Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.160.12.1
      1  1.160.12.1      tron /*	$NetBSD: kern_synch.c,v 1.160.12.1 2006/05/24 15:50:41 tron Exp $	*/
      2        1.63   thorpej 
      3        1.63   thorpej /*-
      4       1.148   mycroft  * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
      5        1.63   thorpej  * All rights reserved.
      6        1.63   thorpej  *
      7        1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8        1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9        1.63   thorpej  * NASA Ames Research Center.
     10       1.148   mycroft  * This code is derived from software contributed to The NetBSD Foundation
     11       1.148   mycroft  * by Charles M. Hannum.
     12        1.63   thorpej  *
     13        1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     14        1.63   thorpej  * modification, are permitted provided that the following conditions
     15        1.63   thorpej  * are met:
     16        1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     17        1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     18        1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19        1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20        1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     21        1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     22        1.63   thorpej  *    must display the following acknowledgement:
     23        1.63   thorpej  *	This product includes software developed by the NetBSD
     24        1.63   thorpej  *	Foundation, Inc. and its contributors.
     25        1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26        1.63   thorpej  *    contributors may be used to endorse or promote products derived
     27        1.63   thorpej  *    from this software without specific prior written permission.
     28        1.63   thorpej  *
     29        1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30        1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31        1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32        1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33        1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34        1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35        1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36        1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37        1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38        1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39        1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     40        1.63   thorpej  */
     41        1.26       cgd 
     42        1.26       cgd /*-
     43        1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     44        1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     45        1.26       cgd  * (c) UNIX System Laboratories, Inc.
     46        1.26       cgd  * All or some portions of this file are derived from material licensed
     47        1.26       cgd  * to the University of California by American Telephone and Telegraph
     48        1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49        1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     50        1.26       cgd  *
     51        1.26       cgd  * Redistribution and use in source and binary forms, with or without
     52        1.26       cgd  * modification, are permitted provided that the following conditions
     53        1.26       cgd  * are met:
     54        1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     55        1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     56        1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     57        1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     58        1.26       cgd  *    documentation and/or other materials provided with the distribution.
     59       1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     60        1.26       cgd  *    may be used to endorse or promote products derived from this software
     61        1.26       cgd  *    without specific prior written permission.
     62        1.26       cgd  *
     63        1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64        1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65        1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66        1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67        1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68        1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69        1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70        1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71        1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72        1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73        1.26       cgd  * SUCH DAMAGE.
     74        1.26       cgd  *
     75        1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     76        1.26       cgd  */
     77       1.106     lukem 
     78       1.106     lukem #include <sys/cdefs.h>
     79  1.160.12.1      tron __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.160.12.1 2006/05/24 15:50:41 tron Exp $");
     80        1.48       mrg 
     81        1.52  jonathan #include "opt_ddb.h"
     82        1.51   thorpej #include "opt_ktrace.h"
     83       1.109      yamt #include "opt_kstack.h"
     84        1.82   thorpej #include "opt_lockdebug.h"
     85        1.83   thorpej #include "opt_multiprocessor.h"
     86       1.110    briggs #include "opt_perfctrs.h"
     87        1.26       cgd 
     88        1.26       cgd #include <sys/param.h>
     89        1.26       cgd #include <sys/systm.h>
     90        1.68   thorpej #include <sys/callout.h>
     91        1.26       cgd #include <sys/proc.h>
     92        1.26       cgd #include <sys/kernel.h>
     93        1.26       cgd #include <sys/buf.h>
     94       1.111    briggs #if defined(PERFCTRS)
     95       1.110    briggs #include <sys/pmc.h>
     96       1.111    briggs #endif
     97        1.26       cgd #include <sys/signalvar.h>
     98        1.26       cgd #include <sys/resourcevar.h>
     99        1.55      ross #include <sys/sched.h>
    100       1.122   thorpej #include <sys/sa.h>
    101       1.122   thorpej #include <sys/savar.h>
    102  1.160.12.1      tron #include <sys/kauth.h>
    103        1.47       mrg 
    104        1.47       mrg #include <uvm/uvm_extern.h>
    105        1.47       mrg 
    106        1.26       cgd #ifdef KTRACE
    107        1.26       cgd #include <sys/ktrace.h>
    108        1.26       cgd #endif
    109        1.26       cgd 
    110        1.26       cgd #include <machine/cpu.h>
    111        1.34  christos 
    112        1.26       cgd int	lbolt;			/* once a second sleep address */
    113        1.88  sommerfe int	rrticks;		/* number of hardclock ticks per roundrobin() */
    114        1.26       cgd 
    115        1.73   thorpej /*
    116       1.152      yamt  * Sleep queues.
    117       1.152      yamt  *
    118       1.152      yamt  * We're only looking at 7 bits of the address; everything is
    119       1.152      yamt  * aligned to 4, lots of things are aligned to greater powers
    120       1.152      yamt  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    121       1.152      yamt  */
    122       1.152      yamt #define	SLPQUE_TABLESIZE	128
    123       1.152      yamt #define	SLPQUE_LOOKUP(x)	(((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
    124       1.152      yamt 
    125       1.152      yamt #define	SLPQUE(ident)	(&sched_slpque[SLPQUE_LOOKUP(ident)])
    126       1.152      yamt 
    127       1.152      yamt /*
    128        1.73   thorpej  * The global scheduler state.
    129        1.73   thorpej  */
    130        1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    131       1.159     perry volatile uint32_t sched_whichqs;	/* bitmap of non-empty queues */
    132        1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    133        1.73   thorpej 
    134        1.83   thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    135        1.83   thorpej 
    136        1.77   thorpej void schedcpu(void *);
    137       1.122   thorpej void updatepri(struct lwp *);
    138        1.77   thorpej void endtsleep(void *);
    139        1.34  christos 
    140       1.158     perry inline void sa_awaken(struct lwp *);
    141       1.158     perry inline void awaken(struct lwp *);
    142        1.63   thorpej 
    143       1.143      yamt struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    144       1.157      yamt static unsigned int schedcpu_ticks;
    145       1.122   thorpej 
    146       1.122   thorpej 
    147        1.26       cgd /*
    148        1.26       cgd  * Force switch among equal priority processes every 100ms.
    149        1.88  sommerfe  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    150        1.26       cgd  */
    151        1.26       cgd /* ARGSUSED */
    152        1.26       cgd void
    153        1.89  sommerfe roundrobin(struct cpu_info *ci)
    154        1.26       cgd {
    155        1.89  sommerfe 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    156        1.26       cgd 
    157        1.88  sommerfe 	spc->spc_rrticks = rrticks;
    158       1.130   nathanw 
    159       1.122   thorpej 	if (curlwp != NULL) {
    160        1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    161        1.69   thorpej 			/*
    162        1.69   thorpej 			 * The process has already been through a roundrobin
    163        1.69   thorpej 			 * without switching and may be hogging the CPU.
    164        1.69   thorpej 			 * Indicate that the process should yield.
    165        1.69   thorpej 			 */
    166        1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    167        1.69   thorpej 		} else
    168        1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    169        1.69   thorpej 	}
    170        1.87   thorpej 	need_resched(curcpu());
    171        1.26       cgd }
    172        1.26       cgd 
    173       1.153      yamt #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    174       1.153      yamt #define	NICE_WEIGHT 2			/* priorities per nice level */
    175       1.153      yamt 
    176       1.153      yamt #define	ESTCPU_SHIFT	11
    177       1.153      yamt #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    178       1.153      yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    179       1.153      yamt 
    180        1.26       cgd /*
    181        1.26       cgd  * Constants for digital decay and forget:
    182        1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    183        1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    184        1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    185        1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    186        1.26       cgd  *
    187        1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    188        1.26       cgd  *
    189        1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    190        1.26       cgd  * That is, the system wants to compute a value of decay such
    191        1.26       cgd  * that the following for loop:
    192        1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    193        1.26       cgd  * 		p_estcpu *= decay;
    194        1.26       cgd  * will compute
    195        1.26       cgd  * 	p_estcpu *= 0.1;
    196        1.26       cgd  * for all values of loadavg:
    197        1.26       cgd  *
    198        1.26       cgd  * Mathematically this loop can be expressed by saying:
    199        1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    200        1.26       cgd  *
    201        1.26       cgd  * The system computes decay as:
    202        1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    203        1.26       cgd  *
    204        1.26       cgd  * We wish to prove that the system's computation of decay
    205        1.26       cgd  * will always fulfill the equation:
    206        1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    207        1.26       cgd  *
    208        1.26       cgd  * If we compute b as:
    209        1.26       cgd  * 	b = 2 * loadavg
    210        1.26       cgd  * then
    211        1.26       cgd  * 	decay = b / (b + 1)
    212        1.26       cgd  *
    213        1.26       cgd  * We now need to prove two things:
    214        1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    215        1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    216       1.130   nathanw  *
    217        1.26       cgd  * Facts:
    218        1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    219        1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    220        1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    221        1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    222        1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    223        1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    224        1.26       cgd  *         ln(.1) =~ -2.30
    225        1.26       cgd  *
    226        1.26       cgd  * Proof of (1):
    227        1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    228        1.26       cgd  *	solving for factor,
    229        1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    230        1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    231        1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    232        1.26       cgd  *
    233        1.26       cgd  * Proof of (2):
    234        1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    235        1.26       cgd  *	solving for power,
    236        1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    237        1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    238        1.26       cgd  *
    239        1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    240        1.26       cgd  *      loadav: 1       2       3       4
    241        1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    242        1.26       cgd  */
    243        1.26       cgd 
    244        1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    245        1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    246       1.153      yamt 
    247       1.153      yamt static fixpt_t
    248       1.153      yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    249       1.153      yamt {
    250       1.153      yamt 
    251       1.153      yamt 	if (estcpu == 0) {
    252       1.153      yamt 		return 0;
    253       1.153      yamt 	}
    254       1.153      yamt 
    255       1.153      yamt #if !defined(_LP64)
    256       1.153      yamt 	/* avoid 64bit arithmetics. */
    257       1.153      yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    258       1.153      yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    259       1.153      yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    260       1.153      yamt 	}
    261       1.153      yamt #endif /* !defined(_LP64) */
    262       1.153      yamt 
    263       1.153      yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    264       1.153      yamt }
    265        1.26       cgd 
    266       1.157      yamt /*
    267       1.157      yamt  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    268       1.157      yamt  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    269       1.157      yamt  * less than (1 << ESTCPU_SHIFT).
    270       1.157      yamt  *
    271       1.157      yamt  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    272       1.157      yamt  */
    273       1.157      yamt static fixpt_t
    274       1.157      yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    275       1.157      yamt {
    276       1.157      yamt 
    277       1.157      yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    278       1.157      yamt 		return 0;
    279       1.157      yamt 	}
    280       1.157      yamt 
    281       1.157      yamt 	while (estcpu != 0 && n > 1) {
    282       1.157      yamt 		estcpu = decay_cpu(loadfac, estcpu);
    283       1.157      yamt 		n--;
    284       1.157      yamt 	}
    285       1.157      yamt 
    286       1.157      yamt 	return estcpu;
    287       1.157      yamt }
    288       1.157      yamt 
    289        1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    290        1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    291        1.26       cgd 
    292        1.26       cgd /*
    293        1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    294        1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    295        1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    296        1.26       cgd  *
    297        1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    298        1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    299        1.26       cgd  *
    300        1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    301        1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    302        1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    303        1.26       cgd  */
    304        1.26       cgd #define	CCPU_SHIFT	11
    305        1.26       cgd 
    306        1.26       cgd /*
    307        1.26       cgd  * Recompute process priorities, every hz ticks.
    308        1.26       cgd  */
    309        1.26       cgd /* ARGSUSED */
    310        1.26       cgd void
    311        1.77   thorpej schedcpu(void *arg)
    312        1.26       cgd {
    313        1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    314       1.122   thorpej 	struct lwp *l;
    315        1.71  augustss 	struct proc *p;
    316       1.122   thorpej 	int s, minslp;
    317        1.66      ross 	int clkhz;
    318        1.26       cgd 
    319       1.157      yamt 	schedcpu_ticks++;
    320       1.157      yamt 
    321        1.62   thorpej 	proclist_lock_read();
    322       1.145      yamt 	PROCLIST_FOREACH(p, &allproc) {
    323        1.26       cgd 		/*
    324        1.26       cgd 		 * Increment time in/out of memory and sleep time
    325        1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    326        1.26       cgd 		 * (remember them?) overflow takes 45 days.
    327        1.26       cgd 		 */
    328       1.122   thorpej 		minslp = 2;
    329       1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    330       1.122   thorpej 			l->l_swtime++;
    331       1.130   nathanw 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    332       1.122   thorpej 			    l->l_stat == LSSUSPENDED) {
    333       1.122   thorpej 				l->l_slptime++;
    334       1.122   thorpej 				minslp = min(minslp, l->l_slptime);
    335       1.122   thorpej 			} else
    336       1.122   thorpej 				minslp = 0;
    337       1.122   thorpej 		}
    338        1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    339        1.26       cgd 		/*
    340        1.26       cgd 		 * If the process has slept the entire second,
    341        1.26       cgd 		 * stop recalculating its priority until it wakes up.
    342        1.26       cgd 		 */
    343       1.122   thorpej 		if (minslp > 1)
    344        1.26       cgd 			continue;
    345        1.26       cgd 		s = splstatclock();	/* prevent state changes */
    346        1.26       cgd 		/*
    347        1.26       cgd 		 * p_pctcpu is only for ps.
    348        1.26       cgd 		 */
    349        1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    350        1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    351        1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    352        1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    353        1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    354        1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    355        1.26       cgd #else
    356        1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    357        1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    358        1.26       cgd #endif
    359        1.26       cgd 		p->p_cpticks = 0;
    360       1.153      yamt 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    361       1.120        pk 		splx(s);	/* Done with the process CPU ticks update */
    362       1.120        pk 		SCHED_LOCK(s);
    363       1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    364       1.122   thorpej 			if (l->l_slptime > 1)
    365       1.122   thorpej 				continue;
    366       1.122   thorpej 			resetpriority(l);
    367       1.122   thorpej 			if (l->l_priority >= PUSER) {
    368       1.122   thorpej 				if (l->l_stat == LSRUN &&
    369       1.122   thorpej 				    (l->l_flag & L_INMEM) &&
    370       1.122   thorpej 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    371       1.122   thorpej 					remrunqueue(l);
    372       1.122   thorpej 					l->l_priority = l->l_usrpri;
    373       1.122   thorpej 					setrunqueue(l);
    374       1.122   thorpej 				} else
    375       1.122   thorpej 					l->l_priority = l->l_usrpri;
    376       1.122   thorpej 			}
    377        1.26       cgd 		}
    378       1.120        pk 		SCHED_UNLOCK(s);
    379        1.26       cgd 	}
    380        1.61   thorpej 	proclist_unlock_read();
    381        1.47       mrg 	uvm_meter();
    382        1.67      fvdl 	wakeup((caddr_t)&lbolt);
    383       1.143      yamt 	callout_schedule(&schedcpu_ch, hz);
    384        1.26       cgd }
    385        1.26       cgd 
    386        1.26       cgd /*
    387        1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    388        1.26       cgd  */
    389        1.26       cgd void
    390       1.122   thorpej updatepri(struct lwp *l)
    391        1.26       cgd {
    392       1.122   thorpej 	struct proc *p = l->l_proc;
    393        1.83   thorpej 	fixpt_t loadfac;
    394        1.83   thorpej 
    395        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    396       1.157      yamt 	KASSERT(l->l_slptime > 1);
    397        1.83   thorpej 
    398        1.83   thorpej 	loadfac = loadfactor(averunnable.ldavg[0]);
    399        1.26       cgd 
    400       1.157      yamt 	l->l_slptime--; /* the first time was done in schedcpu */
    401       1.157      yamt 	/* XXX NJWLWP */
    402       1.157      yamt 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    403       1.122   thorpej 	resetpriority(l);
    404        1.26       cgd }
    405        1.26       cgd 
    406        1.26       cgd /*
    407        1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    408        1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    409        1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    410        1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    411        1.26       cgd  * This priority will typically be 0, or the lowest priority
    412        1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    413        1.26       cgd  * higher to block network software interrupts after panics.
    414        1.26       cgd  */
    415        1.26       cgd int safepri;
    416        1.26       cgd 
    417        1.26       cgd /*
    418        1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    419        1.26       cgd  * performed on the specified identifier.  The process will then be made
    420        1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    421        1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    422        1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    423        1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    424        1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    425        1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    426        1.26       cgd  * call should be interrupted by the signal (return EINTR).
    427        1.77   thorpej  *
    428       1.103  jdolecek  * The interlock is held until the scheduler_slock is acquired.  The
    429        1.77   thorpej  * interlock will be locked before returning back to the caller
    430        1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    431        1.77   thorpej  * interlock will always be unlocked upon return.
    432        1.26       cgd  */
    433        1.26       cgd int
    434       1.158     perry ltsleep(volatile const void *ident, int priority, const char *wmesg, int timo,
    435       1.158     perry     volatile struct simplelock *interlock)
    436        1.26       cgd {
    437       1.122   thorpej 	struct lwp *l = curlwp;
    438       1.123  christos 	struct proc *p = l ? l->l_proc : NULL;
    439        1.71  augustss 	struct slpque *qp;
    440       1.150       chs 	struct sadata_upcall *sau;
    441        1.77   thorpej 	int sig, s;
    442        1.77   thorpej 	int catch = priority & PCATCH;
    443        1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    444       1.122   thorpej 	int exiterr = (priority & PNOEXITERR) == 0;
    445        1.26       cgd 
    446        1.77   thorpej 	/*
    447        1.77   thorpej 	 * XXXSMP
    448        1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    449        1.77   thorpej 	 * thing to do here really is.
    450       1.130   nathanw 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    451        1.78  sommerfe 	 * in the shutdown case is disgusting but partly necessary given
    452        1.78  sommerfe 	 * how shutdown (barely) works.
    453        1.77   thorpej 	 */
    454       1.122   thorpej 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    455        1.26       cgd 		/*
    456        1.26       cgd 		 * After a panic, or during autoconfiguration,
    457        1.26       cgd 		 * just give interrupts a chance, then just return;
    458        1.26       cgd 		 * don't run any other procs or panic below,
    459        1.26       cgd 		 * in case this is the idle process and already asleep.
    460        1.26       cgd 		 */
    461        1.42       cgd 		s = splhigh();
    462        1.26       cgd 		splx(safepri);
    463        1.26       cgd 		splx(s);
    464        1.77   thorpej 		if (interlock != NULL && relock == 0)
    465        1.77   thorpej 			simple_unlock(interlock);
    466        1.26       cgd 		return (0);
    467        1.26       cgd 	}
    468        1.78  sommerfe 
    469       1.102   thorpej 	KASSERT(p != NULL);
    470       1.105       chs 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    471        1.42       cgd 
    472        1.42       cgd #ifdef KTRACE
    473        1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    474       1.154  christos 		ktrcsw(l, 1, 0);
    475        1.42       cgd #endif
    476        1.77   thorpej 
    477       1.150       chs 	/*
    478       1.150       chs 	 * XXX We need to allocate the sadata_upcall structure here,
    479       1.150       chs 	 * XXX since we can't sleep while waiting for memory inside
    480       1.150       chs 	 * XXX sa_upcall().  It would be nice if we could safely
    481       1.150       chs 	 * XXX allocate the sadata_upcall structure on the stack, here.
    482       1.150       chs 	 */
    483       1.150       chs 	if (l->l_flag & L_SA) {
    484       1.150       chs 		sau = sadata_upcall_alloc(0);
    485       1.150       chs 	} else {
    486       1.150       chs 		sau = NULL;
    487       1.150       chs 	}
    488       1.150       chs 
    489        1.83   thorpej 	SCHED_LOCK(s);
    490        1.42       cgd 
    491        1.26       cgd #ifdef DIAGNOSTIC
    492        1.64   thorpej 	if (ident == NULL)
    493        1.77   thorpej 		panic("ltsleep: ident == NULL");
    494       1.122   thorpej 	if (l->l_stat != LSONPROC)
    495       1.122   thorpej 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    496       1.122   thorpej 	if (l->l_back != NULL)
    497        1.77   thorpej 		panic("ltsleep: p_back != NULL");
    498        1.26       cgd #endif
    499        1.77   thorpej 
    500       1.122   thorpej 	l->l_wchan = ident;
    501       1.122   thorpej 	l->l_wmesg = wmesg;
    502       1.122   thorpej 	l->l_slptime = 0;
    503       1.122   thorpej 	l->l_priority = priority & PRIMASK;
    504        1.77   thorpej 
    505        1.73   thorpej 	qp = SLPQUE(ident);
    506        1.26       cgd 	if (qp->sq_head == 0)
    507       1.122   thorpej 		qp->sq_head = l;
    508       1.122   thorpej 	else {
    509       1.122   thorpej 		*qp->sq_tailp = l;
    510       1.122   thorpej 	}
    511       1.122   thorpej 	*(qp->sq_tailp = &l->l_forw) = 0;
    512        1.77   thorpej 
    513        1.26       cgd 	if (timo)
    514       1.122   thorpej 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    515        1.77   thorpej 
    516        1.77   thorpej 	/*
    517        1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    518        1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    519        1.77   thorpej 	 * we do the switch.
    520        1.77   thorpej 	 *
    521        1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    522        1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    523        1.77   thorpej 	 * data structure for the sleep queues at some point.
    524        1.77   thorpej 	 */
    525        1.77   thorpej 	if (interlock != NULL)
    526        1.77   thorpej 		simple_unlock(interlock);
    527        1.77   thorpej 
    528        1.26       cgd 	/*
    529        1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    530        1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    531        1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    532        1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    533        1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    534        1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    535        1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    536        1.26       cgd 	 */
    537        1.26       cgd 	if (catch) {
    538       1.122   thorpej 		l->l_flag |= L_SINTR;
    539       1.137    itojun 		if (((sig = CURSIG(l)) != 0) ||
    540       1.137    itojun 		    ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
    541       1.122   thorpej 			if (l->l_wchan != NULL)
    542       1.122   thorpej 				unsleep(l);
    543       1.122   thorpej 			l->l_stat = LSONPROC;
    544        1.83   thorpej 			SCHED_UNLOCK(s);
    545        1.26       cgd 			goto resume;
    546        1.26       cgd 		}
    547       1.122   thorpej 		if (l->l_wchan == NULL) {
    548        1.26       cgd 			catch = 0;
    549        1.83   thorpej 			SCHED_UNLOCK(s);
    550        1.26       cgd 			goto resume;
    551        1.26       cgd 		}
    552        1.26       cgd 	} else
    553        1.26       cgd 		sig = 0;
    554       1.122   thorpej 	l->l_stat = LSSLEEP;
    555       1.122   thorpej 	p->p_nrlwps--;
    556        1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    557        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    558       1.122   thorpej 	if (l->l_flag & L_SA)
    559       1.150       chs 		sa_switch(l, sau, SA_UPCALL_BLOCKED);
    560       1.122   thorpej 	else
    561       1.122   thorpej 		mi_switch(l, NULL);
    562        1.83   thorpej 
    563       1.104       chs #if	defined(DDB) && !defined(GPROF)
    564        1.26       cgd 	/* handy breakpoint location after process "wakes" */
    565       1.140    kleink 	__asm(".globl bpendtsleep\nbpendtsleep:");
    566        1.26       cgd #endif
    567       1.122   thorpej 	/*
    568       1.122   thorpej 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    569       1.122   thorpej 	 * either setrunnable() or awaken().
    570       1.122   thorpej 	 */
    571        1.77   thorpej 
    572        1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    573        1.83   thorpej 	splx(s);
    574        1.83   thorpej 
    575        1.77   thorpej  resume:
    576       1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    577       1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    578       1.122   thorpej 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    579       1.122   thorpej 
    580       1.122   thorpej 	l->l_flag &= ~L_SINTR;
    581       1.122   thorpej 	if (l->l_flag & L_TIMEOUT) {
    582       1.135      matt 		l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
    583        1.26       cgd 		if (sig == 0) {
    584        1.26       cgd #ifdef KTRACE
    585        1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    586       1.154  christos 				ktrcsw(l, 0, 0);
    587        1.26       cgd #endif
    588        1.77   thorpej 			if (relock && interlock != NULL)
    589        1.77   thorpej 				simple_lock(interlock);
    590        1.26       cgd 			return (EWOULDBLOCK);
    591        1.26       cgd 		}
    592        1.26       cgd 	} else if (timo)
    593       1.122   thorpej 		callout_stop(&l->l_tsleep_ch);
    594       1.135      matt 
    595       1.135      matt 	if (catch) {
    596       1.135      matt 		const int cancelled = l->l_flag & L_CANCELLED;
    597       1.135      matt 		l->l_flag &= ~L_CANCELLED;
    598       1.135      matt 		if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
    599        1.26       cgd #ifdef KTRACE
    600       1.135      matt 			if (KTRPOINT(p, KTR_CSW))
    601       1.154  christos 				ktrcsw(l, 0, 0);
    602        1.26       cgd #endif
    603       1.135      matt 			if (relock && interlock != NULL)
    604       1.135      matt 				simple_lock(interlock);
    605       1.135      matt 			/*
    606       1.135      matt 			 * If this sleep was canceled, don't let the syscall
    607       1.135      matt 			 * restart.
    608       1.135      matt 			 */
    609       1.135      matt 			if (cancelled ||
    610       1.135      matt 			    (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    611       1.135      matt 				return (EINTR);
    612       1.135      matt 			return (ERESTART);
    613       1.135      matt 		}
    614        1.26       cgd 	}
    615       1.126        pk 
    616       1.126        pk #ifdef KTRACE
    617       1.126        pk 	if (KTRPOINT(p, KTR_CSW))
    618       1.154  christos 		ktrcsw(l, 0, 0);
    619       1.126        pk #endif
    620       1.126        pk 	if (relock && interlock != NULL)
    621       1.126        pk 		simple_lock(interlock);
    622       1.126        pk 
    623       1.122   thorpej 	/* XXXNJW this is very much a kluge.
    624       1.130   nathanw 	 * revisit. a better way of preventing looping/hanging syscalls like
    625       1.122   thorpej 	 * wait4() and _lwp_wait() from wedging an exiting process
    626       1.122   thorpej 	 * would be preferred.
    627       1.122   thorpej 	 */
    628       1.137    itojun 	if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
    629       1.122   thorpej 		return (EINTR);
    630        1.26       cgd 	return (0);
    631        1.26       cgd }
    632        1.26       cgd 
    633        1.26       cgd /*
    634        1.26       cgd  * Implement timeout for tsleep.
    635        1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    636        1.26       cgd  * set timeout flag and undo the sleep.  If proc
    637        1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    638        1.26       cgd  */
    639        1.26       cgd void
    640        1.77   thorpej endtsleep(void *arg)
    641        1.26       cgd {
    642       1.122   thorpej 	struct lwp *l;
    643        1.26       cgd 	int s;
    644        1.26       cgd 
    645       1.122   thorpej 	l = (struct lwp *)arg;
    646        1.83   thorpej 	SCHED_LOCK(s);
    647       1.122   thorpej 	if (l->l_wchan) {
    648       1.122   thorpej 		if (l->l_stat == LSSLEEP)
    649       1.122   thorpej 			setrunnable(l);
    650        1.26       cgd 		else
    651       1.122   thorpej 			unsleep(l);
    652       1.122   thorpej 		l->l_flag |= L_TIMEOUT;
    653        1.26       cgd 	}
    654        1.83   thorpej 	SCHED_UNLOCK(s);
    655        1.26       cgd }
    656        1.26       cgd 
    657        1.26       cgd /*
    658        1.26       cgd  * Remove a process from its wait queue
    659        1.26       cgd  */
    660        1.26       cgd void
    661       1.122   thorpej unsleep(struct lwp *l)
    662        1.26       cgd {
    663        1.71  augustss 	struct slpque *qp;
    664       1.122   thorpej 	struct lwp **hp;
    665        1.26       cgd 
    666        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    667        1.83   thorpej 
    668       1.122   thorpej 	if (l->l_wchan) {
    669       1.122   thorpej 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    670       1.122   thorpej 		while (*hp != l)
    671       1.122   thorpej 			hp = &(*hp)->l_forw;
    672       1.122   thorpej 		*hp = l->l_forw;
    673       1.122   thorpej 		if (qp->sq_tailp == &l->l_forw)
    674        1.26       cgd 			qp->sq_tailp = hp;
    675       1.122   thorpej 		l->l_wchan = 0;
    676        1.26       cgd 	}
    677        1.26       cgd }
    678        1.26       cgd 
    679       1.158     perry inline void
    680       1.139        cl sa_awaken(struct lwp *l)
    681       1.139        cl {
    682       1.147     perry 
    683       1.139        cl 	SCHED_ASSERT_LOCKED();
    684       1.139        cl 
    685       1.142        cl 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    686       1.139        cl 		l->l_flag &= ~L_SA_IDLE;
    687       1.139        cl }
    688       1.139        cl 
    689        1.26       cgd /*
    690        1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    691        1.63   thorpej  */
    692       1.158     perry inline void
    693       1.122   thorpej awaken(struct lwp *l)
    694        1.63   thorpej {
    695        1.63   thorpej 
    696        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    697       1.130   nathanw 
    698       1.139        cl 	if (l->l_proc->p_sa)
    699       1.139        cl 		sa_awaken(l);
    700       1.139        cl 
    701       1.122   thorpej 	if (l->l_slptime > 1)
    702       1.122   thorpej 		updatepri(l);
    703       1.122   thorpej 	l->l_slptime = 0;
    704       1.122   thorpej 	l->l_stat = LSRUN;
    705       1.122   thorpej 	l->l_proc->p_nrlwps++;
    706        1.93    bouyer 	/*
    707        1.93    bouyer 	 * Since curpriority is a user priority, p->p_priority
    708       1.119   thorpej 	 * is always better than curpriority on the last CPU on
    709       1.119   thorpej 	 * which it ran.
    710       1.118   thorpej 	 *
    711       1.119   thorpej 	 * XXXSMP See affinity comment in resched_proc().
    712        1.93    bouyer 	 */
    713       1.122   thorpej 	if (l->l_flag & L_INMEM) {
    714       1.122   thorpej 		setrunqueue(l);
    715       1.122   thorpej 		KASSERT(l->l_cpu != NULL);
    716       1.122   thorpej 		need_resched(l->l_cpu);
    717        1.93    bouyer 	} else
    718        1.93    bouyer 		sched_wakeup(&proc0);
    719        1.83   thorpej }
    720        1.83   thorpej 
    721        1.83   thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    722        1.83   thorpej void
    723        1.83   thorpej sched_unlock_idle(void)
    724        1.83   thorpej {
    725        1.83   thorpej 
    726        1.83   thorpej 	simple_unlock(&sched_lock);
    727        1.63   thorpej }
    728        1.63   thorpej 
    729        1.83   thorpej void
    730        1.83   thorpej sched_lock_idle(void)
    731        1.83   thorpej {
    732        1.83   thorpej 
    733        1.83   thorpej 	simple_lock(&sched_lock);
    734        1.83   thorpej }
    735        1.83   thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
    736        1.83   thorpej 
    737        1.63   thorpej /*
    738        1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    739        1.26       cgd  */
    740        1.83   thorpej 
    741        1.26       cgd void
    742       1.158     perry wakeup(volatile const void *ident)
    743        1.26       cgd {
    744        1.83   thorpej 	int s;
    745        1.83   thorpej 
    746        1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    747        1.83   thorpej 
    748        1.83   thorpej 	SCHED_LOCK(s);
    749        1.83   thorpej 	sched_wakeup(ident);
    750        1.83   thorpej 	SCHED_UNLOCK(s);
    751        1.83   thorpej }
    752        1.83   thorpej 
    753        1.83   thorpej void
    754       1.158     perry sched_wakeup(volatile const void *ident)
    755        1.83   thorpej {
    756        1.71  augustss 	struct slpque *qp;
    757       1.122   thorpej 	struct lwp *l, **q;
    758        1.26       cgd 
    759        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    760        1.77   thorpej 
    761        1.73   thorpej 	qp = SLPQUE(ident);
    762        1.77   thorpej  restart:
    763       1.122   thorpej 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    764        1.26       cgd #ifdef DIAGNOSTIC
    765       1.130   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    766       1.122   thorpej 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    767        1.26       cgd 			panic("wakeup");
    768        1.26       cgd #endif
    769       1.122   thorpej 		if (l->l_wchan == ident) {
    770       1.122   thorpej 			l->l_wchan = 0;
    771       1.122   thorpej 			*q = l->l_forw;
    772       1.122   thorpej 			if (qp->sq_tailp == &l->l_forw)
    773        1.26       cgd 				qp->sq_tailp = q;
    774       1.122   thorpej 			if (l->l_stat == LSSLEEP) {
    775       1.122   thorpej 				awaken(l);
    776        1.26       cgd 				goto restart;
    777        1.26       cgd 			}
    778        1.26       cgd 		} else
    779       1.122   thorpej 			q = &l->l_forw;
    780        1.63   thorpej 	}
    781        1.63   thorpej }
    782        1.63   thorpej 
    783        1.63   thorpej /*
    784        1.63   thorpej  * Make the highest priority process first in line on the specified
    785        1.63   thorpej  * identifier runnable.
    786        1.63   thorpej  */
    787        1.63   thorpej void
    788       1.158     perry wakeup_one(volatile const void *ident)
    789        1.63   thorpej {
    790        1.63   thorpej 	struct slpque *qp;
    791       1.122   thorpej 	struct lwp *l, **q;
    792       1.122   thorpej 	struct lwp *best_sleepp, **best_sleepq;
    793       1.122   thorpej 	struct lwp *best_stopp, **best_stopq;
    794        1.63   thorpej 	int s;
    795        1.63   thorpej 
    796        1.63   thorpej 	best_sleepp = best_stopp = NULL;
    797        1.63   thorpej 	best_sleepq = best_stopq = NULL;
    798        1.63   thorpej 
    799        1.83   thorpej 	SCHED_LOCK(s);
    800        1.77   thorpej 
    801        1.73   thorpej 	qp = SLPQUE(ident);
    802        1.77   thorpej 
    803       1.122   thorpej 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    804        1.63   thorpej #ifdef DIAGNOSTIC
    805       1.130   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    806       1.122   thorpej 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    807        1.63   thorpej 			panic("wakeup_one");
    808        1.63   thorpej #endif
    809       1.122   thorpej 		if (l->l_wchan == ident) {
    810       1.122   thorpej 			if (l->l_stat == LSSLEEP) {
    811        1.63   thorpej 				if (best_sleepp == NULL ||
    812       1.122   thorpej 				    l->l_priority < best_sleepp->l_priority) {
    813       1.122   thorpej 					best_sleepp = l;
    814        1.63   thorpej 					best_sleepq = q;
    815        1.63   thorpej 				}
    816        1.63   thorpej 			} else {
    817        1.63   thorpej 				if (best_stopp == NULL ||
    818       1.122   thorpej 				    l->l_priority < best_stopp->l_priority) {
    819       1.122   thorpej 				    	best_stopp = l;
    820        1.63   thorpej 					best_stopq = q;
    821        1.63   thorpej 				}
    822        1.63   thorpej 			}
    823        1.63   thorpej 		}
    824        1.63   thorpej 	}
    825        1.63   thorpej 
    826        1.63   thorpej 	/*
    827        1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    828        1.63   thorpej 	 * process.
    829        1.63   thorpej 	 */
    830        1.63   thorpej 	if (best_sleepp != NULL) {
    831       1.122   thorpej 		l = best_sleepp;
    832        1.63   thorpej 		q = best_sleepq;
    833        1.63   thorpej 	} else {
    834       1.122   thorpej 		l = best_stopp;
    835        1.63   thorpej 		q = best_stopq;
    836        1.63   thorpej 	}
    837        1.63   thorpej 
    838       1.122   thorpej 	if (l != NULL) {
    839       1.122   thorpej 		l->l_wchan = NULL;
    840       1.122   thorpej 		*q = l->l_forw;
    841       1.122   thorpej 		if (qp->sq_tailp == &l->l_forw)
    842        1.63   thorpej 			qp->sq_tailp = q;
    843       1.122   thorpej 		if (l->l_stat == LSSLEEP)
    844       1.122   thorpej 			awaken(l);
    845        1.26       cgd 	}
    846        1.83   thorpej 	SCHED_UNLOCK(s);
    847       1.117  gmcgarry }
    848       1.117  gmcgarry 
    849       1.117  gmcgarry /*
    850       1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    851       1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    852       1.117  gmcgarry  * current process explicitly requests it (eg sched_yield(2) in compat code).
    853       1.117  gmcgarry  */
    854       1.117  gmcgarry void
    855       1.117  gmcgarry yield(void)
    856       1.117  gmcgarry {
    857       1.122   thorpej 	struct lwp *l = curlwp;
    858       1.117  gmcgarry 	int s;
    859       1.117  gmcgarry 
    860       1.117  gmcgarry 	SCHED_LOCK(s);
    861       1.122   thorpej 	l->l_priority = l->l_usrpri;
    862       1.122   thorpej 	l->l_stat = LSRUN;
    863       1.122   thorpej 	setrunqueue(l);
    864       1.122   thorpej 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    865       1.122   thorpej 	mi_switch(l, NULL);
    866       1.117  gmcgarry 	SCHED_ASSERT_UNLOCKED();
    867       1.117  gmcgarry 	splx(s);
    868        1.69   thorpej }
    869        1.69   thorpej 
    870        1.69   thorpej /*
    871        1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    872       1.156    rpaulo  * and performs an involuntary context switch.
    873       1.156    rpaulo  * The 'more' ("more work to do") argument is boolean. Returning to userspace
    874       1.156    rpaulo  * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
    875       1.156    rpaulo  * This will be used to indicate to the SA subsystem that the LWP is
    876       1.156    rpaulo  * not yet finished in the kernel.
    877        1.69   thorpej  */
    878       1.122   thorpej 
    879        1.69   thorpej void
    880       1.122   thorpej preempt(int more)
    881        1.69   thorpej {
    882       1.122   thorpej 	struct lwp *l = curlwp;
    883       1.122   thorpej 	int r, s;
    884        1.69   thorpej 
    885        1.83   thorpej 	SCHED_LOCK(s);
    886       1.122   thorpej 	l->l_priority = l->l_usrpri;
    887       1.122   thorpej 	l->l_stat = LSRUN;
    888       1.122   thorpej 	setrunqueue(l);
    889       1.122   thorpej 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
    890       1.122   thorpej 	r = mi_switch(l, NULL);
    891        1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    892        1.69   thorpej 	splx(s);
    893       1.122   thorpej 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    894       1.122   thorpej 		sa_preempt(l);
    895        1.69   thorpej }
    896        1.69   thorpej 
    897        1.69   thorpej /*
    898        1.72   thorpej  * The machine independent parts of context switch.
    899        1.86   thorpej  * Must be called at splsched() (no higher!) and with
    900        1.86   thorpej  * the sched_lock held.
    901       1.122   thorpej  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    902       1.122   thorpej  * the next lwp.
    903       1.130   nathanw  *
    904       1.122   thorpej  * Returns 1 if another process was actually run.
    905        1.26       cgd  */
    906       1.122   thorpej int
    907       1.122   thorpej mi_switch(struct lwp *l, struct lwp *newl)
    908        1.26       cgd {
    909        1.76   thorpej 	struct schedstate_percpu *spc;
    910        1.71  augustss 	struct rlimit *rlim;
    911        1.71  augustss 	long s, u;
    912        1.26       cgd 	struct timeval tv;
    913       1.144      yamt 	int hold_count;
    914       1.122   thorpej 	struct proc *p = l->l_proc;
    915       1.122   thorpej 	int retval;
    916        1.26       cgd 
    917        1.83   thorpej 	SCHED_ASSERT_LOCKED();
    918        1.83   thorpej 
    919        1.90  sommerfe 	/*
    920        1.90  sommerfe 	 * Release the kernel_lock, as we are about to yield the CPU.
    921        1.90  sommerfe 	 * The scheduler lock is still held until cpu_switch()
    922        1.90  sommerfe 	 * selects a new process and removes it from the run queue.
    923        1.90  sommerfe 	 */
    924       1.144      yamt 	hold_count = KERNEL_LOCK_RELEASE_ALL();
    925        1.85  sommerfe 
    926       1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    927       1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    928       1.113  gmcgarry 
    929       1.122   thorpej 	spc = &l->l_cpu->ci_schedstate;
    930        1.76   thorpej 
    931       1.160       chs #ifdef LOCKDEBUG
    932        1.82   thorpej 	spinlock_switchcheck();
    933        1.81   thorpej 	simple_lock_switchcheck();
    934        1.50      fvdl #endif
    935        1.81   thorpej 
    936        1.26       cgd 	/*
    937        1.26       cgd 	 * Compute the amount of time during which the current
    938       1.113  gmcgarry 	 * process was running.
    939        1.26       cgd 	 */
    940        1.26       cgd 	microtime(&tv);
    941       1.130   nathanw 	u = p->p_rtime.tv_usec +
    942       1.122   thorpej 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    943        1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    944        1.26       cgd 	if (u < 0) {
    945        1.26       cgd 		u += 1000000;
    946        1.26       cgd 		s--;
    947        1.26       cgd 	} else if (u >= 1000000) {
    948        1.26       cgd 		u -= 1000000;
    949        1.26       cgd 		s++;
    950        1.26       cgd 	}
    951       1.114  gmcgarry 	p->p_rtime.tv_usec = u;
    952       1.114  gmcgarry 	p->p_rtime.tv_sec = s;
    953        1.26       cgd 
    954        1.26       cgd 	/*
    955       1.141       wiz 	 * Check if the process exceeds its CPU resource allocation.
    956        1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    957        1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    958        1.26       cgd 	 */
    959        1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    960        1.26       cgd 	if (s >= rlim->rlim_cur) {
    961       1.100  sommerfe 		/*
    962       1.100  sommerfe 		 * XXXSMP: we're inside the scheduler lock perimeter;
    963       1.100  sommerfe 		 * use sched_psignal.
    964       1.100  sommerfe 		 */
    965        1.26       cgd 		if (s >= rlim->rlim_max)
    966       1.100  sommerfe 			sched_psignal(p, SIGKILL);
    967        1.26       cgd 		else {
    968       1.100  sommerfe 			sched_psignal(p, SIGXCPU);
    969        1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    970        1.26       cgd 				rlim->rlim_cur += 5;
    971        1.26       cgd 		}
    972        1.26       cgd 	}
    973  1.160.12.1      tron 	if (autonicetime && s > autonicetime &&
    974  1.160.12.1      tron 	    kauth_cred_geteuid(p->p_cred) && p->p_nice == NZERO) {
    975        1.39        ws 		p->p_nice = autoniceval + NZERO;
    976       1.122   thorpej 		resetpriority(l);
    977        1.26       cgd 	}
    978        1.69   thorpej 
    979        1.69   thorpej 	/*
    980        1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    981        1.69   thorpej 	 * scheduling flags.
    982        1.69   thorpej 	 */
    983        1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    984       1.109      yamt 
    985       1.109      yamt #ifdef KSTACK_CHECK_MAGIC
    986       1.124      yamt 	kstack_check_magic(l);
    987       1.109      yamt #endif
    988        1.26       cgd 
    989       1.113  gmcgarry 	/*
    990       1.114  gmcgarry 	 * If we are using h/w performance counters, save context.
    991       1.113  gmcgarry 	 */
    992       1.114  gmcgarry #if PERFCTRS
    993       1.114  gmcgarry 	if (PMC_ENABLED(p))
    994       1.114  gmcgarry 		pmc_save_context(p);
    995       1.110    briggs #endif
    996       1.113  gmcgarry 
    997       1.113  gmcgarry 	/*
    998       1.114  gmcgarry 	 * Switch to the new current process.  When we
    999       1.114  gmcgarry 	 * run again, we'll return back here.
   1000       1.113  gmcgarry 	 */
   1001       1.114  gmcgarry 	uvmexp.swtch++;
   1002       1.122   thorpej 	if (newl == NULL) {
   1003       1.122   thorpej 		retval = cpu_switch(l, NULL);
   1004       1.122   thorpej 	} else {
   1005       1.122   thorpej 		remrunqueue(newl);
   1006       1.122   thorpej 		cpu_switchto(l, newl);
   1007       1.122   thorpej 		retval = 0;
   1008       1.122   thorpej 	}
   1009       1.110    briggs 
   1010       1.110    briggs 	/*
   1011       1.114  gmcgarry 	 * If we are using h/w performance counters, restore context.
   1012        1.26       cgd 	 */
   1013       1.114  gmcgarry #if PERFCTRS
   1014       1.114  gmcgarry 	if (PMC_ENABLED(p))
   1015       1.114  gmcgarry 		pmc_restore_context(p);
   1016       1.114  gmcgarry #endif
   1017       1.110    briggs 
   1018       1.110    briggs 	/*
   1019       1.114  gmcgarry 	 * Make sure that MD code released the scheduler lock before
   1020       1.114  gmcgarry 	 * resuming us.
   1021       1.110    briggs 	 */
   1022       1.114  gmcgarry 	SCHED_ASSERT_UNLOCKED();
   1023        1.83   thorpej 
   1024        1.83   thorpej 	/*
   1025        1.76   thorpej 	 * We're running again; record our new start time.  We might
   1026        1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
   1027        1.76   thorpej 	 * schedstate_percpu pointer.
   1028        1.76   thorpej 	 */
   1029       1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
   1030       1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
   1031       1.122   thorpej 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
   1032        1.85  sommerfe 
   1033        1.90  sommerfe 	/*
   1034        1.90  sommerfe 	 * Reacquire the kernel_lock now.  We do this after we've
   1035        1.90  sommerfe 	 * released the scheduler lock to avoid deadlock, and before
   1036        1.90  sommerfe 	 * we reacquire the interlock.
   1037        1.90  sommerfe 	 */
   1038       1.144      yamt 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
   1039       1.122   thorpej 
   1040       1.122   thorpej 	return retval;
   1041        1.26       cgd }
   1042        1.26       cgd 
   1043        1.26       cgd /*
   1044        1.26       cgd  * Initialize the (doubly-linked) run queues
   1045        1.26       cgd  * to be empty.
   1046        1.26       cgd  */
   1047        1.26       cgd void
   1048        1.26       cgd rqinit()
   1049        1.26       cgd {
   1050        1.71  augustss 	int i;
   1051        1.26       cgd 
   1052        1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
   1053        1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
   1054       1.122   thorpej 		    (struct lwp *)&sched_qs[i];
   1055        1.26       cgd }
   1056        1.26       cgd 
   1057       1.158     perry static inline void
   1058       1.122   thorpej resched_proc(struct lwp *l, u_char pri)
   1059       1.119   thorpej {
   1060       1.119   thorpej 	struct cpu_info *ci;
   1061       1.119   thorpej 
   1062       1.119   thorpej 	/*
   1063       1.119   thorpej 	 * XXXSMP
   1064       1.122   thorpej 	 * Since l->l_cpu persists across a context switch,
   1065       1.119   thorpej 	 * this gives us *very weak* processor affinity, in
   1066       1.119   thorpej 	 * that we notify the CPU on which the process last
   1067       1.119   thorpej 	 * ran that it should try to switch.
   1068       1.119   thorpej 	 *
   1069       1.119   thorpej 	 * This does not guarantee that the process will run on
   1070       1.119   thorpej 	 * that processor next, because another processor might
   1071       1.119   thorpej 	 * grab it the next time it performs a context switch.
   1072       1.119   thorpej 	 *
   1073       1.119   thorpej 	 * This also does not handle the case where its last
   1074       1.119   thorpej 	 * CPU is running a higher-priority process, but every
   1075       1.119   thorpej 	 * other CPU is running a lower-priority process.  There
   1076       1.119   thorpej 	 * are ways to handle this situation, but they're not
   1077       1.119   thorpej 	 * currently very pretty, and we also need to weigh the
   1078       1.119   thorpej 	 * cost of moving a process from one CPU to another.
   1079       1.119   thorpej 	 *
   1080       1.119   thorpej 	 * XXXSMP
   1081       1.119   thorpej 	 * There is also the issue of locking the other CPU's
   1082       1.119   thorpej 	 * sched state, which we currently do not do.
   1083       1.119   thorpej 	 */
   1084       1.122   thorpej 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1085       1.121   thorpej 	if (pri < ci->ci_schedstate.spc_curpriority)
   1086       1.119   thorpej 		need_resched(ci);
   1087       1.119   thorpej }
   1088       1.119   thorpej 
   1089        1.26       cgd /*
   1090        1.26       cgd  * Change process state to be runnable,
   1091        1.26       cgd  * placing it on the run queue if it is in memory,
   1092        1.26       cgd  * and awakening the swapper if it isn't in memory.
   1093        1.26       cgd  */
   1094        1.26       cgd void
   1095       1.122   thorpej setrunnable(struct lwp *l)
   1096        1.26       cgd {
   1097       1.122   thorpej 	struct proc *p = l->l_proc;
   1098        1.26       cgd 
   1099        1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1100        1.83   thorpej 
   1101       1.122   thorpej 	switch (l->l_stat) {
   1102        1.26       cgd 	case 0:
   1103       1.122   thorpej 	case LSRUN:
   1104       1.122   thorpej 	case LSONPROC:
   1105       1.122   thorpej 	case LSZOMB:
   1106       1.122   thorpej 	case LSDEAD:
   1107        1.26       cgd 	default:
   1108       1.127      matt 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
   1109       1.122   thorpej 	case LSSTOP:
   1110        1.33   mycroft 		/*
   1111        1.33   mycroft 		 * If we're being traced (possibly because someone attached us
   1112        1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
   1113        1.33   mycroft 		 */
   1114        1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1115        1.99  jdolecek 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1116       1.101   thorpej 			CHECKSIGS(p);
   1117        1.53   mycroft 		}
   1118       1.122   thorpej 	case LSSLEEP:
   1119       1.122   thorpej 		unsleep(l);		/* e.g. when sending signals */
   1120        1.26       cgd 		break;
   1121        1.26       cgd 
   1122       1.122   thorpej 	case LSIDL:
   1123       1.122   thorpej 		break;
   1124       1.122   thorpej 	case LSSUSPENDED:
   1125        1.26       cgd 		break;
   1126        1.26       cgd 	}
   1127       1.139        cl 
   1128       1.139        cl 	if (l->l_proc->p_sa)
   1129       1.139        cl 		sa_awaken(l);
   1130       1.139        cl 
   1131       1.122   thorpej 	l->l_stat = LSRUN;
   1132       1.122   thorpej 	p->p_nrlwps++;
   1133       1.122   thorpej 
   1134       1.122   thorpej 	if (l->l_flag & L_INMEM)
   1135       1.122   thorpej 		setrunqueue(l);
   1136       1.122   thorpej 
   1137       1.122   thorpej 	if (l->l_slptime > 1)
   1138       1.122   thorpej 		updatepri(l);
   1139       1.122   thorpej 	l->l_slptime = 0;
   1140       1.122   thorpej 	if ((l->l_flag & L_INMEM) == 0)
   1141        1.83   thorpej 		sched_wakeup((caddr_t)&proc0);
   1142       1.119   thorpej 	else
   1143       1.122   thorpej 		resched_proc(l, l->l_priority);
   1144        1.26       cgd }
   1145        1.26       cgd 
   1146        1.26       cgd /*
   1147        1.26       cgd  * Compute the priority of a process when running in user mode.
   1148        1.26       cgd  * Arrange to reschedule if the resulting priority is better
   1149        1.26       cgd  * than that of the current process.
   1150        1.26       cgd  */
   1151        1.26       cgd void
   1152       1.122   thorpej resetpriority(struct lwp *l)
   1153        1.26       cgd {
   1154        1.71  augustss 	unsigned int newpriority;
   1155       1.122   thorpej 	struct proc *p = l->l_proc;
   1156        1.26       cgd 
   1157        1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1158        1.83   thorpej 
   1159       1.153      yamt 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
   1160       1.122   thorpej 			NICE_WEIGHT * (p->p_nice - NZERO);
   1161        1.26       cgd 	newpriority = min(newpriority, MAXPRI);
   1162       1.122   thorpej 	l->l_usrpri = newpriority;
   1163       1.122   thorpej 	resched_proc(l, l->l_usrpri);
   1164       1.122   thorpej }
   1165       1.122   thorpej 
   1166       1.130   nathanw /*
   1167       1.122   thorpej  * Recompute priority for all LWPs in a process.
   1168       1.122   thorpej  */
   1169       1.122   thorpej void
   1170       1.122   thorpej resetprocpriority(struct proc *p)
   1171       1.122   thorpej {
   1172       1.122   thorpej 	struct lwp *l;
   1173       1.122   thorpej 
   1174       1.122   thorpej 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1175       1.122   thorpej 	    resetpriority(l);
   1176        1.55      ross }
   1177        1.55      ross 
   1178        1.55      ross /*
   1179        1.56      ross  * We adjust the priority of the current process.  The priority of a process
   1180       1.141       wiz  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
   1181        1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1182        1.56      ross  * will compute a different value each time p_estcpu increases. This can
   1183        1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1184       1.141       wiz  * queue will not change.  The CPU usage estimator ramps up quite quickly
   1185        1.56      ross  * when the process is running (linearly), and decays away exponentially, at
   1186        1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
   1187        1.80   nathanw  * principle is that the system will 90% forget that the process used a lot
   1188        1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1189        1.56      ross  * processes which haven't run much recently, and to round-robin among other
   1190        1.56      ross  * processes.
   1191        1.55      ross  */
   1192        1.55      ross 
   1193        1.55      ross void
   1194       1.122   thorpej schedclock(struct lwp *l)
   1195        1.55      ross {
   1196       1.122   thorpej 	struct proc *p = l->l_proc;
   1197        1.83   thorpej 	int s;
   1198        1.77   thorpej 
   1199       1.153      yamt 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
   1200        1.83   thorpej 	SCHED_LOCK(s);
   1201       1.122   thorpej 	resetpriority(l);
   1202        1.83   thorpej 	SCHED_UNLOCK(s);
   1203       1.130   nathanw 
   1204       1.122   thorpej 	if (l->l_priority >= PUSER)
   1205       1.122   thorpej 		l->l_priority = l->l_usrpri;
   1206        1.26       cgd }
   1207        1.94    bouyer 
   1208        1.94    bouyer void
   1209        1.94    bouyer suspendsched()
   1210        1.94    bouyer {
   1211       1.122   thorpej 	struct lwp *l;
   1212        1.97     enami 	int s;
   1213        1.94    bouyer 
   1214        1.94    bouyer 	/*
   1215       1.130   nathanw 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1216       1.122   thorpej 	 * LSSUSPENDED.
   1217        1.94    bouyer 	 */
   1218        1.95   thorpej 	proclist_lock_read();
   1219        1.95   thorpej 	SCHED_LOCK(s);
   1220       1.122   thorpej 	LIST_FOREACH(l, &alllwp, l_list) {
   1221       1.122   thorpej 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1222        1.94    bouyer 			continue;
   1223       1.122   thorpej 
   1224       1.122   thorpej 		switch (l->l_stat) {
   1225       1.122   thorpej 		case LSRUN:
   1226       1.122   thorpej 			l->l_proc->p_nrlwps--;
   1227       1.122   thorpej 			if ((l->l_flag & L_INMEM) != 0)
   1228       1.122   thorpej 				remrunqueue(l);
   1229        1.97     enami 			/* FALLTHROUGH */
   1230       1.122   thorpej 		case LSSLEEP:
   1231       1.122   thorpej 			l->l_stat = LSSUSPENDED;
   1232        1.97     enami 			break;
   1233       1.122   thorpej 		case LSONPROC:
   1234        1.97     enami 			/*
   1235        1.97     enami 			 * XXX SMP: we need to deal with processes on
   1236        1.97     enami 			 * others CPU !
   1237        1.97     enami 			 */
   1238        1.97     enami 			break;
   1239        1.97     enami 		default:
   1240        1.97     enami 			break;
   1241        1.94    bouyer 		}
   1242        1.94    bouyer 	}
   1243        1.94    bouyer 	SCHED_UNLOCK(s);
   1244        1.97     enami 	proclist_unlock_read();
   1245        1.94    bouyer }
   1246       1.113  gmcgarry 
   1247       1.113  gmcgarry /*
   1248       1.151      yamt  * scheduler_fork_hook:
   1249       1.151      yamt  *
   1250       1.151      yamt  *	Inherit the parent's scheduler history.
   1251       1.151      yamt  */
   1252       1.151      yamt void
   1253       1.151      yamt scheduler_fork_hook(struct proc *parent, struct proc *child)
   1254       1.151      yamt {
   1255       1.151      yamt 
   1256       1.157      yamt 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
   1257       1.157      yamt 	child->p_forktime = schedcpu_ticks;
   1258       1.151      yamt }
   1259       1.151      yamt 
   1260       1.151      yamt /*
   1261       1.151      yamt  * scheduler_wait_hook:
   1262       1.151      yamt  *
   1263       1.151      yamt  *	Chargeback parents for the sins of their children.
   1264       1.151      yamt  */
   1265       1.151      yamt void
   1266       1.151      yamt scheduler_wait_hook(struct proc *parent, struct proc *child)
   1267       1.151      yamt {
   1268       1.157      yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
   1269       1.157      yamt 	fixpt_t estcpu;
   1270       1.151      yamt 
   1271       1.151      yamt 	/* XXX Only if parent != init?? */
   1272       1.157      yamt 
   1273       1.157      yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
   1274       1.157      yamt 	    schedcpu_ticks - child->p_forktime);
   1275       1.157      yamt 	if (child->p_estcpu > estcpu) {
   1276       1.157      yamt 		parent->p_estcpu =
   1277       1.157      yamt 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
   1278       1.157      yamt 	}
   1279       1.151      yamt }
   1280       1.151      yamt 
   1281       1.151      yamt /*
   1282       1.113  gmcgarry  * Low-level routines to access the run queue.  Optimised assembler
   1283       1.113  gmcgarry  * routines can override these.
   1284       1.113  gmcgarry  */
   1285       1.113  gmcgarry 
   1286       1.113  gmcgarry #ifndef __HAVE_MD_RUNQUEUE
   1287       1.115  nisimura 
   1288       1.130   nathanw /*
   1289       1.134      matt  * On some architectures, it's faster to use a MSB ordering for the priorites
   1290       1.134      matt  * than the traditional LSB ordering.
   1291       1.134      matt  */
   1292       1.134      matt #ifdef __HAVE_BIGENDIAN_BITOPS
   1293       1.134      matt #define	RQMASK(n) (0x80000000 >> (n))
   1294       1.134      matt #else
   1295       1.134      matt #define	RQMASK(n) (0x00000001 << (n))
   1296       1.134      matt #endif
   1297       1.134      matt 
   1298       1.134      matt /*
   1299       1.115  nisimura  * The primitives that manipulate the run queues.  whichqs tells which
   1300       1.115  nisimura  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1301       1.115  nisimura  * into queues, remrunqueue removes them from queues.  The running process is
   1302       1.115  nisimura  * on no queue, other processes are on a queue related to p->p_priority,
   1303       1.115  nisimura  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1304       1.115  nisimura  * available queues.
   1305       1.130   nathanw  */
   1306       1.113  gmcgarry 
   1307       1.146      matt #ifdef RQDEBUG
   1308       1.146      matt static void
   1309       1.146      matt checkrunqueue(int whichq, struct lwp *l)
   1310       1.146      matt {
   1311       1.146      matt 	const struct prochd * const rq = &sched_qs[whichq];
   1312       1.146      matt 	struct lwp *l2;
   1313       1.146      matt 	int found = 0;
   1314       1.146      matt 	int die = 0;
   1315       1.146      matt 	int empty = 1;
   1316       1.146      matt 	for (l2 = rq->ph_link; l2 != (void*) rq; l2 = l2->l_forw) {
   1317       1.146      matt 		if (l2->l_stat != LSRUN) {
   1318       1.146      matt 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1319       1.146      matt 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1320       1.146      matt 		}
   1321       1.146      matt 		if (l2->l_back->l_forw != l2) {
   1322       1.146      matt 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1323       1.146      matt 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1324       1.146      matt 			    l2->l_back->l_forw);
   1325       1.146      matt 			die = 1;
   1326       1.146      matt 		}
   1327       1.146      matt 		if (l2->l_forw->l_back != l2) {
   1328       1.146      matt 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1329       1.146      matt 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1330       1.146      matt 			    l2->l_forw->l_back);
   1331       1.146      matt 			die = 1;
   1332       1.146      matt 		}
   1333       1.146      matt 		if (l2 == l)
   1334       1.146      matt 			found = 1;
   1335       1.146      matt 		empty = 0;
   1336       1.146      matt 	}
   1337       1.146      matt 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1338       1.146      matt 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1339       1.146      matt 		    whichq, rq);
   1340       1.146      matt 		die = 1;
   1341       1.146      matt 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1342       1.146      matt 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1343       1.146      matt 		    "run-queue %p\n", whichq, rq);
   1344       1.146      matt 		die = 1;
   1345       1.146      matt 	}
   1346       1.146      matt 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1347       1.146      matt 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1348       1.146      matt 		    whichq, l);
   1349       1.146      matt 		die = 1;
   1350       1.146      matt 	}
   1351       1.146      matt 	if (l != NULL && empty) {
   1352       1.146      matt 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1353       1.146      matt 		    "active lwp %p\n", whichq, rq, l);
   1354       1.146      matt 		die = 1;
   1355       1.146      matt 	}
   1356       1.146      matt 	if (l != NULL && !found) {
   1357       1.146      matt 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1358       1.146      matt 		    whichq, l, rq);
   1359       1.146      matt 		die = 1;
   1360       1.146      matt 	}
   1361       1.146      matt 	if (die)
   1362       1.146      matt 		panic("checkrunqueue: inconsistency found");
   1363       1.146      matt }
   1364       1.146      matt #endif /* RQDEBUG */
   1365       1.146      matt 
   1366       1.113  gmcgarry void
   1367       1.122   thorpej setrunqueue(struct lwp *l)
   1368       1.113  gmcgarry {
   1369       1.113  gmcgarry 	struct prochd *rq;
   1370       1.122   thorpej 	struct lwp *prev;
   1371       1.152      yamt 	const int whichq = l->l_priority / PPQ;
   1372       1.113  gmcgarry 
   1373       1.146      matt #ifdef RQDEBUG
   1374       1.146      matt 	checkrunqueue(whichq, NULL);
   1375       1.146      matt #endif
   1376       1.113  gmcgarry #ifdef DIAGNOSTIC
   1377       1.122   thorpej 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1378       1.113  gmcgarry 		panic("setrunqueue");
   1379       1.113  gmcgarry #endif
   1380       1.134      matt 	sched_whichqs |= RQMASK(whichq);
   1381       1.113  gmcgarry 	rq = &sched_qs[whichq];
   1382       1.113  gmcgarry 	prev = rq->ph_rlink;
   1383       1.122   thorpej 	l->l_forw = (struct lwp *)rq;
   1384       1.122   thorpej 	rq->ph_rlink = l;
   1385       1.122   thorpej 	prev->l_forw = l;
   1386       1.122   thorpej 	l->l_back = prev;
   1387       1.146      matt #ifdef RQDEBUG
   1388       1.146      matt 	checkrunqueue(whichq, l);
   1389       1.146      matt #endif
   1390       1.113  gmcgarry }
   1391       1.113  gmcgarry 
   1392       1.113  gmcgarry void
   1393       1.122   thorpej remrunqueue(struct lwp *l)
   1394       1.113  gmcgarry {
   1395       1.122   thorpej 	struct lwp *prev, *next;
   1396       1.152      yamt 	const int whichq = l->l_priority / PPQ;
   1397       1.146      matt #ifdef RQDEBUG
   1398       1.146      matt 	checkrunqueue(whichq, l);
   1399       1.146      matt #endif
   1400       1.113  gmcgarry #ifdef DIAGNOSTIC
   1401       1.134      matt 	if (((sched_whichqs & RQMASK(whichq)) == 0))
   1402       1.146      matt 		panic("remrunqueue: bit %d not set", whichq);
   1403       1.113  gmcgarry #endif
   1404       1.122   thorpej 	prev = l->l_back;
   1405       1.122   thorpej 	l->l_back = NULL;
   1406       1.122   thorpej 	next = l->l_forw;
   1407       1.122   thorpej 	prev->l_forw = next;
   1408       1.122   thorpej 	next->l_back = prev;
   1409       1.113  gmcgarry 	if (prev == next)
   1410       1.134      matt 		sched_whichqs &= ~RQMASK(whichq);
   1411       1.146      matt #ifdef RQDEBUG
   1412       1.146      matt 	checkrunqueue(whichq, NULL);
   1413       1.146      matt #endif
   1414       1.113  gmcgarry }
   1415       1.113  gmcgarry 
   1416       1.134      matt #undef RQMASK
   1417       1.134      matt #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1418