kern_synch.c revision 1.166.2.1 1 1.166.2.1 ad /* $NetBSD: kern_synch.c,v 1.166.2.1 2006/09/11 18:45:24 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.148 mycroft * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.63 thorpej * NASA Ames Research Center.
10 1.148 mycroft * This code is derived from software contributed to The NetBSD Foundation
11 1.148 mycroft * by Charles M. Hannum.
12 1.63 thorpej *
13 1.63 thorpej * Redistribution and use in source and binary forms, with or without
14 1.63 thorpej * modification, are permitted provided that the following conditions
15 1.63 thorpej * are met:
16 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer.
18 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
19 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
20 1.63 thorpej * documentation and/or other materials provided with the distribution.
21 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
22 1.63 thorpej * must display the following acknowledgement:
23 1.63 thorpej * This product includes software developed by the NetBSD
24 1.63 thorpej * Foundation, Inc. and its contributors.
25 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
26 1.63 thorpej * contributors may be used to endorse or promote products derived
27 1.63 thorpej * from this software without specific prior written permission.
28 1.63 thorpej *
29 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
40 1.63 thorpej */
41 1.26 cgd
42 1.26 cgd /*-
43 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
44 1.26 cgd * The Regents of the University of California. All rights reserved.
45 1.26 cgd * (c) UNIX System Laboratories, Inc.
46 1.26 cgd * All or some portions of this file are derived from material licensed
47 1.26 cgd * to the University of California by American Telephone and Telegraph
48 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49 1.26 cgd * the permission of UNIX System Laboratories, Inc.
50 1.26 cgd *
51 1.26 cgd * Redistribution and use in source and binary forms, with or without
52 1.26 cgd * modification, are permitted provided that the following conditions
53 1.26 cgd * are met:
54 1.26 cgd * 1. Redistributions of source code must retain the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer.
56 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
57 1.26 cgd * notice, this list of conditions and the following disclaimer in the
58 1.26 cgd * documentation and/or other materials provided with the distribution.
59 1.136 agc * 3. Neither the name of the University nor the names of its contributors
60 1.26 cgd * may be used to endorse or promote products derived from this software
61 1.26 cgd * without specific prior written permission.
62 1.26 cgd *
63 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 1.26 cgd * SUCH DAMAGE.
74 1.26 cgd *
75 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
76 1.26 cgd */
77 1.106 lukem
78 1.106 lukem #include <sys/cdefs.h>
79 1.166.2.1 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.166.2.1 2006/09/11 18:45:24 ad Exp $");
80 1.48 mrg
81 1.52 jonathan #include "opt_ddb.h"
82 1.51 thorpej #include "opt_ktrace.h"
83 1.109 yamt #include "opt_kstack.h"
84 1.82 thorpej #include "opt_lockdebug.h"
85 1.83 thorpej #include "opt_multiprocessor.h"
86 1.110 briggs #include "opt_perfctrs.h"
87 1.26 cgd
88 1.26 cgd #include <sys/param.h>
89 1.26 cgd #include <sys/systm.h>
90 1.68 thorpej #include <sys/callout.h>
91 1.26 cgd #include <sys/proc.h>
92 1.26 cgd #include <sys/kernel.h>
93 1.26 cgd #include <sys/buf.h>
94 1.111 briggs #if defined(PERFCTRS)
95 1.110 briggs #include <sys/pmc.h>
96 1.111 briggs #endif
97 1.26 cgd #include <sys/signalvar.h>
98 1.26 cgd #include <sys/resourcevar.h>
99 1.55 ross #include <sys/sched.h>
100 1.122 thorpej #include <sys/sa.h>
101 1.122 thorpej #include <sys/savar.h>
102 1.161 elad #include <sys/kauth.h>
103 1.47 mrg
104 1.47 mrg #include <uvm/uvm_extern.h>
105 1.47 mrg
106 1.26 cgd #ifdef KTRACE
107 1.26 cgd #include <sys/ktrace.h>
108 1.26 cgd #endif
109 1.26 cgd
110 1.26 cgd #include <machine/cpu.h>
111 1.34 christos
112 1.26 cgd int lbolt; /* once a second sleep address */
113 1.88 sommerfe int rrticks; /* number of hardclock ticks per roundrobin() */
114 1.26 cgd
115 1.73 thorpej /*
116 1.152 yamt * Sleep queues.
117 1.152 yamt *
118 1.152 yamt * We're only looking at 7 bits of the address; everything is
119 1.152 yamt * aligned to 4, lots of things are aligned to greater powers
120 1.152 yamt * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
121 1.152 yamt */
122 1.152 yamt #define SLPQUE_TABLESIZE 128
123 1.152 yamt #define SLPQUE_LOOKUP(x) (((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
124 1.152 yamt
125 1.152 yamt #define SLPQUE(ident) (&sched_slpque[SLPQUE_LOOKUP(ident)])
126 1.152 yamt
127 1.152 yamt /*
128 1.73 thorpej * The global scheduler state.
129 1.73 thorpej */
130 1.73 thorpej struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
131 1.159 perry volatile uint32_t sched_whichqs; /* bitmap of non-empty queues */
132 1.73 thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
133 1.73 thorpej
134 1.83 thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
135 1.83 thorpej
136 1.77 thorpej void schedcpu(void *);
137 1.122 thorpej void updatepri(struct lwp *);
138 1.77 thorpej void endtsleep(void *);
139 1.34 christos
140 1.158 perry inline void sa_awaken(struct lwp *);
141 1.158 perry inline void awaken(struct lwp *);
142 1.63 thorpej
143 1.143 yamt struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
144 1.157 yamt static unsigned int schedcpu_ticks;
145 1.122 thorpej
146 1.122 thorpej
147 1.26 cgd /*
148 1.26 cgd * Force switch among equal priority processes every 100ms.
149 1.88 sommerfe * Called from hardclock every hz/10 == rrticks hardclock ticks.
150 1.26 cgd */
151 1.26 cgd /* ARGSUSED */
152 1.26 cgd void
153 1.89 sommerfe roundrobin(struct cpu_info *ci)
154 1.26 cgd {
155 1.89 sommerfe struct schedstate_percpu *spc = &ci->ci_schedstate;
156 1.26 cgd
157 1.88 sommerfe spc->spc_rrticks = rrticks;
158 1.130 nathanw
159 1.122 thorpej if (curlwp != NULL) {
160 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
161 1.69 thorpej /*
162 1.69 thorpej * The process has already been through a roundrobin
163 1.69 thorpej * without switching and may be hogging the CPU.
164 1.69 thorpej * Indicate that the process should yield.
165 1.69 thorpej */
166 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
167 1.69 thorpej } else
168 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
169 1.69 thorpej }
170 1.87 thorpej need_resched(curcpu());
171 1.26 cgd }
172 1.26 cgd
173 1.153 yamt #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
174 1.153 yamt #define NICE_WEIGHT 2 /* priorities per nice level */
175 1.153 yamt
176 1.153 yamt #define ESTCPU_SHIFT 11
177 1.153 yamt #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
178 1.153 yamt #define ESTCPULIM(e) min((e), ESTCPU_MAX)
179 1.153 yamt
180 1.26 cgd /*
181 1.26 cgd * Constants for digital decay and forget:
182 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
183 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
184 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
185 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
186 1.26 cgd *
187 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
188 1.26 cgd *
189 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
190 1.26 cgd * That is, the system wants to compute a value of decay such
191 1.26 cgd * that the following for loop:
192 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
193 1.26 cgd * p_estcpu *= decay;
194 1.26 cgd * will compute
195 1.26 cgd * p_estcpu *= 0.1;
196 1.26 cgd * for all values of loadavg:
197 1.26 cgd *
198 1.26 cgd * Mathematically this loop can be expressed by saying:
199 1.26 cgd * decay ** (5 * loadavg) ~= .1
200 1.26 cgd *
201 1.26 cgd * The system computes decay as:
202 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
203 1.26 cgd *
204 1.26 cgd * We wish to prove that the system's computation of decay
205 1.26 cgd * will always fulfill the equation:
206 1.26 cgd * decay ** (5 * loadavg) ~= .1
207 1.26 cgd *
208 1.26 cgd * If we compute b as:
209 1.26 cgd * b = 2 * loadavg
210 1.26 cgd * then
211 1.26 cgd * decay = b / (b + 1)
212 1.26 cgd *
213 1.26 cgd * We now need to prove two things:
214 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
215 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
216 1.130 nathanw *
217 1.26 cgd * Facts:
218 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
219 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
220 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
221 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
222 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
223 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
224 1.26 cgd * ln(.1) =~ -2.30
225 1.26 cgd *
226 1.26 cgd * Proof of (1):
227 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
228 1.26 cgd * solving for factor,
229 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
230 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
231 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
232 1.26 cgd *
233 1.26 cgd * Proof of (2):
234 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
235 1.26 cgd * solving for power,
236 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
237 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
238 1.26 cgd *
239 1.26 cgd * Actual power values for the implemented algorithm are as follows:
240 1.26 cgd * loadav: 1 2 3 4
241 1.26 cgd * power: 5.68 10.32 14.94 19.55
242 1.26 cgd */
243 1.26 cgd
244 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
245 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
246 1.153 yamt
247 1.153 yamt static fixpt_t
248 1.153 yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
249 1.153 yamt {
250 1.153 yamt
251 1.153 yamt if (estcpu == 0) {
252 1.153 yamt return 0;
253 1.153 yamt }
254 1.153 yamt
255 1.153 yamt #if !defined(_LP64)
256 1.153 yamt /* avoid 64bit arithmetics. */
257 1.153 yamt #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
258 1.153 yamt if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
259 1.153 yamt return estcpu * loadfac / (loadfac + FSCALE);
260 1.153 yamt }
261 1.153 yamt #endif /* !defined(_LP64) */
262 1.153 yamt
263 1.153 yamt return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
264 1.153 yamt }
265 1.26 cgd
266 1.157 yamt /*
267 1.157 yamt * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
268 1.157 yamt * sleeping for at least seven times the loadfactor will decay p_estcpu to
269 1.157 yamt * less than (1 << ESTCPU_SHIFT).
270 1.157 yamt *
271 1.157 yamt * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
272 1.157 yamt */
273 1.157 yamt static fixpt_t
274 1.157 yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
275 1.157 yamt {
276 1.157 yamt
277 1.157 yamt if ((n << FSHIFT) >= 7 * loadfac) {
278 1.157 yamt return 0;
279 1.157 yamt }
280 1.157 yamt
281 1.157 yamt while (estcpu != 0 && n > 1) {
282 1.157 yamt estcpu = decay_cpu(loadfac, estcpu);
283 1.157 yamt n--;
284 1.157 yamt }
285 1.157 yamt
286 1.157 yamt return estcpu;
287 1.157 yamt }
288 1.157 yamt
289 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
290 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
291 1.26 cgd
292 1.26 cgd /*
293 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
294 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
295 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
296 1.26 cgd *
297 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
298 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
299 1.26 cgd *
300 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
301 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
302 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
303 1.26 cgd */
304 1.26 cgd #define CCPU_SHIFT 11
305 1.26 cgd
306 1.26 cgd /*
307 1.26 cgd * Recompute process priorities, every hz ticks.
308 1.26 cgd */
309 1.26 cgd /* ARGSUSED */
310 1.26 cgd void
311 1.77 thorpej schedcpu(void *arg)
312 1.26 cgd {
313 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
314 1.122 thorpej struct lwp *l;
315 1.71 augustss struct proc *p;
316 1.122 thorpej int s, minslp;
317 1.66 ross int clkhz;
318 1.26 cgd
319 1.157 yamt schedcpu_ticks++;
320 1.157 yamt
321 1.166.2.1 ad mutex_enter(&proclist_mutex);
322 1.145 yamt PROCLIST_FOREACH(p, &allproc) {
323 1.26 cgd /*
324 1.26 cgd * Increment time in/out of memory and sleep time
325 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
326 1.26 cgd * (remember them?) overflow takes 45 days.
327 1.26 cgd */
328 1.122 thorpej minslp = 2;
329 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
330 1.122 thorpej l->l_swtime++;
331 1.130 nathanw if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
332 1.122 thorpej l->l_stat == LSSUSPENDED) {
333 1.122 thorpej l->l_slptime++;
334 1.122 thorpej minslp = min(minslp, l->l_slptime);
335 1.122 thorpej } else
336 1.122 thorpej minslp = 0;
337 1.122 thorpej }
338 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
339 1.26 cgd /*
340 1.26 cgd * If the process has slept the entire second,
341 1.26 cgd * stop recalculating its priority until it wakes up.
342 1.26 cgd */
343 1.122 thorpej if (minslp > 1)
344 1.26 cgd continue;
345 1.26 cgd s = splstatclock(); /* prevent state changes */
346 1.26 cgd /*
347 1.26 cgd * p_pctcpu is only for ps.
348 1.26 cgd */
349 1.66 ross clkhz = stathz != 0 ? stathz : hz;
350 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
351 1.66 ross p->p_pctcpu += (clkhz == 100)?
352 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
353 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
354 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
355 1.26 cgd #else
356 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
357 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
358 1.26 cgd #endif
359 1.26 cgd p->p_cpticks = 0;
360 1.153 yamt p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
361 1.120 pk splx(s); /* Done with the process CPU ticks update */
362 1.120 pk SCHED_LOCK(s);
363 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
364 1.122 thorpej if (l->l_slptime > 1)
365 1.122 thorpej continue;
366 1.122 thorpej resetpriority(l);
367 1.122 thorpej if (l->l_priority >= PUSER) {
368 1.122 thorpej if (l->l_stat == LSRUN &&
369 1.122 thorpej (l->l_flag & L_INMEM) &&
370 1.122 thorpej (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
371 1.122 thorpej remrunqueue(l);
372 1.122 thorpej l->l_priority = l->l_usrpri;
373 1.122 thorpej setrunqueue(l);
374 1.122 thorpej } else
375 1.122 thorpej l->l_priority = l->l_usrpri;
376 1.122 thorpej }
377 1.26 cgd }
378 1.120 pk SCHED_UNLOCK(s);
379 1.26 cgd }
380 1.166.2.1 ad mutex_exit(&proclist_mutex);
381 1.47 mrg uvm_meter();
382 1.67 fvdl wakeup((caddr_t)&lbolt);
383 1.143 yamt callout_schedule(&schedcpu_ch, hz);
384 1.26 cgd }
385 1.26 cgd
386 1.26 cgd /*
387 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
388 1.26 cgd */
389 1.26 cgd void
390 1.122 thorpej updatepri(struct lwp *l)
391 1.26 cgd {
392 1.122 thorpej struct proc *p = l->l_proc;
393 1.83 thorpej fixpt_t loadfac;
394 1.83 thorpej
395 1.83 thorpej SCHED_ASSERT_LOCKED();
396 1.157 yamt KASSERT(l->l_slptime > 1);
397 1.83 thorpej
398 1.83 thorpej loadfac = loadfactor(averunnable.ldavg[0]);
399 1.26 cgd
400 1.157 yamt l->l_slptime--; /* the first time was done in schedcpu */
401 1.157 yamt /* XXX NJWLWP */
402 1.157 yamt p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
403 1.122 thorpej resetpriority(l);
404 1.26 cgd }
405 1.26 cgd
406 1.26 cgd /*
407 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
408 1.26 cgd * lower the priority briefly to allow interrupts, then return.
409 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
410 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
411 1.26 cgd * This priority will typically be 0, or the lowest priority
412 1.26 cgd * that is safe for use on the interrupt stack; it can be made
413 1.26 cgd * higher to block network software interrupts after panics.
414 1.26 cgd */
415 1.26 cgd int safepri;
416 1.26 cgd
417 1.26 cgd /*
418 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
419 1.26 cgd * performed on the specified identifier. The process will then be made
420 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
421 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
422 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
423 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
424 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
425 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
426 1.26 cgd * call should be interrupted by the signal (return EINTR).
427 1.77 thorpej *
428 1.103 jdolecek * The interlock is held until the scheduler_slock is acquired. The
429 1.77 thorpej * interlock will be locked before returning back to the caller
430 1.77 thorpej * unless the PNORELOCK flag is specified, in which case the
431 1.77 thorpej * interlock will always be unlocked upon return.
432 1.26 cgd */
433 1.26 cgd int
434 1.158 perry ltsleep(volatile const void *ident, int priority, const char *wmesg, int timo,
435 1.158 perry volatile struct simplelock *interlock)
436 1.26 cgd {
437 1.122 thorpej struct lwp *l = curlwp;
438 1.123 christos struct proc *p = l ? l->l_proc : NULL;
439 1.71 augustss struct slpque *qp;
440 1.150 chs struct sadata_upcall *sau;
441 1.77 thorpej int sig, s;
442 1.77 thorpej int catch = priority & PCATCH;
443 1.77 thorpej int relock = (priority & PNORELOCK) == 0;
444 1.122 thorpej int exiterr = (priority & PNOEXITERR) == 0;
445 1.26 cgd
446 1.77 thorpej /*
447 1.77 thorpej * XXXSMP
448 1.77 thorpej * This is probably bogus. Figure out what the right
449 1.77 thorpej * thing to do here really is.
450 1.130 nathanw * Note that not sleeping if ltsleep is called with curlwp == NULL
451 1.78 sommerfe * in the shutdown case is disgusting but partly necessary given
452 1.78 sommerfe * how shutdown (barely) works.
453 1.77 thorpej */
454 1.122 thorpej if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
455 1.26 cgd /*
456 1.26 cgd * After a panic, or during autoconfiguration,
457 1.26 cgd * just give interrupts a chance, then just return;
458 1.26 cgd * don't run any other procs or panic below,
459 1.26 cgd * in case this is the idle process and already asleep.
460 1.26 cgd */
461 1.42 cgd s = splhigh();
462 1.26 cgd splx(safepri);
463 1.26 cgd splx(s);
464 1.77 thorpej if (interlock != NULL && relock == 0)
465 1.77 thorpej simple_unlock(interlock);
466 1.26 cgd return (0);
467 1.26 cgd }
468 1.78 sommerfe
469 1.102 thorpej KASSERT(p != NULL);
470 1.105 chs LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
471 1.42 cgd
472 1.42 cgd #ifdef KTRACE
473 1.42 cgd if (KTRPOINT(p, KTR_CSW))
474 1.154 christos ktrcsw(l, 1, 0);
475 1.42 cgd #endif
476 1.77 thorpej
477 1.150 chs /*
478 1.150 chs * XXX We need to allocate the sadata_upcall structure here,
479 1.150 chs * XXX since we can't sleep while waiting for memory inside
480 1.150 chs * XXX sa_upcall(). It would be nice if we could safely
481 1.150 chs * XXX allocate the sadata_upcall structure on the stack, here.
482 1.150 chs */
483 1.150 chs if (l->l_flag & L_SA) {
484 1.150 chs sau = sadata_upcall_alloc(0);
485 1.150 chs } else {
486 1.150 chs sau = NULL;
487 1.150 chs }
488 1.150 chs
489 1.83 thorpej SCHED_LOCK(s);
490 1.42 cgd
491 1.26 cgd #ifdef DIAGNOSTIC
492 1.64 thorpej if (ident == NULL)
493 1.77 thorpej panic("ltsleep: ident == NULL");
494 1.122 thorpej if (l->l_stat != LSONPROC)
495 1.122 thorpej panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
496 1.122 thorpej if (l->l_back != NULL)
497 1.77 thorpej panic("ltsleep: p_back != NULL");
498 1.26 cgd #endif
499 1.77 thorpej
500 1.122 thorpej l->l_wchan = ident;
501 1.122 thorpej l->l_wmesg = wmesg;
502 1.122 thorpej l->l_slptime = 0;
503 1.122 thorpej l->l_priority = priority & PRIMASK;
504 1.77 thorpej
505 1.73 thorpej qp = SLPQUE(ident);
506 1.26 cgd if (qp->sq_head == 0)
507 1.122 thorpej qp->sq_head = l;
508 1.122 thorpej else {
509 1.122 thorpej *qp->sq_tailp = l;
510 1.122 thorpej }
511 1.122 thorpej *(qp->sq_tailp = &l->l_forw) = 0;
512 1.77 thorpej
513 1.26 cgd if (timo)
514 1.122 thorpej callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
515 1.77 thorpej
516 1.77 thorpej /*
517 1.77 thorpej * We can now release the interlock; the scheduler_slock
518 1.77 thorpej * is held, so a thread can't get in to do wakeup() before
519 1.77 thorpej * we do the switch.
520 1.77 thorpej *
521 1.77 thorpej * XXX We leave the code block here, after inserting ourselves
522 1.77 thorpej * on the sleep queue, because we might want a more clever
523 1.77 thorpej * data structure for the sleep queues at some point.
524 1.77 thorpej */
525 1.77 thorpej if (interlock != NULL)
526 1.77 thorpej simple_unlock(interlock);
527 1.77 thorpej
528 1.26 cgd /*
529 1.26 cgd * We put ourselves on the sleep queue and start our timeout
530 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
531 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
532 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
533 1.26 cgd * without resuming us, thus we must be ready for sleep
534 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
535 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
536 1.26 cgd */
537 1.26 cgd if (catch) {
538 1.122 thorpej l->l_flag |= L_SINTR;
539 1.137 itojun if (((sig = CURSIG(l)) != 0) ||
540 1.137 itojun ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
541 1.122 thorpej if (l->l_wchan != NULL)
542 1.122 thorpej unsleep(l);
543 1.122 thorpej l->l_stat = LSONPROC;
544 1.83 thorpej SCHED_UNLOCK(s);
545 1.26 cgd goto resume;
546 1.26 cgd }
547 1.122 thorpej if (l->l_wchan == NULL) {
548 1.26 cgd catch = 0;
549 1.83 thorpej SCHED_UNLOCK(s);
550 1.26 cgd goto resume;
551 1.26 cgd }
552 1.26 cgd } else
553 1.26 cgd sig = 0;
554 1.122 thorpej l->l_stat = LSSLEEP;
555 1.122 thorpej p->p_nrlwps--;
556 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
557 1.83 thorpej SCHED_ASSERT_LOCKED();
558 1.122 thorpej if (l->l_flag & L_SA)
559 1.150 chs sa_switch(l, sau, SA_UPCALL_BLOCKED);
560 1.122 thorpej else
561 1.122 thorpej mi_switch(l, NULL);
562 1.83 thorpej
563 1.165 tsutsui #if defined(DDB) && !defined(GPROF) && \
564 1.165 tsutsui !defined(__m68k__) && !defined(__vax__)
565 1.165 tsutsui /*
566 1.165 tsutsui * XXX
567 1.165 tsutsui * gcc4 optimizer will duplicate this asm statement on some arch
568 1.165 tsutsui * and it will cause a multiple symbol definition error in gas.
569 1.165 tsutsui */
570 1.26 cgd /* handy breakpoint location after process "wakes" */
571 1.140 kleink __asm(".globl bpendtsleep\nbpendtsleep:");
572 1.26 cgd #endif
573 1.122 thorpej /*
574 1.122 thorpej * p->p_nrlwps is incremented by whoever made us runnable again,
575 1.122 thorpej * either setrunnable() or awaken().
576 1.122 thorpej */
577 1.77 thorpej
578 1.83 thorpej SCHED_ASSERT_UNLOCKED();
579 1.83 thorpej splx(s);
580 1.83 thorpej
581 1.77 thorpej resume:
582 1.122 thorpej KDASSERT(l->l_cpu != NULL);
583 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
584 1.122 thorpej l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
585 1.122 thorpej
586 1.122 thorpej l->l_flag &= ~L_SINTR;
587 1.122 thorpej if (l->l_flag & L_TIMEOUT) {
588 1.135 matt l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
589 1.26 cgd if (sig == 0) {
590 1.26 cgd #ifdef KTRACE
591 1.26 cgd if (KTRPOINT(p, KTR_CSW))
592 1.154 christos ktrcsw(l, 0, 0);
593 1.26 cgd #endif
594 1.77 thorpej if (relock && interlock != NULL)
595 1.77 thorpej simple_lock(interlock);
596 1.26 cgd return (EWOULDBLOCK);
597 1.26 cgd }
598 1.26 cgd } else if (timo)
599 1.122 thorpej callout_stop(&l->l_tsleep_ch);
600 1.135 matt
601 1.135 matt if (catch) {
602 1.135 matt const int cancelled = l->l_flag & L_CANCELLED;
603 1.135 matt l->l_flag &= ~L_CANCELLED;
604 1.135 matt if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
605 1.26 cgd #ifdef KTRACE
606 1.135 matt if (KTRPOINT(p, KTR_CSW))
607 1.154 christos ktrcsw(l, 0, 0);
608 1.26 cgd #endif
609 1.135 matt if (relock && interlock != NULL)
610 1.135 matt simple_lock(interlock);
611 1.135 matt /*
612 1.135 matt * If this sleep was canceled, don't let the syscall
613 1.135 matt * restart.
614 1.135 matt */
615 1.135 matt if (cancelled ||
616 1.135 matt (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
617 1.135 matt return (EINTR);
618 1.135 matt return (ERESTART);
619 1.135 matt }
620 1.26 cgd }
621 1.126 pk
622 1.126 pk #ifdef KTRACE
623 1.126 pk if (KTRPOINT(p, KTR_CSW))
624 1.154 christos ktrcsw(l, 0, 0);
625 1.126 pk #endif
626 1.126 pk if (relock && interlock != NULL)
627 1.126 pk simple_lock(interlock);
628 1.126 pk
629 1.122 thorpej /* XXXNJW this is very much a kluge.
630 1.130 nathanw * revisit. a better way of preventing looping/hanging syscalls like
631 1.122 thorpej * wait4() and _lwp_wait() from wedging an exiting process
632 1.122 thorpej * would be preferred.
633 1.122 thorpej */
634 1.137 itojun if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
635 1.122 thorpej return (EINTR);
636 1.26 cgd return (0);
637 1.26 cgd }
638 1.26 cgd
639 1.166.2.1 ad /* XXX temporary */
640 1.166.2.1 ad int
641 1.166.2.1 ad mtsleep(volatile const void *ident, int priority, const char *wmesg, int timo,
642 1.166.2.1 ad kmutex_t *mtx)
643 1.166.2.1 ad {
644 1.166.2.1 ad struct lwp *l = curlwp;
645 1.166.2.1 ad struct proc *p = l ? l->l_proc : NULL;
646 1.166.2.1 ad struct slpque *qp;
647 1.166.2.1 ad struct sadata_upcall *sau;
648 1.166.2.1 ad int sig, s;
649 1.166.2.1 ad int catch = priority & PCATCH;
650 1.166.2.1 ad int relock = (priority & PNORELOCK) == 0;
651 1.166.2.1 ad int exiterr = (priority & PNOEXITERR) == 0;
652 1.166.2.1 ad
653 1.166.2.1 ad /*
654 1.166.2.1 ad * XXXSMP
655 1.166.2.1 ad * This is probably bogus. Figure out what the right
656 1.166.2.1 ad * thing to do here really is.
657 1.166.2.1 ad * Note that not sleeping if ltsleep is called with curlwp == NULL
658 1.166.2.1 ad * in the shutdown case is disgusting but partly necessary given
659 1.166.2.1 ad * how shutdown (barely) works.
660 1.166.2.1 ad */
661 1.166.2.1 ad if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
662 1.166.2.1 ad /*
663 1.166.2.1 ad * After a panic, or during autoconfiguration,
664 1.166.2.1 ad * just give interrupts a chance, then just return;
665 1.166.2.1 ad * don't run any other procs or panic below,
666 1.166.2.1 ad * in case this is the idle process and already asleep.
667 1.166.2.1 ad */
668 1.166.2.1 ad s = splhigh();
669 1.166.2.1 ad splx(safepri);
670 1.166.2.1 ad splx(s);
671 1.166.2.1 ad if (mtx != NULL && relock == 0)
672 1.166.2.1 ad mutex_exit(mtx);
673 1.166.2.1 ad return (0);
674 1.166.2.1 ad }
675 1.166.2.1 ad
676 1.166.2.1 ad KASSERT(p != NULL);
677 1.166.2.1 ad LOCK_ASSERT(mtx == NULL || mutex_owned(mtx));
678 1.166.2.1 ad
679 1.166.2.1 ad #ifdef KTRACE
680 1.166.2.1 ad if (KTRPOINT(p, KTR_CSW))
681 1.166.2.1 ad ktrcsw(l, 1, 0);
682 1.166.2.1 ad #endif
683 1.166.2.1 ad
684 1.166.2.1 ad /*
685 1.166.2.1 ad * XXX We need to allocate the sadata_upcall structure here,
686 1.166.2.1 ad * XXX since we can't sleep while waiting for memory inside
687 1.166.2.1 ad * XXX sa_upcall(). It would be nice if we could safely
688 1.166.2.1 ad * XXX allocate the sadata_upcall structure on the stack, here.
689 1.166.2.1 ad */
690 1.166.2.1 ad if (l->l_flag & L_SA) {
691 1.166.2.1 ad sau = sadata_upcall_alloc(0);
692 1.166.2.1 ad } else {
693 1.166.2.1 ad sau = NULL;
694 1.166.2.1 ad }
695 1.166.2.1 ad
696 1.166.2.1 ad SCHED_LOCK(s);
697 1.166.2.1 ad
698 1.166.2.1 ad #ifdef DIAGNOSTIC
699 1.166.2.1 ad if (ident == NULL)
700 1.166.2.1 ad panic("ltsleep: ident == NULL");
701 1.166.2.1 ad if (l->l_stat != LSONPROC)
702 1.166.2.1 ad panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
703 1.166.2.1 ad if (l->l_back != NULL)
704 1.166.2.1 ad panic("ltsleep: p_back != NULL");
705 1.166.2.1 ad #endif
706 1.166.2.1 ad
707 1.166.2.1 ad l->l_wchan = ident;
708 1.166.2.1 ad l->l_wmesg = wmesg;
709 1.166.2.1 ad l->l_slptime = 0;
710 1.166.2.1 ad l->l_priority = priority & PRIMASK;
711 1.166.2.1 ad sig = 0;
712 1.166.2.1 ad
713 1.166.2.1 ad qp = SLPQUE(ident);
714 1.166.2.1 ad if (qp->sq_head == 0)
715 1.166.2.1 ad qp->sq_head = l;
716 1.166.2.1 ad else {
717 1.166.2.1 ad *qp->sq_tailp = l;
718 1.166.2.1 ad }
719 1.166.2.1 ad *(qp->sq_tailp = &l->l_forw) = 0;
720 1.166.2.1 ad
721 1.166.2.1 ad if (timo)
722 1.166.2.1 ad callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
723 1.166.2.1 ad
724 1.166.2.1 ad if (mtx != NULL) {
725 1.166.2.1 ad /*
726 1.166.2.1 ad * XXXAD Release the sched lock before the interlock, as it
727 1.166.2.1 ad * may be re-entered in turnstile_wakeup(). If someone on
728 1.166.2.1 ad * another CPU or from interrupt context tries to wake us
729 1.166.2.1 ad * up, they'll get a nasty surprise.
730 1.166.2.1 ad */
731 1.166.2.1 ad SCHED_UNLOCK(s);
732 1.166.2.1 ad mutex_exit(mtx);
733 1.166.2.1 ad SCHED_LOCK(s);
734 1.166.2.1 ad if (l->l_wchan == NULL) {
735 1.166.2.1 ad catch = 0;
736 1.166.2.1 ad SCHED_UNLOCK(s);
737 1.166.2.1 ad goto resume;
738 1.166.2.1 ad }
739 1.166.2.1 ad }
740 1.166.2.1 ad
741 1.166.2.1 ad /*
742 1.166.2.1 ad * We put ourselves on the sleep queue and start our timeout
743 1.166.2.1 ad * before calling CURSIG, as we could stop there, and a wakeup
744 1.166.2.1 ad * or a SIGCONT (or both) could occur while we were stopped.
745 1.166.2.1 ad * A SIGCONT would cause us to be marked as SSLEEP
746 1.166.2.1 ad * without resuming us, thus we must be ready for sleep
747 1.166.2.1 ad * when CURSIG is called. If the wakeup happens while we're
748 1.166.2.1 ad * stopped, p->p_wchan will be 0 upon return from CURSIG.
749 1.166.2.1 ad */
750 1.166.2.1 ad if (catch) {
751 1.166.2.1 ad l->l_flag |= L_SINTR;
752 1.166.2.1 ad if (((sig = CURSIG(l)) != 0) ||
753 1.166.2.1 ad ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
754 1.166.2.1 ad if (l->l_wchan != NULL)
755 1.166.2.1 ad unsleep(l);
756 1.166.2.1 ad l->l_stat = LSONPROC;
757 1.166.2.1 ad SCHED_UNLOCK(s);
758 1.166.2.1 ad goto resume;
759 1.166.2.1 ad }
760 1.166.2.1 ad if (l->l_wchan == NULL) {
761 1.166.2.1 ad catch = 0;
762 1.166.2.1 ad SCHED_UNLOCK(s);
763 1.166.2.1 ad goto resume;
764 1.166.2.1 ad }
765 1.166.2.1 ad } else
766 1.166.2.1 ad sig = 0;
767 1.166.2.1 ad
768 1.166.2.1 ad l->l_stat = LSSLEEP;
769 1.166.2.1 ad p->p_nrlwps--;
770 1.166.2.1 ad p->p_stats->p_ru.ru_nvcsw++;
771 1.166.2.1 ad SCHED_ASSERT_LOCKED();
772 1.166.2.1 ad if (l->l_flag & L_SA)
773 1.166.2.1 ad sa_switch(l, sau, SA_UPCALL_BLOCKED);
774 1.166.2.1 ad else
775 1.166.2.1 ad mi_switch(l, NULL);
776 1.166.2.1 ad
777 1.166.2.1 ad #if defined(DDB) && !defined(GPROF) && !defined(sun2) && !defined(__vax__)
778 1.166.2.1 ad /* handy breakpoint location after process "wakes" */
779 1.166.2.1 ad __asm(".globl bpendmtsleep\nbpendmtsleep:");
780 1.166.2.1 ad #endif
781 1.166.2.1 ad
782 1.166.2.1 ad /*
783 1.166.2.1 ad * p->p_nrlwps is incremented by whoever made us runnable again,
784 1.166.2.1 ad * either setrunnable() or awaken().
785 1.166.2.1 ad */
786 1.166.2.1 ad
787 1.166.2.1 ad SCHED_ASSERT_UNLOCKED();
788 1.166.2.1 ad splx(s);
789 1.166.2.1 ad
790 1.166.2.1 ad resume:
791 1.166.2.1 ad KDASSERT(l->l_cpu != NULL);
792 1.166.2.1 ad KDASSERT(l->l_cpu == curcpu());
793 1.166.2.1 ad l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
794 1.166.2.1 ad
795 1.166.2.1 ad l->l_flag &= ~L_SINTR;
796 1.166.2.1 ad if (l->l_flag & L_TIMEOUT) {
797 1.166.2.1 ad l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
798 1.166.2.1 ad if (sig == 0) {
799 1.166.2.1 ad #ifdef KTRACE
800 1.166.2.1 ad if (KTRPOINT(p, KTR_CSW))
801 1.166.2.1 ad ktrcsw(l, 0, 0);
802 1.166.2.1 ad #endif
803 1.166.2.1 ad if (relock && mtx != NULL)
804 1.166.2.1 ad mutex_enter(mtx);
805 1.166.2.1 ad return (EWOULDBLOCK);
806 1.166.2.1 ad }
807 1.166.2.1 ad } else if (timo)
808 1.166.2.1 ad callout_stop(&l->l_tsleep_ch);
809 1.166.2.1 ad
810 1.166.2.1 ad if (catch) {
811 1.166.2.1 ad const int cancelled = l->l_flag & L_CANCELLED;
812 1.166.2.1 ad l->l_flag &= ~L_CANCELLED;
813 1.166.2.1 ad if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
814 1.166.2.1 ad #ifdef KTRACE
815 1.166.2.1 ad if (KTRPOINT(p, KTR_CSW))
816 1.166.2.1 ad ktrcsw(l, 0, 0);
817 1.166.2.1 ad #endif
818 1.166.2.1 ad if (relock && mtx != NULL)
819 1.166.2.1 ad mutex_enter(mtx);
820 1.166.2.1 ad /*
821 1.166.2.1 ad * If this sleep was canceled, don't let the syscall
822 1.166.2.1 ad * restart.
823 1.166.2.1 ad */
824 1.166.2.1 ad if (cancelled ||
825 1.166.2.1 ad (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
826 1.166.2.1 ad return (EINTR);
827 1.166.2.1 ad return (ERESTART);
828 1.166.2.1 ad }
829 1.166.2.1 ad }
830 1.166.2.1 ad
831 1.166.2.1 ad #ifdef KTRACE
832 1.166.2.1 ad if (KTRPOINT(p, KTR_CSW))
833 1.166.2.1 ad ktrcsw(l, 0, 0);
834 1.166.2.1 ad #endif
835 1.166.2.1 ad if (relock && mtx != NULL)
836 1.166.2.1 ad mutex_enter(mtx);
837 1.166.2.1 ad
838 1.166.2.1 ad /* XXXNJW this is very much a kluge.
839 1.166.2.1 ad * revisit. a better way of preventing looping/hanging syscalls like
840 1.166.2.1 ad * wait4() and _lwp_wait() from wedging an exiting process
841 1.166.2.1 ad * would be preferred.
842 1.166.2.1 ad */
843 1.166.2.1 ad if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
844 1.166.2.1 ad return (EINTR);
845 1.166.2.1 ad return (0);
846 1.166.2.1 ad }
847 1.166.2.1 ad
848 1.26 cgd /*
849 1.26 cgd * Implement timeout for tsleep.
850 1.26 cgd * If process hasn't been awakened (wchan non-zero),
851 1.26 cgd * set timeout flag and undo the sleep. If proc
852 1.26 cgd * is stopped, just unsleep so it will remain stopped.
853 1.26 cgd */
854 1.26 cgd void
855 1.77 thorpej endtsleep(void *arg)
856 1.26 cgd {
857 1.122 thorpej struct lwp *l;
858 1.26 cgd int s;
859 1.26 cgd
860 1.122 thorpej l = (struct lwp *)arg;
861 1.83 thorpej SCHED_LOCK(s);
862 1.122 thorpej if (l->l_wchan) {
863 1.122 thorpej if (l->l_stat == LSSLEEP)
864 1.122 thorpej setrunnable(l);
865 1.26 cgd else
866 1.122 thorpej unsleep(l);
867 1.122 thorpej l->l_flag |= L_TIMEOUT;
868 1.26 cgd }
869 1.83 thorpej SCHED_UNLOCK(s);
870 1.26 cgd }
871 1.26 cgd
872 1.26 cgd /*
873 1.26 cgd * Remove a process from its wait queue
874 1.26 cgd */
875 1.26 cgd void
876 1.122 thorpej unsleep(struct lwp *l)
877 1.26 cgd {
878 1.71 augustss struct slpque *qp;
879 1.122 thorpej struct lwp **hp;
880 1.26 cgd
881 1.83 thorpej SCHED_ASSERT_LOCKED();
882 1.83 thorpej
883 1.122 thorpej if (l->l_wchan) {
884 1.122 thorpej hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
885 1.122 thorpej while (*hp != l)
886 1.122 thorpej hp = &(*hp)->l_forw;
887 1.122 thorpej *hp = l->l_forw;
888 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
889 1.26 cgd qp->sq_tailp = hp;
890 1.122 thorpej l->l_wchan = 0;
891 1.26 cgd }
892 1.26 cgd }
893 1.26 cgd
894 1.158 perry inline void
895 1.139 cl sa_awaken(struct lwp *l)
896 1.139 cl {
897 1.147 perry
898 1.139 cl SCHED_ASSERT_LOCKED();
899 1.139 cl
900 1.142 cl if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
901 1.139 cl l->l_flag &= ~L_SA_IDLE;
902 1.139 cl }
903 1.139 cl
904 1.26 cgd /*
905 1.63 thorpej * Optimized-for-wakeup() version of setrunnable().
906 1.63 thorpej */
907 1.158 perry inline void
908 1.122 thorpej awaken(struct lwp *l)
909 1.63 thorpej {
910 1.63 thorpej
911 1.83 thorpej SCHED_ASSERT_LOCKED();
912 1.130 nathanw
913 1.139 cl if (l->l_proc->p_sa)
914 1.139 cl sa_awaken(l);
915 1.139 cl
916 1.122 thorpej if (l->l_slptime > 1)
917 1.122 thorpej updatepri(l);
918 1.122 thorpej l->l_slptime = 0;
919 1.122 thorpej l->l_stat = LSRUN;
920 1.122 thorpej l->l_proc->p_nrlwps++;
921 1.93 bouyer /*
922 1.93 bouyer * Since curpriority is a user priority, p->p_priority
923 1.119 thorpej * is always better than curpriority on the last CPU on
924 1.119 thorpej * which it ran.
925 1.118 thorpej *
926 1.119 thorpej * XXXSMP See affinity comment in resched_proc().
927 1.93 bouyer */
928 1.122 thorpej if (l->l_flag & L_INMEM) {
929 1.122 thorpej setrunqueue(l);
930 1.122 thorpej KASSERT(l->l_cpu != NULL);
931 1.122 thorpej need_resched(l->l_cpu);
932 1.93 bouyer } else
933 1.93 bouyer sched_wakeup(&proc0);
934 1.83 thorpej }
935 1.83 thorpej
936 1.83 thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
937 1.83 thorpej void
938 1.83 thorpej sched_unlock_idle(void)
939 1.83 thorpej {
940 1.83 thorpej
941 1.83 thorpej simple_unlock(&sched_lock);
942 1.63 thorpej }
943 1.63 thorpej
944 1.83 thorpej void
945 1.83 thorpej sched_lock_idle(void)
946 1.83 thorpej {
947 1.83 thorpej
948 1.83 thorpej simple_lock(&sched_lock);
949 1.83 thorpej }
950 1.83 thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
951 1.83 thorpej
952 1.63 thorpej /*
953 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
954 1.26 cgd */
955 1.83 thorpej
956 1.26 cgd void
957 1.158 perry wakeup(volatile const void *ident)
958 1.26 cgd {
959 1.83 thorpej int s;
960 1.83 thorpej
961 1.83 thorpej SCHED_ASSERT_UNLOCKED();
962 1.83 thorpej
963 1.83 thorpej SCHED_LOCK(s);
964 1.83 thorpej sched_wakeup(ident);
965 1.83 thorpej SCHED_UNLOCK(s);
966 1.83 thorpej }
967 1.83 thorpej
968 1.83 thorpej void
969 1.158 perry sched_wakeup(volatile const void *ident)
970 1.83 thorpej {
971 1.71 augustss struct slpque *qp;
972 1.122 thorpej struct lwp *l, **q;
973 1.26 cgd
974 1.83 thorpej SCHED_ASSERT_LOCKED();
975 1.77 thorpej
976 1.73 thorpej qp = SLPQUE(ident);
977 1.77 thorpej restart:
978 1.122 thorpej for (q = &qp->sq_head; (l = *q) != NULL; ) {
979 1.26 cgd #ifdef DIAGNOSTIC
980 1.130 nathanw if (l->l_back || (l->l_stat != LSSLEEP &&
981 1.122 thorpej l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
982 1.26 cgd panic("wakeup");
983 1.26 cgd #endif
984 1.122 thorpej if (l->l_wchan == ident) {
985 1.122 thorpej l->l_wchan = 0;
986 1.122 thorpej *q = l->l_forw;
987 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
988 1.26 cgd qp->sq_tailp = q;
989 1.122 thorpej if (l->l_stat == LSSLEEP) {
990 1.122 thorpej awaken(l);
991 1.26 cgd goto restart;
992 1.26 cgd }
993 1.26 cgd } else
994 1.122 thorpej q = &l->l_forw;
995 1.63 thorpej }
996 1.63 thorpej }
997 1.63 thorpej
998 1.63 thorpej /*
999 1.63 thorpej * Make the highest priority process first in line on the specified
1000 1.63 thorpej * identifier runnable.
1001 1.63 thorpej */
1002 1.63 thorpej void
1003 1.158 perry wakeup_one(volatile const void *ident)
1004 1.63 thorpej {
1005 1.63 thorpej struct slpque *qp;
1006 1.122 thorpej struct lwp *l, **q;
1007 1.122 thorpej struct lwp *best_sleepp, **best_sleepq;
1008 1.122 thorpej struct lwp *best_stopp, **best_stopq;
1009 1.63 thorpej int s;
1010 1.63 thorpej
1011 1.63 thorpej best_sleepp = best_stopp = NULL;
1012 1.63 thorpej best_sleepq = best_stopq = NULL;
1013 1.63 thorpej
1014 1.83 thorpej SCHED_LOCK(s);
1015 1.77 thorpej
1016 1.73 thorpej qp = SLPQUE(ident);
1017 1.77 thorpej
1018 1.122 thorpej for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
1019 1.63 thorpej #ifdef DIAGNOSTIC
1020 1.130 nathanw if (l->l_back || (l->l_stat != LSSLEEP &&
1021 1.122 thorpej l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
1022 1.63 thorpej panic("wakeup_one");
1023 1.63 thorpej #endif
1024 1.122 thorpej if (l->l_wchan == ident) {
1025 1.122 thorpej if (l->l_stat == LSSLEEP) {
1026 1.63 thorpej if (best_sleepp == NULL ||
1027 1.122 thorpej l->l_priority < best_sleepp->l_priority) {
1028 1.122 thorpej best_sleepp = l;
1029 1.63 thorpej best_sleepq = q;
1030 1.63 thorpej }
1031 1.63 thorpej } else {
1032 1.63 thorpej if (best_stopp == NULL ||
1033 1.122 thorpej l->l_priority < best_stopp->l_priority) {
1034 1.122 thorpej best_stopp = l;
1035 1.63 thorpej best_stopq = q;
1036 1.63 thorpej }
1037 1.63 thorpej }
1038 1.63 thorpej }
1039 1.63 thorpej }
1040 1.63 thorpej
1041 1.63 thorpej /*
1042 1.63 thorpej * Consider any SSLEEP process higher than the highest priority SSTOP
1043 1.63 thorpej * process.
1044 1.63 thorpej */
1045 1.63 thorpej if (best_sleepp != NULL) {
1046 1.122 thorpej l = best_sleepp;
1047 1.63 thorpej q = best_sleepq;
1048 1.63 thorpej } else {
1049 1.122 thorpej l = best_stopp;
1050 1.63 thorpej q = best_stopq;
1051 1.63 thorpej }
1052 1.63 thorpej
1053 1.122 thorpej if (l != NULL) {
1054 1.122 thorpej l->l_wchan = NULL;
1055 1.122 thorpej *q = l->l_forw;
1056 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
1057 1.63 thorpej qp->sq_tailp = q;
1058 1.122 thorpej if (l->l_stat == LSSLEEP)
1059 1.122 thorpej awaken(l);
1060 1.26 cgd }
1061 1.83 thorpej SCHED_UNLOCK(s);
1062 1.117 gmcgarry }
1063 1.117 gmcgarry
1064 1.117 gmcgarry /*
1065 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
1066 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
1067 1.117 gmcgarry * current process explicitly requests it (eg sched_yield(2) in compat code).
1068 1.117 gmcgarry */
1069 1.117 gmcgarry void
1070 1.117 gmcgarry yield(void)
1071 1.117 gmcgarry {
1072 1.122 thorpej struct lwp *l = curlwp;
1073 1.117 gmcgarry int s;
1074 1.117 gmcgarry
1075 1.117 gmcgarry SCHED_LOCK(s);
1076 1.122 thorpej l->l_priority = l->l_usrpri;
1077 1.122 thorpej l->l_stat = LSRUN;
1078 1.122 thorpej setrunqueue(l);
1079 1.122 thorpej l->l_proc->p_stats->p_ru.ru_nvcsw++;
1080 1.122 thorpej mi_switch(l, NULL);
1081 1.117 gmcgarry SCHED_ASSERT_UNLOCKED();
1082 1.117 gmcgarry splx(s);
1083 1.69 thorpej }
1084 1.69 thorpej
1085 1.69 thorpej /*
1086 1.69 thorpej * General preemption call. Puts the current process back on its run queue
1087 1.156 rpaulo * and performs an involuntary context switch.
1088 1.156 rpaulo * The 'more' ("more work to do") argument is boolean. Returning to userspace
1089 1.156 rpaulo * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
1090 1.156 rpaulo * This will be used to indicate to the SA subsystem that the LWP is
1091 1.156 rpaulo * not yet finished in the kernel.
1092 1.69 thorpej */
1093 1.122 thorpej
1094 1.69 thorpej void
1095 1.122 thorpej preempt(int more)
1096 1.69 thorpej {
1097 1.122 thorpej struct lwp *l = curlwp;
1098 1.122 thorpej int r, s;
1099 1.69 thorpej
1100 1.83 thorpej SCHED_LOCK(s);
1101 1.122 thorpej l->l_priority = l->l_usrpri;
1102 1.122 thorpej l->l_stat = LSRUN;
1103 1.122 thorpej setrunqueue(l);
1104 1.122 thorpej l->l_proc->p_stats->p_ru.ru_nivcsw++;
1105 1.122 thorpej r = mi_switch(l, NULL);
1106 1.83 thorpej SCHED_ASSERT_UNLOCKED();
1107 1.69 thorpej splx(s);
1108 1.122 thorpej if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
1109 1.122 thorpej sa_preempt(l);
1110 1.69 thorpej }
1111 1.69 thorpej
1112 1.69 thorpej /*
1113 1.72 thorpej * The machine independent parts of context switch.
1114 1.86 thorpej * Must be called at splsched() (no higher!) and with
1115 1.86 thorpej * the sched_lock held.
1116 1.122 thorpej * Switch to "new" if non-NULL, otherwise let cpu_switch choose
1117 1.122 thorpej * the next lwp.
1118 1.130 nathanw *
1119 1.122 thorpej * Returns 1 if another process was actually run.
1120 1.26 cgd */
1121 1.122 thorpej int
1122 1.122 thorpej mi_switch(struct lwp *l, struct lwp *newl)
1123 1.26 cgd {
1124 1.76 thorpej struct schedstate_percpu *spc;
1125 1.71 augustss struct rlimit *rlim;
1126 1.71 augustss long s, u;
1127 1.26 cgd struct timeval tv;
1128 1.144 yamt int hold_count;
1129 1.122 thorpej struct proc *p = l->l_proc;
1130 1.122 thorpej int retval;
1131 1.26 cgd
1132 1.83 thorpej SCHED_ASSERT_LOCKED();
1133 1.83 thorpej
1134 1.90 sommerfe /*
1135 1.90 sommerfe * Release the kernel_lock, as we are about to yield the CPU.
1136 1.90 sommerfe * The scheduler lock is still held until cpu_switch()
1137 1.90 sommerfe * selects a new process and removes it from the run queue.
1138 1.90 sommerfe */
1139 1.144 yamt hold_count = KERNEL_LOCK_RELEASE_ALL();
1140 1.85 sommerfe
1141 1.122 thorpej KDASSERT(l->l_cpu != NULL);
1142 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
1143 1.113 gmcgarry
1144 1.122 thorpej spc = &l->l_cpu->ci_schedstate;
1145 1.76 thorpej
1146 1.160 chs #ifdef LOCKDEBUG
1147 1.82 thorpej spinlock_switchcheck();
1148 1.81 thorpej simple_lock_switchcheck();
1149 1.50 fvdl #endif
1150 1.81 thorpej
1151 1.26 cgd /*
1152 1.26 cgd * Compute the amount of time during which the current
1153 1.113 gmcgarry * process was running.
1154 1.26 cgd */
1155 1.26 cgd microtime(&tv);
1156 1.130 nathanw u = p->p_rtime.tv_usec +
1157 1.122 thorpej (tv.tv_usec - spc->spc_runtime.tv_usec);
1158 1.73 thorpej s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
1159 1.26 cgd if (u < 0) {
1160 1.26 cgd u += 1000000;
1161 1.26 cgd s--;
1162 1.26 cgd } else if (u >= 1000000) {
1163 1.26 cgd u -= 1000000;
1164 1.26 cgd s++;
1165 1.26 cgd }
1166 1.114 gmcgarry p->p_rtime.tv_usec = u;
1167 1.114 gmcgarry p->p_rtime.tv_sec = s;
1168 1.26 cgd
1169 1.26 cgd /*
1170 1.141 wiz * Check if the process exceeds its CPU resource allocation.
1171 1.26 cgd * If over max, kill it. In any case, if it has run for more
1172 1.26 cgd * than 10 minutes, reduce priority to give others a chance.
1173 1.26 cgd */
1174 1.26 cgd rlim = &p->p_rlimit[RLIMIT_CPU];
1175 1.26 cgd if (s >= rlim->rlim_cur) {
1176 1.100 sommerfe /*
1177 1.100 sommerfe * XXXSMP: we're inside the scheduler lock perimeter;
1178 1.100 sommerfe * use sched_psignal.
1179 1.100 sommerfe */
1180 1.26 cgd if (s >= rlim->rlim_max)
1181 1.100 sommerfe sched_psignal(p, SIGKILL);
1182 1.26 cgd else {
1183 1.100 sommerfe sched_psignal(p, SIGXCPU);
1184 1.26 cgd if (rlim->rlim_cur < rlim->rlim_max)
1185 1.26 cgd rlim->rlim_cur += 5;
1186 1.26 cgd }
1187 1.26 cgd }
1188 1.161 elad if (autonicetime && s > autonicetime &&
1189 1.161 elad kauth_cred_geteuid(p->p_cred) && p->p_nice == NZERO) {
1190 1.39 ws p->p_nice = autoniceval + NZERO;
1191 1.122 thorpej resetpriority(l);
1192 1.26 cgd }
1193 1.69 thorpej
1194 1.69 thorpej /*
1195 1.69 thorpej * Process is about to yield the CPU; clear the appropriate
1196 1.69 thorpej * scheduling flags.
1197 1.69 thorpej */
1198 1.73 thorpej spc->spc_flags &= ~SPCF_SWITCHCLEAR;
1199 1.109 yamt
1200 1.109 yamt #ifdef KSTACK_CHECK_MAGIC
1201 1.124 yamt kstack_check_magic(l);
1202 1.109 yamt #endif
1203 1.26 cgd
1204 1.113 gmcgarry /*
1205 1.114 gmcgarry * If we are using h/w performance counters, save context.
1206 1.113 gmcgarry */
1207 1.114 gmcgarry #if PERFCTRS
1208 1.166 christos if (PMC_ENABLED(p)) {
1209 1.114 gmcgarry pmc_save_context(p);
1210 1.166 christos }
1211 1.110 briggs #endif
1212 1.113 gmcgarry
1213 1.113 gmcgarry /*
1214 1.114 gmcgarry * Switch to the new current process. When we
1215 1.114 gmcgarry * run again, we'll return back here.
1216 1.113 gmcgarry */
1217 1.114 gmcgarry uvmexp.swtch++;
1218 1.122 thorpej if (newl == NULL) {
1219 1.122 thorpej retval = cpu_switch(l, NULL);
1220 1.122 thorpej } else {
1221 1.122 thorpej remrunqueue(newl);
1222 1.122 thorpej cpu_switchto(l, newl);
1223 1.122 thorpej retval = 0;
1224 1.122 thorpej }
1225 1.110 briggs
1226 1.110 briggs /*
1227 1.114 gmcgarry * If we are using h/w performance counters, restore context.
1228 1.26 cgd */
1229 1.114 gmcgarry #if PERFCTRS
1230 1.166 christos if (PMC_ENABLED(p)) {
1231 1.114 gmcgarry pmc_restore_context(p);
1232 1.166 christos }
1233 1.114 gmcgarry #endif
1234 1.110 briggs
1235 1.110 briggs /*
1236 1.114 gmcgarry * Make sure that MD code released the scheduler lock before
1237 1.114 gmcgarry * resuming us.
1238 1.110 briggs */
1239 1.114 gmcgarry SCHED_ASSERT_UNLOCKED();
1240 1.83 thorpej
1241 1.83 thorpej /*
1242 1.76 thorpej * We're running again; record our new start time. We might
1243 1.76 thorpej * be running on a new CPU now, so don't use the cache'd
1244 1.76 thorpej * schedstate_percpu pointer.
1245 1.76 thorpej */
1246 1.122 thorpej KDASSERT(l->l_cpu != NULL);
1247 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
1248 1.122 thorpej microtime(&l->l_cpu->ci_schedstate.spc_runtime);
1249 1.85 sommerfe
1250 1.90 sommerfe /*
1251 1.90 sommerfe * Reacquire the kernel_lock now. We do this after we've
1252 1.90 sommerfe * released the scheduler lock to avoid deadlock, and before
1253 1.90 sommerfe * we reacquire the interlock.
1254 1.90 sommerfe */
1255 1.144 yamt KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
1256 1.122 thorpej
1257 1.122 thorpej return retval;
1258 1.26 cgd }
1259 1.26 cgd
1260 1.26 cgd /*
1261 1.26 cgd * Initialize the (doubly-linked) run queues
1262 1.26 cgd * to be empty.
1263 1.26 cgd */
1264 1.26 cgd void
1265 1.26 cgd rqinit()
1266 1.26 cgd {
1267 1.71 augustss int i;
1268 1.26 cgd
1269 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
1270 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
1271 1.122 thorpej (struct lwp *)&sched_qs[i];
1272 1.26 cgd }
1273 1.26 cgd
1274 1.158 perry static inline void
1275 1.122 thorpej resched_proc(struct lwp *l, u_char pri)
1276 1.119 thorpej {
1277 1.119 thorpej struct cpu_info *ci;
1278 1.119 thorpej
1279 1.119 thorpej /*
1280 1.119 thorpej * XXXSMP
1281 1.122 thorpej * Since l->l_cpu persists across a context switch,
1282 1.119 thorpej * this gives us *very weak* processor affinity, in
1283 1.119 thorpej * that we notify the CPU on which the process last
1284 1.119 thorpej * ran that it should try to switch.
1285 1.119 thorpej *
1286 1.119 thorpej * This does not guarantee that the process will run on
1287 1.119 thorpej * that processor next, because another processor might
1288 1.119 thorpej * grab it the next time it performs a context switch.
1289 1.119 thorpej *
1290 1.119 thorpej * This also does not handle the case where its last
1291 1.119 thorpej * CPU is running a higher-priority process, but every
1292 1.119 thorpej * other CPU is running a lower-priority process. There
1293 1.119 thorpej * are ways to handle this situation, but they're not
1294 1.119 thorpej * currently very pretty, and we also need to weigh the
1295 1.119 thorpej * cost of moving a process from one CPU to another.
1296 1.119 thorpej *
1297 1.119 thorpej * XXXSMP
1298 1.119 thorpej * There is also the issue of locking the other CPU's
1299 1.119 thorpej * sched state, which we currently do not do.
1300 1.119 thorpej */
1301 1.122 thorpej ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1302 1.121 thorpej if (pri < ci->ci_schedstate.spc_curpriority)
1303 1.119 thorpej need_resched(ci);
1304 1.119 thorpej }
1305 1.119 thorpej
1306 1.26 cgd /*
1307 1.26 cgd * Change process state to be runnable,
1308 1.26 cgd * placing it on the run queue if it is in memory,
1309 1.26 cgd * and awakening the swapper if it isn't in memory.
1310 1.26 cgd */
1311 1.26 cgd void
1312 1.122 thorpej setrunnable(struct lwp *l)
1313 1.26 cgd {
1314 1.122 thorpej struct proc *p = l->l_proc;
1315 1.26 cgd
1316 1.83 thorpej SCHED_ASSERT_LOCKED();
1317 1.83 thorpej
1318 1.122 thorpej switch (l->l_stat) {
1319 1.26 cgd case 0:
1320 1.122 thorpej case LSRUN:
1321 1.122 thorpej case LSONPROC:
1322 1.122 thorpej case LSZOMB:
1323 1.122 thorpej case LSDEAD:
1324 1.26 cgd default:
1325 1.127 matt panic("setrunnable: lwp %p state was %d", l, l->l_stat);
1326 1.122 thorpej case LSSTOP:
1327 1.33 mycroft /*
1328 1.33 mycroft * If we're being traced (possibly because someone attached us
1329 1.33 mycroft * while we were stopped), check for a signal from the debugger.
1330 1.33 mycroft */
1331 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1332 1.99 jdolecek sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1333 1.101 thorpej CHECKSIGS(p);
1334 1.53 mycroft }
1335 1.122 thorpej case LSSLEEP:
1336 1.122 thorpej unsleep(l); /* e.g. when sending signals */
1337 1.26 cgd break;
1338 1.26 cgd
1339 1.122 thorpej case LSIDL:
1340 1.122 thorpej break;
1341 1.122 thorpej case LSSUSPENDED:
1342 1.26 cgd break;
1343 1.26 cgd }
1344 1.139 cl
1345 1.139 cl if (l->l_proc->p_sa)
1346 1.139 cl sa_awaken(l);
1347 1.139 cl
1348 1.122 thorpej l->l_stat = LSRUN;
1349 1.122 thorpej p->p_nrlwps++;
1350 1.122 thorpej
1351 1.122 thorpej if (l->l_flag & L_INMEM)
1352 1.122 thorpej setrunqueue(l);
1353 1.122 thorpej
1354 1.122 thorpej if (l->l_slptime > 1)
1355 1.122 thorpej updatepri(l);
1356 1.122 thorpej l->l_slptime = 0;
1357 1.122 thorpej if ((l->l_flag & L_INMEM) == 0)
1358 1.83 thorpej sched_wakeup((caddr_t)&proc0);
1359 1.119 thorpej else
1360 1.122 thorpej resched_proc(l, l->l_priority);
1361 1.26 cgd }
1362 1.26 cgd
1363 1.26 cgd /*
1364 1.26 cgd * Compute the priority of a process when running in user mode.
1365 1.26 cgd * Arrange to reschedule if the resulting priority is better
1366 1.26 cgd * than that of the current process.
1367 1.26 cgd */
1368 1.26 cgd void
1369 1.122 thorpej resetpriority(struct lwp *l)
1370 1.26 cgd {
1371 1.71 augustss unsigned int newpriority;
1372 1.122 thorpej struct proc *p = l->l_proc;
1373 1.26 cgd
1374 1.83 thorpej SCHED_ASSERT_LOCKED();
1375 1.83 thorpej
1376 1.153 yamt newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
1377 1.122 thorpej NICE_WEIGHT * (p->p_nice - NZERO);
1378 1.26 cgd newpriority = min(newpriority, MAXPRI);
1379 1.122 thorpej l->l_usrpri = newpriority;
1380 1.122 thorpej resched_proc(l, l->l_usrpri);
1381 1.122 thorpej }
1382 1.122 thorpej
1383 1.130 nathanw /*
1384 1.122 thorpej * Recompute priority for all LWPs in a process.
1385 1.122 thorpej */
1386 1.122 thorpej void
1387 1.122 thorpej resetprocpriority(struct proc *p)
1388 1.122 thorpej {
1389 1.122 thorpej struct lwp *l;
1390 1.122 thorpej
1391 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling)
1392 1.122 thorpej resetpriority(l);
1393 1.55 ross }
1394 1.55 ross
1395 1.55 ross /*
1396 1.56 ross * We adjust the priority of the current process. The priority of a process
1397 1.141 wiz * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
1398 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
1399 1.56 ross * will compute a different value each time p_estcpu increases. This can
1400 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
1401 1.141 wiz * queue will not change. The CPU usage estimator ramps up quite quickly
1402 1.56 ross * when the process is running (linearly), and decays away exponentially, at
1403 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
1404 1.80 nathanw * principle is that the system will 90% forget that the process used a lot
1405 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
1406 1.56 ross * processes which haven't run much recently, and to round-robin among other
1407 1.56 ross * processes.
1408 1.55 ross */
1409 1.55 ross
1410 1.55 ross void
1411 1.122 thorpej schedclock(struct lwp *l)
1412 1.55 ross {
1413 1.122 thorpej struct proc *p = l->l_proc;
1414 1.83 thorpej int s;
1415 1.77 thorpej
1416 1.153 yamt p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
1417 1.83 thorpej SCHED_LOCK(s);
1418 1.122 thorpej resetpriority(l);
1419 1.83 thorpej SCHED_UNLOCK(s);
1420 1.130 nathanw
1421 1.122 thorpej if (l->l_priority >= PUSER)
1422 1.122 thorpej l->l_priority = l->l_usrpri;
1423 1.26 cgd }
1424 1.94 bouyer
1425 1.94 bouyer void
1426 1.94 bouyer suspendsched()
1427 1.94 bouyer {
1428 1.122 thorpej struct lwp *l;
1429 1.97 enami int s;
1430 1.94 bouyer
1431 1.94 bouyer /*
1432 1.130 nathanw * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1433 1.122 thorpej * LSSUSPENDED.
1434 1.94 bouyer */
1435 1.166.2.1 ad mutex_enter(&alllwp_mutex);
1436 1.95 thorpej SCHED_LOCK(s);
1437 1.122 thorpej LIST_FOREACH(l, &alllwp, l_list) {
1438 1.122 thorpej if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1439 1.94 bouyer continue;
1440 1.122 thorpej
1441 1.122 thorpej switch (l->l_stat) {
1442 1.122 thorpej case LSRUN:
1443 1.122 thorpej l->l_proc->p_nrlwps--;
1444 1.122 thorpej if ((l->l_flag & L_INMEM) != 0)
1445 1.122 thorpej remrunqueue(l);
1446 1.97 enami /* FALLTHROUGH */
1447 1.122 thorpej case LSSLEEP:
1448 1.122 thorpej l->l_stat = LSSUSPENDED;
1449 1.97 enami break;
1450 1.122 thorpej case LSONPROC:
1451 1.97 enami /*
1452 1.97 enami * XXX SMP: we need to deal with processes on
1453 1.97 enami * others CPU !
1454 1.97 enami */
1455 1.97 enami break;
1456 1.97 enami default:
1457 1.97 enami break;
1458 1.94 bouyer }
1459 1.94 bouyer }
1460 1.94 bouyer SCHED_UNLOCK(s);
1461 1.166.2.1 ad mutex_exit(&alllwp_mutex);
1462 1.94 bouyer }
1463 1.113 gmcgarry
1464 1.113 gmcgarry /*
1465 1.151 yamt * scheduler_fork_hook:
1466 1.151 yamt *
1467 1.151 yamt * Inherit the parent's scheduler history.
1468 1.151 yamt */
1469 1.151 yamt void
1470 1.151 yamt scheduler_fork_hook(struct proc *parent, struct proc *child)
1471 1.151 yamt {
1472 1.151 yamt
1473 1.157 yamt child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
1474 1.157 yamt child->p_forktime = schedcpu_ticks;
1475 1.151 yamt }
1476 1.151 yamt
1477 1.151 yamt /*
1478 1.151 yamt * scheduler_wait_hook:
1479 1.151 yamt *
1480 1.151 yamt * Chargeback parents for the sins of their children.
1481 1.151 yamt */
1482 1.151 yamt void
1483 1.151 yamt scheduler_wait_hook(struct proc *parent, struct proc *child)
1484 1.151 yamt {
1485 1.157 yamt fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1486 1.157 yamt fixpt_t estcpu;
1487 1.151 yamt
1488 1.151 yamt /* XXX Only if parent != init?? */
1489 1.157 yamt
1490 1.157 yamt estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
1491 1.157 yamt schedcpu_ticks - child->p_forktime);
1492 1.157 yamt if (child->p_estcpu > estcpu) {
1493 1.157 yamt parent->p_estcpu =
1494 1.157 yamt ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
1495 1.157 yamt }
1496 1.151 yamt }
1497 1.151 yamt
1498 1.151 yamt /*
1499 1.166.2.1 ad * XXXAD Scale an LWP priority (possibly a user priority) to a kernel one.
1500 1.166.2.1 ad * This is a hack; think of something better.
1501 1.166.2.1 ad */
1502 1.166.2.1 ad int
1503 1.166.2.1 ad sched_kpri(struct lwp *l)
1504 1.166.2.1 ad {
1505 1.166.2.1 ad const int obase = PUSER;
1506 1.166.2.1 ad const int ospan = MAXPRI - obase;
1507 1.166.2.1 ad const int nbase = PRIBIO;
1508 1.166.2.1 ad const int nspan = PUSER - nbase;
1509 1.166.2.1 ad
1510 1.166.2.1 ad if (l->l_priority < obase)
1511 1.166.2.1 ad return (l->l_priority);
1512 1.166.2.1 ad
1513 1.166.2.1 ad return (l->l_priority - obase) * nspan / ospan + nbase;
1514 1.166.2.1 ad }
1515 1.166.2.1 ad
1516 1.166.2.1 ad /*
1517 1.113 gmcgarry * Low-level routines to access the run queue. Optimised assembler
1518 1.113 gmcgarry * routines can override these.
1519 1.113 gmcgarry */
1520 1.113 gmcgarry
1521 1.113 gmcgarry #ifndef __HAVE_MD_RUNQUEUE
1522 1.115 nisimura
1523 1.130 nathanw /*
1524 1.134 matt * On some architectures, it's faster to use a MSB ordering for the priorites
1525 1.134 matt * than the traditional LSB ordering.
1526 1.134 matt */
1527 1.134 matt #ifdef __HAVE_BIGENDIAN_BITOPS
1528 1.134 matt #define RQMASK(n) (0x80000000 >> (n))
1529 1.134 matt #else
1530 1.134 matt #define RQMASK(n) (0x00000001 << (n))
1531 1.134 matt #endif
1532 1.134 matt
1533 1.134 matt /*
1534 1.115 nisimura * The primitives that manipulate the run queues. whichqs tells which
1535 1.115 nisimura * of the 32 queues qs have processes in them. Setrunqueue puts processes
1536 1.115 nisimura * into queues, remrunqueue removes them from queues. The running process is
1537 1.115 nisimura * on no queue, other processes are on a queue related to p->p_priority,
1538 1.115 nisimura * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1539 1.115 nisimura * available queues.
1540 1.130 nathanw */
1541 1.113 gmcgarry
1542 1.146 matt #ifdef RQDEBUG
1543 1.146 matt static void
1544 1.146 matt checkrunqueue(int whichq, struct lwp *l)
1545 1.146 matt {
1546 1.146 matt const struct prochd * const rq = &sched_qs[whichq];
1547 1.146 matt struct lwp *l2;
1548 1.146 matt int found = 0;
1549 1.146 matt int die = 0;
1550 1.146 matt int empty = 1;
1551 1.164 christos for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
1552 1.146 matt if (l2->l_stat != LSRUN) {
1553 1.146 matt printf("checkrunqueue[%d]: lwp %p state (%d) "
1554 1.146 matt " != LSRUN\n", whichq, l2, l2->l_stat);
1555 1.146 matt }
1556 1.146 matt if (l2->l_back->l_forw != l2) {
1557 1.146 matt printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1558 1.146 matt "corrupt %p\n", whichq, l2, l2->l_back,
1559 1.146 matt l2->l_back->l_forw);
1560 1.146 matt die = 1;
1561 1.146 matt }
1562 1.146 matt if (l2->l_forw->l_back != l2) {
1563 1.146 matt printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1564 1.146 matt "corrupt %p\n", whichq, l2, l2->l_forw,
1565 1.146 matt l2->l_forw->l_back);
1566 1.146 matt die = 1;
1567 1.146 matt }
1568 1.146 matt if (l2 == l)
1569 1.146 matt found = 1;
1570 1.146 matt empty = 0;
1571 1.146 matt }
1572 1.146 matt if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1573 1.146 matt printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1574 1.146 matt whichq, rq);
1575 1.146 matt die = 1;
1576 1.146 matt } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1577 1.146 matt printf("checkrunqueue[%d]: bit clear for non-empty "
1578 1.146 matt "run-queue %p\n", whichq, rq);
1579 1.146 matt die = 1;
1580 1.146 matt }
1581 1.146 matt if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1582 1.146 matt printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1583 1.146 matt whichq, l);
1584 1.146 matt die = 1;
1585 1.146 matt }
1586 1.146 matt if (l != NULL && empty) {
1587 1.146 matt printf("checkrunqueue[%d]: empty run-queue %p with "
1588 1.146 matt "active lwp %p\n", whichq, rq, l);
1589 1.146 matt die = 1;
1590 1.146 matt }
1591 1.146 matt if (l != NULL && !found) {
1592 1.146 matt printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1593 1.146 matt whichq, l, rq);
1594 1.146 matt die = 1;
1595 1.146 matt }
1596 1.146 matt if (die)
1597 1.146 matt panic("checkrunqueue: inconsistency found");
1598 1.146 matt }
1599 1.146 matt #endif /* RQDEBUG */
1600 1.146 matt
1601 1.113 gmcgarry void
1602 1.122 thorpej setrunqueue(struct lwp *l)
1603 1.113 gmcgarry {
1604 1.113 gmcgarry struct prochd *rq;
1605 1.122 thorpej struct lwp *prev;
1606 1.152 yamt const int whichq = l->l_priority / PPQ;
1607 1.113 gmcgarry
1608 1.146 matt #ifdef RQDEBUG
1609 1.146 matt checkrunqueue(whichq, NULL);
1610 1.146 matt #endif
1611 1.113 gmcgarry #ifdef DIAGNOSTIC
1612 1.122 thorpej if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1613 1.113 gmcgarry panic("setrunqueue");
1614 1.113 gmcgarry #endif
1615 1.134 matt sched_whichqs |= RQMASK(whichq);
1616 1.113 gmcgarry rq = &sched_qs[whichq];
1617 1.113 gmcgarry prev = rq->ph_rlink;
1618 1.122 thorpej l->l_forw = (struct lwp *)rq;
1619 1.122 thorpej rq->ph_rlink = l;
1620 1.122 thorpej prev->l_forw = l;
1621 1.122 thorpej l->l_back = prev;
1622 1.146 matt #ifdef RQDEBUG
1623 1.146 matt checkrunqueue(whichq, l);
1624 1.146 matt #endif
1625 1.113 gmcgarry }
1626 1.113 gmcgarry
1627 1.113 gmcgarry void
1628 1.122 thorpej remrunqueue(struct lwp *l)
1629 1.113 gmcgarry {
1630 1.122 thorpej struct lwp *prev, *next;
1631 1.152 yamt const int whichq = l->l_priority / PPQ;
1632 1.146 matt #ifdef RQDEBUG
1633 1.146 matt checkrunqueue(whichq, l);
1634 1.146 matt #endif
1635 1.113 gmcgarry #ifdef DIAGNOSTIC
1636 1.134 matt if (((sched_whichqs & RQMASK(whichq)) == 0))
1637 1.146 matt panic("remrunqueue: bit %d not set", whichq);
1638 1.113 gmcgarry #endif
1639 1.122 thorpej prev = l->l_back;
1640 1.122 thorpej l->l_back = NULL;
1641 1.122 thorpej next = l->l_forw;
1642 1.122 thorpej prev->l_forw = next;
1643 1.122 thorpej next->l_back = prev;
1644 1.113 gmcgarry if (prev == next)
1645 1.134 matt sched_whichqs &= ~RQMASK(whichq);
1646 1.146 matt #ifdef RQDEBUG
1647 1.146 matt checkrunqueue(whichq, NULL);
1648 1.146 matt #endif
1649 1.113 gmcgarry }
1650 1.113 gmcgarry
1651 1.134 matt #undef RQMASK
1652 1.134 matt #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1653