej * contributors may be used to endorse or promote products derived
27 1.63 thorpej * from this software without specific prior written permission.
28 1.63 thorpej *
29 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
40 1.63 thorpej */
41 1.26 cgd
42 1.26 cgd /*-
43 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
44 1.26 cgd * The Regents of the University of California. All rights reserved.
45 1.26 cgd * (c) UNIX System Laboratories, Inc.
46 1.26 cgd * All or some portions of this file are derived from material licensed
47 1.26 cgd * to the University of California by American Telephone and Telegraph
48 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49 1.26 cgd * the permission of UNIX System Laboratories, Inc.
50 1.26 cgd *
51 1.26 cgd * Redistribution and use in source and binary forms, with or without
52 1.26 cgd * modification, are permitted provided that the following conditions
53 1.26 cgd * are met:
54 1.26 cgd * 1. Redistributions of source code must retain the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer.
56 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
57 1.26 cgd * notice, this list of conditions and the following disclaimer in the
58 1.26 cgd * documentation and/or other materials provided with the distribution.
59 1.136 agc * 3. Neither the name of the University nor the names of its contributors
60 1.26 cgd * may be used to endorse or promote products derived from this software
61 1.26 cgd * without specific prior written permission.
62 1.26 cgd *
63 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 1.26 cgd * SUCH DAMAGE.
74 1.26 cgd *
75 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
76 1.26 cgd */
77 1.106 lukem
78 1.106 lukem #include <sys/cdefs.h>
79 1.156 rpaulo __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.156 2005/12/20 19:26:15 rpaulo Exp $");
80 1.48 mrg
81 1.52 jonathan #include "opt_ddb.h"
82 1.51 thorpej #include "opt_ktrace.h"
83 1.109 yamt #include "opt_kstack.h"
84 1.82 thorpej #include "opt_lockdebug.h"
85 1.83 thorpej #include "opt_multiprocessor.h"
86 1.110 briggs #include "opt_perfctrs.h"
87 1.26 cgd
88 1.26 cgd #include <sys/param.h>
89 1.26 cgd #include <sys/systm.h>
90 1.68 thorpej #include <sys/callout.h>
91 1.26 cgd #include <sys/proc.h>
92 1.26 cgd #include <sys/kernel.h>
93 1.26 cgd #include <sys/buf.h>
94 1.111 briggs #if defined(PERFCTRS)
95 1.110 briggs #include <sys/pmc.h>
96 1.111 briggs #endif
97 1.26 cgd #include <sys/signalvar.h>
98 1.26 cgd #include <sys/resourcevar.h>
99 1.55 ross #include <sys/sched.h>
100 1.122 thorpej #include <sys/sa.h>
101 1.122 thorpej #include <sys/savar.h>
102 1.47 mrg
103 1.47 mrg #include <uvm/uvm_extern.h>
104 1.47 mrg
105 1.26 cgd #ifdef KTRACE
106 1.26 cgd #include <sys/ktrace.h>
107 1.26 cgd #endif
108 1.26 cgd
109 1.26 cgd #include <machine/cpu.h>
110 1.34 christos
111 1.26 cgd int lbolt; /* once a second sleep address */
112 1.88 sommerfe int rrticks; /* number of hardclock ticks per roundrobin() */
113 1.26 cgd
114 1.73 thorpej /*
115 1.152 yamt * Sleep queues.
116 1.152 yamt *
117 1.152 yamt * We're only looking at 7 bits of the address; everything is
118 1.152 yamt * aligned to 4, lots of things are aligned to greater powers
119 1.152 yamt * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
120 1.152 yamt */
121 1.152 yamt #define SLPQUE_TABLESIZE 128
122 1.152 yamt #define SLPQUE_LOOKUP(x) (((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
123 1.152 yamt
124 1.152 yamt #define SLPQUE(ident) (&sched_slpque[SLPQUE_LOOKUP(ident)])
125 1.152 yamt
126 1.152 yamt /*
127 1.73 thorpej * The global scheduler state.
128 1.73 thorpej */
129 1.73 thorpej struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
130 1.73 thorpej __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
131 1.73 thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
132 1.73 thorpej
133 1.83 thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
134 1.83 thorpej
135 1.77 thorpej void schedcpu(void *);
136 1.122 thorpej void updatepri(struct lwp *);
137 1.77 thorpej void endtsleep(void *);
138 1.34 christos
139 1.139 cl __inline void sa_awaken(struct lwp *);
140 1.122 thorpej __inline void awaken(struct lwp *);
141 1.63 thorpej
142 1.143 yamt struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
143 1.68 thorpej
144 1.122 thorpej
145 1.122 thorpej
146 1.26 cgd /*
147 1.26 cgd * Force switch among equal priority processes every 100ms.
148 1.88 sommerfe * Called from hardclock every hz/10 == rrticks hardclock ticks.
149 1.26 cgd */
150 1.26 cgd /* ARGSUSED */
151 1.26 cgd void
152 1.89 sommerfe roundrobin(struct cpu_info *ci)
153 1.26 cgd {
154 1.89 sommerfe struct schedstate_percpu *spc = &ci->ci_schedstate;
155 1.26 cgd
156 1.88 sommerfe spc->spc_rrticks = rrticks;
157 1.130 nathanw
158 1.122 thorpej if (curlwp != NULL) {
159 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
160 1.69 thorpej /*
161 1.69 thorpej * The process has already been through a roundrobin
162 1.69 thorpej * without switching and may be hogging the CPU.
163 1.69 thorpej * Indicate that the process should yield.
164 1.69 thorpej */
165 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
166 1.69 thorpej } else
167 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
168 1.69 thorpej }
169 1.87 thorpej need_resched(curcpu());
170 1.26 cgd }
171 1.26 cgd
172 1.153 yamt #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
173 1.153 yamt #define NICE_WEIGHT 2 /* priorities per nice level */
174 1.153 yamt
175 1.153 yamt #define ESTCPU_SHIFT 11
176 1.153 yamt #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
177 1.153 yamt #define ESTCPULIM(e) min((e), ESTCPU_MAX)
178 1.153 yamt
179 1.26 cgd /*
180 1.26 cgd * Constants for digital decay and forget:
181 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
182 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
183 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
184 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
185 1.26 cgd *
186 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
187 1.26 cgd *
188 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
189 1.26 cgd * That is, the system wants to compute a value of decay such
190 1.26 cgd * that the following for loop:
191 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
192 1.26 cgd * p_estcpu *= decay;
193 1.26 cgd * will compute
194 1.26 cgd * p_estcpu *= 0.1;
195 1.26 cgd * for all values of loadavg:
196 1.26 cgd *
197 1.26 cgd * Mathematically this loop can be expressed by saying:
198 1.26 cgd * decay ** (5 * loadavg) ~= .1
199 1.26 cgd *
200 1.26 cgd * The system computes decay as:
201 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
202 1.26 cgd *
203 1.26 cgd * We wish to prove that the system's computation of decay
204 1.26 cgd * will always fulfill the equation:
205 1.26 cgd * decay ** (5 * loadavg) ~= .1
206 1.26 cgd *
207 1.26 cgd * If we compute b as:
208 1.26 cgd * b = 2 * loadavg
209 1.26 cgd * then
210 1.26 cgd * decay = b / (b + 1)
211 1.26 cgd *
212 1.26 cgd * We now need to prove two things:
213 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
214 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
215 1.130 nathanw *
216 1.26 cgd * Facts:
217 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
218 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
219 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
220 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
221 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
222 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
223 1.26 cgd * ln(.1) =~ -2.30
224 1.26 cgd *
225 1.26 cgd * Proof of (1):
226 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
227 1.26 cgd * solving for factor,
228 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
229 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
230 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
231 1.26 cgd *
232 1.26 cgd * Proof of (2):
233 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
234 1.26 cgd * solving for power,
235 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
236 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
237 1.26 cgd *
238 1.26 cgd * Actual power values for the implemented algorithm are as follows:
239 1.26 cgd * loadav: 1 2 3 4
240 1.26 cgd * power: 5.68 10.32 14.94 19.55
241 1.26 cgd */
242 1.26 cgd
243 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
244 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
245 1.153 yamt
246 1.153 yamt static fixpt_t
247 1.153 yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
248 1.153 yamt {
249 1.153 yamt
250 1.153 yamt if (estcpu == 0) {
251 1.153 yamt return 0;
252 1.153 yamt }
253 1.153 yamt
254 1.153 yamt #if !defined(_LP64)
255 1.153 yamt /* avoid 64bit arithmetics. */
256 1.153 yamt #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
257 1.153 yamt if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
258 1.153 yamt return estcpu * loadfac / (loadfac + FSCALE);
259 1.153 yamt }
260 1.153 yamt #endif /* !defined(_LP64) */
261 1.153 yamt
262 1.153 yamt return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
263 1.153 yamt }
264 1.26 cgd
265 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
266 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
267 1.26 cgd
268 1.26 cgd /*
269 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
270 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
271 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
272 1.26 cgd *
273 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
274 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
275 1.26 cgd *
276 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
277 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
278 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
279 1.26 cgd */
280 1.26 cgd #define CCPU_SHIFT 11
281 1.26 cgd
282 1.26 cgd /*
283 1.26 cgd * Recompute process priorities, every hz ticks.
284 1.26 cgd */
285 1.26 cgd /* ARGSUSED */
286 1.26 cgd void
287 1.77 thorpej schedcpu(void *arg)
288 1.26 cgd {
289 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
290 1.122 thorpej struct lwp *l;
291 1.71 augustss struct proc *p;
292 1.122 thorpej int s, minslp;
293 1.66 ross int clkhz;
294 1.26 cgd
295 1.62 thorpej proclist_lock_read();
296 1.145 yamt PROCLIST_FOREACH(p, &allproc) {
297 1.26 cgd /*
298 1.26 cgd * Increment time in/out of memory and sleep time
299 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
300 1.26 cgd * (remember them?) overflow takes 45 days.
301 1.26 cgd */
302 1.122 thorpej minslp = 2;
303 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
304 1.122 thorpej l->l_swtime++;
305 1.130 nathanw if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
306 1.122 thorpej l->l_stat == LSSUSPENDED) {
307 1.122 thorpej l->l_slptime++;
308 1.122 thorpej minslp = min(minslp, l->l_slptime);
309 1.122 thorpej } else
310 1.122 thorpej minslp = 0;
311 1.122 thorpej }
312 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
313 1.26 cgd /*
314 1.26 cgd * If the process has slept the entire second,
315 1.26 cgd * stop recalculating its priority until it wakes up.
316 1.26 cgd */
317 1.122 thorpej if (minslp > 1)
318 1.26 cgd continue;
319 1.26 cgd s = splstatclock(); /* prevent state changes */
320 1.26 cgd /*
321 1.26 cgd * p_pctcpu is only for ps.
322 1.26 cgd */
323 1.66 ross clkhz = stathz != 0 ? stathz : hz;
324 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
325 1.66 ross p->p_pctcpu += (clkhz == 100)?
326 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
327 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
328 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
329 1.26 cgd #else
330 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
331 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
332 1.26 cgd #endif
333 1.26 cgd p->p_cpticks = 0;
334 1.153 yamt p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
335 1.120 pk splx(s); /* Done with the process CPU ticks update */
336 1.120 pk SCHED_LOCK(s);
337 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
338 1.122 thorpej if (l->l_slptime > 1)
339 1.122 thorpej continue;
340 1.122 thorpej resetpriority(l);
341 1.122 thorpej if (l->l_priority >= PUSER) {
342 1.122 thorpej if (l->l_stat == LSRUN &&
343 1.122 thorpej (l->l_flag & L_INMEM) &&
344 1.122 thorpej (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
345 1.122 thorpej remrunqueue(l);
346 1.122 thorpej l->l_priority = l->l_usrpri;
347 1.122 thorpej setrunqueue(l);
348 1.122 thorpej } else
349 1.122 thorpej l->l_priority = l->l_usrpri;
350 1.122 thorpej }
351 1.26 cgd }
352 1.120 pk SCHED_UNLOCK(s);
353 1.26 cgd }
354 1.61 thorpej proclist_unlock_read();
355 1.47 mrg uvm_meter();
356 1.67 fvdl wakeup((caddr_t)&lbolt);
357 1.143 yamt callout_schedule(&schedcpu_ch, hz);
358 1.26 cgd }
359 1.26 cgd
360 1.26 cgd /*
361 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
362 1.155 yamt * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
363 1.155 yamt * sleeping for at least eight times the loadfactor will decay p_estcpu to
364 1.155 yamt * less than (1 << ESTCPU_SHIFT).
365 1.155 yamt *
366 1.155 yamt * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
367 1.26 cgd */
368 1.26 cgd void
369 1.122 thorpej updatepri(struct lwp *l)
370 1.26 cgd {
371 1.122 thorpej struct proc *p = l->l_proc;
372 1.153 yamt fixpt_t newcpu;
373 1.83 thorpej fixpt_t loadfac;
374 1.83 thorpej
375 1.83 thorpej SCHED_ASSERT_LOCKED();
376 1.83 thorpej
377 1.83 thorpej newcpu = p->p_estcpu;
378 1.83 thorpej loadfac = loadfactor(averunnable.ldavg[0]);
379 1.26 cgd
380 1.155 yamt if ((l->l_slptime << FSHIFT) >= 8 * loadfac)
381 1.122 thorpej p->p_estcpu = 0; /* XXX NJWLWP */
382 1.26 cgd else {
383 1.122 thorpej l->l_slptime--; /* the first time was done in schedcpu */
384 1.122 thorpej while (newcpu && --l->l_slptime)
385 1.153 yamt newcpu = decay_cpu(loadfac, newcpu);
386 1.55 ross p->p_estcpu = newcpu;
387 1.26 cgd }
388 1.122 thorpej resetpriority(l);
389 1.26 cgd }
390 1.26 cgd
391 1.26 cgd /*
392 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
393 1.26 cgd * lower the priority briefly to allow interrupts, then return.
394 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
395 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
396 1.26 cgd * This priority will typically be 0, or the lowest priority
397 1.26 cgd * that is safe for use on the interrupt stack; it can be made
398 1.26 cgd * higher to block network software interrupts after panics.
399 1.26 cgd */
400 1.26 cgd int safepri;
401 1.26 cgd
402 1.26 cgd /*
403 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
404 1.26 cgd * performed on the specified identifier. The process will then be made
405 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
406 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
407 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
408 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
409 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
410 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
411 1.26 cgd * call should be interrupted by the signal (return EINTR).
412 1.77 thorpej *
413 1.103 jdolecek * The interlock is held until the scheduler_slock is acquired. The
414 1.77 thorpej * interlock will be locked before returning back to the caller
415 1.77 thorpej * unless the PNORELOCK flag is specified, in which case the
416 1.77 thorpej * interlock will always be unlocked upon return.
417 1.26 cgd */
418 1.26 cgd int
419 1.149 christos ltsleep(__volatile const void *ident, int priority, const char *wmesg, int timo,
420 1.77 thorpej __volatile struct simplelock *interlock)
421 1.26 cgd {
422 1.122 thorpej struct lwp *l = curlwp;
423 1.123 christos struct proc *p = l ? l->l_proc : NULL;
424 1.71 augustss struct slpque *qp;
425 1.150 chs struct sadata_upcall *sau;
426 1.77 thorpej int sig, s;
427 1.77 thorpej int catch = priority & PCATCH;
428 1.77 thorpej int relock = (priority & PNORELOCK) == 0;
429 1.122 thorpej int exiterr = (priority & PNOEXITERR) == 0;
430 1.26 cgd
431 1.77 thorpej /*
432 1.77 thorpej * XXXSMP
433 1.77 thorpej * This is probably bogus. Figure out what the right
434 1.77 thorpej * thing to do here really is.
435 1.130 nathanw * Note that not sleeping if ltsleep is called with curlwp == NULL
436 1.78 sommerfe * in the shutdown case is disgusting but partly necessary given
437 1.78 sommerfe * how shutdown (barely) works.
438 1.77 thorpej */
439 1.122 thorpej if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
440 1.26 cgd /*
441 1.26 cgd * After a panic, or during autoconfiguration,
442 1.26 cgd * just give interrupts a chance, then just return;
443 1.26 cgd * don't run any other procs or panic below,
444 1.26 cgd * in case this is the idle process and already asleep.
445 1.26 cgd */
446 1.42 cgd s = splhigh();
447 1.26 cgd splx(safepri);
448 1.26 cgd splx(s);
449 1.77 thorpej if (interlock != NULL && relock == 0)
450 1.77 thorpej simple_unlock(interlock);
451 1.26 cgd return (0);
452 1.26 cgd }
453 1.78 sommerfe
454 1.102 thorpej KASSERT(p != NULL);
455 1.105 chs LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
456 1.42 cgd
457 1.42 cgd #ifdef KTRACE
458 1.42 cgd if (KTRPOINT(p, KTR_CSW))
459 1.154 christos ktrcsw(l, 1, 0);
460 1.42 cgd #endif
461 1.77 thorpej
462 1.150 chs /*
463 1.150 chs * XXX We need to allocate the sadata_upcall structure here,
464 1.150 chs * XXX since we can't sleep while waiting for memory inside
465 1.150 chs * XXX sa_upcall(). It would be nice if we could safely
466 1.150 chs * XXX allocate the sadata_upcall structure on the stack, here.
467 1.150 chs */
468 1.150 chs if (l->l_flag & L_SA) {
469 1.150 chs sau = sadata_upcall_alloc(0);
470 1.150 chs } else {
471 1.150 chs sau = NULL;
472 1.150 chs }
473 1.150 chs
474 1.83 thorpej SCHED_LOCK(s);
475 1.42 cgd
476 1.26 cgd #ifdef DIAGNOSTIC
477 1.64 thorpej if (ident == NULL)
478 1.77 thorpej panic("ltsleep: ident == NULL");
479 1.122 thorpej if (l->l_stat != LSONPROC)
480 1.122 thorpej panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
481 1.122 thorpej if (l->l_back != NULL)
482 1.77 thorpej panic("ltsleep: p_back != NULL");
483 1.26 cgd #endif
484 1.77 thorpej
485 1.122 thorpej l->l_wchan = ident;
486 1.122 thorpej l->l_wmesg = wmesg;
487 1.122 thorpej l->l_slptime = 0;
488 1.122 thorpej l->l_priority = priority & PRIMASK;
489 1.77 thorpej
490 1.73 thorpej qp = SLPQUE(ident);
491 1.26 cgd if (qp->sq_head == 0)
492 1.122 thorpej qp->sq_head = l;
493 1.122 thorpej else {
494 1.122 thorpej *qp->sq_tailp = l;
495 1.122 thorpej }
496 1.122 thorpej *(qp->sq_tailp = &l->l_forw) = 0;
497 1.77 thorpej
498 1.26 cgd if (timo)
499 1.122 thorpej callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
500 1.77 thorpej
501 1.77 thorpej /*
502 1.77 thorpej * We can now release the interlock; the scheduler_slock
503 1.77 thorpej * is held, so a thread can't get in to do wakeup() before
504 1.77 thorpej * we do the switch.
505 1.77 thorpej *
506 1.77 thorpej * XXX We leave the code block here, after inserting ourselves
507 1.77 thorpej * on the sleep queue, because we might want a more clever
508 1.77 thorpej * data structure for the sleep queues at some point.
509 1.77 thorpej */
510 1.77 thorpej if (interlock != NULL)
511 1.77 thorpej simple_unlock(interlock);
512 1.77 thorpej
513 1.26 cgd /*
514 1.26 cgd * We put ourselves on the sleep queue and start our timeout
515 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
516 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
517 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
518 1.26 cgd * without resuming us, thus we must be ready for sleep
519 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
520 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
521 1.26 cgd */
522 1.26 cgd if (catch) {
523 1.122 thorpej l->l_flag |= L_SINTR;
524 1.137 itojun if (((sig = CURSIG(l)) != 0) ||
525 1.137 itojun ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
526 1.122 thorpej if (l->l_wchan != NULL)
527 1.122 thorpej unsleep(l);
528 1.122 thorpej l->l_stat = LSONPROC;
529 1.83 thorpej SCHED_UNLOCK(s);
530 1.26 cgd goto resume;
531 1.26 cgd }
532 1.122 thorpej if (l->l_wchan == NULL) {
533 1.26 cgd catch = 0;
534 1.83 thorpej SCHED_UNLOCK(s);
535 1.26 cgd goto resume;
536 1.26 cgd }
537 1.26 cgd } else
538 1.26 cgd sig = 0;
539 1.122 thorpej l->l_stat = LSSLEEP;
540 1.122 thorpej p->p_nrlwps--;
541 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
542 1.83 thorpej SCHED_ASSERT_LOCKED();
543 1.122 thorpej if (l->l_flag & L_SA)
544 1.150 chs sa_switch(l, sau, SA_UPCALL_BLOCKED);
545 1.122 thorpej else
546 1.122 thorpej mi_switch(l, NULL);
547 1.83 thorpej
548 1.104 chs #if defined(DDB) && !defined(GPROF)
549 1.26 cgd /* handy breakpoint location after process "wakes" */
550 1.140 kleink __asm(".globl bpendtsleep\nbpendtsleep:");
551 1.26 cgd #endif
552 1.122 thorpej /*
553 1.122 thorpej * p->p_nrlwps is incremented by whoever made us runnable again,
554 1.122 thorpej * either setrunnable() or awaken().
555 1.122 thorpej */
556 1.77 thorpej
557 1.83 thorpej SCHED_ASSERT_UNLOCKED();
558 1.83 thorpej splx(s);
559 1.83 thorpej
560 1.77 thorpej resume:
561 1.122 thorpej KDASSERT(l->l_cpu != NULL);
562 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
563 1.122 thorpej l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
564 1.122 thorpej
565 1.122 thorpej l->l_flag &= ~L_SINTR;
566 1.122 thorpej if (l->l_flag & L_TIMEOUT) {
567 1.135 matt l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
568 1.26 cgd if (sig == 0) {
569 1.26 cgd #ifdef KTRACE
570 1.26 cgd if (KTRPOINT(p, KTR_CSW))
571 1.154 christos ktrcsw(l, 0, 0);
572 1.26 cgd #endif
573 1.77 thorpej if (relock && interlock != NULL)
574 1.77 thorpej simple_lock(interlock);
575 1.26 cgd return (EWOULDBLOCK);
576 1.26 cgd }
577 1.26 cgd } else if (timo)
578 1.122 thorpej callout_stop(&l->l_tsleep_ch);
579 1.135 matt
580 1.135 matt if (catch) {
581 1.135 matt const int cancelled = l->l_flag & L_CANCELLED;
582 1.135 matt l->l_flag &= ~L_CANCELLED;
583 1.135 matt if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
584 1.26 cgd #ifdef KTRACE
585 1.135 matt if (KTRPOINT(p, KTR_CSW))
586 1.154 christos ktrcsw(l, 0, 0);
587 1.26 cgd #endif
588 1.135 matt if (relock && interlock != NULL)
589 1.135 matt simple_lock(interlock);
590 1.135 matt /*
591 1.135 matt * If this sleep was canceled, don't let the syscall
592 1.135 matt * restart.
593 1.135 matt */
594 1.135 matt if (cancelled ||
595 1.135 matt (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
596 1.135 matt return (EINTR);
597 1.135 matt return (ERESTART);
598 1.135 matt }
599 1.26 cgd }
600 1.126 pk
601 1.126 pk #ifdef KTRACE
602 1.126 pk if (KTRPOINT(p, KTR_CSW))
603 1.154 christos ktrcsw(l, 0, 0);
604 1.126 pk #endif
605 1.126 pk if (relock && interlock != NULL)
606 1.126 pk simple_lock(interlock);
607 1.126 pk
608 1.122 thorpej /* XXXNJW this is very much a kluge.
609 1.130 nathanw * revisit. a better way of preventing looping/hanging syscalls like
610 1.122 thorpej * wait4() and _lwp_wait() from wedging an exiting process
611 1.122 thorpej * would be preferred.
612 1.122 thorpej */
613 1.137 itojun if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
614 1.122 thorpej return (EINTR);
615 1.26 cgd return (0);
616 1.26 cgd }
617 1.26 cgd
618 1.26 cgd /*
619 1.26 cgd * Implement timeout for tsleep.
620 1.26 cgd * If process hasn't been awakened (wchan non-zero),
621 1.26 cgd * set timeout flag and undo the sleep. If proc
622 1.26 cgd * is stopped, just unsleep so it will remain stopped.
623 1.26 cgd */
624 1.26 cgd void
625 1.77 thorpej endtsleep(void *arg)
626 1.26 cgd {
627 1.122 thorpej struct lwp *l;
628 1.26 cgd int s;
629 1.26 cgd
630 1.122 thorpej l = (struct lwp *)arg;
631 1.83 thorpej SCHED_LOCK(s);
632 1.122 thorpej if (l->l_wchan) {
633 1.122 thorpej if (l->l_stat == LSSLEEP)
634 1.122 thorpej setrunnable(l);
635 1.26 cgd else
636 1.122 thorpej unsleep(l);
637 1.122 thorpej l->l_flag |= L_TIMEOUT;
638 1.26 cgd }
639 1.83 thorpej SCHED_UNLOCK(s);
640 1.26 cgd }
641 1.26 cgd
642 1.26 cgd /*
643 1.26 cgd * Remove a process from its wait queue
644 1.26 cgd */
645 1.26 cgd void
646 1.122 thorpej unsleep(struct lwp *l)
647 1.26 cgd {
648 1.71 augustss struct slpque *qp;
649 1.122 thorpej struct lwp **hp;
650 1.26 cgd
651 1.83 thorpej SCHED_ASSERT_LOCKED();
652 1.83 thorpej
653 1.122 thorpej if (l->l_wchan) {
654 1.122 thorpej hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
655 1.122 thorpej while (*hp != l)
656 1.122 thorpej hp = &(*hp)->l_forw;
657 1.122 thorpej *hp = l->l_forw;
658 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
659 1.26 cgd qp->sq_tailp = hp;
660 1.122 thorpej l->l_wchan = 0;
661 1.26 cgd }
662 1.26 cgd }
663 1.26 cgd
664 1.139 cl __inline void
665 1.139 cl sa_awaken(struct lwp *l)
666 1.139 cl {
667 1.147 perry
668 1.139 cl SCHED_ASSERT_LOCKED();
669 1.139 cl
670 1.142 cl if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
671 1.139 cl l->l_flag &= ~L_SA_IDLE;
672 1.139 cl }
673 1.139 cl
674 1.26 cgd /*
675 1.63 thorpej * Optimized-for-wakeup() version of setrunnable().
676 1.63 thorpej */
677 1.63 thorpej __inline void
678 1.122 thorpej awaken(struct lwp *l)
679 1.63 thorpej {
680 1.63 thorpej
681 1.83 thorpej SCHED_ASSERT_LOCKED();
682 1.130 nathanw
683 1.139 cl if (l->l_proc->p_sa)
684 1.139 cl sa_awaken(l);
685 1.139 cl
686 1.122 thorpej if (l->l_slptime > 1)
687 1.122 thorpej updatepri(l);
688 1.122 thorpej l->l_slptime = 0;
689 1.122 thorpej l->l_stat = LSRUN;
690 1.122 thorpej l->l_proc->p_nrlwps++;
691 1.93 bouyer /*
692 1.93 bouyer * Since curpriority is a user priority, p->p_priority
693 1.119 thorpej * is always better than curpriority on the last CPU on
694 1.119 thorpej * which it ran.
695 1.118 thorpej *
696 1.119 thorpej * XXXSMP See affinity comment in resched_proc().
697 1.93 bouyer */
698 1.122 thorpej if (l->l_flag & L_INMEM) {
699 1.122 thorpej setrunqueue(l);
700 1.122 thorpej KASSERT(l->l_cpu != NULL);
701 1.122 thorpej need_resched(l->l_cpu);
702 1.93 bouyer } else
703 1.93 bouyer sched_wakeup(&proc0);
704 1.83 thorpej }
705 1.83 thorpej
706 1.83 thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
707 1.83 thorpej void
708 1.83 thorpej sched_unlock_idle(void)
709 1.83 thorpej {
710 1.83 thorpej
711 1.83 thorpej simple_unlock(&sched_lock);
712 1.63 thorpej }
713 1.63 thorpej
714 1.83 thorpej void
715 1.83 thorpej sched_lock_idle(void)
716 1.83 thorpej {
717 1.83 thorpej
718 1.83 thorpej simple_lock(&sched_lock);
719 1.83 thorpej }
720 1.83 thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
721 1.83 thorpej
722 1.63 thorpej /*
723 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
724 1.26 cgd */
725 1.83 thorpej
726 1.26 cgd void
727 1.149 christos wakeup(__volatile const void *ident)
728 1.26 cgd {
729 1.83 thorpej int s;
730 1.83 thorpej
731 1.83 thorpej SCHED_ASSERT_UNLOCKED();
732 1.83 thorpej
733 1.83 thorpej SCHED_LOCK(s);
734 1.83 thorpej sched_wakeup(ident);
735 1.83 thorpej SCHED_UNLOCK(s);
736 1.83 thorpej }
737 1.83 thorpej
738 1.83 thorpej void
739 1.149 christos sched_wakeup(__volatile const void *ident)
740 1.83 thorpej {
741 1.71 augustss struct slpque *qp;
742 1.122 thorpej struct lwp *l, **q;
743 1.26 cgd
744 1.83 thorpej SCHED_ASSERT_LOCKED();
745 1.77 thorpej
746 1.73 thorpej qp = SLPQUE(ident);
747 1.77 thorpej restart:
748 1.122 thorpej for (q = &qp->sq_head; (l = *q) != NULL; ) {
749 1.26 cgd #ifdef DIAGNOSTIC
750 1.130 nathanw if (l->l_back || (l->l_stat != LSSLEEP &&
751 1.122 thorpej l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
752 1.26 cgd panic("wakeup");
753 1.26 cgd #endif
754 1.122 thorpej if (l->l_wchan == ident) {
755 1.122 thorpej l->l_wchan = 0;
756 1.122 thorpej *q = l->l_forw;
757 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
758 1.26 cgd qp->sq_tailp = q;
759 1.122 thorpej if (l->l_stat == LSSLEEP) {
760 1.122 thorpej awaken(l);
761 1.26 cgd goto restart;
762 1.26 cgd }
763 1.26 cgd } else
764 1.122 thorpej q = &l->l_forw;
765 1.63 thorpej }
766 1.63 thorpej }
767 1.63 thorpej
768 1.63 thorpej /*
769 1.63 thorpej * Make the highest priority process first in line on the specified
770 1.63 thorpej * identifier runnable.
771 1.63 thorpej */
772 1.63 thorpej void
773 1.149 christos wakeup_one(__volatile const void *ident)
774 1.63 thorpej {
775 1.63 thorpej struct slpque *qp;
776 1.122 thorpej struct lwp *l, **q;
777 1.122 thorpej struct lwp *best_sleepp, **best_sleepq;
778 1.122 thorpej struct lwp *best_stopp, **best_stopq;
779 1.63 thorpej int s;
780 1.63 thorpej
781 1.63 thorpej best_sleepp = best_stopp = NULL;
782 1.63 thorpej best_sleepq = best_stopq = NULL;
783 1.63 thorpej
784 1.83 thorpej SCHED_LOCK(s);
785 1.77 thorpej
786 1.73 thorpej qp = SLPQUE(ident);
787 1.77 thorpej
788 1.122 thorpej for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
789 1.63 thorpej #ifdef DIAGNOSTIC
790 1.130 nathanw if (l->l_back || (l->l_stat != LSSLEEP &&
791 1.122 thorpej l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
792 1.63 thorpej panic("wakeup_one");
793 1.63 thorpej #endif
794 1.122 thorpej if (l->l_wchan == ident) {
795 1.122 thorpej if (l->l_stat == LSSLEEP) {
796 1.63 thorpej if (best_sleepp == NULL ||
797 1.122 thorpej l->l_priority < best_sleepp->l_priority) {
798 1.122 thorpej best_sleepp = l;
799 1.63 thorpej best_sleepq = q;
800 1.63 thorpej }
801 1.63 thorpej } else {
802 1.63 thorpej if (best_stopp == NULL ||
803 1.122 thorpej l->l_priority < best_stopp->l_priority) {
804 1.122 thorpej best_stopp = l;
805 1.63 thorpej best_stopq = q;
806 1.63 thorpej }
807 1.63 thorpej }
808 1.63 thorpej }
809 1.63 thorpej }
810 1.63 thorpej
811 1.63 thorpej /*
812 1.63 thorpej * Consider any SSLEEP process higher than the highest priority SSTOP
813 1.63 thorpej * process.
814 1.63 thorpej */
815 1.63 thorpej if (best_sleepp != NULL) {
816 1.122 thorpej l = best_sleepp;
817 1.63 thorpej q = best_sleepq;
818 1.63 thorpej } else {
819 1.122 thorpej l = best_stopp;
820 1.63 thorpej q = best_stopq;
821 1.63 thorpej }
822 1.63 thorpej
823 1.122 thorpej if (l != NULL) {
824 1.122 thorpej l->l_wchan = NULL;
825 1.122 thorpej *q = l->l_forw;
826 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
827 1.63 thorpej qp->sq_tailp = q;
828 1.122 thorpej if (l->l_stat == LSSLEEP)
829 1.122 thorpej awaken(l);
830 1.26 cgd }
831 1.83 thorpej SCHED_UNLOCK(s);
832 1.117 gmcgarry }
833 1.117 gmcgarry
834 1.117 gmcgarry /*
835 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
836 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
837 1.117 gmcgarry * current process explicitly requests it (eg sched_yield(2) in compat code).
838 1.117 gmcgarry */
839 1.117 gmcgarry void
840 1.117 gmcgarry yield(void)
841 1.117 gmcgarry {
842 1.122 thorpej struct lwp *l = curlwp;
843 1.117 gmcgarry int s;
844 1.117 gmcgarry
845 1.117 gmcgarry SCHED_LOCK(s);
846 1.122 thorpej l->l_priority = l->l_usrpri;
847 1.122 thorpej l->l_stat = LSRUN;
848 1.122 thorpej setrunqueue(l);
849 1.122 thorpej l->l_proc->p_stats->p_ru.ru_nvcsw++;
850 1.122 thorpej mi_switch(l, NULL);
851 1.117 gmcgarry SCHED_ASSERT_UNLOCKED();
852 1.117 gmcgarry splx(s);
853 1.69 thorpej }
854 1.69 thorpej
855 1.69 thorpej /*
856 1.69 thorpej * General preemption call. Puts the current process back on its run queue
857 1.156 rpaulo * and performs an involuntary context switch.
858 1.156 rpaulo * The 'more' ("more work to do") argument is boolean. Returning to userspace
859 1.156 rpaulo * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
860 1.156 rpaulo * This will be used to indicate to the SA subsystem that the LWP is
861 1.156 rpaulo * not yet finished in the kernel.
862 1.69 thorpej */
863 1.122 thorpej
864 1.69 thorpej void
865 1.122 thorpej preempt(int more)
866 1.69 thorpej {
867 1.122 thorpej struct lwp *l = curlwp;
868 1.122 thorpej int r, s;
869 1.69 thorpej
870 1.83 thorpej SCHED_LOCK(s);
871 1.122 thorpej l->l_priority = l->l_usrpri;
872 1.122 thorpej l->l_stat = LSRUN;
873 1.122 thorpej setrunqueue(l);
874 1.122 thorpej l->l_proc->p_stats->p_ru.ru_nivcsw++;
875 1.122 thorpej r = mi_switch(l, NULL);
876 1.83 thorpej SCHED_ASSERT_UNLOCKED();
877 1.69 thorpej splx(s);
878 1.122 thorpej if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
879 1.122 thorpej sa_preempt(l);
880 1.69 thorpej }
881 1.69 thorpej
882 1.69 thorpej /*
883 1.72 thorpej * The machine independent parts of context switch.
884 1.86 thorpej * Must be called at splsched() (no higher!) and with
885 1.86 thorpej * the sched_lock held.
886 1.122 thorpej * Switch to "new" if non-NULL, otherwise let cpu_switch choose
887 1.122 thorpej * the next lwp.
888 1.130 nathanw *
889 1.122 thorpej * Returns 1 if another process was actually run.
890 1.26 cgd */
891 1.122 thorpej int
892 1.122 thorpej mi_switch(struct lwp *l, struct lwp *newl)
893 1.26 cgd {
894 1.76 thorpej struct schedstate_percpu *spc;
895 1.71 augustss struct rlimit *rlim;
896 1.71 augustss long s, u;
897 1.26 cgd struct timeval tv;
898 1.144 yamt int hold_count;
899 1.122 thorpej struct proc *p = l->l_proc;
900 1.122 thorpej int retval;
901 1.26 cgd
902 1.83 thorpej SCHED_ASSERT_LOCKED();
903 1.83 thorpej
904 1.90 sommerfe /*
905 1.90 sommerfe * Release the kernel_lock, as we are about to yield the CPU.
906 1.90 sommerfe * The scheduler lock is still held until cpu_switch()
907 1.90 sommerfe * selects a new process and removes it from the run queue.
908 1.90 sommerfe */
909 1.144 yamt hold_count = KERNEL_LOCK_RELEASE_ALL();
910 1.85 sommerfe
911 1.122 thorpej KDASSERT(l->l_cpu != NULL);
912 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
913 1.113 gmcgarry
914 1.122 thorpej spc = &l->l_cpu->ci_schedstate;
915 1.76 thorpej
916 1.82 thorpej #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
917 1.82 thorpej spinlock_switchcheck();
918 1.82 thorpej #endif
919 1.54 chs #ifdef LOCKDEBUG
920 1.81 thorpej simple_lock_switchcheck();
921 1.50 fvdl #endif
922 1.81 thorpej
923 1.26 cgd /*
924 1.26 cgd * Compute the amount of time during which the current
925 1.113 gmcgarry * process was running.
926 1.26 cgd */
927 1.26 cgd microtime(&tv);
928 1.130 nathanw u = p->p_rtime.tv_usec +
929 1.122 thorpej (tv.tv_usec - spc->spc_runtime.tv_usec);
930 1.73 thorpej s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
931 1.26 cgd if (u < 0) {
932 1.26 cgd u += 1000000;
933 1.26 cgd s--;
934 1.26 cgd } else if (u >= 1000000) {
935 1.26 cgd u -= 1000000;
936 1.26 cgd s++;
937 1.26 cgd }
938 1.114 gmcgarry p->p_rtime.tv_usec = u;
939 1.114 gmcgarry p->p_rtime.tv_sec = s;
940 1.26 cgd
941 1.26 cgd /*
942 1.141 wiz * Check if the process exceeds its CPU resource allocation.
943 1.26 cgd * If over max, kill it. In any case, if it has run for more
944 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
945 1.26 cgd */
946 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
947 1.26 cgd if (s >= rlim->rlim_cur) {
948 1.100 sommerfe /*
949 1.100 sommerfe * XXXSMP: we're inside the scheduler lock perimeter;
950 1.100 sommerfe * use sched_psignal.
951 1.100 sommerfe */
952 1.26 cgd if (s >= rlim->rlim_max)
953 1.100 sommerfe sched_psignal(p, SIGKILL);
954 1.26 cgd else {
955 1.100 sommerfe sched_psignal(p, SIGXCPU);
956 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
957 1.26 cgd rlim->rlim_cur += 5;
958 1.26 cgd }
959 1.26 cgd }
960 1.77 thorpej if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
961 1.77 thorpej p->p_nice == NZERO) {
962 1.39 ws p->p_nice = autoniceval + NZERO;
963 1.122 thorpej resetpriority(l);
964 1.26 cgd }
965 1.69 thorpej
966 1.69 thorpej /*
967 1.69 thorpej * Process is about to yield the CPU; clear the appropriate
968 1.69 thorpej * scheduling flags.
969 1.69 thorpej */
970 1.73 thorpej spc->spc_flags &= ~SPCF_SWITCHCLEAR;
971 1.109 yamt
972 1.109 yamt #ifdef KSTACK_CHECK_MAGIC
973 1.124 yamt kstack_check_magic(l);
974 1.109 yamt #endif
975 1.26 cgd
976 1.113 gmcgarry /*
977 1.114 gmcgarry * If we are using h/w performance counters, save context.
978 1.113 gmcgarry */
979 1.114 gmcgarry #if PERFCTRS
980 1.114 gmcgarry if (PMC_ENABLED(p))
981 1.114 gmcgarry pmc_save_context(p);
982 1.110 briggs #endif
983 1.113 gmcgarry
984 1.113 gmcgarry /*
985 1.114 gmcgarry * Switch to the new current process. When we
986 1.114 gmcgarry * run again, we'll return back here.
987 1.113 gmcgarry */
988 1.114 gmcgarry uvmexp.swtch++;
989 1.122 thorpej if (newl == NULL) {
990 1.122 thorpej retval = cpu_switch(l, NULL);
991 1.122 thorpej } else {
992 1.122 thorpej remrunqueue(newl);
993 1.122 thorpej cpu_switchto(l, newl);
994 1.122 thorpej retval = 0;
995 1.122 thorpej }
996 1.110 briggs
997 1.110 briggs /*
998 1.114 gmcgarry * If we are using h/w performance counters, restore context.
999 1.26 cgd */
1000 1.114 gmcgarry #if PERFCTRS
1001 1.114 gmcgarry if (PMC_ENABLED(p))
1002 1.114 gmcgarry pmc_restore_context(p);
1003 1.114 gmcgarry #endif
1004 1.110 briggs
1005 1.110 briggs /*
1006 1.114 gmcgarry * Make sure that MD code released the scheduler lock before
1007 1.114 gmcgarry * resuming us.
1008 1.110 briggs */
1009 1.114 gmcgarry SCHED_ASSERT_UNLOCKED();
1010 1.83 thorpej
1011 1.83 thorpej /*
1012 1.76 thorpej * We're running again; record our new start time. We might
1013 1.76 thorpej * be running on a new CPU now, so don't use the cache'd
1014 1.76 thorpej * schedstate_percpu pointer.
1015 1.76 thorpej */
1016 1.122 thorpej KDASSERT(l->l_cpu != NULL);
1017 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
1018 1.122 thorpej microtime(&l->l_cpu->ci_schedstate.spc_runtime);
1019 1.85 sommerfe
1020 1.90 sommerfe /*
1021 1.90 sommerfe * Reacquire the kernel_lock now. We do this after we've
1022 1.90 sommerfe * released the scheduler lock to avoid deadlock, and before
1023 1.90 sommerfe * we reacquire the interlock.
1024 1.90 sommerfe */
1025 1.144 yamt KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
1026 1.122 thorpej
1027 1.122 thorpej return retval;
1028 1.26 cgd }
1029 1.26 cgd
1030 1.26 cgd /*
1031 1.26 cgd * Initialize the (doubly-linked) run queues
1032 1.26 cgd * to be empty.
1033 1.26 cgd */
1034 1.26 cgd void
1035 1.26 cgd rqinit()
1036 1.26 cgd {
1037 1.71 augustss int i;
1038 1.26 cgd
1039 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
1040 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
1041 1.122 thorpej (struct lwp *)&sched_qs[i];
1042 1.26 cgd }
1043 1.26 cgd
1044 1.119 thorpej static __inline void
1045 1.122 thorpej resched_proc(struct lwp *l, u_char pri)
1046 1.119 thorpej {
1047 1.119 thorpej struct cpu_info *ci;
1048 1.119 thorpej
1049 1.119 thorpej /*
1050 1.119 thorpej * XXXSMP
1051 1.122 thorpej * Since l->l_cpu persists across a context switch,
1052 1.119 thorpej * this gives us *very weak* processor affinity, in
1053 1.119 thorpej * that we notify the CPU on which the process last
1054 1.119 thorpej * ran that it should try to switch.
1055 1.119 thorpej *
1056 1.119 thorpej * This does not guarantee that the process will run on
1057 1.119 thorpej * that processor next, because another processor might
1058 1.119 thorpej * grab it the next time it performs a context switch.
1059 1.119 thorpej *
1060 1.119 thorpej * This also does not handle the case where its last
1061 1.119 thorpej * CPU is running a higher-priority process, but every
1062 1.119 thorpej * other CPU is running a lower-priority process. There
1063 1.119 thorpej * are ways to handle this situation, but they're not
1064 1.119 thorpej * currently very pretty, and we also need to weigh the
1065 1.119 thorpej * cost of moving a process from one CPU to another.
1066 1.119 thorpej *
1067 1.119 thorpej * XXXSMP
1068 1.119 thorpej * There is also the issue of locking the other CPU's
1069 1.119 thorpej * sched state, which we currently do not do.
1070 1.119 thorpej */
1071 1.122 thorpej ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1072 1.121 thorpej if (pri < ci->ci_schedstate.spc_curpriority)
1073 1.119 thorpej need_resched(ci);
1074 1.119 thorpej }
1075 1.119 thorpej
1076 1.26 cgd /*
1077 1.26 cgd * Change process state to be runnable,
1078 1.26 cgd * placing it on the run queue if it is in memory,
1079 1.26 cgd * and awakening the swapper if it isn't in memory.
1080 1.26 cgd */
1081 1.26 cgd void
1082 1.122 thorpej setrunnable(struct lwp *l)
1083 1.26 cgd {
1084 1.122 thorpej struct proc *p = l->l_proc;
1085 1.26 cgd
1086 1.83 thorpej SCHED_ASSERT_LOCKED();
1087 1.83 thorpej
1088 1.122 thorpej switch (l->l_stat) {
1089 1.26 cgd case 0:
1090 1.122 thorpej case LSRUN:
1091 1.122 thorpej case LSONPROC:
1092 1.122 thorpej case LSZOMB:
1093 1.122 thorpej case LSDEAD:
1094 1.26 cgd default:
1095 1.127 matt panic("setrunnable: lwp %p state was %d", l, l->l_stat);
1096 1.122 thorpej case LSSTOP:
1097 1.33 mycroft /*
1098 1.33 mycroft * If we're being traced (possibly because someone attached us
1099 1.33 mycroft * while we were stopped), check for a signal from the debugger.
1100 1.33 mycroft */
1101 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1102 1.99 jdolecek sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1103 1.101 thorpej CHECKSIGS(p);
1104 1.53 mycroft }
1105 1.122 thorpej case LSSLEEP:
1106 1.122 thorpej unsleep(l); /* e.g. when sending signals */
1107 1.26 cgd break;
1108 1.26 cgd
1109 1.122 thorpej case LSIDL:
1110 1.122 thorpej break;
1111 1.122 thorpej case LSSUSPENDED:
1112 1.26 cgd break;
1113 1.26 cgd }
1114 1.139 cl
1115 1.139 cl if (l->l_proc->p_sa)
1116 1.139 cl sa_awaken(l);
1117 1.139 cl
1118 1.122 thorpej l->l_stat = LSRUN;
1119 1.122 thorpej p->p_nrlwps++;
1120 1.122 thorpej
1121 1.122 thorpej if (l->l_flag & L_INMEM)
1122 1.122 thorpej setrunqueue(l);
1123 1.122 thorpej
1124 1.122 thorpej if (l->l_slptime > 1)
1125 1.122 thorpej updatepri(l);
1126 1.122 thorpej l->l_slptime = 0;
1127 1.122 thorpej if ((l->l_flag & L_INMEM) == 0)
1128 1.83 thorpej sched_wakeup((caddr_t)&proc0);
1129 1.119 thorpej else
1130 1.122 thorpej resched_proc(l, l->l_priority);
1131 1.26 cgd }
1132 1.26 cgd
1133 1.26 cgd /*
1134 1.26 cgd * Compute the priority of a process when running in user mode.
1135 1.26 cgd * Arrange to reschedule if the resulting priority is better
1136 1.26 cgd * than that of the current process.
1137 1.26 cgd */
1138 1.26 cgd void
1139 1.122 thorpej resetpriority(struct lwp *l)
1140 1.26 cgd {
1141 1.71 augustss unsigned int newpriority;
1142 1.122 thorpej struct proc *p = l->l_proc;
1143 1.26 cgd
1144 1.83 thorpej SCHED_ASSERT_LOCKED();
1145 1.83 thorpej
1146 1.153 yamt newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
1147 1.122 thorpej NICE_WEIGHT * (p->p_nice - NZERO);
1148 1.26 cgd newpriority = min(newpriority, MAXPRI);
1149 1.122 thorpej l->l_usrpri = newpriority;
1150 1.122 thorpej resched_proc(l, l->l_usrpri);
1151 1.122 thorpej }
1152 1.122 thorpej
1153 1.130 nathanw /*
1154 1.122 thorpej * Recompute priority for all LWPs in a process.
1155 1.122 thorpej */
1156 1.122 thorpej void
1157 1.122 thorpej resetprocpriority(struct proc *p)
1158 1.122 thorpej {
1159 1.122 thorpej struct lwp *l;
1160 1.122 thorpej
1161 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling)
1162 1.122 thorpej resetpriority(l);
1163 1.55 ross }
1164 1.55 ross
1165 1.55 ross /*
1166 1.56 ross * We adjust the priority of the current process. The priority of a process
1167 1.141 wiz * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
1168 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
1169 1.56 ross * will compute a different value each time p_estcpu increases. This can
1170 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
1171 1.141 wiz * queue will not change. The CPU usage estimator ramps up quite quickly
1172 1.56 ross * when the process is running (linearly), and decays away exponentially, at
1173 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
1174 1.80 nathanw * principle is that the system will 90% forget that the process used a lot
1175 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
1176 1.56 ross * processes which haven't run much recently, and to round-robin among other
1177 1.56 ross * processes.
1178 1.55 ross */
1179 1.55 ross
1180 1.55 ross void
1181 1.122 thorpej schedclock(struct lwp *l)
1182 1.55 ross {
1183 1.122 thorpej struct proc *p = l->l_proc;
1184 1.83 thorpej int s;
1185 1.77 thorpej
1186 1.153 yamt p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
1187 1.83 thorpej SCHED_LOCK(s);
1188 1.122 thorpej resetpriority(l);
1189 1.83 thorpej SCHED_UNLOCK(s);
1190 1.130 nathanw
1191 1.122 thorpej if (l->l_priority >= PUSER)
1192 1.122 thorpej l->l_priority = l->l_usrpri;
1193 1.26 cgd }
1194 1.94 bouyer
1195 1.94 bouyer void
1196 1.94 bouyer suspendsched()
1197 1.94 bouyer {
1198 1.122 thorpej struct lwp *l;
1199 1.97 enami int s;
1200 1.94 bouyer
1201 1.94 bouyer /*
1202 1.130 nathanw * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1203 1.122 thorpej * LSSUSPENDED.
1204 1.94 bouyer */
1205 1.95 thorpej proclist_lock_read();
1206 1.95 thorpej SCHED_LOCK(s);
1207 1.122 thorpej LIST_FOREACH(l, &alllwp, l_list) {
1208 1.122 thorpej if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1209 1.94 bouyer continue;
1210 1.122 thorpej
1211 1.122 thorpej switch (l->l_stat) {
1212 1.122 thorpej case LSRUN:
1213 1.122 thorpej l->l_proc->p_nrlwps--;
1214 1.122 thorpej if ((l->l_flag & L_INMEM) != 0)
1215 1.122 thorpej remrunqueue(l);
1216 1.97 enami /* FALLTHROUGH */
1217 1.122 thorpej case LSSLEEP:
1218 1.122 thorpej l->l_stat = LSSUSPENDED;
1219 1.97 enami break;
1220 1.122 thorpej case LSONPROC:
1221 1.97 enami /*
1222 1.97 enami * XXX SMP: we need to deal with processes on
1223 1.97 enami * others CPU !
1224 1.97 enami */
1225 1.97 enami break;
1226 1.97 enami default:
1227 1.97 enami break;
1228 1.94 bouyer }
1229 1.94 bouyer }
1230 1.94 bouyer SCHED_UNLOCK(s);
1231 1.97 enami proclist_unlock_read();
1232 1.94 bouyer }
1233 1.113 gmcgarry
1234 1.113 gmcgarry /*
1235 1.151 yamt * scheduler_fork_hook:
1236 1.151 yamt *
1237 1.151 yamt * Inherit the parent's scheduler history.
1238 1.151 yamt */
1239 1.151 yamt void
1240 1.151 yamt scheduler_fork_hook(struct proc *parent, struct proc *child)
1241 1.151 yamt {
1242 1.151 yamt
1243 1.151 yamt child->p_estcpu = parent->p_estcpu;
1244 1.151 yamt }
1245 1.151 yamt
1246 1.151 yamt /*
1247 1.151 yamt * scheduler_wait_hook:
1248 1.151 yamt *
1249 1.151 yamt * Chargeback parents for the sins of their children.
1250 1.151 yamt */
1251 1.151 yamt void
1252 1.151 yamt scheduler_wait_hook(struct proc *parent, struct proc *child)
1253 1.151 yamt {
1254 1.151 yamt
1255 1.151 yamt /* XXX Only if parent != init?? */
1256 1.151 yamt parent->p_estcpu = ESTCPULIM(parent->p_estcpu + child->p_estcpu);
1257 1.151 yamt }
1258 1.151 yamt
1259 1.151 yamt /*
1260 1.113 gmcgarry * Low-level routines to access the run queue. Optimised assembler
1261 1.113 gmcgarry * routines can override these.
1262 1.113 gmcgarry */
1263 1.113 gmcgarry
1264 1.113 gmcgarry #ifndef __HAVE_MD_RUNQUEUE
1265 1.115 nisimura
1266 1.130 nathanw /*
1267 1.134 matt * On some architectures, it's faster to use a MSB ordering for the priorites
1268 1.134 matt * than the traditional LSB ordering.
1269 1.134 matt */
1270 1.134 matt #ifdef __HAVE_BIGENDIAN_BITOPS
1271 1.134 matt #define RQMASK(n) (0x80000000 >> (n))
1272 1.134 matt #else
1273 1.134 matt #define RQMASK(n) (0x00000001 << (n))
1274 1.134 matt #endif
1275 1.134 matt
1276 1.134 matt /*
1277 1.115 nisimura * The primitives that manipulate the run queues. whichqs tells which
1278 1.115 nisimura * of the 32 queues qs have processes in them. Setrunqueue puts processes
1279 1.115 nisimura * into queues, remrunqueue removes them from queues. The running process is
1280 1.115 nisimura * on no queue, other processes are on a queue related to p->p_priority,
1281 1.115 nisimura * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1282 1.115 nisimura * available queues.
1283 1.130 nathanw */
1284 1.113 gmcgarry
1285 1.146 matt #ifdef RQDEBUG
1286 1.146 matt static void
1287 1.146 matt checkrunqueue(int whichq, struct lwp *l)
1288 1.146 matt {
1289 1.146 matt const struct prochd * const rq = &sched_qs[whichq];
1290 1.146 matt struct lwp *l2;
1291 1.146 matt int found = 0;
1292 1.146 matt int die = 0;
1293 1.146 matt int empty = 1;
1294 1.146 matt for (l2 = rq->ph_link; l2 != (void*) rq; l2 = l2->l_forw) {
1295 1.146 matt if (l2->l_stat != LSRUN) {
1296 1.146 matt printf("checkrunqueue[%d]: lwp %p state (%d) "
1297 1.146 matt " != LSRUN\n", whichq, l2, l2->l_stat);
1298 1.146 matt }
1299 1.146 matt if (l2->l_back->l_forw != l2) {
1300 1.146 matt printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1301 1.146 matt "corrupt %p\n", whichq, l2, l2->l_back,
1302 1.146 matt l2->l_back->l_forw);
1303 1.146 matt die = 1;
1304 1.146 matt }
1305 1.146 matt if (l2->l_forw->l_back != l2) {
1306 1.146 matt printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1307 1.146 matt "corrupt %p\n", whichq, l2, l2->l_forw,
1308 1.146 matt l2->l_forw->l_back);
1309 1.146 matt die = 1;
1310 1.146 matt }
1311 1.146 matt if (l2 == l)
1312 1.146 matt found = 1;
1313 1.146 matt empty = 0;
1314 1.146 matt }
1315 1.146 matt if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1316 1.146 matt printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1317 1.146 matt whichq, rq);
1318 1.146 matt die = 1;
1319 1.146 matt } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1320 1.146 matt printf("checkrunqueue[%d]: bit clear for non-empty "
1321 1.146 matt "run-queue %p\n", whichq, rq);
1322 1.146 matt die = 1;
1323 1.146 matt }
1324 1.146 matt if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1325 1.146 matt printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1326 1.146 matt whichq, l);
1327 1.146 matt die = 1;
1328 1.146 matt }
1329 1.146 matt if (l != NULL && empty) {
1330 1.146 matt printf("checkrunqueue[%d]: empty run-queue %p with "
1331 1.146 matt "active lwp %p\n", whichq, rq, l);
1332 1.146 matt die = 1;
1333 1.146 matt }
1334 1.146 matt if (l != NULL && !found) {
1335 1.146 matt printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1336 1.146 matt whichq, l, rq);
1337 1.146 matt die = 1;
1338 1.146 matt }
1339 1.146 matt if (die)
1340 1.146 matt panic("checkrunqueue: inconsistency found");
1341 1.146 matt }
1342 1.146 matt #endif /* RQDEBUG */
1343 1.146 matt
1344 1.113 gmcgarry void
1345 1.122 thorpej setrunqueue(struct lwp *l)
1346 1.113 gmcgarry {
1347 1.113 gmcgarry struct prochd *rq;
1348 1.122 thorpej struct lwp *prev;
1349 1.152 yamt const int whichq = l->l_priority / PPQ;
1350 1.113 gmcgarry
1351 1.146 matt #ifdef RQDEBUG
1352 1.146 matt checkrunqueue(whichq, NULL);
1353 1.146 matt #endif
1354 1.113 gmcgarry #ifdef DIAGNOSTIC
1355 1.122 thorpej if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1356 1.113 gmcgarry panic("setrunqueue");
1357 1.113 gmcgarry #endif
1358 1.134 matt sched_whichqs |= RQMASK(whichq);
1359 1.113 gmcgarry rq = &sched_qs[whichq];
1360 1.113 gmcgarry prev = rq->ph_rlink;
1361 1.122 thorpej l->l_forw = (struct lwp *)rq;
1362 1.122 thorpej rq->ph_rlink = l;
1363 1.122 thorpej prev->l_forw = l;
1364 1.122 thorpej l->l_back = prev;
1365 1.146 matt #ifdef RQDEBUG
1366 1.146 matt checkrunqueue(whichq, l);
1367 1.146 matt #endif
1368 1.113 gmcgarry }
1369 1.113 gmcgarry
1370 1.113 gmcgarry void
1371 1.122 thorpej remrunqueue(struct lwp *l)
1372 1.113 gmcgarry {
1373 1.122 thorpej struct lwp *prev, *next;
1374 1.152 yamt const int whichq = l->l_priority / PPQ;
1375 1.146 matt #ifdef RQDEBUG
1376 1.146 matt checkrunqueue(whichq, l);
1377 1.146 matt #endif
1378 1.113 gmcgarry #ifdef DIAGNOSTIC
1379 1.134 matt if (((sched_whichqs & RQMASK(whichq)) == 0))
1380 1.146 matt panic("remrunqueue: bit %d not set", whichq);
1381 1.113 gmcgarry #endif
1382 1.122 thorpej prev = l->l_back;
1383 1.122 thorpej l->l_back = NULL;
1384 1.122 thorpej next = l->l_forw;
1385 1.122 thorpej prev->l_forw = next;
1386 1.122 thorpej next->l_back = prev;
1387 1.113 gmcgarry if (prev == next)
1388 1.134 matt sched_whichqs &= ~RQMASK(whichq);
1389 1.146 matt #ifdef RQDEBUG
1390 1.146 matt checkrunqueue(whichq, NULL);
1391 1.146 matt #endif
1392 1.113 gmcgarry }
1393 1.113 gmcgarry
1394 1.134 matt #undef RQMASK
1395 1.134 matt #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1396