Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.166.2.1
      1  1.166.2.1        ad /*	$NetBSD: kern_synch.c,v 1.166.2.1 2006/09/11 18:45:24 ad Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4      1.148   mycroft  * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
      5       1.63   thorpej  * All rights reserved.
      6       1.63   thorpej  *
      7       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9       1.63   thorpej  * NASA Ames Research Center.
     10      1.148   mycroft  * This code is derived from software contributed to The NetBSD Foundation
     11      1.148   mycroft  * by Charles M. Hannum.
     12       1.63   thorpej  *
     13       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     14       1.63   thorpej  * modification, are permitted provided that the following conditions
     15       1.63   thorpej  * are met:
     16       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     17       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     18       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     21       1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     22       1.63   thorpej  *    must display the following acknowledgement:
     23       1.63   thorpej  *	This product includes software developed by the NetBSD
     24       1.63   thorpej  *	Foundation, Inc. and its contributors.
     25       1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26       1.63   thorpej  *    contributors may be used to endorse or promote products derived
     27       1.63   thorpej  *    from this software without specific prior written permission.
     28       1.63   thorpej  *
     29       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     40       1.63   thorpej  */
     41       1.26       cgd 
     42       1.26       cgd /*-
     43       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     44       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     45       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     46       1.26       cgd  * All or some portions of this file are derived from material licensed
     47       1.26       cgd  * to the University of California by American Telephone and Telegraph
     48       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     50       1.26       cgd  *
     51       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     52       1.26       cgd  * modification, are permitted provided that the following conditions
     53       1.26       cgd  * are met:
     54       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     55       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     56       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     57       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     58       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     59      1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     60       1.26       cgd  *    may be used to endorse or promote products derived from this software
     61       1.26       cgd  *    without specific prior written permission.
     62       1.26       cgd  *
     63       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73       1.26       cgd  * SUCH DAMAGE.
     74       1.26       cgd  *
     75       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     76       1.26       cgd  */
     77      1.106     lukem 
     78      1.106     lukem #include <sys/cdefs.h>
     79  1.166.2.1        ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.166.2.1 2006/09/11 18:45:24 ad Exp $");
     80       1.48       mrg 
     81       1.52  jonathan #include "opt_ddb.h"
     82       1.51   thorpej #include "opt_ktrace.h"
     83      1.109      yamt #include "opt_kstack.h"
     84       1.82   thorpej #include "opt_lockdebug.h"
     85       1.83   thorpej #include "opt_multiprocessor.h"
     86      1.110    briggs #include "opt_perfctrs.h"
     87       1.26       cgd 
     88       1.26       cgd #include <sys/param.h>
     89       1.26       cgd #include <sys/systm.h>
     90       1.68   thorpej #include <sys/callout.h>
     91       1.26       cgd #include <sys/proc.h>
     92       1.26       cgd #include <sys/kernel.h>
     93       1.26       cgd #include <sys/buf.h>
     94      1.111    briggs #if defined(PERFCTRS)
     95      1.110    briggs #include <sys/pmc.h>
     96      1.111    briggs #endif
     97       1.26       cgd #include <sys/signalvar.h>
     98       1.26       cgd #include <sys/resourcevar.h>
     99       1.55      ross #include <sys/sched.h>
    100      1.122   thorpej #include <sys/sa.h>
    101      1.122   thorpej #include <sys/savar.h>
    102      1.161      elad #include <sys/kauth.h>
    103       1.47       mrg 
    104       1.47       mrg #include <uvm/uvm_extern.h>
    105       1.47       mrg 
    106       1.26       cgd #ifdef KTRACE
    107       1.26       cgd #include <sys/ktrace.h>
    108       1.26       cgd #endif
    109       1.26       cgd 
    110       1.26       cgd #include <machine/cpu.h>
    111       1.34  christos 
    112       1.26       cgd int	lbolt;			/* once a second sleep address */
    113       1.88  sommerfe int	rrticks;		/* number of hardclock ticks per roundrobin() */
    114       1.26       cgd 
    115       1.73   thorpej /*
    116      1.152      yamt  * Sleep queues.
    117      1.152      yamt  *
    118      1.152      yamt  * We're only looking at 7 bits of the address; everything is
    119      1.152      yamt  * aligned to 4, lots of things are aligned to greater powers
    120      1.152      yamt  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    121      1.152      yamt  */
    122      1.152      yamt #define	SLPQUE_TABLESIZE	128
    123      1.152      yamt #define	SLPQUE_LOOKUP(x)	(((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
    124      1.152      yamt 
    125      1.152      yamt #define	SLPQUE(ident)	(&sched_slpque[SLPQUE_LOOKUP(ident)])
    126      1.152      yamt 
    127      1.152      yamt /*
    128       1.73   thorpej  * The global scheduler state.
    129       1.73   thorpej  */
    130       1.73   thorpej struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    131      1.159     perry volatile uint32_t sched_whichqs;	/* bitmap of non-empty queues */
    132       1.73   thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    133       1.73   thorpej 
    134       1.83   thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    135       1.83   thorpej 
    136       1.77   thorpej void schedcpu(void *);
    137      1.122   thorpej void updatepri(struct lwp *);
    138       1.77   thorpej void endtsleep(void *);
    139       1.34  christos 
    140      1.158     perry inline void sa_awaken(struct lwp *);
    141      1.158     perry inline void awaken(struct lwp *);
    142       1.63   thorpej 
    143      1.143      yamt struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    144      1.157      yamt static unsigned int schedcpu_ticks;
    145      1.122   thorpej 
    146      1.122   thorpej 
    147       1.26       cgd /*
    148       1.26       cgd  * Force switch among equal priority processes every 100ms.
    149       1.88  sommerfe  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    150       1.26       cgd  */
    151       1.26       cgd /* ARGSUSED */
    152       1.26       cgd void
    153       1.89  sommerfe roundrobin(struct cpu_info *ci)
    154       1.26       cgd {
    155       1.89  sommerfe 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    156       1.26       cgd 
    157       1.88  sommerfe 	spc->spc_rrticks = rrticks;
    158      1.130   nathanw 
    159      1.122   thorpej 	if (curlwp != NULL) {
    160       1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    161       1.69   thorpej 			/*
    162       1.69   thorpej 			 * The process has already been through a roundrobin
    163       1.69   thorpej 			 * without switching and may be hogging the CPU.
    164       1.69   thorpej 			 * Indicate that the process should yield.
    165       1.69   thorpej 			 */
    166       1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    167       1.69   thorpej 		} else
    168       1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    169       1.69   thorpej 	}
    170       1.87   thorpej 	need_resched(curcpu());
    171       1.26       cgd }
    172       1.26       cgd 
    173      1.153      yamt #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    174      1.153      yamt #define	NICE_WEIGHT 2			/* priorities per nice level */
    175      1.153      yamt 
    176      1.153      yamt #define	ESTCPU_SHIFT	11
    177      1.153      yamt #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    178      1.153      yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    179      1.153      yamt 
    180       1.26       cgd /*
    181       1.26       cgd  * Constants for digital decay and forget:
    182       1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    183       1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    184       1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    185       1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    186       1.26       cgd  *
    187       1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    188       1.26       cgd  *
    189       1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    190       1.26       cgd  * That is, the system wants to compute a value of decay such
    191       1.26       cgd  * that the following for loop:
    192       1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    193       1.26       cgd  * 		p_estcpu *= decay;
    194       1.26       cgd  * will compute
    195       1.26       cgd  * 	p_estcpu *= 0.1;
    196       1.26       cgd  * for all values of loadavg:
    197       1.26       cgd  *
    198       1.26       cgd  * Mathematically this loop can be expressed by saying:
    199       1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    200       1.26       cgd  *
    201       1.26       cgd  * The system computes decay as:
    202       1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    203       1.26       cgd  *
    204       1.26       cgd  * We wish to prove that the system's computation of decay
    205       1.26       cgd  * will always fulfill the equation:
    206       1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    207       1.26       cgd  *
    208       1.26       cgd  * If we compute b as:
    209       1.26       cgd  * 	b = 2 * loadavg
    210       1.26       cgd  * then
    211       1.26       cgd  * 	decay = b / (b + 1)
    212       1.26       cgd  *
    213       1.26       cgd  * We now need to prove two things:
    214       1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    215       1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    216      1.130   nathanw  *
    217       1.26       cgd  * Facts:
    218       1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    219       1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    220       1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    221       1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    222       1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    223       1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    224       1.26       cgd  *         ln(.1) =~ -2.30
    225       1.26       cgd  *
    226       1.26       cgd  * Proof of (1):
    227       1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    228       1.26       cgd  *	solving for factor,
    229       1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    230       1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    231       1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    232       1.26       cgd  *
    233       1.26       cgd  * Proof of (2):
    234       1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    235       1.26       cgd  *	solving for power,
    236       1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    237       1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    238       1.26       cgd  *
    239       1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    240       1.26       cgd  *      loadav: 1       2       3       4
    241       1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    242       1.26       cgd  */
    243       1.26       cgd 
    244       1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    245       1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    246      1.153      yamt 
    247      1.153      yamt static fixpt_t
    248      1.153      yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    249      1.153      yamt {
    250      1.153      yamt 
    251      1.153      yamt 	if (estcpu == 0) {
    252      1.153      yamt 		return 0;
    253      1.153      yamt 	}
    254      1.153      yamt 
    255      1.153      yamt #if !defined(_LP64)
    256      1.153      yamt 	/* avoid 64bit arithmetics. */
    257      1.153      yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    258      1.153      yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    259      1.153      yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    260      1.153      yamt 	}
    261      1.153      yamt #endif /* !defined(_LP64) */
    262      1.153      yamt 
    263      1.153      yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    264      1.153      yamt }
    265       1.26       cgd 
    266      1.157      yamt /*
    267      1.157      yamt  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    268      1.157      yamt  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    269      1.157      yamt  * less than (1 << ESTCPU_SHIFT).
    270      1.157      yamt  *
    271      1.157      yamt  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    272      1.157      yamt  */
    273      1.157      yamt static fixpt_t
    274      1.157      yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    275      1.157      yamt {
    276      1.157      yamt 
    277      1.157      yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    278      1.157      yamt 		return 0;
    279      1.157      yamt 	}
    280      1.157      yamt 
    281      1.157      yamt 	while (estcpu != 0 && n > 1) {
    282      1.157      yamt 		estcpu = decay_cpu(loadfac, estcpu);
    283      1.157      yamt 		n--;
    284      1.157      yamt 	}
    285      1.157      yamt 
    286      1.157      yamt 	return estcpu;
    287      1.157      yamt }
    288      1.157      yamt 
    289       1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    290       1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    291       1.26       cgd 
    292       1.26       cgd /*
    293       1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    294       1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    295       1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    296       1.26       cgd  *
    297       1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    298       1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    299       1.26       cgd  *
    300       1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    301       1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    302       1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    303       1.26       cgd  */
    304       1.26       cgd #define	CCPU_SHIFT	11
    305       1.26       cgd 
    306       1.26       cgd /*
    307       1.26       cgd  * Recompute process priorities, every hz ticks.
    308       1.26       cgd  */
    309       1.26       cgd /* ARGSUSED */
    310       1.26       cgd void
    311       1.77   thorpej schedcpu(void *arg)
    312       1.26       cgd {
    313       1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    314      1.122   thorpej 	struct lwp *l;
    315       1.71  augustss 	struct proc *p;
    316      1.122   thorpej 	int s, minslp;
    317       1.66      ross 	int clkhz;
    318       1.26       cgd 
    319      1.157      yamt 	schedcpu_ticks++;
    320      1.157      yamt 
    321  1.166.2.1        ad 	mutex_enter(&proclist_mutex);
    322      1.145      yamt 	PROCLIST_FOREACH(p, &allproc) {
    323       1.26       cgd 		/*
    324       1.26       cgd 		 * Increment time in/out of memory and sleep time
    325       1.26       cgd 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    326       1.26       cgd 		 * (remember them?) overflow takes 45 days.
    327       1.26       cgd 		 */
    328      1.122   thorpej 		minslp = 2;
    329      1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    330      1.122   thorpej 			l->l_swtime++;
    331      1.130   nathanw 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    332      1.122   thorpej 			    l->l_stat == LSSUSPENDED) {
    333      1.122   thorpej 				l->l_slptime++;
    334      1.122   thorpej 				minslp = min(minslp, l->l_slptime);
    335      1.122   thorpej 			} else
    336      1.122   thorpej 				minslp = 0;
    337      1.122   thorpej 		}
    338       1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    339       1.26       cgd 		/*
    340       1.26       cgd 		 * If the process has slept the entire second,
    341       1.26       cgd 		 * stop recalculating its priority until it wakes up.
    342       1.26       cgd 		 */
    343      1.122   thorpej 		if (minslp > 1)
    344       1.26       cgd 			continue;
    345       1.26       cgd 		s = splstatclock();	/* prevent state changes */
    346       1.26       cgd 		/*
    347       1.26       cgd 		 * p_pctcpu is only for ps.
    348       1.26       cgd 		 */
    349       1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    350       1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    351       1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    352       1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    353       1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    354       1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    355       1.26       cgd #else
    356       1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    357       1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    358       1.26       cgd #endif
    359       1.26       cgd 		p->p_cpticks = 0;
    360      1.153      yamt 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    361      1.120        pk 		splx(s);	/* Done with the process CPU ticks update */
    362      1.120        pk 		SCHED_LOCK(s);
    363      1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    364      1.122   thorpej 			if (l->l_slptime > 1)
    365      1.122   thorpej 				continue;
    366      1.122   thorpej 			resetpriority(l);
    367      1.122   thorpej 			if (l->l_priority >= PUSER) {
    368      1.122   thorpej 				if (l->l_stat == LSRUN &&
    369      1.122   thorpej 				    (l->l_flag & L_INMEM) &&
    370      1.122   thorpej 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    371      1.122   thorpej 					remrunqueue(l);
    372      1.122   thorpej 					l->l_priority = l->l_usrpri;
    373      1.122   thorpej 					setrunqueue(l);
    374      1.122   thorpej 				} else
    375      1.122   thorpej 					l->l_priority = l->l_usrpri;
    376      1.122   thorpej 			}
    377       1.26       cgd 		}
    378      1.120        pk 		SCHED_UNLOCK(s);
    379       1.26       cgd 	}
    380  1.166.2.1        ad 	mutex_exit(&proclist_mutex);
    381       1.47       mrg 	uvm_meter();
    382       1.67      fvdl 	wakeup((caddr_t)&lbolt);
    383      1.143      yamt 	callout_schedule(&schedcpu_ch, hz);
    384       1.26       cgd }
    385       1.26       cgd 
    386       1.26       cgd /*
    387       1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    388       1.26       cgd  */
    389       1.26       cgd void
    390      1.122   thorpej updatepri(struct lwp *l)
    391       1.26       cgd {
    392      1.122   thorpej 	struct proc *p = l->l_proc;
    393       1.83   thorpej 	fixpt_t loadfac;
    394       1.83   thorpej 
    395       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    396      1.157      yamt 	KASSERT(l->l_slptime > 1);
    397       1.83   thorpej 
    398       1.83   thorpej 	loadfac = loadfactor(averunnable.ldavg[0]);
    399       1.26       cgd 
    400      1.157      yamt 	l->l_slptime--; /* the first time was done in schedcpu */
    401      1.157      yamt 	/* XXX NJWLWP */
    402      1.157      yamt 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    403      1.122   thorpej 	resetpriority(l);
    404       1.26       cgd }
    405       1.26       cgd 
    406       1.26       cgd /*
    407       1.26       cgd  * During autoconfiguration or after a panic, a sleep will simply
    408       1.26       cgd  * lower the priority briefly to allow interrupts, then return.
    409       1.26       cgd  * The priority to be used (safepri) is machine-dependent, thus this
    410       1.26       cgd  * value is initialized and maintained in the machine-dependent layers.
    411       1.26       cgd  * This priority will typically be 0, or the lowest priority
    412       1.26       cgd  * that is safe for use on the interrupt stack; it can be made
    413       1.26       cgd  * higher to block network software interrupts after panics.
    414       1.26       cgd  */
    415       1.26       cgd int safepri;
    416       1.26       cgd 
    417       1.26       cgd /*
    418       1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    419       1.26       cgd  * performed on the specified identifier.  The process will then be made
    420       1.26       cgd  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    421       1.26       cgd  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    422       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    423       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    424       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    425       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    426       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    427       1.77   thorpej  *
    428      1.103  jdolecek  * The interlock is held until the scheduler_slock is acquired.  The
    429       1.77   thorpej  * interlock will be locked before returning back to the caller
    430       1.77   thorpej  * unless the PNORELOCK flag is specified, in which case the
    431       1.77   thorpej  * interlock will always be unlocked upon return.
    432       1.26       cgd  */
    433       1.26       cgd int
    434      1.158     perry ltsleep(volatile const void *ident, int priority, const char *wmesg, int timo,
    435      1.158     perry     volatile struct simplelock *interlock)
    436       1.26       cgd {
    437      1.122   thorpej 	struct lwp *l = curlwp;
    438      1.123  christos 	struct proc *p = l ? l->l_proc : NULL;
    439       1.71  augustss 	struct slpque *qp;
    440      1.150       chs 	struct sadata_upcall *sau;
    441       1.77   thorpej 	int sig, s;
    442       1.77   thorpej 	int catch = priority & PCATCH;
    443       1.77   thorpej 	int relock = (priority & PNORELOCK) == 0;
    444      1.122   thorpej 	int exiterr = (priority & PNOEXITERR) == 0;
    445       1.26       cgd 
    446       1.77   thorpej 	/*
    447       1.77   thorpej 	 * XXXSMP
    448       1.77   thorpej 	 * This is probably bogus.  Figure out what the right
    449       1.77   thorpej 	 * thing to do here really is.
    450      1.130   nathanw 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    451       1.78  sommerfe 	 * in the shutdown case is disgusting but partly necessary given
    452       1.78  sommerfe 	 * how shutdown (barely) works.
    453       1.77   thorpej 	 */
    454      1.122   thorpej 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    455       1.26       cgd 		/*
    456       1.26       cgd 		 * After a panic, or during autoconfiguration,
    457       1.26       cgd 		 * just give interrupts a chance, then just return;
    458       1.26       cgd 		 * don't run any other procs or panic below,
    459       1.26       cgd 		 * in case this is the idle process and already asleep.
    460       1.26       cgd 		 */
    461       1.42       cgd 		s = splhigh();
    462       1.26       cgd 		splx(safepri);
    463       1.26       cgd 		splx(s);
    464       1.77   thorpej 		if (interlock != NULL && relock == 0)
    465       1.77   thorpej 			simple_unlock(interlock);
    466       1.26       cgd 		return (0);
    467       1.26       cgd 	}
    468       1.78  sommerfe 
    469      1.102   thorpej 	KASSERT(p != NULL);
    470      1.105       chs 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    471       1.42       cgd 
    472       1.42       cgd #ifdef KTRACE
    473       1.42       cgd 	if (KTRPOINT(p, KTR_CSW))
    474      1.154  christos 		ktrcsw(l, 1, 0);
    475       1.42       cgd #endif
    476       1.77   thorpej 
    477      1.150       chs 	/*
    478      1.150       chs 	 * XXX We need to allocate the sadata_upcall structure here,
    479      1.150       chs 	 * XXX since we can't sleep while waiting for memory inside
    480      1.150       chs 	 * XXX sa_upcall().  It would be nice if we could safely
    481      1.150       chs 	 * XXX allocate the sadata_upcall structure on the stack, here.
    482      1.150       chs 	 */
    483      1.150       chs 	if (l->l_flag & L_SA) {
    484      1.150       chs 		sau = sadata_upcall_alloc(0);
    485      1.150       chs 	} else {
    486      1.150       chs 		sau = NULL;
    487      1.150       chs 	}
    488      1.150       chs 
    489       1.83   thorpej 	SCHED_LOCK(s);
    490       1.42       cgd 
    491       1.26       cgd #ifdef DIAGNOSTIC
    492       1.64   thorpej 	if (ident == NULL)
    493       1.77   thorpej 		panic("ltsleep: ident == NULL");
    494      1.122   thorpej 	if (l->l_stat != LSONPROC)
    495      1.122   thorpej 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    496      1.122   thorpej 	if (l->l_back != NULL)
    497       1.77   thorpej 		panic("ltsleep: p_back != NULL");
    498       1.26       cgd #endif
    499       1.77   thorpej 
    500      1.122   thorpej 	l->l_wchan = ident;
    501      1.122   thorpej 	l->l_wmesg = wmesg;
    502      1.122   thorpej 	l->l_slptime = 0;
    503      1.122   thorpej 	l->l_priority = priority & PRIMASK;
    504       1.77   thorpej 
    505       1.73   thorpej 	qp = SLPQUE(ident);
    506       1.26       cgd 	if (qp->sq_head == 0)
    507      1.122   thorpej 		qp->sq_head = l;
    508      1.122   thorpej 	else {
    509      1.122   thorpej 		*qp->sq_tailp = l;
    510      1.122   thorpej 	}
    511      1.122   thorpej 	*(qp->sq_tailp = &l->l_forw) = 0;
    512       1.77   thorpej 
    513       1.26       cgd 	if (timo)
    514      1.122   thorpej 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    515       1.77   thorpej 
    516       1.77   thorpej 	/*
    517       1.77   thorpej 	 * We can now release the interlock; the scheduler_slock
    518       1.77   thorpej 	 * is held, so a thread can't get in to do wakeup() before
    519       1.77   thorpej 	 * we do the switch.
    520       1.77   thorpej 	 *
    521       1.77   thorpej 	 * XXX We leave the code block here, after inserting ourselves
    522       1.77   thorpej 	 * on the sleep queue, because we might want a more clever
    523       1.77   thorpej 	 * data structure for the sleep queues at some point.
    524       1.77   thorpej 	 */
    525       1.77   thorpej 	if (interlock != NULL)
    526       1.77   thorpej 		simple_unlock(interlock);
    527       1.77   thorpej 
    528       1.26       cgd 	/*
    529       1.26       cgd 	 * We put ourselves on the sleep queue and start our timeout
    530       1.26       cgd 	 * before calling CURSIG, as we could stop there, and a wakeup
    531       1.26       cgd 	 * or a SIGCONT (or both) could occur while we were stopped.
    532       1.26       cgd 	 * A SIGCONT would cause us to be marked as SSLEEP
    533       1.26       cgd 	 * without resuming us, thus we must be ready for sleep
    534       1.26       cgd 	 * when CURSIG is called.  If the wakeup happens while we're
    535       1.26       cgd 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    536       1.26       cgd 	 */
    537       1.26       cgd 	if (catch) {
    538      1.122   thorpej 		l->l_flag |= L_SINTR;
    539      1.137    itojun 		if (((sig = CURSIG(l)) != 0) ||
    540      1.137    itojun 		    ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
    541      1.122   thorpej 			if (l->l_wchan != NULL)
    542      1.122   thorpej 				unsleep(l);
    543      1.122   thorpej 			l->l_stat = LSONPROC;
    544       1.83   thorpej 			SCHED_UNLOCK(s);
    545       1.26       cgd 			goto resume;
    546       1.26       cgd 		}
    547      1.122   thorpej 		if (l->l_wchan == NULL) {
    548       1.26       cgd 			catch = 0;
    549       1.83   thorpej 			SCHED_UNLOCK(s);
    550       1.26       cgd 			goto resume;
    551       1.26       cgd 		}
    552       1.26       cgd 	} else
    553       1.26       cgd 		sig = 0;
    554      1.122   thorpej 	l->l_stat = LSSLEEP;
    555      1.122   thorpej 	p->p_nrlwps--;
    556       1.26       cgd 	p->p_stats->p_ru.ru_nvcsw++;
    557       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    558      1.122   thorpej 	if (l->l_flag & L_SA)
    559      1.150       chs 		sa_switch(l, sau, SA_UPCALL_BLOCKED);
    560      1.122   thorpej 	else
    561      1.122   thorpej 		mi_switch(l, NULL);
    562       1.83   thorpej 
    563      1.165   tsutsui #if	defined(DDB) && !defined(GPROF) && \
    564      1.165   tsutsui 	!defined(__m68k__) && !defined(__vax__)
    565      1.165   tsutsui 	/*
    566      1.165   tsutsui 	 * XXX
    567      1.165   tsutsui 	 * gcc4 optimizer will duplicate this asm statement on some arch
    568      1.165   tsutsui 	 * and it will cause a multiple symbol definition error in gas.
    569      1.165   tsutsui 	 */
    570       1.26       cgd 	/* handy breakpoint location after process "wakes" */
    571      1.140    kleink 	__asm(".globl bpendtsleep\nbpendtsleep:");
    572       1.26       cgd #endif
    573      1.122   thorpej 	/*
    574      1.122   thorpej 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    575      1.122   thorpej 	 * either setrunnable() or awaken().
    576      1.122   thorpej 	 */
    577       1.77   thorpej 
    578       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    579       1.83   thorpej 	splx(s);
    580       1.83   thorpej 
    581       1.77   thorpej  resume:
    582      1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    583      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    584      1.122   thorpej 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    585      1.122   thorpej 
    586      1.122   thorpej 	l->l_flag &= ~L_SINTR;
    587      1.122   thorpej 	if (l->l_flag & L_TIMEOUT) {
    588      1.135      matt 		l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
    589       1.26       cgd 		if (sig == 0) {
    590       1.26       cgd #ifdef KTRACE
    591       1.26       cgd 			if (KTRPOINT(p, KTR_CSW))
    592      1.154  christos 				ktrcsw(l, 0, 0);
    593       1.26       cgd #endif
    594       1.77   thorpej 			if (relock && interlock != NULL)
    595       1.77   thorpej 				simple_lock(interlock);
    596       1.26       cgd 			return (EWOULDBLOCK);
    597       1.26       cgd 		}
    598       1.26       cgd 	} else if (timo)
    599      1.122   thorpej 		callout_stop(&l->l_tsleep_ch);
    600      1.135      matt 
    601      1.135      matt 	if (catch) {
    602      1.135      matt 		const int cancelled = l->l_flag & L_CANCELLED;
    603      1.135      matt 		l->l_flag &= ~L_CANCELLED;
    604      1.135      matt 		if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
    605       1.26       cgd #ifdef KTRACE
    606      1.135      matt 			if (KTRPOINT(p, KTR_CSW))
    607      1.154  christos 				ktrcsw(l, 0, 0);
    608       1.26       cgd #endif
    609      1.135      matt 			if (relock && interlock != NULL)
    610      1.135      matt 				simple_lock(interlock);
    611      1.135      matt 			/*
    612      1.135      matt 			 * If this sleep was canceled, don't let the syscall
    613      1.135      matt 			 * restart.
    614      1.135      matt 			 */
    615      1.135      matt 			if (cancelled ||
    616      1.135      matt 			    (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    617      1.135      matt 				return (EINTR);
    618      1.135      matt 			return (ERESTART);
    619      1.135      matt 		}
    620       1.26       cgd 	}
    621      1.126        pk 
    622      1.126        pk #ifdef KTRACE
    623      1.126        pk 	if (KTRPOINT(p, KTR_CSW))
    624      1.154  christos 		ktrcsw(l, 0, 0);
    625      1.126        pk #endif
    626      1.126        pk 	if (relock && interlock != NULL)
    627      1.126        pk 		simple_lock(interlock);
    628      1.126        pk 
    629      1.122   thorpej 	/* XXXNJW this is very much a kluge.
    630      1.130   nathanw 	 * revisit. a better way of preventing looping/hanging syscalls like
    631      1.122   thorpej 	 * wait4() and _lwp_wait() from wedging an exiting process
    632      1.122   thorpej 	 * would be preferred.
    633      1.122   thorpej 	 */
    634      1.137    itojun 	if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
    635      1.122   thorpej 		return (EINTR);
    636       1.26       cgd 	return (0);
    637       1.26       cgd }
    638       1.26       cgd 
    639  1.166.2.1        ad /* XXX temporary */
    640  1.166.2.1        ad int
    641  1.166.2.1        ad mtsleep(volatile const void *ident, int priority, const char *wmesg, int timo,
    642  1.166.2.1        ad     kmutex_t *mtx)
    643  1.166.2.1        ad {
    644  1.166.2.1        ad 	struct lwp *l = curlwp;
    645  1.166.2.1        ad 	struct proc *p = l ? l->l_proc : NULL;
    646  1.166.2.1        ad 	struct slpque *qp;
    647  1.166.2.1        ad 	struct sadata_upcall *sau;
    648  1.166.2.1        ad 	int sig, s;
    649  1.166.2.1        ad 	int catch = priority & PCATCH;
    650  1.166.2.1        ad 	int relock = (priority & PNORELOCK) == 0;
    651  1.166.2.1        ad 	int exiterr = (priority & PNOEXITERR) == 0;
    652  1.166.2.1        ad 
    653  1.166.2.1        ad 	/*
    654  1.166.2.1        ad 	 * XXXSMP
    655  1.166.2.1        ad 	 * This is probably bogus.  Figure out what the right
    656  1.166.2.1        ad 	 * thing to do here really is.
    657  1.166.2.1        ad 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    658  1.166.2.1        ad 	 * in the shutdown case is disgusting but partly necessary given
    659  1.166.2.1        ad 	 * how shutdown (barely) works.
    660  1.166.2.1        ad 	 */
    661  1.166.2.1        ad 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    662  1.166.2.1        ad 		/*
    663  1.166.2.1        ad 		 * After a panic, or during autoconfiguration,
    664  1.166.2.1        ad 		 * just give interrupts a chance, then just return;
    665  1.166.2.1        ad 		 * don't run any other procs or panic below,
    666  1.166.2.1        ad 		 * in case this is the idle process and already asleep.
    667  1.166.2.1        ad 		 */
    668  1.166.2.1        ad 		s = splhigh();
    669  1.166.2.1        ad 		splx(safepri);
    670  1.166.2.1        ad 		splx(s);
    671  1.166.2.1        ad 		if (mtx != NULL && relock == 0)
    672  1.166.2.1        ad 			mutex_exit(mtx);
    673  1.166.2.1        ad 		return (0);
    674  1.166.2.1        ad 	}
    675  1.166.2.1        ad 
    676  1.166.2.1        ad 	KASSERT(p != NULL);
    677  1.166.2.1        ad 	LOCK_ASSERT(mtx == NULL || mutex_owned(mtx));
    678  1.166.2.1        ad 
    679  1.166.2.1        ad #ifdef KTRACE
    680  1.166.2.1        ad 	if (KTRPOINT(p, KTR_CSW))
    681  1.166.2.1        ad 		ktrcsw(l, 1, 0);
    682  1.166.2.1        ad #endif
    683  1.166.2.1        ad 
    684  1.166.2.1        ad 	/*
    685  1.166.2.1        ad 	 * XXX We need to allocate the sadata_upcall structure here,
    686  1.166.2.1        ad 	 * XXX since we can't sleep while waiting for memory inside
    687  1.166.2.1        ad 	 * XXX sa_upcall().  It would be nice if we could safely
    688  1.166.2.1        ad 	 * XXX allocate the sadata_upcall structure on the stack, here.
    689  1.166.2.1        ad 	 */
    690  1.166.2.1        ad 	if (l->l_flag & L_SA) {
    691  1.166.2.1        ad 		sau = sadata_upcall_alloc(0);
    692  1.166.2.1        ad 	} else {
    693  1.166.2.1        ad 		sau = NULL;
    694  1.166.2.1        ad 	}
    695  1.166.2.1        ad 
    696  1.166.2.1        ad 	SCHED_LOCK(s);
    697  1.166.2.1        ad 
    698  1.166.2.1        ad #ifdef DIAGNOSTIC
    699  1.166.2.1        ad 	if (ident == NULL)
    700  1.166.2.1        ad 		panic("ltsleep: ident == NULL");
    701  1.166.2.1        ad 	if (l->l_stat != LSONPROC)
    702  1.166.2.1        ad 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    703  1.166.2.1        ad 	if (l->l_back != NULL)
    704  1.166.2.1        ad 		panic("ltsleep: p_back != NULL");
    705  1.166.2.1        ad #endif
    706  1.166.2.1        ad 
    707  1.166.2.1        ad 	l->l_wchan = ident;
    708  1.166.2.1        ad 	l->l_wmesg = wmesg;
    709  1.166.2.1        ad 	l->l_slptime = 0;
    710  1.166.2.1        ad 	l->l_priority = priority & PRIMASK;
    711  1.166.2.1        ad 	sig = 0;
    712  1.166.2.1        ad 
    713  1.166.2.1        ad 	qp = SLPQUE(ident);
    714  1.166.2.1        ad 	if (qp->sq_head == 0)
    715  1.166.2.1        ad 		qp->sq_head = l;
    716  1.166.2.1        ad 	else {
    717  1.166.2.1        ad 		*qp->sq_tailp = l;
    718  1.166.2.1        ad 	}
    719  1.166.2.1        ad 	*(qp->sq_tailp = &l->l_forw) = 0;
    720  1.166.2.1        ad 
    721  1.166.2.1        ad 	if (timo)
    722  1.166.2.1        ad 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    723  1.166.2.1        ad 
    724  1.166.2.1        ad 	if (mtx != NULL) {
    725  1.166.2.1        ad 		/*
    726  1.166.2.1        ad 		 * XXXAD Release the sched lock before the interlock, as it
    727  1.166.2.1        ad 		 * may be re-entered in turnstile_wakeup().  If someone on
    728  1.166.2.1        ad 		 * another CPU or from interrupt context tries to wake us
    729  1.166.2.1        ad 		 * up, they'll get a nasty surprise.
    730  1.166.2.1        ad 		 */
    731  1.166.2.1        ad 		SCHED_UNLOCK(s);
    732  1.166.2.1        ad 		mutex_exit(mtx);
    733  1.166.2.1        ad 		SCHED_LOCK(s);
    734  1.166.2.1        ad 		if (l->l_wchan == NULL) {
    735  1.166.2.1        ad 			catch = 0;
    736  1.166.2.1        ad 			SCHED_UNLOCK(s);
    737  1.166.2.1        ad 			goto resume;
    738  1.166.2.1        ad 		}
    739  1.166.2.1        ad 	}
    740  1.166.2.1        ad 
    741  1.166.2.1        ad 	/*
    742  1.166.2.1        ad 	 * We put ourselves on the sleep queue and start our timeout
    743  1.166.2.1        ad 	 * before calling CURSIG, as we could stop there, and a wakeup
    744  1.166.2.1        ad 	 * or a SIGCONT (or both) could occur while we were stopped.
    745  1.166.2.1        ad 	 * A SIGCONT would cause us to be marked as SSLEEP
    746  1.166.2.1        ad 	 * without resuming us, thus we must be ready for sleep
    747  1.166.2.1        ad 	 * when CURSIG is called.  If the wakeup happens while we're
    748  1.166.2.1        ad 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    749  1.166.2.1        ad 	 */
    750  1.166.2.1        ad 	if (catch) {
    751  1.166.2.1        ad 		l->l_flag |= L_SINTR;
    752  1.166.2.1        ad 		if (((sig = CURSIG(l)) != 0) ||
    753  1.166.2.1        ad 		    ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
    754  1.166.2.1        ad 			if (l->l_wchan != NULL)
    755  1.166.2.1        ad 				unsleep(l);
    756  1.166.2.1        ad 			l->l_stat = LSONPROC;
    757  1.166.2.1        ad 			SCHED_UNLOCK(s);
    758  1.166.2.1        ad 			goto resume;
    759  1.166.2.1        ad 		}
    760  1.166.2.1        ad 		if (l->l_wchan == NULL) {
    761  1.166.2.1        ad 			catch = 0;
    762  1.166.2.1        ad 			SCHED_UNLOCK(s);
    763  1.166.2.1        ad 			goto resume;
    764  1.166.2.1        ad 		}
    765  1.166.2.1        ad 	} else
    766  1.166.2.1        ad 		sig = 0;
    767  1.166.2.1        ad 
    768  1.166.2.1        ad 	l->l_stat = LSSLEEP;
    769  1.166.2.1        ad 	p->p_nrlwps--;
    770  1.166.2.1        ad 	p->p_stats->p_ru.ru_nvcsw++;
    771  1.166.2.1        ad 	SCHED_ASSERT_LOCKED();
    772  1.166.2.1        ad 	if (l->l_flag & L_SA)
    773  1.166.2.1        ad 		sa_switch(l, sau, SA_UPCALL_BLOCKED);
    774  1.166.2.1        ad 	else
    775  1.166.2.1        ad 		mi_switch(l, NULL);
    776  1.166.2.1        ad 
    777  1.166.2.1        ad #if	defined(DDB) && !defined(GPROF) && !defined(sun2) && !defined(__vax__)
    778  1.166.2.1        ad 	/* handy breakpoint location after process "wakes" */
    779  1.166.2.1        ad 	__asm(".globl bpendmtsleep\nbpendmtsleep:");
    780  1.166.2.1        ad #endif
    781  1.166.2.1        ad 
    782  1.166.2.1        ad 	/*
    783  1.166.2.1        ad 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    784  1.166.2.1        ad 	 * either setrunnable() or awaken().
    785  1.166.2.1        ad 	 */
    786  1.166.2.1        ad 
    787  1.166.2.1        ad 	SCHED_ASSERT_UNLOCKED();
    788  1.166.2.1        ad 	splx(s);
    789  1.166.2.1        ad 
    790  1.166.2.1        ad  resume:
    791  1.166.2.1        ad 	KDASSERT(l->l_cpu != NULL);
    792  1.166.2.1        ad 	KDASSERT(l->l_cpu == curcpu());
    793  1.166.2.1        ad 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    794  1.166.2.1        ad 
    795  1.166.2.1        ad 	l->l_flag &= ~L_SINTR;
    796  1.166.2.1        ad 	if (l->l_flag & L_TIMEOUT) {
    797  1.166.2.1        ad 		l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
    798  1.166.2.1        ad 		if (sig == 0) {
    799  1.166.2.1        ad #ifdef KTRACE
    800  1.166.2.1        ad 			if (KTRPOINT(p, KTR_CSW))
    801  1.166.2.1        ad 				ktrcsw(l, 0, 0);
    802  1.166.2.1        ad #endif
    803  1.166.2.1        ad 			if (relock && mtx != NULL)
    804  1.166.2.1        ad 				mutex_enter(mtx);
    805  1.166.2.1        ad 			return (EWOULDBLOCK);
    806  1.166.2.1        ad 		}
    807  1.166.2.1        ad 	} else if (timo)
    808  1.166.2.1        ad 		callout_stop(&l->l_tsleep_ch);
    809  1.166.2.1        ad 
    810  1.166.2.1        ad 	if (catch) {
    811  1.166.2.1        ad 		const int cancelled = l->l_flag & L_CANCELLED;
    812  1.166.2.1        ad 		l->l_flag &= ~L_CANCELLED;
    813  1.166.2.1        ad 		if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
    814  1.166.2.1        ad #ifdef KTRACE
    815  1.166.2.1        ad 			if (KTRPOINT(p, KTR_CSW))
    816  1.166.2.1        ad 				ktrcsw(l, 0, 0);
    817  1.166.2.1        ad #endif
    818  1.166.2.1        ad 			if (relock && mtx != NULL)
    819  1.166.2.1        ad 				mutex_enter(mtx);
    820  1.166.2.1        ad 			/*
    821  1.166.2.1        ad 			 * If this sleep was canceled, don't let the syscall
    822  1.166.2.1        ad 			 * restart.
    823  1.166.2.1        ad 			 */
    824  1.166.2.1        ad 			if (cancelled ||
    825  1.166.2.1        ad 			    (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    826  1.166.2.1        ad 				return (EINTR);
    827  1.166.2.1        ad 			return (ERESTART);
    828  1.166.2.1        ad 		}
    829  1.166.2.1        ad 	}
    830  1.166.2.1        ad 
    831  1.166.2.1        ad #ifdef KTRACE
    832  1.166.2.1        ad 	if (KTRPOINT(p, KTR_CSW))
    833  1.166.2.1        ad 		ktrcsw(l, 0, 0);
    834  1.166.2.1        ad #endif
    835  1.166.2.1        ad 	if (relock && mtx != NULL)
    836  1.166.2.1        ad 		mutex_enter(mtx);
    837  1.166.2.1        ad 
    838  1.166.2.1        ad 	/* XXXNJW this is very much a kluge.
    839  1.166.2.1        ad 	 * revisit. a better way of preventing looping/hanging syscalls like
    840  1.166.2.1        ad 	 * wait4() and _lwp_wait() from wedging an exiting process
    841  1.166.2.1        ad 	 * would be preferred.
    842  1.166.2.1        ad 	 */
    843  1.166.2.1        ad 	if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
    844  1.166.2.1        ad 		return (EINTR);
    845  1.166.2.1        ad 	return (0);
    846  1.166.2.1        ad }
    847  1.166.2.1        ad 
    848       1.26       cgd /*
    849       1.26       cgd  * Implement timeout for tsleep.
    850       1.26       cgd  * If process hasn't been awakened (wchan non-zero),
    851       1.26       cgd  * set timeout flag and undo the sleep.  If proc
    852       1.26       cgd  * is stopped, just unsleep so it will remain stopped.
    853       1.26       cgd  */
    854       1.26       cgd void
    855       1.77   thorpej endtsleep(void *arg)
    856       1.26       cgd {
    857      1.122   thorpej 	struct lwp *l;
    858       1.26       cgd 	int s;
    859       1.26       cgd 
    860      1.122   thorpej 	l = (struct lwp *)arg;
    861       1.83   thorpej 	SCHED_LOCK(s);
    862      1.122   thorpej 	if (l->l_wchan) {
    863      1.122   thorpej 		if (l->l_stat == LSSLEEP)
    864      1.122   thorpej 			setrunnable(l);
    865       1.26       cgd 		else
    866      1.122   thorpej 			unsleep(l);
    867      1.122   thorpej 		l->l_flag |= L_TIMEOUT;
    868       1.26       cgd 	}
    869       1.83   thorpej 	SCHED_UNLOCK(s);
    870       1.26       cgd }
    871       1.26       cgd 
    872       1.26       cgd /*
    873       1.26       cgd  * Remove a process from its wait queue
    874       1.26       cgd  */
    875       1.26       cgd void
    876      1.122   thorpej unsleep(struct lwp *l)
    877       1.26       cgd {
    878       1.71  augustss 	struct slpque *qp;
    879      1.122   thorpej 	struct lwp **hp;
    880       1.26       cgd 
    881       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    882       1.83   thorpej 
    883      1.122   thorpej 	if (l->l_wchan) {
    884      1.122   thorpej 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    885      1.122   thorpej 		while (*hp != l)
    886      1.122   thorpej 			hp = &(*hp)->l_forw;
    887      1.122   thorpej 		*hp = l->l_forw;
    888      1.122   thorpej 		if (qp->sq_tailp == &l->l_forw)
    889       1.26       cgd 			qp->sq_tailp = hp;
    890      1.122   thorpej 		l->l_wchan = 0;
    891       1.26       cgd 	}
    892       1.26       cgd }
    893       1.26       cgd 
    894      1.158     perry inline void
    895      1.139        cl sa_awaken(struct lwp *l)
    896      1.139        cl {
    897      1.147     perry 
    898      1.139        cl 	SCHED_ASSERT_LOCKED();
    899      1.139        cl 
    900      1.142        cl 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    901      1.139        cl 		l->l_flag &= ~L_SA_IDLE;
    902      1.139        cl }
    903      1.139        cl 
    904       1.26       cgd /*
    905       1.63   thorpej  * Optimized-for-wakeup() version of setrunnable().
    906       1.63   thorpej  */
    907      1.158     perry inline void
    908      1.122   thorpej awaken(struct lwp *l)
    909       1.63   thorpej {
    910       1.63   thorpej 
    911       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    912      1.130   nathanw 
    913      1.139        cl 	if (l->l_proc->p_sa)
    914      1.139        cl 		sa_awaken(l);
    915      1.139        cl 
    916      1.122   thorpej 	if (l->l_slptime > 1)
    917      1.122   thorpej 		updatepri(l);
    918      1.122   thorpej 	l->l_slptime = 0;
    919      1.122   thorpej 	l->l_stat = LSRUN;
    920      1.122   thorpej 	l->l_proc->p_nrlwps++;
    921       1.93    bouyer 	/*
    922       1.93    bouyer 	 * Since curpriority is a user priority, p->p_priority
    923      1.119   thorpej 	 * is always better than curpriority on the last CPU on
    924      1.119   thorpej 	 * which it ran.
    925      1.118   thorpej 	 *
    926      1.119   thorpej 	 * XXXSMP See affinity comment in resched_proc().
    927       1.93    bouyer 	 */
    928      1.122   thorpej 	if (l->l_flag & L_INMEM) {
    929      1.122   thorpej 		setrunqueue(l);
    930      1.122   thorpej 		KASSERT(l->l_cpu != NULL);
    931      1.122   thorpej 		need_resched(l->l_cpu);
    932       1.93    bouyer 	} else
    933       1.93    bouyer 		sched_wakeup(&proc0);
    934       1.83   thorpej }
    935       1.83   thorpej 
    936       1.83   thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    937       1.83   thorpej void
    938       1.83   thorpej sched_unlock_idle(void)
    939       1.83   thorpej {
    940       1.83   thorpej 
    941       1.83   thorpej 	simple_unlock(&sched_lock);
    942       1.63   thorpej }
    943       1.63   thorpej 
    944       1.83   thorpej void
    945       1.83   thorpej sched_lock_idle(void)
    946       1.83   thorpej {
    947       1.83   thorpej 
    948       1.83   thorpej 	simple_lock(&sched_lock);
    949       1.83   thorpej }
    950       1.83   thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
    951       1.83   thorpej 
    952       1.63   thorpej /*
    953       1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    954       1.26       cgd  */
    955       1.83   thorpej 
    956       1.26       cgd void
    957      1.158     perry wakeup(volatile const void *ident)
    958       1.26       cgd {
    959       1.83   thorpej 	int s;
    960       1.83   thorpej 
    961       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
    962       1.83   thorpej 
    963       1.83   thorpej 	SCHED_LOCK(s);
    964       1.83   thorpej 	sched_wakeup(ident);
    965       1.83   thorpej 	SCHED_UNLOCK(s);
    966       1.83   thorpej }
    967       1.83   thorpej 
    968       1.83   thorpej void
    969      1.158     perry sched_wakeup(volatile const void *ident)
    970       1.83   thorpej {
    971       1.71  augustss 	struct slpque *qp;
    972      1.122   thorpej 	struct lwp *l, **q;
    973       1.26       cgd 
    974       1.83   thorpej 	SCHED_ASSERT_LOCKED();
    975       1.77   thorpej 
    976       1.73   thorpej 	qp = SLPQUE(ident);
    977       1.77   thorpej  restart:
    978      1.122   thorpej 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    979       1.26       cgd #ifdef DIAGNOSTIC
    980      1.130   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
    981      1.122   thorpej 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    982       1.26       cgd 			panic("wakeup");
    983       1.26       cgd #endif
    984      1.122   thorpej 		if (l->l_wchan == ident) {
    985      1.122   thorpej 			l->l_wchan = 0;
    986      1.122   thorpej 			*q = l->l_forw;
    987      1.122   thorpej 			if (qp->sq_tailp == &l->l_forw)
    988       1.26       cgd 				qp->sq_tailp = q;
    989      1.122   thorpej 			if (l->l_stat == LSSLEEP) {
    990      1.122   thorpej 				awaken(l);
    991       1.26       cgd 				goto restart;
    992       1.26       cgd 			}
    993       1.26       cgd 		} else
    994      1.122   thorpej 			q = &l->l_forw;
    995       1.63   thorpej 	}
    996       1.63   thorpej }
    997       1.63   thorpej 
    998       1.63   thorpej /*
    999       1.63   thorpej  * Make the highest priority process first in line on the specified
   1000       1.63   thorpej  * identifier runnable.
   1001       1.63   thorpej  */
   1002       1.63   thorpej void
   1003      1.158     perry wakeup_one(volatile const void *ident)
   1004       1.63   thorpej {
   1005       1.63   thorpej 	struct slpque *qp;
   1006      1.122   thorpej 	struct lwp *l, **q;
   1007      1.122   thorpej 	struct lwp *best_sleepp, **best_sleepq;
   1008      1.122   thorpej 	struct lwp *best_stopp, **best_stopq;
   1009       1.63   thorpej 	int s;
   1010       1.63   thorpej 
   1011       1.63   thorpej 	best_sleepp = best_stopp = NULL;
   1012       1.63   thorpej 	best_sleepq = best_stopq = NULL;
   1013       1.63   thorpej 
   1014       1.83   thorpej 	SCHED_LOCK(s);
   1015       1.77   thorpej 
   1016       1.73   thorpej 	qp = SLPQUE(ident);
   1017       1.77   thorpej 
   1018      1.122   thorpej 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
   1019       1.63   thorpej #ifdef DIAGNOSTIC
   1020      1.130   nathanw 		if (l->l_back || (l->l_stat != LSSLEEP &&
   1021      1.122   thorpej 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
   1022       1.63   thorpej 			panic("wakeup_one");
   1023       1.63   thorpej #endif
   1024      1.122   thorpej 		if (l->l_wchan == ident) {
   1025      1.122   thorpej 			if (l->l_stat == LSSLEEP) {
   1026       1.63   thorpej 				if (best_sleepp == NULL ||
   1027      1.122   thorpej 				    l->l_priority < best_sleepp->l_priority) {
   1028      1.122   thorpej 					best_sleepp = l;
   1029       1.63   thorpej 					best_sleepq = q;
   1030       1.63   thorpej 				}
   1031       1.63   thorpej 			} else {
   1032       1.63   thorpej 				if (best_stopp == NULL ||
   1033      1.122   thorpej 				    l->l_priority < best_stopp->l_priority) {
   1034      1.122   thorpej 				    	best_stopp = l;
   1035       1.63   thorpej 					best_stopq = q;
   1036       1.63   thorpej 				}
   1037       1.63   thorpej 			}
   1038       1.63   thorpej 		}
   1039       1.63   thorpej 	}
   1040       1.63   thorpej 
   1041       1.63   thorpej 	/*
   1042       1.63   thorpej 	 * Consider any SSLEEP process higher than the highest priority SSTOP
   1043       1.63   thorpej 	 * process.
   1044       1.63   thorpej 	 */
   1045       1.63   thorpej 	if (best_sleepp != NULL) {
   1046      1.122   thorpej 		l = best_sleepp;
   1047       1.63   thorpej 		q = best_sleepq;
   1048       1.63   thorpej 	} else {
   1049      1.122   thorpej 		l = best_stopp;
   1050       1.63   thorpej 		q = best_stopq;
   1051       1.63   thorpej 	}
   1052       1.63   thorpej 
   1053      1.122   thorpej 	if (l != NULL) {
   1054      1.122   thorpej 		l->l_wchan = NULL;
   1055      1.122   thorpej 		*q = l->l_forw;
   1056      1.122   thorpej 		if (qp->sq_tailp == &l->l_forw)
   1057       1.63   thorpej 			qp->sq_tailp = q;
   1058      1.122   thorpej 		if (l->l_stat == LSSLEEP)
   1059      1.122   thorpej 			awaken(l);
   1060       1.26       cgd 	}
   1061       1.83   thorpej 	SCHED_UNLOCK(s);
   1062      1.117  gmcgarry }
   1063      1.117  gmcgarry 
   1064      1.117  gmcgarry /*
   1065      1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
   1066      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
   1067      1.117  gmcgarry  * current process explicitly requests it (eg sched_yield(2) in compat code).
   1068      1.117  gmcgarry  */
   1069      1.117  gmcgarry void
   1070      1.117  gmcgarry yield(void)
   1071      1.117  gmcgarry {
   1072      1.122   thorpej 	struct lwp *l = curlwp;
   1073      1.117  gmcgarry 	int s;
   1074      1.117  gmcgarry 
   1075      1.117  gmcgarry 	SCHED_LOCK(s);
   1076      1.122   thorpej 	l->l_priority = l->l_usrpri;
   1077      1.122   thorpej 	l->l_stat = LSRUN;
   1078      1.122   thorpej 	setrunqueue(l);
   1079      1.122   thorpej 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
   1080      1.122   thorpej 	mi_switch(l, NULL);
   1081      1.117  gmcgarry 	SCHED_ASSERT_UNLOCKED();
   1082      1.117  gmcgarry 	splx(s);
   1083       1.69   thorpej }
   1084       1.69   thorpej 
   1085       1.69   thorpej /*
   1086       1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
   1087      1.156    rpaulo  * and performs an involuntary context switch.
   1088      1.156    rpaulo  * The 'more' ("more work to do") argument is boolean. Returning to userspace
   1089      1.156    rpaulo  * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
   1090      1.156    rpaulo  * This will be used to indicate to the SA subsystem that the LWP is
   1091      1.156    rpaulo  * not yet finished in the kernel.
   1092       1.69   thorpej  */
   1093      1.122   thorpej 
   1094       1.69   thorpej void
   1095      1.122   thorpej preempt(int more)
   1096       1.69   thorpej {
   1097      1.122   thorpej 	struct lwp *l = curlwp;
   1098      1.122   thorpej 	int r, s;
   1099       1.69   thorpej 
   1100       1.83   thorpej 	SCHED_LOCK(s);
   1101      1.122   thorpej 	l->l_priority = l->l_usrpri;
   1102      1.122   thorpej 	l->l_stat = LSRUN;
   1103      1.122   thorpej 	setrunqueue(l);
   1104      1.122   thorpej 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
   1105      1.122   thorpej 	r = mi_switch(l, NULL);
   1106       1.83   thorpej 	SCHED_ASSERT_UNLOCKED();
   1107       1.69   thorpej 	splx(s);
   1108      1.122   thorpej 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
   1109      1.122   thorpej 		sa_preempt(l);
   1110       1.69   thorpej }
   1111       1.69   thorpej 
   1112       1.69   thorpej /*
   1113       1.72   thorpej  * The machine independent parts of context switch.
   1114       1.86   thorpej  * Must be called at splsched() (no higher!) and with
   1115       1.86   thorpej  * the sched_lock held.
   1116      1.122   thorpej  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
   1117      1.122   thorpej  * the next lwp.
   1118      1.130   nathanw  *
   1119      1.122   thorpej  * Returns 1 if another process was actually run.
   1120       1.26       cgd  */
   1121      1.122   thorpej int
   1122      1.122   thorpej mi_switch(struct lwp *l, struct lwp *newl)
   1123       1.26       cgd {
   1124       1.76   thorpej 	struct schedstate_percpu *spc;
   1125       1.71  augustss 	struct rlimit *rlim;
   1126       1.71  augustss 	long s, u;
   1127       1.26       cgd 	struct timeval tv;
   1128      1.144      yamt 	int hold_count;
   1129      1.122   thorpej 	struct proc *p = l->l_proc;
   1130      1.122   thorpej 	int retval;
   1131       1.26       cgd 
   1132       1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1133       1.83   thorpej 
   1134       1.90  sommerfe 	/*
   1135       1.90  sommerfe 	 * Release the kernel_lock, as we are about to yield the CPU.
   1136       1.90  sommerfe 	 * The scheduler lock is still held until cpu_switch()
   1137       1.90  sommerfe 	 * selects a new process and removes it from the run queue.
   1138       1.90  sommerfe 	 */
   1139      1.144      yamt 	hold_count = KERNEL_LOCK_RELEASE_ALL();
   1140       1.85  sommerfe 
   1141      1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
   1142      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
   1143      1.113  gmcgarry 
   1144      1.122   thorpej 	spc = &l->l_cpu->ci_schedstate;
   1145       1.76   thorpej 
   1146      1.160       chs #ifdef LOCKDEBUG
   1147       1.82   thorpej 	spinlock_switchcheck();
   1148       1.81   thorpej 	simple_lock_switchcheck();
   1149       1.50      fvdl #endif
   1150       1.81   thorpej 
   1151       1.26       cgd 	/*
   1152       1.26       cgd 	 * Compute the amount of time during which the current
   1153      1.113  gmcgarry 	 * process was running.
   1154       1.26       cgd 	 */
   1155       1.26       cgd 	microtime(&tv);
   1156      1.130   nathanw 	u = p->p_rtime.tv_usec +
   1157      1.122   thorpej 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
   1158       1.73   thorpej 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
   1159       1.26       cgd 	if (u < 0) {
   1160       1.26       cgd 		u += 1000000;
   1161       1.26       cgd 		s--;
   1162       1.26       cgd 	} else if (u >= 1000000) {
   1163       1.26       cgd 		u -= 1000000;
   1164       1.26       cgd 		s++;
   1165       1.26       cgd 	}
   1166      1.114  gmcgarry 	p->p_rtime.tv_usec = u;
   1167      1.114  gmcgarry 	p->p_rtime.tv_sec = s;
   1168       1.26       cgd 
   1169       1.26       cgd 	/*
   1170      1.141       wiz 	 * Check if the process exceeds its CPU resource allocation.
   1171       1.26       cgd 	 * If over max, kill it.  In any case, if it has run for more
   1172       1.26       cgd 	 * than 10 minutes, reduce priority to give others a chance.
   1173       1.26       cgd 	 */
   1174       1.26       cgd 	rlim = &p->p_rlimit[RLIMIT_CPU];
   1175       1.26       cgd 	if (s >= rlim->rlim_cur) {
   1176      1.100  sommerfe 		/*
   1177      1.100  sommerfe 		 * XXXSMP: we're inside the scheduler lock perimeter;
   1178      1.100  sommerfe 		 * use sched_psignal.
   1179      1.100  sommerfe 		 */
   1180       1.26       cgd 		if (s >= rlim->rlim_max)
   1181      1.100  sommerfe 			sched_psignal(p, SIGKILL);
   1182       1.26       cgd 		else {
   1183      1.100  sommerfe 			sched_psignal(p, SIGXCPU);
   1184       1.26       cgd 			if (rlim->rlim_cur < rlim->rlim_max)
   1185       1.26       cgd 				rlim->rlim_cur += 5;
   1186       1.26       cgd 		}
   1187       1.26       cgd 	}
   1188      1.161      elad 	if (autonicetime && s > autonicetime &&
   1189      1.161      elad 	    kauth_cred_geteuid(p->p_cred) && p->p_nice == NZERO) {
   1190       1.39        ws 		p->p_nice = autoniceval + NZERO;
   1191      1.122   thorpej 		resetpriority(l);
   1192       1.26       cgd 	}
   1193       1.69   thorpej 
   1194       1.69   thorpej 	/*
   1195       1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
   1196       1.69   thorpej 	 * scheduling flags.
   1197       1.69   thorpej 	 */
   1198       1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
   1199      1.109      yamt 
   1200      1.109      yamt #ifdef KSTACK_CHECK_MAGIC
   1201      1.124      yamt 	kstack_check_magic(l);
   1202      1.109      yamt #endif
   1203       1.26       cgd 
   1204      1.113  gmcgarry 	/*
   1205      1.114  gmcgarry 	 * If we are using h/w performance counters, save context.
   1206      1.113  gmcgarry 	 */
   1207      1.114  gmcgarry #if PERFCTRS
   1208      1.166  christos 	if (PMC_ENABLED(p)) {
   1209      1.114  gmcgarry 		pmc_save_context(p);
   1210      1.166  christos 	}
   1211      1.110    briggs #endif
   1212      1.113  gmcgarry 
   1213      1.113  gmcgarry 	/*
   1214      1.114  gmcgarry 	 * Switch to the new current process.  When we
   1215      1.114  gmcgarry 	 * run again, we'll return back here.
   1216      1.113  gmcgarry 	 */
   1217      1.114  gmcgarry 	uvmexp.swtch++;
   1218      1.122   thorpej 	if (newl == NULL) {
   1219      1.122   thorpej 		retval = cpu_switch(l, NULL);
   1220      1.122   thorpej 	} else {
   1221      1.122   thorpej 		remrunqueue(newl);
   1222      1.122   thorpej 		cpu_switchto(l, newl);
   1223      1.122   thorpej 		retval = 0;
   1224      1.122   thorpej 	}
   1225      1.110    briggs 
   1226      1.110    briggs 	/*
   1227      1.114  gmcgarry 	 * If we are using h/w performance counters, restore context.
   1228       1.26       cgd 	 */
   1229      1.114  gmcgarry #if PERFCTRS
   1230      1.166  christos 	if (PMC_ENABLED(p)) {
   1231      1.114  gmcgarry 		pmc_restore_context(p);
   1232      1.166  christos 	}
   1233      1.114  gmcgarry #endif
   1234      1.110    briggs 
   1235      1.110    briggs 	/*
   1236      1.114  gmcgarry 	 * Make sure that MD code released the scheduler lock before
   1237      1.114  gmcgarry 	 * resuming us.
   1238      1.110    briggs 	 */
   1239      1.114  gmcgarry 	SCHED_ASSERT_UNLOCKED();
   1240       1.83   thorpej 
   1241       1.83   thorpej 	/*
   1242       1.76   thorpej 	 * We're running again; record our new start time.  We might
   1243       1.76   thorpej 	 * be running on a new CPU now, so don't use the cache'd
   1244       1.76   thorpej 	 * schedstate_percpu pointer.
   1245       1.76   thorpej 	 */
   1246      1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
   1247      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
   1248      1.122   thorpej 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
   1249       1.85  sommerfe 
   1250       1.90  sommerfe 	/*
   1251       1.90  sommerfe 	 * Reacquire the kernel_lock now.  We do this after we've
   1252       1.90  sommerfe 	 * released the scheduler lock to avoid deadlock, and before
   1253       1.90  sommerfe 	 * we reacquire the interlock.
   1254       1.90  sommerfe 	 */
   1255      1.144      yamt 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
   1256      1.122   thorpej 
   1257      1.122   thorpej 	return retval;
   1258       1.26       cgd }
   1259       1.26       cgd 
   1260       1.26       cgd /*
   1261       1.26       cgd  * Initialize the (doubly-linked) run queues
   1262       1.26       cgd  * to be empty.
   1263       1.26       cgd  */
   1264       1.26       cgd void
   1265       1.26       cgd rqinit()
   1266       1.26       cgd {
   1267       1.71  augustss 	int i;
   1268       1.26       cgd 
   1269       1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
   1270       1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
   1271      1.122   thorpej 		    (struct lwp *)&sched_qs[i];
   1272       1.26       cgd }
   1273       1.26       cgd 
   1274      1.158     perry static inline void
   1275      1.122   thorpej resched_proc(struct lwp *l, u_char pri)
   1276      1.119   thorpej {
   1277      1.119   thorpej 	struct cpu_info *ci;
   1278      1.119   thorpej 
   1279      1.119   thorpej 	/*
   1280      1.119   thorpej 	 * XXXSMP
   1281      1.122   thorpej 	 * Since l->l_cpu persists across a context switch,
   1282      1.119   thorpej 	 * this gives us *very weak* processor affinity, in
   1283      1.119   thorpej 	 * that we notify the CPU on which the process last
   1284      1.119   thorpej 	 * ran that it should try to switch.
   1285      1.119   thorpej 	 *
   1286      1.119   thorpej 	 * This does not guarantee that the process will run on
   1287      1.119   thorpej 	 * that processor next, because another processor might
   1288      1.119   thorpej 	 * grab it the next time it performs a context switch.
   1289      1.119   thorpej 	 *
   1290      1.119   thorpej 	 * This also does not handle the case where its last
   1291      1.119   thorpej 	 * CPU is running a higher-priority process, but every
   1292      1.119   thorpej 	 * other CPU is running a lower-priority process.  There
   1293      1.119   thorpej 	 * are ways to handle this situation, but they're not
   1294      1.119   thorpej 	 * currently very pretty, and we also need to weigh the
   1295      1.119   thorpej 	 * cost of moving a process from one CPU to another.
   1296      1.119   thorpej 	 *
   1297      1.119   thorpej 	 * XXXSMP
   1298      1.119   thorpej 	 * There is also the issue of locking the other CPU's
   1299      1.119   thorpej 	 * sched state, which we currently do not do.
   1300      1.119   thorpej 	 */
   1301      1.122   thorpej 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1302      1.121   thorpej 	if (pri < ci->ci_schedstate.spc_curpriority)
   1303      1.119   thorpej 		need_resched(ci);
   1304      1.119   thorpej }
   1305      1.119   thorpej 
   1306       1.26       cgd /*
   1307       1.26       cgd  * Change process state to be runnable,
   1308       1.26       cgd  * placing it on the run queue if it is in memory,
   1309       1.26       cgd  * and awakening the swapper if it isn't in memory.
   1310       1.26       cgd  */
   1311       1.26       cgd void
   1312      1.122   thorpej setrunnable(struct lwp *l)
   1313       1.26       cgd {
   1314      1.122   thorpej 	struct proc *p = l->l_proc;
   1315       1.26       cgd 
   1316       1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1317       1.83   thorpej 
   1318      1.122   thorpej 	switch (l->l_stat) {
   1319       1.26       cgd 	case 0:
   1320      1.122   thorpej 	case LSRUN:
   1321      1.122   thorpej 	case LSONPROC:
   1322      1.122   thorpej 	case LSZOMB:
   1323      1.122   thorpej 	case LSDEAD:
   1324       1.26       cgd 	default:
   1325      1.127      matt 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
   1326      1.122   thorpej 	case LSSTOP:
   1327       1.33   mycroft 		/*
   1328       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
   1329       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
   1330       1.33   mycroft 		 */
   1331       1.53   mycroft 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1332       1.99  jdolecek 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1333      1.101   thorpej 			CHECKSIGS(p);
   1334       1.53   mycroft 		}
   1335      1.122   thorpej 	case LSSLEEP:
   1336      1.122   thorpej 		unsleep(l);		/* e.g. when sending signals */
   1337       1.26       cgd 		break;
   1338       1.26       cgd 
   1339      1.122   thorpej 	case LSIDL:
   1340      1.122   thorpej 		break;
   1341      1.122   thorpej 	case LSSUSPENDED:
   1342       1.26       cgd 		break;
   1343       1.26       cgd 	}
   1344      1.139        cl 
   1345      1.139        cl 	if (l->l_proc->p_sa)
   1346      1.139        cl 		sa_awaken(l);
   1347      1.139        cl 
   1348      1.122   thorpej 	l->l_stat = LSRUN;
   1349      1.122   thorpej 	p->p_nrlwps++;
   1350      1.122   thorpej 
   1351      1.122   thorpej 	if (l->l_flag & L_INMEM)
   1352      1.122   thorpej 		setrunqueue(l);
   1353      1.122   thorpej 
   1354      1.122   thorpej 	if (l->l_slptime > 1)
   1355      1.122   thorpej 		updatepri(l);
   1356      1.122   thorpej 	l->l_slptime = 0;
   1357      1.122   thorpej 	if ((l->l_flag & L_INMEM) == 0)
   1358       1.83   thorpej 		sched_wakeup((caddr_t)&proc0);
   1359      1.119   thorpej 	else
   1360      1.122   thorpej 		resched_proc(l, l->l_priority);
   1361       1.26       cgd }
   1362       1.26       cgd 
   1363       1.26       cgd /*
   1364       1.26       cgd  * Compute the priority of a process when running in user mode.
   1365       1.26       cgd  * Arrange to reschedule if the resulting priority is better
   1366       1.26       cgd  * than that of the current process.
   1367       1.26       cgd  */
   1368       1.26       cgd void
   1369      1.122   thorpej resetpriority(struct lwp *l)
   1370       1.26       cgd {
   1371       1.71  augustss 	unsigned int newpriority;
   1372      1.122   thorpej 	struct proc *p = l->l_proc;
   1373       1.26       cgd 
   1374       1.83   thorpej 	SCHED_ASSERT_LOCKED();
   1375       1.83   thorpej 
   1376      1.153      yamt 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
   1377      1.122   thorpej 			NICE_WEIGHT * (p->p_nice - NZERO);
   1378       1.26       cgd 	newpriority = min(newpriority, MAXPRI);
   1379      1.122   thorpej 	l->l_usrpri = newpriority;
   1380      1.122   thorpej 	resched_proc(l, l->l_usrpri);
   1381      1.122   thorpej }
   1382      1.122   thorpej 
   1383      1.130   nathanw /*
   1384      1.122   thorpej  * Recompute priority for all LWPs in a process.
   1385      1.122   thorpej  */
   1386      1.122   thorpej void
   1387      1.122   thorpej resetprocpriority(struct proc *p)
   1388      1.122   thorpej {
   1389      1.122   thorpej 	struct lwp *l;
   1390      1.122   thorpej 
   1391      1.122   thorpej 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1392      1.122   thorpej 	    resetpriority(l);
   1393       1.55      ross }
   1394       1.55      ross 
   1395       1.55      ross /*
   1396       1.56      ross  * We adjust the priority of the current process.  The priority of a process
   1397      1.141       wiz  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
   1398       1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1399       1.56      ross  * will compute a different value each time p_estcpu increases. This can
   1400       1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1401      1.141       wiz  * queue will not change.  The CPU usage estimator ramps up quite quickly
   1402       1.56      ross  * when the process is running (linearly), and decays away exponentially, at
   1403       1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
   1404       1.80   nathanw  * principle is that the system will 90% forget that the process used a lot
   1405       1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1406       1.56      ross  * processes which haven't run much recently, and to round-robin among other
   1407       1.56      ross  * processes.
   1408       1.55      ross  */
   1409       1.55      ross 
   1410       1.55      ross void
   1411      1.122   thorpej schedclock(struct lwp *l)
   1412       1.55      ross {
   1413      1.122   thorpej 	struct proc *p = l->l_proc;
   1414       1.83   thorpej 	int s;
   1415       1.77   thorpej 
   1416      1.153      yamt 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
   1417       1.83   thorpej 	SCHED_LOCK(s);
   1418      1.122   thorpej 	resetpriority(l);
   1419       1.83   thorpej 	SCHED_UNLOCK(s);
   1420      1.130   nathanw 
   1421      1.122   thorpej 	if (l->l_priority >= PUSER)
   1422      1.122   thorpej 		l->l_priority = l->l_usrpri;
   1423       1.26       cgd }
   1424       1.94    bouyer 
   1425       1.94    bouyer void
   1426       1.94    bouyer suspendsched()
   1427       1.94    bouyer {
   1428      1.122   thorpej 	struct lwp *l;
   1429       1.97     enami 	int s;
   1430       1.94    bouyer 
   1431       1.94    bouyer 	/*
   1432      1.130   nathanw 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1433      1.122   thorpej 	 * LSSUSPENDED.
   1434       1.94    bouyer 	 */
   1435  1.166.2.1        ad 	mutex_enter(&alllwp_mutex);
   1436       1.95   thorpej 	SCHED_LOCK(s);
   1437      1.122   thorpej 	LIST_FOREACH(l, &alllwp, l_list) {
   1438      1.122   thorpej 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1439       1.94    bouyer 			continue;
   1440      1.122   thorpej 
   1441      1.122   thorpej 		switch (l->l_stat) {
   1442      1.122   thorpej 		case LSRUN:
   1443      1.122   thorpej 			l->l_proc->p_nrlwps--;
   1444      1.122   thorpej 			if ((l->l_flag & L_INMEM) != 0)
   1445      1.122   thorpej 				remrunqueue(l);
   1446       1.97     enami 			/* FALLTHROUGH */
   1447      1.122   thorpej 		case LSSLEEP:
   1448      1.122   thorpej 			l->l_stat = LSSUSPENDED;
   1449       1.97     enami 			break;
   1450      1.122   thorpej 		case LSONPROC:
   1451       1.97     enami 			/*
   1452       1.97     enami 			 * XXX SMP: we need to deal with processes on
   1453       1.97     enami 			 * others CPU !
   1454       1.97     enami 			 */
   1455       1.97     enami 			break;
   1456       1.97     enami 		default:
   1457       1.97     enami 			break;
   1458       1.94    bouyer 		}
   1459       1.94    bouyer 	}
   1460       1.94    bouyer 	SCHED_UNLOCK(s);
   1461  1.166.2.1        ad 	mutex_exit(&alllwp_mutex);
   1462       1.94    bouyer }
   1463      1.113  gmcgarry 
   1464      1.113  gmcgarry /*
   1465      1.151      yamt  * scheduler_fork_hook:
   1466      1.151      yamt  *
   1467      1.151      yamt  *	Inherit the parent's scheduler history.
   1468      1.151      yamt  */
   1469      1.151      yamt void
   1470      1.151      yamt scheduler_fork_hook(struct proc *parent, struct proc *child)
   1471      1.151      yamt {
   1472      1.151      yamt 
   1473      1.157      yamt 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
   1474      1.157      yamt 	child->p_forktime = schedcpu_ticks;
   1475      1.151      yamt }
   1476      1.151      yamt 
   1477      1.151      yamt /*
   1478      1.151      yamt  * scheduler_wait_hook:
   1479      1.151      yamt  *
   1480      1.151      yamt  *	Chargeback parents for the sins of their children.
   1481      1.151      yamt  */
   1482      1.151      yamt void
   1483      1.151      yamt scheduler_wait_hook(struct proc *parent, struct proc *child)
   1484      1.151      yamt {
   1485      1.157      yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
   1486      1.157      yamt 	fixpt_t estcpu;
   1487      1.151      yamt 
   1488      1.151      yamt 	/* XXX Only if parent != init?? */
   1489      1.157      yamt 
   1490      1.157      yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
   1491      1.157      yamt 	    schedcpu_ticks - child->p_forktime);
   1492      1.157      yamt 	if (child->p_estcpu > estcpu) {
   1493      1.157      yamt 		parent->p_estcpu =
   1494      1.157      yamt 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
   1495      1.157      yamt 	}
   1496      1.151      yamt }
   1497      1.151      yamt 
   1498      1.151      yamt /*
   1499  1.166.2.1        ad  * XXXAD Scale an LWP priority (possibly a user priority) to a kernel one.
   1500  1.166.2.1        ad  * This is a hack; think of something better.
   1501  1.166.2.1        ad  */
   1502  1.166.2.1        ad int
   1503  1.166.2.1        ad sched_kpri(struct lwp *l)
   1504  1.166.2.1        ad {
   1505  1.166.2.1        ad 	const int obase = PUSER;
   1506  1.166.2.1        ad 	const int ospan = MAXPRI - obase;
   1507  1.166.2.1        ad 	const int nbase = PRIBIO;
   1508  1.166.2.1        ad 	const int nspan = PUSER - nbase;
   1509  1.166.2.1        ad 
   1510  1.166.2.1        ad 	if (l->l_priority < obase)
   1511  1.166.2.1        ad 		return (l->l_priority);
   1512  1.166.2.1        ad 
   1513  1.166.2.1        ad 	return (l->l_priority - obase) * nspan / ospan + nbase;
   1514  1.166.2.1        ad }
   1515  1.166.2.1        ad 
   1516  1.166.2.1        ad /*
   1517      1.113  gmcgarry  * Low-level routines to access the run queue.  Optimised assembler
   1518      1.113  gmcgarry  * routines can override these.
   1519      1.113  gmcgarry  */
   1520      1.113  gmcgarry 
   1521      1.113  gmcgarry #ifndef __HAVE_MD_RUNQUEUE
   1522      1.115  nisimura 
   1523      1.130   nathanw /*
   1524      1.134      matt  * On some architectures, it's faster to use a MSB ordering for the priorites
   1525      1.134      matt  * than the traditional LSB ordering.
   1526      1.134      matt  */
   1527      1.134      matt #ifdef __HAVE_BIGENDIAN_BITOPS
   1528      1.134      matt #define	RQMASK(n) (0x80000000 >> (n))
   1529      1.134      matt #else
   1530      1.134      matt #define	RQMASK(n) (0x00000001 << (n))
   1531      1.134      matt #endif
   1532      1.134      matt 
   1533      1.134      matt /*
   1534      1.115  nisimura  * The primitives that manipulate the run queues.  whichqs tells which
   1535      1.115  nisimura  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1536      1.115  nisimura  * into queues, remrunqueue removes them from queues.  The running process is
   1537      1.115  nisimura  * on no queue, other processes are on a queue related to p->p_priority,
   1538      1.115  nisimura  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1539      1.115  nisimura  * available queues.
   1540      1.130   nathanw  */
   1541      1.113  gmcgarry 
   1542      1.146      matt #ifdef RQDEBUG
   1543      1.146      matt static void
   1544      1.146      matt checkrunqueue(int whichq, struct lwp *l)
   1545      1.146      matt {
   1546      1.146      matt 	const struct prochd * const rq = &sched_qs[whichq];
   1547      1.146      matt 	struct lwp *l2;
   1548      1.146      matt 	int found = 0;
   1549      1.146      matt 	int die = 0;
   1550      1.146      matt 	int empty = 1;
   1551      1.164  christos 	for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
   1552      1.146      matt 		if (l2->l_stat != LSRUN) {
   1553      1.146      matt 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1554      1.146      matt 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1555      1.146      matt 		}
   1556      1.146      matt 		if (l2->l_back->l_forw != l2) {
   1557      1.146      matt 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1558      1.146      matt 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1559      1.146      matt 			    l2->l_back->l_forw);
   1560      1.146      matt 			die = 1;
   1561      1.146      matt 		}
   1562      1.146      matt 		if (l2->l_forw->l_back != l2) {
   1563      1.146      matt 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1564      1.146      matt 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1565      1.146      matt 			    l2->l_forw->l_back);
   1566      1.146      matt 			die = 1;
   1567      1.146      matt 		}
   1568      1.146      matt 		if (l2 == l)
   1569      1.146      matt 			found = 1;
   1570      1.146      matt 		empty = 0;
   1571      1.146      matt 	}
   1572      1.146      matt 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1573      1.146      matt 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1574      1.146      matt 		    whichq, rq);
   1575      1.146      matt 		die = 1;
   1576      1.146      matt 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1577      1.146      matt 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1578      1.146      matt 		    "run-queue %p\n", whichq, rq);
   1579      1.146      matt 		die = 1;
   1580      1.146      matt 	}
   1581      1.146      matt 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1582      1.146      matt 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1583      1.146      matt 		    whichq, l);
   1584      1.146      matt 		die = 1;
   1585      1.146      matt 	}
   1586      1.146      matt 	if (l != NULL && empty) {
   1587      1.146      matt 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1588      1.146      matt 		    "active lwp %p\n", whichq, rq, l);
   1589      1.146      matt 		die = 1;
   1590      1.146      matt 	}
   1591      1.146      matt 	if (l != NULL && !found) {
   1592      1.146      matt 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1593      1.146      matt 		    whichq, l, rq);
   1594      1.146      matt 		die = 1;
   1595      1.146      matt 	}
   1596      1.146      matt 	if (die)
   1597      1.146      matt 		panic("checkrunqueue: inconsistency found");
   1598      1.146      matt }
   1599      1.146      matt #endif /* RQDEBUG */
   1600      1.146      matt 
   1601      1.113  gmcgarry void
   1602      1.122   thorpej setrunqueue(struct lwp *l)
   1603      1.113  gmcgarry {
   1604      1.113  gmcgarry 	struct prochd *rq;
   1605      1.122   thorpej 	struct lwp *prev;
   1606      1.152      yamt 	const int whichq = l->l_priority / PPQ;
   1607      1.113  gmcgarry 
   1608      1.146      matt #ifdef RQDEBUG
   1609      1.146      matt 	checkrunqueue(whichq, NULL);
   1610      1.146      matt #endif
   1611      1.113  gmcgarry #ifdef DIAGNOSTIC
   1612      1.122   thorpej 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1613      1.113  gmcgarry 		panic("setrunqueue");
   1614      1.113  gmcgarry #endif
   1615      1.134      matt 	sched_whichqs |= RQMASK(whichq);
   1616      1.113  gmcgarry 	rq = &sched_qs[whichq];
   1617      1.113  gmcgarry 	prev = rq->ph_rlink;
   1618      1.122   thorpej 	l->l_forw = (struct lwp *)rq;
   1619      1.122   thorpej 	rq->ph_rlink = l;
   1620      1.122   thorpej 	prev->l_forw = l;
   1621      1.122   thorpej 	l->l_back = prev;
   1622      1.146      matt #ifdef RQDEBUG
   1623      1.146      matt 	checkrunqueue(whichq, l);
   1624      1.146      matt #endif
   1625      1.113  gmcgarry }
   1626      1.113  gmcgarry 
   1627      1.113  gmcgarry void
   1628      1.122   thorpej remrunqueue(struct lwp *l)
   1629      1.113  gmcgarry {
   1630      1.122   thorpej 	struct lwp *prev, *next;
   1631      1.152      yamt 	const int whichq = l->l_priority / PPQ;
   1632      1.146      matt #ifdef RQDEBUG
   1633      1.146      matt 	checkrunqueue(whichq, l);
   1634      1.146      matt #endif
   1635      1.113  gmcgarry #ifdef DIAGNOSTIC
   1636      1.134      matt 	if (((sched_whichqs & RQMASK(whichq)) == 0))
   1637      1.146      matt 		panic("remrunqueue: bit %d not set", whichq);
   1638      1.113  gmcgarry #endif
   1639      1.122   thorpej 	prev = l->l_back;
   1640      1.122   thorpej 	l->l_back = NULL;
   1641      1.122   thorpej 	next = l->l_forw;
   1642      1.122   thorpej 	prev->l_forw = next;
   1643      1.122   thorpej 	next->l_back = prev;
   1644      1.113  gmcgarry 	if (prev == next)
   1645      1.134      matt 		sched_whichqs &= ~RQMASK(whichq);
   1646      1.146      matt #ifdef RQDEBUG
   1647      1.146      matt 	checkrunqueue(whichq, NULL);
   1648      1.146      matt #endif
   1649      1.113  gmcgarry }
   1650      1.113  gmcgarry 
   1651      1.134      matt #undef RQMASK
   1652      1.134      matt #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1653