Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.160.4.1
      1  1.160.4.1    rpaulo /*	$NetBSD: kern_synch.c,v 1.160.4.1 2006/09/09 02:57:16 rpaulo Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4      1.148   mycroft  * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
      5       1.63   thorpej  * All rights reserved.
      6       1.63   thorpej  *
      7       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9       1.63   thorpej  * NASA Ames Research Center.
     10      1.148   mycroft  * This code is derived from software contributed to The NetBSD Foundation
     11      1.148   mycroft  * by Charles M. Hannum.
     12       1.63   thorpej  *
     13       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     14       1.63   thorpej  * modification, are permitted provided that the following conditions
     15       1.63   thorpej  * are met:
     16       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     17       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     18       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     21       1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     22       1.63   thorpej  *    must display the following acknowledgement:
     23       1.63   thorpej  *	This product includes software developed by the NetBSD
     24       1.63   thorpej  *	Foundation, Inc. and its contributors.
     25       1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26       1.63   thorpej  *    contributors may be used to endorse or promote products derived
     27       1.63   thorpej  *    from this software without specific prior written permission.
     28       1.63   thorpej  *
     29       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     40       1.63   thorpej  */
     41       1.26       cgd 
     42       1.26       cgd /*-
     43       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     44       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     45       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     46       1.26       cgd  * All or some portions of this file are derived from material licensed
     47       1.26       cgd  * to the University of California by American Telephone and Telegraph
     48       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     50       1.26       cgd  *
     51       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     52       1.26       cgd  * modification, are permitted provided that the following conditions
     53       1.26       cgd  * are met:
     54       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     55       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     56       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     57       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     58       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     59      1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     60       1.26       cgd  *    may be used to endorse or promote products derived from this software
     61       1.26       cgd  *    without specific prior written permission.
     62       1.26       cgd  *
     63       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73       1.26       cgd  * SUCH DAMAGE.
     74       1.26       cgd  *
     75       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     76       1.26       cgd  */
     77      1.106     lukem 
     78      1.106     lukem #include <sys/cdefs.h>
     79  1.160.4.1    rpaulo __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.160.4.1 2006/09/09 02:57:16 rpaulo Exp $");
     80       1.48       mrg 
     81       1.52  jonathan #include "opt_ddb.h"
     82       1.51   thorpej #include "opt_ktrace.h"
     83      1.109      yamt #include "opt_kstack.h"
     84       1.82   thorpej #include "opt_lockdebug.h"
     85       1.83   thorpej #include "opt_multiprocessor.h"
     86      1.110    briggs #include "opt_perfctrs.h"
     87       1.26       cgd 
     88       1.26       cgd #include <sys/param.h>
     89       1.26       cgd #include <sys/systm.h>
     90       1.68   thorpej #include <sys/callout.h>
     91       1.26       cgd #include <sys/proc.h>
     92       1.26       cgd #include <sys/kernel.h>
     93       1.26       cgd #include <sys/buf.h>
     94      1.111    briggs #if defined(PERFCTRS)
     95      1.110    briggs #include <sys/pmc.h>
     96      1.111    briggs #endif
     97       1.26       cgd #include <sys/signalvar.h>
     98       1.26       cgd #include <sys/resourcevar.h>
     99       1.55      ross #include <sys/sched.h>
    100      1.122   thorpej #include <sys/sa.h>
    101      1.122   thorpej #include <sys/savar.h>
    102  1.160.4.1    rpaulo #include <sys/kauth.h>
    103       1.47       mrg 
    104       1.47       mrg #include <uvm/uvm_extern.h>
    105       1.47       mrg 
    106       1.26       cgd #ifdef KTRACE
    107       1.26       cgd #include <sys/ktrace.h>
    108       1.26       cgd #endif
    109       1.26       cgd 
    110       1.26       cgd #include <machine/cpu.h>
    111       1.34  christos 
    112       1.26       cgd int	lbolt;			/* once a second sleep address */
    113       1.88  sommerfe int	rrticks;		/* number of hardclock ticks per roundrobin() */
    114       1.26       cgd 
    115       1.73   thorpej /*
    116      1.152      yamt  * Sleep queues.
    117      1.152      yamt  *
    118      1.152      yamt  * We're only looking at 7 bits of the address; everything is
    119      1.152      yamt  * aligned to 4, lots of things are aligned to greater powers
    120      1.152      yamt  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    121      1.152      yamt  */
    122      1.152      yamt #define	SLPQUE_TABLESIZE	128
    123      1.152      yamt #define	SLPQUE_LOOKUP(x)	(((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
    124      1.152      yamt 
    125      1.152      yamt #define	SLPQUE(ident)	(&sched_slpque[SLPQUE_LOOKUP(ident)])
    126      1.152      yamt 
    127      1.152      yamt /*
    128       1.73   thorpej  * The global scheduler state.
    129       1.73   thorpej  */
    130       1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    131      1.159     perry volatile uint32_t sched_whichqs;	/* bitmap of non-empty queues */
    132       1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    133       1.73   thorpej 
    134       1.83   thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    135       1.83   thorpej 
    136       1.77   thorpej void schedcpu(void *);
    137      1.122   thorpej void updatepri(struct lwp *);
    138       1.77   thorpej void endtsleep(void *);
    139       1.34  christos 
    140      1.158     perry inline void sa_awaken(struct lwp *);
    141      1.158     perry inline void awaken(struct lwp *);
    142       1.63   thorpej 
    143      1.143      yamt struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    144      1.157      yamt static unsigned int schedcpu_ticks;
    145      1.122   thorpej 
    146      1.122   thorpej 
    147       1.26       cgd /*
    148       1.26       cgd  * Force switch among equal priority processes every 100ms.
    149       1.88  sommerfe  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    150       1.26       cgd  */
    151       1.26       cgd /* ARGSUSED */
    152       1.26       cgd void
    153       1.89  sommerfe roundrobin(struct cpu_info *ci)
    154       1.26       cgd {
    155       1.89  sommerfe 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    156       1.26       cgd 
    157       1.88  sommerfe 	spc->spc_rrticks = rrticks;
    158      1.130   nathanw 
    159      1.122   thorpej 	if (curlwp != NULL) {
    160       1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    161       1.69   thorpej 			/*
    162       1.69   thorpej 			 * The process has already been through a roundrobin
    163       1.69   thorpej 			 * without switching and may be hogging the CPU.
    164       1.69   thorpej 			 * Indicate that the process should yield.
    165       1.69   thorpej 			 */
    166       1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    167       1.69   thorpej 		} else
    168       1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    169       1.69   thorpej 	}
    170       1.87   thorpej 	need_resched(curcpu());
    171       1.26       cgd }
    172       1.26       cgd 
    173      1.153      yamt #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    174      1.153      yamt #define	NICE_WEIGHT 2			/* priorities per nice level */
    175      1.153      yamt 
    176      1.153      yamt #define	ESTCPU_SHIFT	11
    177      1.153      yamt #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    178      1.153      yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    179      1.153      yamt 
    180       1.26       cgd /*
    181       1.26       cgd  * Constants for digital decay and forget:
    182       1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    183       1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    184       1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    185       1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    186       1.26       cgd  *
    187       1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    188       1.26       cgd  *
    189       1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    190       1.26       cgd  * That is, the system wants to compute a value of decay such
    191       1.26       cgd  * that the following for loop:
    192       1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    193       1.26       cgd  * 		p_estcpu *= decay;
    194       1.26       cgd  * will compute
    195       1.26       cgd  * 	p_estcpu *= 0.1;
    196       1.26       cgd  * for all values of loadavg:
    197       1.26       cgd  *
    198       1.26       cgd  * Mathematically this loop can be expressed by saying:
    199       1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    200       1.26       cgd  *
    201       1.26       cgd  * The system computes decay as:
    202       1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    203       1.26       cgd  *
    204       1.26       cgd  * We wish to prove that the system's computation of decay
    205       1.26       cgd  * will always fulfill the equation:
    206       1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    207       1.26       cgd  *
    208       1.26       cgd  * If we compute b as:
    209       1.26       cgd  * 	b = 2 * loadavg
    210       1.26       cgd  * then
    211       1.26       cgd  * 	decay = b / (b + 1)
    212       1.26       cgd  *
    213       1.26       cgd  * We now need to prove two things:
    214       1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    215       1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    216      1.130   nathanw  *
    217       1.26       cgd  * Facts:
    218       1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    219       1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    220       1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    221       1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    222       1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    223       1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    224       1.26       cgd  *         ln(.1) =~ -2.30
    225       1.26       cgd  *
    226       1.26       cgd  * Proof of (1):
    227       1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    228       1.26       cgd  *	solving for factor,
    229       1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    230       1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    231       1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    232       1.26       cgd  *
    233       1.26       cgd  * Proof of (2):
    234       1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    235       1.26       cgd  *	solving for power,
    236       1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    237       1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    238       1.26       cgd  *
    239       1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    240       1.26       cgd  *      loadav: 1       2       3       4
    241       1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    242       1.26       cgd  */
    243       1.26       cgd 
    244       1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    245       1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    246      1.153      yamt 
    247      1.153      yamt static fixpt_t
    248      1.153      yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    249      1.153      yamt {
    250      1.153      yamt 
    251      1.153      yamt 	if (estcpu == 0) {
    252      1.153      yamt 		return 0;
    253      1.153      yamt 	}
    254      1.153      yamt 
    255      1.153      yamt #if !defined(_LP64)
    256      1.153      yamt 	/* avoid 64bit arithmetics. */
    257      1.153      yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    258      1.153      yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    259      1.153      yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    260      1.153      yamt 	}
    261      1.153      yamt #endif /* !defined(_LP64) */
    262      1.153      yamt 
    263      1.153      yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    264      1.153      yamt }
    265       1.26       cgd 
    266      1.157      yamt /*
    267      1.157      yamt  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    268      1.157      yamt  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    269      1.157      yamt  * less than (1 << ESTCPU_SHIFT).
    270      1.157      yamt  *
    271      1.157      yamt  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    272      1.157      yamt  */
    273      1.157      yamt static fixpt_t
    274      1.157      yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    275      1.157      yamt {
    276      1.157      yamt 
    277      1.157      yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    278      1.157      yamt 		return 0;
    279      1.157      yamt 	}
    280      1.157      yamt 
    281      1.157      yamt 	while (estcpu != 0 && n > 1) {
    282      1.157      yamt 		estcpu = decay_cpu(loadfac, estcpu);
    283      1.157      yamt 		n--;
    284      1.157      yamt 	}
    285      1.157      yamt 
    286      1.157      yamt 	return estcpu;
    287      1.157      yamt }
    288      1.157      yamt 
    289       1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    290       1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    291       1.26       cgd 
    292       1.26       cgd /*
    293       1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    294       1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    295       1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    296       1.26       cgd  *
    297       1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    298       1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    299       1.26       cgd  *
    300       1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    301       1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    302       1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    303       1.26       cgd  */
    304       1.26       cgd #define	CCPU_SHIFT	11
    305       1.26       cgd 
    306       1.26       cgd /*
    307       1.26       cgd  * Recompute process priorities, every hz ticks.
    308       1.26       cgd  */
    309       1.26       cgd /* ARGSUSED */
    310       1.26       cgd void
    311       1.77   thorpej schedcpu(void *arg)
    312       1.26       cgd {
    313       1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    314      1.122   thorpej 	struct lwp *l;
    315       1.71  augustss 	struct proc *p;
    316      1.122   thorpej 	int s, minslp;
    317       1.66      ross 	int clkhz;
    318       1.26       cgd 
    319      1.157      yamt 	schedcpu_ticks++;
    320      1.157      yamt 
    321       1.62   thorpej 	proclist_lock_read();
    322      1.145      yamt 	PROCLIST_FOREACH(p, &allproc) {
    323       1.26       cgd 		/*
    324       1.26       cgd 		 * Increment time in/out of memory and sleep time
    325       1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    326       1.26       cgd 		 * (remember them?) overflow takes 45 days.
    327       1.26       cgd 		 */
    328      1.122   thorpej 		minslp = 2;
    329      1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    330      1.122   thorpej 			l->l_swtime++;
    331      1.130   nathanw 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    332      1.122   thorpej 			    l->l_stat == LSSUSPENDED) {
    333      1.122   thorpej 				l->l_slptime++;
    334      1.122   thorpej 				minslp = min(minslp, l->l_slptime);
    335      1.122   thorpej 			} else
    336      1.122   thorpej 				minslp = 0;
    337      1.122   thorpej 		}
    338       1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    339       1.26       cgd 		/*
    340       1.26       cgd 		 * If the process has slept the entire second,
    341       1.26       cgd 		 * stop recalculating its priority until it wakes up.
    342       1.26       cgd 		 */
    343      1.122   thorpej 		if (minslp > 1)
    344       1.26       cgd 			continue;
    345       1.26       cgd 		s = splstatclock();	/* prevent state changes */
    346       1.26       cgd 		/*
    347       1.26       cgd 		 * p_pctcpu is only for ps.
    348       1.26       cgd 		 */
    349       1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    350       1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    351       1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    352       1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    353       1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    354       1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    355       1.26       cgd #else
    356       1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    357       1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    358       1.26       cgd #endif
    359       1.26       cgd 		p->p_cpticks = 0;
    360      1.153      yamt 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    361      1.120        pk 		splx(s);	/* Done with the process CPU ticks update */
    362      1.120        pk 		SCHED_LOCK(s);
    363      1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    364      1.122   thorpej 			if (l->l_slptime > 1)
    365      1.122   thorpej 				continue;
    366      1.122   thorpej 			resetpriority(l);
    367      1.122   thorpej 			if (l->l_priority >= PUSER) {
    368      1.122   thorpej 				if (l->l_stat == LSRUN &&
    369      1.122   thorpej 				    (l->l_flag & L_INMEM) &&
    370      1.122   thorpej 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    371      1.122   thorpej 					remrunqueue(l);
    372      1.122   thorpej 					l->l_priority = l->l_usrpri;
    373      1.122   thorpej 					setrunqueue(l);
    374      1.122   thorpej 				} else
    375      1.122   thorpej 					l->l_priority = l->l_usrpri;
    376      1.122   thorpej 			}
    377       1.26       cgd 		}
    378      1.120        pk 		SCHED_UNLOCK(s);
    379       1.26       cgd 	}
    380       1.61   thorpej 	proclist_unlock_read();
    381       1.47       mrg 	uvm_meter();
    382       1.67      fvdl 	wakeup((caddr_t)&lbolt);
    383      1.143      yamt 	callout_schedule(&schedcpu_ch, hz);
    384       1.26       cgd }
    385       1.26       cgd 
    386       1.26       cgd /*
    387       1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    388       1.26       cgd  */
    389       1.26       cgd void
    390      1.122   thorpej updatepri(struct lwp *l)
    391       1.26       cgd {
    392      1.122   thorpej 	struct proc *p = l->l_proc;
    393       1.83   thorpej 	fixpt_t loadfac;
    394       1.83   thorpej 
    395       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    396      1.157      yamt 	KASSERT(l->l_slptime > 1);
    397       1.83   thorpej 
    398       1.83   thorpej 	loadfac = loadfactor(averunnable.ldavg[0]);
    399       1.26       cgd 
    400      1.157      yamt 	l->l_slptime--; /* the first time was done in schedcpu */
    401      1.157      yamt 	/* XXX NJWLWP */
    402      1.157      yamt 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    403      1.122   thorpej 	resetpriority(l);
    404       1.26       cgd }
    405       1.26       cgd 
    406       1.26       cgd /*
    407       1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    408       1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    409       1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    410       1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    411       1.26       cgd  * This priority will typically be 0, or the lowest priority
    412       1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    413       1.26       cgd  * higher to block network software interrupts after panics.
    414       1.26       cgd  */
    415       1.26       cgd int safepri;
    416       1.26       cgd 
    417       1.26       cgd /*
    418       1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    419       1.26       cgd  * performed on the specified identifier.  The process will then be made
    420       1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    421       1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    422       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    423       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    424       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    425       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    426       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    427       1.77   thorpej  *
    428      1.103  jdolecek  * The interlock is held until the scheduler_slock is acquired.  The
    429       1.77   thorpej  * interlock will be locked before returning back to the caller
    430       1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    431       1.77   thorpej  * interlock will always be unlocked upon return.
    432       1.26       cgd  */
    433       1.26       cgd int
    434      1.158     perry ltsleep(volatile const void *ident, int priority, const char *wmesg, int timo,
    435      1.158     perry     volatile struct simplelock *interlock)
    436       1.26       cgd {
    437      1.122   thorpej 	struct lwp *l = curlwp;
    438      1.123  christos 	struct proc *p = l ? l->l_proc : NULL;
    439       1.71  augustss 	struct slpque *qp;
    440      1.150       chs 	struct sadata_upcall *sau;
    441       1.77   thorpej 	int sig, s;
    442       1.77   thorpej 	int catch = priority & PCATCH;
    443       1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    444      1.122   thorpej 	int exiterr = (priority & PNOEXITERR) == 0;
    445       1.26       cgd 
    446       1.77   thorpej 	/*
    447       1.77   thorpej 	 * XXXSMP
    448       1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    449       1.77   thorpej 	 * thing to do here really is.
    450      1.130   nathanw 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    451       1.78  sommerfe 	 * in the shutdown case is disgusting but partly necessary given
    452       1.78  sommerfe 	 * how shutdown (barely) works.
    453       1.77   thorpej 	 */
    454      1.122   thorpej 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    455       1.26       cgd 		/*
    456       1.26       cgd 		 * After a panic, or during autoconfiguration,
    457       1.26       cgd 		 * just give interrupts a chance, then just return;
    458       1.26       cgd 		 * don't run any other procs or panic below,
    459       1.26       cgd 		 * in case this is the idle process and already asleep.
    460       1.26       cgd 		 */
    461       1.42       cgd 		s = splhigh();
    462       1.26       cgd 		splx(safepri);
    463       1.26       cgd 		splx(s);
    464       1.77   thorpej 		if (interlock != NULL && relock == 0)
    465       1.77   thorpej 			simple_unlock(interlock);
    466       1.26       cgd 		return (0);
    467       1.26       cgd 	}
    468       1.78  sommerfe 
    469      1.102   thorpej 	KASSERT(p != NULL);
    470      1.105       chs 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    471       1.42       cgd 
    472       1.42       cgd #ifdef KTRACE
    473       1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    474      1.154  christos 		ktrcsw(l, 1, 0);
    475       1.42       cgd #endif
    476       1.77   thorpej 
    477      1.150       chs 	/*
    478      1.150       chs 	 * XXX We need to allocate the sadata_upcall structure here,
    479      1.150       chs 	 * XXX since we can't sleep while waiting for memory inside
    480      1.150       chs 	 * XXX sa_upcall().  It would be nice if we could safely
    481      1.150       chs 	 * XXX allocate the sadata_upcall structure on the stack, here.
    482      1.150       chs 	 */
    483      1.150       chs 	if (l->l_flag & L_SA) {
    484      1.150       chs 		sau = sadata_upcall_alloc(0);
    485      1.150       chs 	} else {
    486      1.150       chs 		sau = NULL;
    487      1.150       chs 	}
    488      1.150       chs 
    489       1.83   thorpej 	SCHED_LOCK(s);
    490       1.42       cgd 
    491       1.26       cgd #ifdef DIAGNOSTIC
    492       1.64   thorpej 	if (ident == NULL)
    493       1.77   thorpej 		panic("ltsleep: ident == NULL");
    494      1.122   thorpej 	if (l->l_stat != LSONPROC)
    495      1.122   thorpej 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    496      1.122   thorpej 	if (l->l_back != NULL)
    497       1.77   thorpej 		panic("ltsleep: p_back != NULL");
    498       1.26       cgd #endif
    499       1.77   thorpej 
    500      1.122   thorpej 	l->l_wchan = ident;
    501      1.122   thorpej 	l->l_wmesg = wmesg;
    502      1.122   thorpej 	l->l_slptime = 0;
    503      1.122   thorpej 	l->l_priority = priority & PRIMASK;
    504       1.77   thorpej 
    505       1.73   thorpej 	qp = SLPQUE(ident);
    506       1.26       cgd 	if (qp->sq_head == 0)
    507      1.122   thorpej 		qp->sq_head = l;
    508      1.122   thorpej 	else {
    509      1.122   thorpej 		*qp->sq_tailp = l;
    510      1.122   thorpej 	}
    511      1.122   thorpej 	*(qp->sq_tailp = &l->l_forw) = 0;
    512       1.77   thorpej 
    513       1.26       cgd 	if (timo)
    514      1.122   thorpej 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    515       1.77   thorpej 
    516       1.77   thorpej 	/*
    517       1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    518       1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    519       1.77   thorpej 	 * we do the switch.
    520       1.77   thorpej 	 *
    521       1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    522       1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    523       1.77   thorpej 	 * data structure for the sleep queues at some point.
    524       1.77   thorpej 	 */
    525       1.77   thorpej 	if (interlock != NULL)
    526       1.77   thorpej 		simple_unlock(interlock);
    527       1.77   thorpej 
    528       1.26       cgd 	/*
    529       1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    530       1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    531       1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    532       1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    533       1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    534       1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    535       1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    536       1.26       cgd 	 */
    537       1.26       cgd 	if (catch) {
    538      1.122   thorpej 		l->l_flag |= L_SINTR;
    539      1.137    itojun 		if (((sig = CURSIG(l)) != 0) ||
    540      1.137    itojun 		    ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
    541      1.122   thorpej 			if (l->l_wchan != NULL)
    542      1.122   thorpej 				unsleep(l);
    543      1.122   thorpej 			l->l_stat = LSONPROC;
    544       1.83   thorpej 			SCHED_UNLOCK(s);
    545       1.26       cgd 			goto resume;
    546       1.26       cgd 		}
    547      1.122   thorpej 		if (l->l_wchan == NULL) {
    548       1.26       cgd 			catch = 0;
    549       1.83   thorpej 			SCHED_UNLOCK(s);
    550       1.26       cgd 			goto resume;
    551       1.26       cgd 		}
    552       1.26       cgd 	} else
    553       1.26       cgd 		sig = 0;
    554      1.122   thorpej 	l->l_stat = LSSLEEP;
    555      1.122   thorpej 	p->p_nrlwps--;
    556       1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    557       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    558      1.122   thorpej 	if (l->l_flag & L_SA)
    559      1.150       chs 		sa_switch(l, sau, SA_UPCALL_BLOCKED);
    560      1.122   thorpej 	else
    561      1.122   thorpej 		mi_switch(l, NULL);
    562       1.83   thorpej 
    563  1.160.4.1    rpaulo #ifdef KERN_SYNCH_BPENDTSLEEP_LABEL
    564  1.160.4.1    rpaulo 	/*
    565  1.160.4.1    rpaulo 	 * XXX
    566  1.160.4.1    rpaulo 	 * gcc4 optimizer will duplicate this asm statement on some arch
    567  1.160.4.1    rpaulo 	 * and it will cause a multiple symbol definition error in gas.
    568  1.160.4.1    rpaulo 	 * the kernel Makefile is setup to use -fno-reorder-blocks if
    569  1.160.4.1    rpaulo 	 * this option is set.
    570  1.160.4.1    rpaulo 	 */
    571       1.26       cgd 	/* handy breakpoint location after process "wakes" */
    572      1.140    kleink 	__asm(".globl bpendtsleep\nbpendtsleep:");
    573       1.26       cgd #endif
    574      1.122   thorpej 	/*
    575      1.122   thorpej 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    576      1.122   thorpej 	 * either setrunnable() or awaken().
    577      1.122   thorpej 	 */
    578       1.77   thorpej 
    579       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    580       1.83   thorpej 	splx(s);
    581       1.83   thorpej 
    582       1.77   thorpej  resume:
    583      1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    584      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    585      1.122   thorpej 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    586      1.122   thorpej 
    587      1.122   thorpej 	l->l_flag &= ~L_SINTR;
    588      1.122   thorpej 	if (l->l_flag & L_TIMEOUT) {
    589      1.135      matt 		l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
    590       1.26       cgd 		if (sig == 0) {
    591       1.26       cgd #ifdef KTRACE
    592       1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    593      1.154  christos 				ktrcsw(l, 0, 0);
    594       1.26       cgd #endif
    595       1.77   thorpej 			if (relock && interlock != NULL)
    596       1.77   thorpej 				simple_lock(interlock);
    597       1.26       cgd 			return (EWOULDBLOCK);
    598       1.26       cgd 		}
    599       1.26       cgd 	} else if (timo)
    600      1.122   thorpej 		callout_stop(&l->l_tsleep_ch);
    601      1.135      matt 
    602      1.135      matt 	if (catch) {
    603      1.135      matt 		const int cancelled = l->l_flag & L_CANCELLED;
    604      1.135      matt 		l->l_flag &= ~L_CANCELLED;
    605      1.135      matt 		if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
    606       1.26       cgd #ifdef KTRACE
    607      1.135      matt 			if (KTRPOINT(p, KTR_CSW))
    608      1.154  christos 				ktrcsw(l, 0, 0);
    609       1.26       cgd #endif
    610      1.135      matt 			if (relock && interlock != NULL)
    611      1.135      matt 				simple_lock(interlock);
    612      1.135      matt 			/*
    613      1.135      matt 			 * If this sleep was canceled, don't let the syscall
    614      1.135      matt 			 * restart.
    615      1.135      matt 			 */
    616      1.135      matt 			if (cancelled ||
    617      1.135      matt 			    (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    618      1.135      matt 				return (EINTR);
    619      1.135      matt 			return (ERESTART);
    620      1.135      matt 		}
    621       1.26       cgd 	}
    622      1.126        pk 
    623      1.126        pk #ifdef KTRACE
    624      1.126        pk 	if (KTRPOINT(p, KTR_CSW))
    625      1.154  christos 		ktrcsw(l, 0, 0);
    626      1.126        pk #endif
    627      1.126        pk 	if (relock && interlock != NULL)
    628      1.126        pk 		simple_lock(interlock);
    629      1.126        pk 
    630      1.122   thorpej 	/* XXXNJW this is very much a kluge.
    631      1.130   nathanw 	 * revisit. a better way of preventing looping/hanging syscalls like
    632      1.122   thorpej 	 * wait4() and _lwp_wait() from wedging an exiting process
    633      1.122   thorpej 	 * would be preferred.
    634      1.122   thorpej 	 */
    635      1.137    itojun 	if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
    636      1.122   thorpej 		return (EINTR);
    637       1.26       cgd 	return (0);
    638       1.26       cgd }
    639       1.26       cgd 
    640       1.26       cgd /*
    641       1.26       cgd  * Implement timeout for tsleep.
    642       1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    643       1.26       cgd  * set timeout flag and undo the sleep.  If proc
    644       1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    645       1.26       cgd  */
    646       1.26       cgd void
    647       1.77   thorpej endtsleep(void *arg)
    648       1.26       cgd {
    649      1.122   thorpej 	struct lwp *l;
    650       1.26       cgd 	int s;
    651       1.26       cgd 
    652      1.122   thorpej 	l = (struct lwp *)arg;
    653       1.83   thorpej 	SCHED_LOCK(s);
    654      1.122   thorpej 	if (l->l_wchan) {
    655      1.122   thorpej 		if (l->l_stat == LSSLEEP)
    656      1.122   thorpej 			setrunnable(l);
    657       1.26       cgd 		else
    658      1.122   thorpej 			unsleep(l);
    659      1.122   thorpej 		l->l_flag |= L_TIMEOUT;
    660       1.26       cgd 	}
    661       1.83   thorpej 	SCHED_UNLOCK(s);
    662       1.26       cgd }
    663       1.26       cgd 
    664       1.26       cgd /*
    665       1.26       cgd  * Remove a process from its wait queue
    666       1.26       cgd  */
    667       1.26       cgd void
    668      1.122   thorpej unsleep(struct lwp *l)
    669       1.26       cgd {
    670       1.71  augustss 	struct slpque *qp;
    671      1.122   thorpej 	struct lwp **hp;
    672       1.26       cgd 
    673       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    674       1.83   thorpej 
    675      1.122   thorpej 	if (l->l_wchan) {
    676      1.122   thorpej 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    677      1.122   thorpej 		while (*hp != l)
    678      1.122   thorpej 			hp = &(*hp)->l_forw;
    679      1.122   thorpej 		*hp = l->l_forw;
    680      1.122   thorpej 		if (qp->sq_tailp == &l->l_forw)
    681       1.26       cgd 			qp->sq_tailp = hp;
    682      1.122   thorpej 		l->l_wchan = 0;
    683       1.26       cgd 	}
    684       1.26       cgd }
    685       1.26       cgd 
    686      1.158     perry inline void
    687      1.139        cl sa_awaken(struct lwp *l)
    688      1.139        cl {
    689      1.147     perry 
    690      1.139        cl 	SCHED_ASSERT_LOCKED();
    691      1.139        cl 
    692      1.142        cl 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    693      1.139        cl 		l->l_flag &= ~L_SA_IDLE;
    694      1.139        cl }
    695      1.139        cl 
    696       1.26       cgd /*
    697       1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    698       1.63   thorpej  */
    699      1.158     perry inline void
    700      1.122   thorpej awaken(struct lwp *l)
    701       1.63   thorpej {
    702       1.63   thorpej 
    703       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    704      1.130   nathanw 
    705      1.139        cl 	if (l->l_proc->p_sa)
    706      1.139        cl 		sa_awaken(l);
    707      1.139        cl 
    708      1.122   thorpej 	if (l->l_slptime > 1)
    709      1.122   thorpej 		updatepri(l);
    710      1.122   thorpej 	l->l_slptime = 0;
    711      1.122   thorpej 	l->l_stat = LSRUN;
    712      1.122   thorpej 	l->l_proc->p_nrlwps++;
    713       1.93    bouyer 	/*
    714       1.93    bouyer 	 * Since curpriority is a user priority, p->p_priority
    715      1.119   thorpej 	 * is always better than curpriority on the last CPU on
    716      1.119   thorpej 	 * which it ran.
    717      1.118   thorpej 	 *
    718      1.119   thorpej 	 * XXXSMP See affinity comment in resched_proc().
    719       1.93    bouyer 	 */
    720      1.122   thorpej 	if (l->l_flag & L_INMEM) {
    721      1.122   thorpej 		setrunqueue(l);
    722      1.122   thorpej 		KASSERT(l->l_cpu != NULL);
    723      1.122   thorpej 		need_resched(l->l_cpu);
    724       1.93    bouyer 	} else
    725       1.93    bouyer 		sched_wakeup(&proc0);
    726       1.83   thorpej }
    727       1.83   thorpej 
    728       1.83   thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    729       1.83   thorpej void
    730       1.83   thorpej sched_unlock_idle(void)
    731       1.83   thorpej {
    732       1.83   thorpej 
    733       1.83   thorpej 	simple_unlock(&sched_lock);
    734       1.63   thorpej }
    735       1.63   thorpej 
    736       1.83   thorpej void
    737       1.83   thorpej sched_lock_idle(void)
    738       1.83   thorpej {
    739       1.83   thorpej 
    740       1.83   thorpej 	simple_lock(&sched_lock);
    741       1.83   thorpej }
    742       1.83   thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
    743       1.83   thorpej 
    744       1.63   thorpej /*
    745       1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    746       1.26       cgd  */
    747       1.83   thorpej 
    748       1.26       cgd void
    749      1.158     perry wakeup(volatile const void *ident)
    750       1.26       cgd {
    751       1.83   thorpej 	int s;
    752       1.83   thorpej 
    753       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    754       1.83   thorpej 
    755       1.83   thorpej 	SCHED_LOCK(s);
    756       1.83   thorpej 	sched_wakeup(ident);
    757       1.83   thorpej 	SCHED_UNLOCK(s);
    758       1.83   thorpej }
    759       1.83   thorpej 
    760       1.83   thorpej void
    761      1.158     perry sched_wakeup(volatile const void *ident)
    762       1.83   thorpej {
    763       1.71  augustss 	struct slpque *qp;
    764      1.122   thorpej 	struct lwp *l, **q;
    765       1.26       cgd 
    766       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    767       1.77   thorpej 
    768       1.73   thorpej 	qp = SLPQUE(ident);
    769       1.77   thorpej  restart:
    770      1.122   thorpej 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    771       1.26       cgd #ifdef DIAGNOSTIC
    772      1.130   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    773      1.122   thorpej 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    774       1.26       cgd 			panic("wakeup");
    775       1.26       cgd #endif
    776      1.122   thorpej 		if (l->l_wchan == ident) {
    777      1.122   thorpej 			l->l_wchan = 0;
    778      1.122   thorpej 			*q = l->l_forw;
    779      1.122   thorpej 			if (qp->sq_tailp == &l->l_forw)
    780       1.26       cgd 				qp->sq_tailp = q;
    781      1.122   thorpej 			if (l->l_stat == LSSLEEP) {
    782      1.122   thorpej 				awaken(l);
    783       1.26       cgd 				goto restart;
    784       1.26       cgd 			}
    785       1.26       cgd 		} else
    786      1.122   thorpej 			q = &l->l_forw;
    787       1.63   thorpej 	}
    788       1.63   thorpej }
    789       1.63   thorpej 
    790       1.63   thorpej /*
    791       1.63   thorpej  * Make the highest priority process first in line on the specified
    792       1.63   thorpej  * identifier runnable.
    793       1.63   thorpej  */
    794       1.63   thorpej void
    795      1.158     perry wakeup_one(volatile const void *ident)
    796       1.63   thorpej {
    797       1.63   thorpej 	struct slpque *qp;
    798      1.122   thorpej 	struct lwp *l, **q;
    799      1.122   thorpej 	struct lwp *best_sleepp, **best_sleepq;
    800      1.122   thorpej 	struct lwp *best_stopp, **best_stopq;
    801       1.63   thorpej 	int s;
    802       1.63   thorpej 
    803       1.63   thorpej 	best_sleepp = best_stopp = NULL;
    804       1.63   thorpej 	best_sleepq = best_stopq = NULL;
    805       1.63   thorpej 
    806       1.83   thorpej 	SCHED_LOCK(s);
    807       1.77   thorpej 
    808       1.73   thorpej 	qp = SLPQUE(ident);
    809       1.77   thorpej 
    810      1.122   thorpej 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    811       1.63   thorpej #ifdef DIAGNOSTIC
    812      1.130   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    813      1.122   thorpej 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    814       1.63   thorpej 			panic("wakeup_one");
    815       1.63   thorpej #endif
    816      1.122   thorpej 		if (l->l_wchan == ident) {
    817      1.122   thorpej 			if (l->l_stat == LSSLEEP) {
    818       1.63   thorpej 				if (best_sleepp == NULL ||
    819      1.122   thorpej 				    l->l_priority < best_sleepp->l_priority) {
    820      1.122   thorpej 					best_sleepp = l;
    821       1.63   thorpej 					best_sleepq = q;
    822       1.63   thorpej 				}
    823       1.63   thorpej 			} else {
    824       1.63   thorpej 				if (best_stopp == NULL ||
    825      1.122   thorpej 				    l->l_priority < best_stopp->l_priority) {
    826      1.122   thorpej 				    	best_stopp = l;
    827       1.63   thorpej 					best_stopq = q;
    828       1.63   thorpej 				}
    829       1.63   thorpej 			}
    830       1.63   thorpej 		}
    831       1.63   thorpej 	}
    832       1.63   thorpej 
    833       1.63   thorpej 	/*
    834       1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    835       1.63   thorpej 	 * process.
    836       1.63   thorpej 	 */
    837       1.63   thorpej 	if (best_sleepp != NULL) {
    838      1.122   thorpej 		l = best_sleepp;
    839       1.63   thorpej 		q = best_sleepq;
    840       1.63   thorpej 	} else {
    841      1.122   thorpej 		l = best_stopp;
    842       1.63   thorpej 		q = best_stopq;
    843       1.63   thorpej 	}
    844       1.63   thorpej 
    845      1.122   thorpej 	if (l != NULL) {
    846      1.122   thorpej 		l->l_wchan = NULL;
    847      1.122   thorpej 		*q = l->l_forw;
    848      1.122   thorpej 		if (qp->sq_tailp == &l->l_forw)
    849       1.63   thorpej 			qp->sq_tailp = q;
    850      1.122   thorpej 		if (l->l_stat == LSSLEEP)
    851      1.122   thorpej 			awaken(l);
    852       1.26       cgd 	}
    853       1.83   thorpej 	SCHED_UNLOCK(s);
    854      1.117  gmcgarry }
    855      1.117  gmcgarry 
    856      1.117  gmcgarry /*
    857      1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    858      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    859      1.117  gmcgarry  * current process explicitly requests it (eg sched_yield(2) in compat code).
    860      1.117  gmcgarry  */
    861      1.117  gmcgarry void
    862      1.117  gmcgarry yield(void)
    863      1.117  gmcgarry {
    864      1.122   thorpej 	struct lwp *l = curlwp;
    865      1.117  gmcgarry 	int s;
    866      1.117  gmcgarry 
    867      1.117  gmcgarry 	SCHED_LOCK(s);
    868      1.122   thorpej 	l->l_priority = l->l_usrpri;
    869      1.122   thorpej 	l->l_stat = LSRUN;
    870      1.122   thorpej 	setrunqueue(l);
    871      1.122   thorpej 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    872      1.122   thorpej 	mi_switch(l, NULL);
    873      1.117  gmcgarry 	SCHED_ASSERT_UNLOCKED();
    874      1.117  gmcgarry 	splx(s);
    875       1.69   thorpej }
    876       1.69   thorpej 
    877       1.69   thorpej /*
    878       1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    879      1.156    rpaulo  * and performs an involuntary context switch.
    880      1.156    rpaulo  * The 'more' ("more work to do") argument is boolean. Returning to userspace
    881      1.156    rpaulo  * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
    882      1.156    rpaulo  * This will be used to indicate to the SA subsystem that the LWP is
    883      1.156    rpaulo  * not yet finished in the kernel.
    884       1.69   thorpej  */
    885      1.122   thorpej 
    886       1.69   thorpej void
    887      1.122   thorpej preempt(int more)
    888       1.69   thorpej {
    889      1.122   thorpej 	struct lwp *l = curlwp;
    890      1.122   thorpej 	int r, s;
    891       1.69   thorpej 
    892       1.83   thorpej 	SCHED_LOCK(s);
    893      1.122   thorpej 	l->l_priority = l->l_usrpri;
    894      1.122   thorpej 	l->l_stat = LSRUN;
    895      1.122   thorpej 	setrunqueue(l);
    896      1.122   thorpej 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
    897      1.122   thorpej 	r = mi_switch(l, NULL);
    898       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    899       1.69   thorpej 	splx(s);
    900      1.122   thorpej 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    901      1.122   thorpej 		sa_preempt(l);
    902       1.69   thorpej }
    903       1.69   thorpej 
    904       1.69   thorpej /*
    905       1.72   thorpej  * The machine independent parts of context switch.
    906       1.86   thorpej  * Must be called at splsched() (no higher!) and with
    907       1.86   thorpej  * the sched_lock held.
    908      1.122   thorpej  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    909      1.122   thorpej  * the next lwp.
    910      1.130   nathanw  *
    911      1.122   thorpej  * Returns 1 if another process was actually run.
    912       1.26       cgd  */
    913      1.122   thorpej int
    914      1.122   thorpej mi_switch(struct lwp *l, struct lwp *newl)
    915       1.26       cgd {
    916       1.76   thorpej 	struct schedstate_percpu *spc;
    917       1.71  augustss 	struct rlimit *rlim;
    918       1.71  augustss 	long s, u;
    919       1.26       cgd 	struct timeval tv;
    920      1.144      yamt 	int hold_count;
    921      1.122   thorpej 	struct proc *p = l->l_proc;
    922      1.122   thorpej 	int retval;
    923       1.26       cgd 
    924       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    925       1.83   thorpej 
    926       1.90  sommerfe 	/*
    927       1.90  sommerfe 	 * Release the kernel_lock, as we are about to yield the CPU.
    928       1.90  sommerfe 	 * The scheduler lock is still held until cpu_switch()
    929       1.90  sommerfe 	 * selects a new process and removes it from the run queue.
    930       1.90  sommerfe 	 */
    931      1.144      yamt 	hold_count = KERNEL_LOCK_RELEASE_ALL();
    932       1.85  sommerfe 
    933      1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    934      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    935      1.113  gmcgarry 
    936      1.122   thorpej 	spc = &l->l_cpu->ci_schedstate;
    937       1.76   thorpej 
    938      1.160       chs #ifdef LOCKDEBUG
    939       1.82   thorpej 	spinlock_switchcheck();
    940       1.81   thorpej 	simple_lock_switchcheck();
    941       1.50      fvdl #endif
    942       1.81   thorpej 
    943       1.26       cgd 	/*
    944       1.26       cgd 	 * Compute the amount of time during which the current
    945      1.113  gmcgarry 	 * process was running.
    946       1.26       cgd 	 */
    947       1.26       cgd 	microtime(&tv);
    948      1.130   nathanw 	u = p->p_rtime.tv_usec +
    949      1.122   thorpej 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    950       1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    951       1.26       cgd 	if (u < 0) {
    952       1.26       cgd 		u += 1000000;
    953       1.26       cgd 		s--;
    954       1.26       cgd 	} else if (u >= 1000000) {
    955       1.26       cgd 		u -= 1000000;
    956       1.26       cgd 		s++;
    957       1.26       cgd 	}
    958      1.114  gmcgarry 	p->p_rtime.tv_usec = u;
    959      1.114  gmcgarry 	p->p_rtime.tv_sec = s;
    960       1.26       cgd 
    961       1.26       cgd 	/*
    962      1.141       wiz 	 * Check if the process exceeds its CPU resource allocation.
    963       1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
    964       1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
    965       1.26       cgd 	 */
    966       1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
    967       1.26       cgd 	if (s >= rlim->rlim_cur) {
    968      1.100  sommerfe 		/*
    969      1.100  sommerfe 		 * XXXSMP: we're inside the scheduler lock perimeter;
    970      1.100  sommerfe 		 * use sched_psignal.
    971      1.100  sommerfe 		 */
    972       1.26       cgd 		if (s >= rlim->rlim_max)
    973      1.100  sommerfe 			sched_psignal(p, SIGKILL);
    974       1.26       cgd 		else {
    975      1.100  sommerfe 			sched_psignal(p, SIGXCPU);
    976       1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
    977       1.26       cgd 				rlim->rlim_cur += 5;
    978       1.26       cgd 		}
    979       1.26       cgd 	}
    980  1.160.4.1    rpaulo 	if (autonicetime && s > autonicetime &&
    981  1.160.4.1    rpaulo 	    kauth_cred_geteuid(p->p_cred) && p->p_nice == NZERO) {
    982       1.39        ws 		p->p_nice = autoniceval + NZERO;
    983      1.122   thorpej 		resetpriority(l);
    984       1.26       cgd 	}
    985       1.69   thorpej 
    986       1.69   thorpej 	/*
    987       1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    988       1.69   thorpej 	 * scheduling flags.
    989       1.69   thorpej 	 */
    990       1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    991      1.109      yamt 
    992      1.109      yamt #ifdef KSTACK_CHECK_MAGIC
    993      1.124      yamt 	kstack_check_magic(l);
    994      1.109      yamt #endif
    995       1.26       cgd 
    996      1.113  gmcgarry 	/*
    997      1.114  gmcgarry 	 * If we are using h/w performance counters, save context.
    998      1.113  gmcgarry 	 */
    999      1.114  gmcgarry #if PERFCTRS
   1000  1.160.4.1    rpaulo 	if (PMC_ENABLED(p)) {
   1001      1.114  gmcgarry 		pmc_save_context(p);
   1002  1.160.4.1    rpaulo 	}
   1003      1.110    briggs #endif
   1004      1.113  gmcgarry 
   1005      1.113  gmcgarry 	/*
   1006      1.114  gmcgarry 	 * Switch to the new current process.  When we
   1007      1.114  gmcgarry 	 * run again, we'll return back here.
   1008      1.113  gmcgarry 	 */
   1009      1.114  gmcgarry 	uvmexp.swtch++;
   1010      1.122   thorpej 	if (newl == NULL) {
   1011      1.122   thorpej 		retval = cpu_switch(l, NULL);
   1012      1.122   thorpej 	} else {
   1013      1.122   thorpej 		remrunqueue(newl);
   1014      1.122   thorpej 		cpu_switchto(l, newl);
   1015      1.122   thorpej 		retval = 0;
   1016      1.122   thorpej 	}
   1017      1.110    briggs 
   1018      1.110    briggs 	/*
   1019      1.114  gmcgarry 	 * If we are using h/w performance counters, restore context.
   1020       1.26       cgd 	 */
   1021      1.114  gmcgarry #if PERFCTRS
   1022  1.160.4.1    rpaulo 	if (PMC_ENABLED(p)) {
   1023      1.114  gmcgarry 		pmc_restore_context(p);
   1024  1.160.4.1    rpaulo 	}
   1025      1.114  gmcgarry #endif
   1026      1.110    briggs 
   1027      1.110    briggs 	/*
   1028      1.114  gmcgarry 	 * Make sure that MD code released the scheduler lock before
   1029      1.114  gmcgarry 	 * resuming us.
   1030      1.110    briggs 	 */
   1031      1.114  gmcgarry 	SCHED_ASSERT_UNLOCKED();
   1032       1.83   thorpej 
   1033       1.83   thorpej 	/*
   1034       1.76   thorpej 	 * We're running again; record our new start time.  We might
   1035       1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
   1036       1.76   thorpej 	 * schedstate_percpu pointer.
   1037       1.76   thorpej 	 */
   1038      1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
   1039      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
   1040      1.122   thorpej 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
   1041       1.85  sommerfe 
   1042       1.90  sommerfe 	/*
   1043       1.90  sommerfe 	 * Reacquire the kernel_lock now.  We do this after we've
   1044       1.90  sommerfe 	 * released the scheduler lock to avoid deadlock, and before
   1045       1.90  sommerfe 	 * we reacquire the interlock.
   1046       1.90  sommerfe 	 */
   1047      1.144      yamt 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
   1048      1.122   thorpej 
   1049      1.122   thorpej 	return retval;
   1050       1.26       cgd }
   1051       1.26       cgd 
   1052       1.26       cgd /*
   1053       1.26       cgd  * Initialize the (doubly-linked) run queues
   1054       1.26       cgd  * to be empty.
   1055       1.26       cgd  */
   1056       1.26       cgd void
   1057       1.26       cgd rqinit()
   1058       1.26       cgd {
   1059       1.71  augustss 	int i;
   1060       1.26       cgd 
   1061       1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
   1062       1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
   1063      1.122   thorpej 		    (struct lwp *)&sched_qs[i];
   1064       1.26       cgd }
   1065       1.26       cgd 
   1066      1.158     perry static inline void
   1067      1.122   thorpej resched_proc(struct lwp *l, u_char pri)
   1068      1.119   thorpej {
   1069      1.119   thorpej 	struct cpu_info *ci;
   1070      1.119   thorpej 
   1071      1.119   thorpej 	/*
   1072      1.119   thorpej 	 * XXXSMP
   1073      1.122   thorpej 	 * Since l->l_cpu persists across a context switch,
   1074      1.119   thorpej 	 * this gives us *very weak* processor affinity, in
   1075      1.119   thorpej 	 * that we notify the CPU on which the process last
   1076      1.119   thorpej 	 * ran that it should try to switch.
   1077      1.119   thorpej 	 *
   1078      1.119   thorpej 	 * This does not guarantee that the process will run on
   1079      1.119   thorpej 	 * that processor next, because another processor might
   1080      1.119   thorpej 	 * grab it the next time it performs a context switch.
   1081      1.119   thorpej 	 *
   1082      1.119   thorpej 	 * This also does not handle the case where its last
   1083      1.119   thorpej 	 * CPU is running a higher-priority process, but every
   1084      1.119   thorpej 	 * other CPU is running a lower-priority process.  There
   1085      1.119   thorpej 	 * are ways to handle this situation, but they're not
   1086      1.119   thorpej 	 * currently very pretty, and we also need to weigh the
   1087      1.119   thorpej 	 * cost of moving a process from one CPU to another.
   1088      1.119   thorpej 	 *
   1089      1.119   thorpej 	 * XXXSMP
   1090      1.119   thorpej 	 * There is also the issue of locking the other CPU's
   1091      1.119   thorpej 	 * sched state, which we currently do not do.
   1092      1.119   thorpej 	 */
   1093      1.122   thorpej 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1094      1.121   thorpej 	if (pri < ci->ci_schedstate.spc_curpriority)
   1095      1.119   thorpej 		need_resched(ci);
   1096      1.119   thorpej }
   1097      1.119   thorpej 
   1098       1.26       cgd /*
   1099       1.26       cgd  * Change process state to be runnable,
   1100       1.26       cgd  * placing it on the run queue if it is in memory,
   1101       1.26       cgd  * and awakening the swapper if it isn't in memory.
   1102       1.26       cgd  */
   1103       1.26       cgd void
   1104      1.122   thorpej setrunnable(struct lwp *l)
   1105       1.26       cgd {
   1106      1.122   thorpej 	struct proc *p = l->l_proc;
   1107       1.26       cgd 
   1108       1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1109       1.83   thorpej 
   1110      1.122   thorpej 	switch (l->l_stat) {
   1111       1.26       cgd 	case 0:
   1112      1.122   thorpej 	case LSRUN:
   1113      1.122   thorpej 	case LSONPROC:
   1114      1.122   thorpej 	case LSZOMB:
   1115      1.122   thorpej 	case LSDEAD:
   1116       1.26       cgd 	default:
   1117      1.127      matt 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
   1118      1.122   thorpej 	case LSSTOP:
   1119       1.33   mycroft 		/*
   1120       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
   1121       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
   1122       1.33   mycroft 		 */
   1123       1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1124       1.99  jdolecek 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1125      1.101   thorpej 			CHECKSIGS(p);
   1126       1.53   mycroft 		}
   1127      1.122   thorpej 	case LSSLEEP:
   1128      1.122   thorpej 		unsleep(l);		/* e.g. when sending signals */
   1129       1.26       cgd 		break;
   1130       1.26       cgd 
   1131      1.122   thorpej 	case LSIDL:
   1132      1.122   thorpej 		break;
   1133      1.122   thorpej 	case LSSUSPENDED:
   1134       1.26       cgd 		break;
   1135       1.26       cgd 	}
   1136      1.139        cl 
   1137      1.139        cl 	if (l->l_proc->p_sa)
   1138      1.139        cl 		sa_awaken(l);
   1139      1.139        cl 
   1140      1.122   thorpej 	l->l_stat = LSRUN;
   1141      1.122   thorpej 	p->p_nrlwps++;
   1142      1.122   thorpej 
   1143      1.122   thorpej 	if (l->l_flag & L_INMEM)
   1144      1.122   thorpej 		setrunqueue(l);
   1145      1.122   thorpej 
   1146      1.122   thorpej 	if (l->l_slptime > 1)
   1147      1.122   thorpej 		updatepri(l);
   1148      1.122   thorpej 	l->l_slptime = 0;
   1149      1.122   thorpej 	if ((l->l_flag & L_INMEM) == 0)
   1150       1.83   thorpej 		sched_wakeup((caddr_t)&proc0);
   1151      1.119   thorpej 	else
   1152      1.122   thorpej 		resched_proc(l, l->l_priority);
   1153       1.26       cgd }
   1154       1.26       cgd 
   1155       1.26       cgd /*
   1156       1.26       cgd  * Compute the priority of a process when running in user mode.
   1157       1.26       cgd  * Arrange to reschedule if the resulting priority is better
   1158       1.26       cgd  * than that of the current process.
   1159       1.26       cgd  */
   1160       1.26       cgd void
   1161      1.122   thorpej resetpriority(struct lwp *l)
   1162       1.26       cgd {
   1163       1.71  augustss 	unsigned int newpriority;
   1164      1.122   thorpej 	struct proc *p = l->l_proc;
   1165       1.26       cgd 
   1166       1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1167       1.83   thorpej 
   1168      1.153      yamt 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
   1169      1.122   thorpej 			NICE_WEIGHT * (p->p_nice - NZERO);
   1170       1.26       cgd 	newpriority = min(newpriority, MAXPRI);
   1171      1.122   thorpej 	l->l_usrpri = newpriority;
   1172      1.122   thorpej 	resched_proc(l, l->l_usrpri);
   1173      1.122   thorpej }
   1174      1.122   thorpej 
   1175      1.130   nathanw /*
   1176      1.122   thorpej  * Recompute priority for all LWPs in a process.
   1177      1.122   thorpej  */
   1178      1.122   thorpej void
   1179      1.122   thorpej resetprocpriority(struct proc *p)
   1180      1.122   thorpej {
   1181      1.122   thorpej 	struct lwp *l;
   1182      1.122   thorpej 
   1183      1.122   thorpej 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1184      1.122   thorpej 	    resetpriority(l);
   1185       1.55      ross }
   1186       1.55      ross 
   1187       1.55      ross /*
   1188       1.56      ross  * We adjust the priority of the current process.  The priority of a process
   1189      1.141       wiz  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
   1190       1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1191       1.56      ross  * will compute a different value each time p_estcpu increases. This can
   1192       1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1193      1.141       wiz  * queue will not change.  The CPU usage estimator ramps up quite quickly
   1194       1.56      ross  * when the process is running (linearly), and decays away exponentially, at
   1195       1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
   1196       1.80   nathanw  * principle is that the system will 90% forget that the process used a lot
   1197       1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1198       1.56      ross  * processes which haven't run much recently, and to round-robin among other
   1199       1.56      ross  * processes.
   1200       1.55      ross  */
   1201       1.55      ross 
   1202       1.55      ross void
   1203      1.122   thorpej schedclock(struct lwp *l)
   1204       1.55      ross {
   1205      1.122   thorpej 	struct proc *p = l->l_proc;
   1206       1.83   thorpej 	int s;
   1207       1.77   thorpej 
   1208      1.153      yamt 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
   1209       1.83   thorpej 	SCHED_LOCK(s);
   1210      1.122   thorpej 	resetpriority(l);
   1211       1.83   thorpej 	SCHED_UNLOCK(s);
   1212      1.130   nathanw 
   1213      1.122   thorpej 	if (l->l_priority >= PUSER)
   1214      1.122   thorpej 		l->l_priority = l->l_usrpri;
   1215       1.26       cgd }
   1216       1.94    bouyer 
   1217       1.94    bouyer void
   1218       1.94    bouyer suspendsched()
   1219       1.94    bouyer {
   1220      1.122   thorpej 	struct lwp *l;
   1221       1.97     enami 	int s;
   1222       1.94    bouyer 
   1223       1.94    bouyer 	/*
   1224      1.130   nathanw 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1225      1.122   thorpej 	 * LSSUSPENDED.
   1226       1.94    bouyer 	 */
   1227       1.95   thorpej 	proclist_lock_read();
   1228       1.95   thorpej 	SCHED_LOCK(s);
   1229      1.122   thorpej 	LIST_FOREACH(l, &alllwp, l_list) {
   1230      1.122   thorpej 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1231       1.94    bouyer 			continue;
   1232      1.122   thorpej 
   1233      1.122   thorpej 		switch (l->l_stat) {
   1234      1.122   thorpej 		case LSRUN:
   1235      1.122   thorpej 			l->l_proc->p_nrlwps--;
   1236      1.122   thorpej 			if ((l->l_flag & L_INMEM) != 0)
   1237      1.122   thorpej 				remrunqueue(l);
   1238       1.97     enami 			/* FALLTHROUGH */
   1239      1.122   thorpej 		case LSSLEEP:
   1240      1.122   thorpej 			l->l_stat = LSSUSPENDED;
   1241       1.97     enami 			break;
   1242      1.122   thorpej 		case LSONPROC:
   1243       1.97     enami 			/*
   1244       1.97     enami 			 * XXX SMP: we need to deal with processes on
   1245       1.97     enami 			 * others CPU !
   1246       1.97     enami 			 */
   1247       1.97     enami 			break;
   1248       1.97     enami 		default:
   1249       1.97     enami 			break;
   1250       1.94    bouyer 		}
   1251       1.94    bouyer 	}
   1252       1.94    bouyer 	SCHED_UNLOCK(s);
   1253       1.97     enami 	proclist_unlock_read();
   1254       1.94    bouyer }
   1255      1.113  gmcgarry 
   1256      1.113  gmcgarry /*
   1257      1.151      yamt  * scheduler_fork_hook:
   1258      1.151      yamt  *
   1259      1.151      yamt  *	Inherit the parent's scheduler history.
   1260      1.151      yamt  */
   1261      1.151      yamt void
   1262      1.151      yamt scheduler_fork_hook(struct proc *parent, struct proc *child)
   1263      1.151      yamt {
   1264      1.151      yamt 
   1265      1.157      yamt 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
   1266      1.157      yamt 	child->p_forktime = schedcpu_ticks;
   1267      1.151      yamt }
   1268      1.151      yamt 
   1269      1.151      yamt /*
   1270      1.151      yamt  * scheduler_wait_hook:
   1271      1.151      yamt  *
   1272      1.151      yamt  *	Chargeback parents for the sins of their children.
   1273      1.151      yamt  */
   1274      1.151      yamt void
   1275      1.151      yamt scheduler_wait_hook(struct proc *parent, struct proc *child)
   1276      1.151      yamt {
   1277      1.157      yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
   1278      1.157      yamt 	fixpt_t estcpu;
   1279      1.151      yamt 
   1280      1.151      yamt 	/* XXX Only if parent != init?? */
   1281      1.157      yamt 
   1282      1.157      yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
   1283      1.157      yamt 	    schedcpu_ticks - child->p_forktime);
   1284      1.157      yamt 	if (child->p_estcpu > estcpu) {
   1285      1.157      yamt 		parent->p_estcpu =
   1286      1.157      yamt 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
   1287      1.157      yamt 	}
   1288      1.151      yamt }
   1289      1.151      yamt 
   1290      1.151      yamt /*
   1291      1.113  gmcgarry  * Low-level routines to access the run queue.  Optimised assembler
   1292      1.113  gmcgarry  * routines can override these.
   1293      1.113  gmcgarry  */
   1294      1.113  gmcgarry 
   1295      1.113  gmcgarry #ifndef __HAVE_MD_RUNQUEUE
   1296      1.115  nisimura 
   1297      1.130   nathanw /*
   1298      1.134      matt  * On some architectures, it's faster to use a MSB ordering for the priorites
   1299      1.134      matt  * than the traditional LSB ordering.
   1300      1.134      matt  */
   1301      1.134      matt #ifdef __HAVE_BIGENDIAN_BITOPS
   1302      1.134      matt #define	RQMASK(n) (0x80000000 >> (n))
   1303      1.134      matt #else
   1304      1.134      matt #define	RQMASK(n) (0x00000001 << (n))
   1305      1.134      matt #endif
   1306      1.134      matt 
   1307      1.134      matt /*
   1308      1.115  nisimura  * The primitives that manipulate the run queues.  whichqs tells which
   1309      1.115  nisimura  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1310      1.115  nisimura  * into queues, remrunqueue removes them from queues.  The running process is
   1311      1.115  nisimura  * on no queue, other processes are on a queue related to p->p_priority,
   1312      1.115  nisimura  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1313      1.115  nisimura  * available queues.
   1314      1.130   nathanw  */
   1315      1.113  gmcgarry 
   1316      1.146      matt #ifdef RQDEBUG
   1317      1.146      matt static void
   1318      1.146      matt checkrunqueue(int whichq, struct lwp *l)
   1319      1.146      matt {
   1320      1.146      matt 	const struct prochd * const rq = &sched_qs[whichq];
   1321      1.146      matt 	struct lwp *l2;
   1322      1.146      matt 	int found = 0;
   1323      1.146      matt 	int die = 0;
   1324      1.146      matt 	int empty = 1;
   1325  1.160.4.1    rpaulo 	for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
   1326      1.146      matt 		if (l2->l_stat != LSRUN) {
   1327      1.146      matt 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1328      1.146      matt 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1329      1.146      matt 		}
   1330      1.146      matt 		if (l2->l_back->l_forw != l2) {
   1331      1.146      matt 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1332      1.146      matt 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1333      1.146      matt 			    l2->l_back->l_forw);
   1334      1.146      matt 			die = 1;
   1335      1.146      matt 		}
   1336      1.146      matt 		if (l2->l_forw->l_back != l2) {
   1337      1.146      matt 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1338      1.146      matt 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1339      1.146      matt 			    l2->l_forw->l_back);
   1340      1.146      matt 			die = 1;
   1341      1.146      matt 		}
   1342      1.146      matt 		if (l2 == l)
   1343      1.146      matt 			found = 1;
   1344      1.146      matt 		empty = 0;
   1345      1.146      matt 	}
   1346      1.146      matt 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1347      1.146      matt 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1348      1.146      matt 		    whichq, rq);
   1349      1.146      matt 		die = 1;
   1350      1.146      matt 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1351      1.146      matt 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1352      1.146      matt 		    "run-queue %p\n", whichq, rq);
   1353      1.146      matt 		die = 1;
   1354      1.146      matt 	}
   1355      1.146      matt 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1356      1.146      matt 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1357      1.146      matt 		    whichq, l);
   1358      1.146      matt 		die = 1;
   1359      1.146      matt 	}
   1360      1.146      matt 	if (l != NULL && empty) {
   1361      1.146      matt 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1362      1.146      matt 		    "active lwp %p\n", whichq, rq, l);
   1363      1.146      matt 		die = 1;
   1364      1.146      matt 	}
   1365      1.146      matt 	if (l != NULL && !found) {
   1366      1.146      matt 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1367      1.146      matt 		    whichq, l, rq);
   1368      1.146      matt 		die = 1;
   1369      1.146      matt 	}
   1370      1.146      matt 	if (die)
   1371      1.146      matt 		panic("checkrunqueue: inconsistency found");
   1372      1.146      matt }
   1373      1.146      matt #endif /* RQDEBUG */
   1374      1.146      matt 
   1375      1.113  gmcgarry void
   1376      1.122   thorpej setrunqueue(struct lwp *l)
   1377      1.113  gmcgarry {
   1378      1.113  gmcgarry 	struct prochd *rq;
   1379      1.122   thorpej 	struct lwp *prev;
   1380      1.152      yamt 	const int whichq = l->l_priority / PPQ;
   1381      1.113  gmcgarry 
   1382      1.146      matt #ifdef RQDEBUG
   1383      1.146      matt 	checkrunqueue(whichq, NULL);
   1384      1.146      matt #endif
   1385      1.113  gmcgarry #ifdef DIAGNOSTIC
   1386      1.122   thorpej 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1387      1.113  gmcgarry 		panic("setrunqueue");
   1388      1.113  gmcgarry #endif
   1389      1.134      matt 	sched_whichqs |= RQMASK(whichq);
   1390      1.113  gmcgarry 	rq = &sched_qs[whichq];
   1391      1.113  gmcgarry 	prev = rq->ph_rlink;
   1392      1.122   thorpej 	l->l_forw = (struct lwp *)rq;
   1393      1.122   thorpej 	rq->ph_rlink = l;
   1394      1.122   thorpej 	prev->l_forw = l;
   1395      1.122   thorpej 	l->l_back = prev;
   1396      1.146      matt #ifdef RQDEBUG
   1397      1.146      matt 	checkrunqueue(whichq, l);
   1398      1.146      matt #endif
   1399      1.113  gmcgarry }
   1400      1.113  gmcgarry 
   1401      1.113  gmcgarry void
   1402      1.122   thorpej remrunqueue(struct lwp *l)
   1403      1.113  gmcgarry {
   1404      1.122   thorpej 	struct lwp *prev, *next;
   1405      1.152      yamt 	const int whichq = l->l_priority / PPQ;
   1406      1.146      matt #ifdef RQDEBUG
   1407      1.146      matt 	checkrunqueue(whichq, l);
   1408      1.146      matt #endif
   1409      1.113  gmcgarry #ifdef DIAGNOSTIC
   1410      1.134      matt 	if (((sched_whichqs & RQMASK(whichq)) == 0))
   1411      1.146      matt 		panic("remrunqueue: bit %d not set", whichq);
   1412      1.113  gmcgarry #endif
   1413      1.122   thorpej 	prev = l->l_back;
   1414      1.122   thorpej 	l->l_back = NULL;
   1415      1.122   thorpej 	next = l->l_forw;
   1416      1.122   thorpej 	prev->l_forw = next;
   1417      1.122   thorpej 	next->l_back = prev;
   1418      1.113  gmcgarry 	if (prev == next)
   1419      1.134      matt 		sched_whichqs &= ~RQMASK(whichq);
   1420      1.146      matt #ifdef RQDEBUG
   1421      1.146      matt 	checkrunqueue(whichq, NULL);
   1422      1.146      matt #endif
   1423      1.113  gmcgarry }
   1424      1.113  gmcgarry 
   1425      1.134      matt #undef RQMASK
   1426      1.134      matt #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1427