kern_synch.c revision 1.166.2.6 1 1.166.2.6 ad /* $NetBSD: kern_synch.c,v 1.166.2.6 2006/11/18 21:39:22 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.166.2.2 ad * Copyright (c) 1999, 2000, 2004, 2006 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.166.2.2 ad * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 1.63 thorpej *
11 1.63 thorpej * Redistribution and use in source and binary forms, with or without
12 1.63 thorpej * modification, are permitted provided that the following conditions
13 1.63 thorpej * are met:
14 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.63 thorpej * notice, this list of conditions and the following disclaimer.
16 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.63 thorpej * documentation and/or other materials provided with the distribution.
19 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.63 thorpej * must display the following acknowledgement:
21 1.63 thorpej * This product includes software developed by the NetBSD
22 1.63 thorpej * Foundation, Inc. and its contributors.
23 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.63 thorpej * contributors may be used to endorse or promote products derived
25 1.63 thorpej * from this software without specific prior written permission.
26 1.63 thorpej *
27 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.63 thorpej */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.136 agc * 3. Neither the name of the University nor the names of its contributors
58 1.26 cgd * may be used to endorse or promote products derived from this software
59 1.26 cgd * without specific prior written permission.
60 1.26 cgd *
61 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 1.26 cgd * SUCH DAMAGE.
72 1.26 cgd *
73 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
74 1.26 cgd */
75 1.106 lukem
76 1.106 lukem #include <sys/cdefs.h>
77 1.166.2.6 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.166.2.6 2006/11/18 21:39:22 ad Exp $");
78 1.48 mrg
79 1.52 jonathan #include "opt_ddb.h"
80 1.109 yamt #include "opt_kstack.h"
81 1.82 thorpej #include "opt_lockdebug.h"
82 1.83 thorpej #include "opt_multiprocessor.h"
83 1.110 briggs #include "opt_perfctrs.h"
84 1.26 cgd
85 1.166.2.2 ad #define __MUTEX_PRIVATE
86 1.166.2.2 ad
87 1.26 cgd #include <sys/param.h>
88 1.26 cgd #include <sys/systm.h>
89 1.68 thorpej #include <sys/callout.h>
90 1.26 cgd #include <sys/proc.h>
91 1.26 cgd #include <sys/kernel.h>
92 1.26 cgd #include <sys/buf.h>
93 1.111 briggs #if defined(PERFCTRS)
94 1.110 briggs #include <sys/pmc.h>
95 1.111 briggs #endif
96 1.26 cgd #include <sys/signalvar.h>
97 1.26 cgd #include <sys/resourcevar.h>
98 1.55 ross #include <sys/sched.h>
99 1.122 thorpej #include <sys/sa.h>
100 1.122 thorpej #include <sys/savar.h>
101 1.161 elad #include <sys/kauth.h>
102 1.166.2.2 ad #include <sys/sleepq.h>
103 1.166.2.2 ad #include <sys/lockdebug.h>
104 1.47 mrg
105 1.47 mrg #include <uvm/uvm_extern.h>
106 1.47 mrg
107 1.26 cgd #include <machine/cpu.h>
108 1.34 christos
109 1.26 cgd int lbolt; /* once a second sleep address */
110 1.88 sommerfe int rrticks; /* number of hardclock ticks per roundrobin() */
111 1.26 cgd
112 1.73 thorpej /*
113 1.73 thorpej * The global scheduler state.
114 1.73 thorpej */
115 1.166.2.4 ad kmutex_t sched_mutex; /* global sched state mutex */
116 1.166.2.2 ad struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
117 1.159 perry volatile uint32_t sched_whichqs; /* bitmap of non-empty queues */
118 1.34 christos
119 1.166.2.2 ad void schedcpu(void *);
120 1.166.2.2 ad void updatepri(struct lwp *);
121 1.166.2.2 ad void sa_awaken(struct lwp *);
122 1.63 thorpej
123 1.166.2.4 ad void sched_unsleep(struct lwp *);
124 1.166.2.4 ad void sched_changepri(struct lwp *, int);
125 1.166.2.4 ad
126 1.143 yamt struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
127 1.157 yamt static unsigned int schedcpu_ticks;
128 1.122 thorpej
129 1.166.2.4 ad syncobj_t sleep_syncobj = {
130 1.166.2.4 ad SOBJ_SLEEPQ_SORTED,
131 1.166.2.4 ad sleepq_unsleep,
132 1.166.2.4 ad sleepq_changepri
133 1.166.2.4 ad };
134 1.166.2.4 ad
135 1.166.2.4 ad syncobj_t sched_syncobj = {
136 1.166.2.4 ad SOBJ_SLEEPQ_SORTED,
137 1.166.2.4 ad sched_unsleep,
138 1.166.2.4 ad sched_changepri
139 1.166.2.4 ad };
140 1.166.2.4 ad
141 1.26 cgd /*
142 1.26 cgd * Force switch among equal priority processes every 100ms.
143 1.88 sommerfe * Called from hardclock every hz/10 == rrticks hardclock ticks.
144 1.26 cgd */
145 1.26 cgd /* ARGSUSED */
146 1.26 cgd void
147 1.89 sommerfe roundrobin(struct cpu_info *ci)
148 1.26 cgd {
149 1.89 sommerfe struct schedstate_percpu *spc = &ci->ci_schedstate;
150 1.26 cgd
151 1.88 sommerfe spc->spc_rrticks = rrticks;
152 1.130 nathanw
153 1.122 thorpej if (curlwp != NULL) {
154 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
155 1.69 thorpej /*
156 1.69 thorpej * The process has already been through a roundrobin
157 1.69 thorpej * without switching and may be hogging the CPU.
158 1.69 thorpej * Indicate that the process should yield.
159 1.69 thorpej */
160 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
161 1.69 thorpej } else
162 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
163 1.69 thorpej }
164 1.166.2.2 ad cpu_need_resched(curcpu());
165 1.26 cgd }
166 1.26 cgd
167 1.153 yamt #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
168 1.153 yamt #define NICE_WEIGHT 2 /* priorities per nice level */
169 1.153 yamt
170 1.153 yamt #define ESTCPU_SHIFT 11
171 1.153 yamt #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
172 1.153 yamt #define ESTCPULIM(e) min((e), ESTCPU_MAX)
173 1.153 yamt
174 1.26 cgd /*
175 1.26 cgd * Constants for digital decay and forget:
176 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
177 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
178 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
179 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
180 1.26 cgd *
181 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
182 1.26 cgd *
183 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
184 1.26 cgd * That is, the system wants to compute a value of decay such
185 1.26 cgd * that the following for loop:
186 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
187 1.26 cgd * p_estcpu *= decay;
188 1.26 cgd * will compute
189 1.26 cgd * p_estcpu *= 0.1;
190 1.26 cgd * for all values of loadavg:
191 1.26 cgd *
192 1.26 cgd * Mathematically this loop can be expressed by saying:
193 1.26 cgd * decay ** (5 * loadavg) ~= .1
194 1.26 cgd *
195 1.26 cgd * The system computes decay as:
196 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
197 1.26 cgd *
198 1.26 cgd * We wish to prove that the system's computation of decay
199 1.26 cgd * will always fulfill the equation:
200 1.26 cgd * decay ** (5 * loadavg) ~= .1
201 1.26 cgd *
202 1.26 cgd * If we compute b as:
203 1.26 cgd * b = 2 * loadavg
204 1.26 cgd * then
205 1.26 cgd * decay = b / (b + 1)
206 1.26 cgd *
207 1.26 cgd * We now need to prove two things:
208 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
209 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
210 1.130 nathanw *
211 1.26 cgd * Facts:
212 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
213 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
214 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
215 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
216 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
217 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
218 1.26 cgd * ln(.1) =~ -2.30
219 1.26 cgd *
220 1.26 cgd * Proof of (1):
221 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
222 1.26 cgd * solving for factor,
223 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
224 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
225 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
226 1.26 cgd *
227 1.26 cgd * Proof of (2):
228 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
229 1.26 cgd * solving for power,
230 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
231 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
232 1.26 cgd *
233 1.26 cgd * Actual power values for the implemented algorithm are as follows:
234 1.26 cgd * loadav: 1 2 3 4
235 1.26 cgd * power: 5.68 10.32 14.94 19.55
236 1.26 cgd */
237 1.26 cgd
238 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
239 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
240 1.153 yamt
241 1.153 yamt static fixpt_t
242 1.153 yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
243 1.153 yamt {
244 1.153 yamt
245 1.153 yamt if (estcpu == 0) {
246 1.153 yamt return 0;
247 1.153 yamt }
248 1.153 yamt
249 1.153 yamt #if !defined(_LP64)
250 1.153 yamt /* avoid 64bit arithmetics. */
251 1.153 yamt #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
252 1.153 yamt if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
253 1.153 yamt return estcpu * loadfac / (loadfac + FSCALE);
254 1.153 yamt }
255 1.153 yamt #endif /* !defined(_LP64) */
256 1.153 yamt
257 1.153 yamt return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
258 1.153 yamt }
259 1.26 cgd
260 1.157 yamt /*
261 1.157 yamt * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
262 1.157 yamt * sleeping for at least seven times the loadfactor will decay p_estcpu to
263 1.157 yamt * less than (1 << ESTCPU_SHIFT).
264 1.157 yamt *
265 1.157 yamt * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
266 1.157 yamt */
267 1.157 yamt static fixpt_t
268 1.157 yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
269 1.157 yamt {
270 1.157 yamt
271 1.157 yamt if ((n << FSHIFT) >= 7 * loadfac) {
272 1.157 yamt return 0;
273 1.157 yamt }
274 1.157 yamt
275 1.157 yamt while (estcpu != 0 && n > 1) {
276 1.157 yamt estcpu = decay_cpu(loadfac, estcpu);
277 1.157 yamt n--;
278 1.157 yamt }
279 1.157 yamt
280 1.157 yamt return estcpu;
281 1.157 yamt }
282 1.157 yamt
283 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
284 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
285 1.26 cgd
286 1.26 cgd /*
287 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
288 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
289 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
290 1.26 cgd *
291 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
292 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
293 1.26 cgd *
294 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
295 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
296 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
297 1.26 cgd */
298 1.26 cgd #define CCPU_SHIFT 11
299 1.26 cgd
300 1.26 cgd /*
301 1.26 cgd * Recompute process priorities, every hz ticks.
302 1.26 cgd */
303 1.26 cgd /* ARGSUSED */
304 1.26 cgd void
305 1.77 thorpej schedcpu(void *arg)
306 1.26 cgd {
307 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
308 1.166.2.2 ad struct rlimit *rlim;
309 1.122 thorpej struct lwp *l;
310 1.71 augustss struct proc *p;
311 1.122 thorpej int s, minslp;
312 1.66 ross int clkhz;
313 1.166.2.2 ad long runtm;
314 1.26 cgd
315 1.157 yamt schedcpu_ticks++;
316 1.157 yamt
317 1.166.2.1 ad mutex_enter(&proclist_mutex);
318 1.145 yamt PROCLIST_FOREACH(p, &allproc) {
319 1.26 cgd /*
320 1.166.2.2 ad * Increment time in/out of memory and sleep time (if
321 1.166.2.2 ad * sleeping). We ignore overflow; with 16-bit int's
322 1.26 cgd * (remember them?) overflow takes 45 days.
323 1.166.2.2 ad *
324 1.166.2.2 ad * XXXSMP Should create an activeproc list so that we
325 1.166.2.2 ad * don't touch every proc+LWP in the system on a regular
326 1.166.2.2 ad * basis. l->l_swtime/l->l_slptime can become deltas.
327 1.26 cgd */
328 1.122 thorpej minslp = 2;
329 1.166.2.2 ad runtm = 0;
330 1.166.2.2 ad mutex_enter(&p->p_smutex);
331 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
332 1.166.2.2 ad lwp_lock(l);
333 1.166.2.2 ad runtm += l->l_rtime.tv_sec;
334 1.122 thorpej l->l_swtime++;
335 1.130 nathanw if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
336 1.122 thorpej l->l_stat == LSSUSPENDED) {
337 1.122 thorpej l->l_slptime++;
338 1.122 thorpej minslp = min(minslp, l->l_slptime);
339 1.122 thorpej } else
340 1.122 thorpej minslp = 0;
341 1.166.2.2 ad lwp_unlock(l);
342 1.122 thorpej }
343 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
344 1.166.2.2 ad
345 1.166.2.2 ad /*
346 1.166.2.2 ad * Check if the process exceeds its CPU resource allocation.
347 1.166.2.2 ad * If over max, kill it. In any case, if it has run for more
348 1.166.2.2 ad * than autonicetime, reduce priority to give others a chance.
349 1.166.2.2 ad */
350 1.166.2.2 ad rlim = &p->p_rlimit[RLIMIT_CPU];
351 1.166.2.2 ad if (runtm >= rlim->rlim_cur) {
352 1.166.2.2 ad if (runtm >= rlim->rlim_max)
353 1.166.2.2 ad psignal(p, SIGKILL);
354 1.166.2.2 ad else {
355 1.166.2.2 ad psignal(p, SIGXCPU);
356 1.166.2.2 ad if (rlim->rlim_cur < rlim->rlim_max)
357 1.166.2.2 ad rlim->rlim_cur += 5;
358 1.166.2.2 ad }
359 1.166.2.2 ad }
360 1.166.2.2 ad if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
361 1.166.2.2 ad && kauth_cred_geteuid(p->p_cred)) {
362 1.166.2.2 ad p->p_nice = autoniceval + NZERO;
363 1.166.2.2 ad resetprocpriority(p);
364 1.166.2.2 ad }
365 1.166.2.2 ad
366 1.26 cgd /*
367 1.26 cgd * If the process has slept the entire second,
368 1.26 cgd * stop recalculating its priority until it wakes up.
369 1.26 cgd */
370 1.166.2.2 ad if (minslp > 1) {
371 1.166.2.2 ad mutex_exit(&p->p_smutex);
372 1.26 cgd continue;
373 1.166.2.2 ad }
374 1.166.2.4 ad s = splstatclock(); /* XXXSMP prevent state changes */
375 1.26 cgd /*
376 1.26 cgd * p_pctcpu is only for ps.
377 1.26 cgd */
378 1.66 ross clkhz = stathz != 0 ? stathz : hz;
379 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
380 1.66 ross p->p_pctcpu += (clkhz == 100)?
381 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
382 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
383 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
384 1.26 cgd #else
385 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
386 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
387 1.26 cgd #endif
388 1.26 cgd p->p_cpticks = 0;
389 1.153 yamt p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
390 1.120 pk splx(s); /* Done with the process CPU ticks update */
391 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
392 1.166.2.2 ad lwp_lock(l);
393 1.166.2.2 ad if (l->l_slptime > 1) {
394 1.166.2.2 ad lwp_unlock(l);
395 1.122 thorpej continue;
396 1.166.2.2 ad }
397 1.122 thorpej resetpriority(l);
398 1.122 thorpej if (l->l_priority >= PUSER) {
399 1.122 thorpej if (l->l_stat == LSRUN &&
400 1.122 thorpej (l->l_flag & L_INMEM) &&
401 1.122 thorpej (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
402 1.166.2.4 ad lwp_changepri(l, l->l_usrpri);
403 1.122 thorpej } else
404 1.122 thorpej l->l_priority = l->l_usrpri;
405 1.122 thorpej }
406 1.166.2.2 ad lwp_unlock(l);
407 1.26 cgd }
408 1.166.2.2 ad mutex_exit(&p->p_smutex);
409 1.26 cgd }
410 1.166.2.1 ad mutex_exit(&proclist_mutex);
411 1.47 mrg uvm_meter();
412 1.67 fvdl wakeup((caddr_t)&lbolt);
413 1.143 yamt callout_schedule(&schedcpu_ch, hz);
414 1.26 cgd }
415 1.26 cgd
416 1.26 cgd /*
417 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
418 1.26 cgd */
419 1.26 cgd void
420 1.122 thorpej updatepri(struct lwp *l)
421 1.26 cgd {
422 1.122 thorpej struct proc *p = l->l_proc;
423 1.83 thorpej fixpt_t loadfac;
424 1.83 thorpej
425 1.166.2.2 ad LOCK_ASSERT(lwp_locked(l, NULL));
426 1.157 yamt KASSERT(l->l_slptime > 1);
427 1.83 thorpej
428 1.83 thorpej loadfac = loadfactor(averunnable.ldavg[0]);
429 1.26 cgd
430 1.157 yamt l->l_slptime--; /* the first time was done in schedcpu */
431 1.157 yamt /* XXX NJWLWP */
432 1.166.2.2 ad /* XXXSMP occasionaly unlocked. */
433 1.157 yamt p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
434 1.122 thorpej resetpriority(l);
435 1.26 cgd }
436 1.26 cgd
437 1.26 cgd /*
438 1.166.2.2 ad * During autoconfiguration or after a panic, a sleep will simply lower the
439 1.166.2.2 ad * priority briefly to allow interrupts, then return. The priority to be
440 1.166.2.2 ad * used (safepri) is machine-dependent, thus this value is initialized and
441 1.166.2.2 ad * maintained in the machine-dependent layers. This priority will typically
442 1.166.2.2 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
443 1.166.2.2 ad * it can be made higher to block network software interrupts after panics.
444 1.26 cgd */
445 1.166.2.2 ad int safepri;
446 1.26 cgd
447 1.26 cgd /*
448 1.166.2.2 ad * ltsleep: see mtsleep() for comments.
449 1.26 cgd */
450 1.26 cgd int
451 1.166.2.2 ad ltsleep(wchan_t ident, int priority, const char *wmesg, int timo,
452 1.166.2.2 ad volatile struct simplelock *interlock)
453 1.26 cgd {
454 1.122 thorpej struct lwp *l = curlwp;
455 1.166.2.2 ad sleepq_t *sq;
456 1.166.2.2 ad int error;
457 1.26 cgd
458 1.166.2.2 ad if (sleepq_dontsleep(l)) {
459 1.166.2.2 ad (void)sleepq_abort(NULL, 0);
460 1.166.2.2 ad if ((priority & PNORELOCK) != 0)
461 1.77 thorpej simple_unlock(interlock);
462 1.166.2.2 ad return 0;
463 1.122 thorpej }
464 1.77 thorpej
465 1.166.2.4 ad sq = sleeptab_lookup(&sleeptab, ident);
466 1.166.2.4 ad
467 1.166.2.4 ad sleepq_enter(sq, priority & PRIMASK, ident, wmesg, timo,
468 1.166.2.4 ad priority & PCATCH, &sleep_syncobj);
469 1.77 thorpej
470 1.166.2.2 ad if (interlock != NULL) {
471 1.166.2.2 ad LOCK_ASSERT(simple_lock_held(interlock));
472 1.77 thorpej simple_unlock(interlock);
473 1.26 cgd }
474 1.126 pk
475 1.166.2.2 ad error = sleepq_block(sq, timo);
476 1.166.2.4 ad sleepq_unblock();
477 1.126 pk
478 1.166.2.2 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
479 1.166.2.2 ad simple_lock(interlock);
480 1.166.2.2 ad
481 1.166.2.2 ad return error;
482 1.26 cgd }
483 1.26 cgd
484 1.166.2.2 ad /*
485 1.166.2.2 ad * General sleep call. Suspends the current process until a wakeup is
486 1.166.2.2 ad * performed on the specified identifier. The process will then be made
487 1.166.2.2 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
488 1.166.2.2 ad * means no timeout). If pri includes PCATCH flag, signals are checked
489 1.166.2.2 ad * before and after sleeping, else signals are not checked. Returns 0 if
490 1.166.2.2 ad * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
491 1.166.2.2 ad * signal needs to be delivered, ERESTART is returned if the current system
492 1.166.2.2 ad * call should be restarted if possible, and EINTR is returned if the system
493 1.166.2.2 ad * call should be interrupted by the signal (return EINTR).
494 1.166.2.2 ad *
495 1.166.2.2 ad * The interlock is held until we are on a sleep queue. The interlock will
496 1.166.2.2 ad * be locked before returning back to the caller unless the PNORELOCK flag
497 1.166.2.2 ad * is specified, in which case the interlock will always be unlocked upon
498 1.166.2.2 ad * return.
499 1.166.2.2 ad */
500 1.166.2.1 ad int
501 1.166.2.2 ad mtsleep(wchan_t ident, int priority, const char *wmesg, int timo,
502 1.166.2.2 ad kmutex_t *mtx)
503 1.166.2.1 ad {
504 1.166.2.1 ad struct lwp *l = curlwp;
505 1.166.2.2 ad sleepq_t *sq;
506 1.166.2.2 ad int error;
507 1.166.2.1 ad
508 1.166.2.2 ad if (sleepq_dontsleep(l))
509 1.166.2.2 ad return sleepq_abort(mtx, priority & PNORELOCK);
510 1.166.2.1 ad
511 1.166.2.4 ad sq = sleeptab_lookup(&sleeptab, ident);
512 1.166.2.4 ad
513 1.166.2.4 ad sleepq_enter(sq, priority & PRIMASK, ident, wmesg, timo,
514 1.166.2.4 ad priority & PCATCH, &sleep_syncobj);
515 1.166.2.1 ad
516 1.166.2.1 ad if (mtx != NULL) {
517 1.166.2.2 ad LOCK_ASSERT(mutex_owned(mtx));
518 1.166.2.4 ad mutex_exit(mtx);
519 1.166.2.1 ad }
520 1.166.2.1 ad
521 1.166.2.2 ad error = sleepq_block(sq, timo);
522 1.166.2.4 ad sleepq_unblock();
523 1.166.2.1 ad
524 1.166.2.2 ad if (mtx != NULL && (priority & PNORELOCK) == 0)
525 1.166.2.1 ad mutex_enter(mtx);
526 1.166.2.2 ad
527 1.166.2.2 ad return error;
528 1.166.2.1 ad }
529 1.166.2.1 ad
530 1.26 cgd void
531 1.139 cl sa_awaken(struct lwp *l)
532 1.139 cl {
533 1.147 perry
534 1.166.2.2 ad LOCK_ASSERT(lwp_locked(l, NULL));
535 1.139 cl
536 1.142 cl if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
537 1.139 cl l->l_flag &= ~L_SA_IDLE;
538 1.139 cl }
539 1.139 cl
540 1.26 cgd /*
541 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
542 1.26 cgd */
543 1.26 cgd void
544 1.166.2.2 ad wakeup(wchan_t ident)
545 1.26 cgd {
546 1.166.2.2 ad sleepq_t *sq;
547 1.83 thorpej
548 1.166.2.2 ad if (cold)
549 1.166.2.2 ad return;
550 1.83 thorpej
551 1.166.2.4 ad sq = sleeptab_lookup(&sleeptab, ident);
552 1.166.2.5 ad sleepq_wake(sq, ident, (u_int)-1);
553 1.63 thorpej }
554 1.63 thorpej
555 1.63 thorpej /*
556 1.63 thorpej * Make the highest priority process first in line on the specified
557 1.63 thorpej * identifier runnable.
558 1.63 thorpej */
559 1.166.2.2 ad void
560 1.166.2.2 ad wakeup_one(wchan_t ident)
561 1.63 thorpej {
562 1.166.2.2 ad sleepq_t *sq;
563 1.77 thorpej
564 1.166.2.2 ad if (cold)
565 1.166.2.2 ad return;
566 1.166.2.2 ad
567 1.166.2.4 ad sq = sleeptab_lookup(&sleeptab, ident);
568 1.166.2.5 ad sleepq_wake(sq, ident, 1);
569 1.117 gmcgarry }
570 1.117 gmcgarry
571 1.166.2.2 ad
572 1.117 gmcgarry /*
573 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
574 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
575 1.117 gmcgarry * current process explicitly requests it (eg sched_yield(2) in compat code).
576 1.117 gmcgarry */
577 1.117 gmcgarry void
578 1.117 gmcgarry yield(void)
579 1.117 gmcgarry {
580 1.122 thorpej struct lwp *l = curlwp;
581 1.117 gmcgarry
582 1.166.2.2 ad lwp_lock(l);
583 1.166.2.2 ad if (l->l_stat == LSONPROC) {
584 1.166.2.3 ad KASSERT(lwp_locked(l, &sched_mutex));
585 1.166.2.2 ad l->l_priority = l->l_usrpri;
586 1.166.2.2 ad }
587 1.166.2.2 ad l->l_nvcsw++;
588 1.122 thorpej mi_switch(l, NULL);
589 1.69 thorpej }
590 1.69 thorpej
591 1.69 thorpej /*
592 1.69 thorpej * General preemption call. Puts the current process back on its run queue
593 1.156 rpaulo * and performs an involuntary context switch.
594 1.156 rpaulo * The 'more' ("more work to do") argument is boolean. Returning to userspace
595 1.156 rpaulo * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
596 1.156 rpaulo * This will be used to indicate to the SA subsystem that the LWP is
597 1.156 rpaulo * not yet finished in the kernel.
598 1.69 thorpej */
599 1.69 thorpej void
600 1.122 thorpej preempt(int more)
601 1.69 thorpej {
602 1.122 thorpej struct lwp *l = curlwp;
603 1.166.2.2 ad int r;
604 1.69 thorpej
605 1.166.2.2 ad lwp_lock(l);
606 1.166.2.2 ad if (l->l_stat == LSONPROC) {
607 1.166.2.3 ad KASSERT(lwp_locked(l, &sched_mutex));
608 1.166.2.2 ad l->l_priority = l->l_usrpri;
609 1.166.2.2 ad }
610 1.166.2.2 ad l->l_nivcsw++;
611 1.122 thorpej r = mi_switch(l, NULL);
612 1.166.2.4 ad if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
613 1.122 thorpej sa_preempt(l);
614 1.69 thorpej }
615 1.69 thorpej
616 1.69 thorpej /*
617 1.166.2.2 ad * The machine independent parts of context switch. Switch to "new"
618 1.166.2.2 ad * if non-NULL, otherwise let cpu_switch choose the next lwp.
619 1.130 nathanw *
620 1.122 thorpej * Returns 1 if another process was actually run.
621 1.26 cgd */
622 1.122 thorpej int
623 1.122 thorpej mi_switch(struct lwp *l, struct lwp *newl)
624 1.26 cgd {
625 1.76 thorpej struct schedstate_percpu *spc;
626 1.26 cgd struct timeval tv;
627 1.144 yamt int hold_count;
628 1.166.2.2 ad int retval, oldspl;
629 1.166.2.2 ad long s, u;
630 1.166.2.2 ad #if PERFCTRS
631 1.122 thorpej struct proc *p = l->l_proc;
632 1.166.2.2 ad #endif
633 1.26 cgd
634 1.166.2.2 ad LOCK_ASSERT(lwp_locked(l, NULL));
635 1.83 thorpej
636 1.90 sommerfe /*
637 1.90 sommerfe * Release the kernel_lock, as we are about to yield the CPU.
638 1.90 sommerfe */
639 1.166.2.4 ad hold_count = KERNEL_UNLOCK(0, l);
640 1.85 sommerfe
641 1.160 chs #ifdef LOCKDEBUG
642 1.82 thorpej spinlock_switchcheck();
643 1.81 thorpej simple_lock_switchcheck();
644 1.50 fvdl #endif
645 1.166.2.2 ad #ifdef KSTACK_CHECK_MAGIC
646 1.166.2.2 ad kstack_check_magic(l);
647 1.166.2.2 ad #endif
648 1.166.2.2 ad
649 1.166.2.2 ad /*
650 1.166.2.2 ad * It's safe to read the per CPU schedstate unlocked here, as all we
651 1.166.2.2 ad * are after is the run time and that's guarenteed to have been last
652 1.166.2.2 ad * updated by this CPU.
653 1.166.2.2 ad */
654 1.166.2.2 ad KDASSERT(l->l_cpu != NULL);
655 1.166.2.2 ad KDASSERT(l->l_cpu == curcpu());
656 1.166.2.2 ad spc = &l->l_cpu->ci_schedstate;
657 1.81 thorpej
658 1.26 cgd /*
659 1.26 cgd * Compute the amount of time during which the current
660 1.113 gmcgarry * process was running.
661 1.26 cgd */
662 1.26 cgd microtime(&tv);
663 1.166.2.2 ad u = l->l_rtime.tv_usec +
664 1.122 thorpej (tv.tv_usec - spc->spc_runtime.tv_usec);
665 1.166.2.2 ad s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
666 1.26 cgd if (u < 0) {
667 1.26 cgd u += 1000000;
668 1.26 cgd s--;
669 1.26 cgd } else if (u >= 1000000) {
670 1.26 cgd u -= 1000000;
671 1.26 cgd s++;
672 1.26 cgd }
673 1.166.2.2 ad l->l_rtime.tv_usec = u;
674 1.166.2.2 ad l->l_rtime.tv_sec = s;
675 1.26 cgd
676 1.26 cgd /*
677 1.166.2.2 ad * XXXSMP If we are using h/w performance counters, save context.
678 1.26 cgd */
679 1.166.2.2 ad #if PERFCTRS
680 1.166.2.2 ad if (PMC_ENABLED(p)) {
681 1.166.2.2 ad pmc_save_context(p);
682 1.26 cgd }
683 1.166.2.2 ad #endif
684 1.166.2.2 ad
685 1.166.2.2 ad /*
686 1.166.2.2 ad * Acquire the sched_mutex if necessary. It will be released by
687 1.166.2.2 ad * cpu_switch once it has decided to idle, or picked another LWP
688 1.166.2.2 ad * to run.
689 1.166.2.2 ad */
690 1.166.2.4 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
691 1.166.2.4 ad if (l->l_mutex != &sched_mutex) {
692 1.166.2.2 ad mutex_enter(&sched_mutex);
693 1.166.2.4 ad lwp_unlock(l);
694 1.26 cgd }
695 1.166.2.3 ad #endif
696 1.166.2.3 ad
697 1.166.2.3 ad /*
698 1.166.2.3 ad * If on the CPU and we have gotten this far, then we must yield.
699 1.166.2.3 ad */
700 1.166.2.3 ad KASSERT(l->l_stat != LSRUN);
701 1.166.2.3 ad if (l->l_stat == LSONPROC) {
702 1.166.2.4 ad KASSERT(lwp_locked(l, &sched_mutex));
703 1.166.2.3 ad l->l_stat = LSRUN;
704 1.166.2.3 ad setrunqueue(l);
705 1.166.2.3 ad }
706 1.166.2.2 ad uvmexp.swtch++;
707 1.69 thorpej
708 1.69 thorpej /*
709 1.69 thorpej * Process is about to yield the CPU; clear the appropriate
710 1.69 thorpej * scheduling flags.
711 1.69 thorpej */
712 1.73 thorpej spc->spc_flags &= ~SPCF_SWITCHCLEAR;
713 1.109 yamt
714 1.166.2.2 ad LOCKDEBUG_BARRIER(&sched_mutex, 1);
715 1.113 gmcgarry
716 1.113 gmcgarry /*
717 1.166.2.2 ad * Switch to the new current LWP. When we run again, we'll
718 1.166.2.2 ad * return back here.
719 1.113 gmcgarry */
720 1.166.2.4 ad oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
721 1.166.2.4 ad
722 1.166.2.4 ad if (newl == NULL || newl->l_back == NULL)
723 1.122 thorpej retval = cpu_switch(l, NULL);
724 1.166.2.2 ad else {
725 1.166.2.4 ad KASSERT(lwp_locked(newl, &sched_mutex));
726 1.122 thorpej remrunqueue(newl);
727 1.122 thorpej cpu_switchto(l, newl);
728 1.122 thorpej retval = 0;
729 1.122 thorpej }
730 1.110 briggs
731 1.110 briggs /*
732 1.166.2.2 ad * XXXSMP If we are using h/w performance counters, restore context.
733 1.26 cgd */
734 1.114 gmcgarry #if PERFCTRS
735 1.166 christos if (PMC_ENABLED(p)) {
736 1.114 gmcgarry pmc_restore_context(p);
737 1.166 christos }
738 1.114 gmcgarry #endif
739 1.110 briggs
740 1.110 briggs /*
741 1.76 thorpej * We're running again; record our new start time. We might
742 1.166.2.2 ad * be running on a new CPU now, so don't use the cached
743 1.76 thorpej * schedstate_percpu pointer.
744 1.76 thorpej */
745 1.122 thorpej KDASSERT(l->l_cpu != NULL);
746 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
747 1.122 thorpej microtime(&l->l_cpu->ci_schedstate.spc_runtime);
748 1.85 sommerfe
749 1.90 sommerfe /*
750 1.166.2.4 ad * Reacquire the kernel_lock.
751 1.90 sommerfe */
752 1.166.2.2 ad splx(oldspl);
753 1.166.2.4 ad KERNEL_LOCK(hold_count, l);
754 1.122 thorpej
755 1.122 thorpej return retval;
756 1.26 cgd }
757 1.26 cgd
758 1.26 cgd /*
759 1.26 cgd * Initialize the (doubly-linked) run queues
760 1.26 cgd * to be empty.
761 1.26 cgd */
762 1.26 cgd void
763 1.26 cgd rqinit()
764 1.26 cgd {
765 1.71 augustss int i;
766 1.26 cgd
767 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
768 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
769 1.122 thorpej (struct lwp *)&sched_qs[i];
770 1.166.2.2 ad
771 1.166.2.2 ad mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
772 1.26 cgd }
773 1.26 cgd
774 1.158 perry static inline void
775 1.166.2.2 ad resched_lwp(struct lwp *l, u_char pri)
776 1.119 thorpej {
777 1.119 thorpej struct cpu_info *ci;
778 1.119 thorpej
779 1.166.2.2 ad LOCK_ASSERT(lwp_locked(l, NULL));
780 1.166.2.2 ad
781 1.119 thorpej /*
782 1.119 thorpej * XXXSMP
783 1.122 thorpej * Since l->l_cpu persists across a context switch,
784 1.119 thorpej * this gives us *very weak* processor affinity, in
785 1.119 thorpej * that we notify the CPU on which the process last
786 1.119 thorpej * ran that it should try to switch.
787 1.119 thorpej *
788 1.119 thorpej * This does not guarantee that the process will run on
789 1.119 thorpej * that processor next, because another processor might
790 1.119 thorpej * grab it the next time it performs a context switch.
791 1.119 thorpej *
792 1.119 thorpej * This also does not handle the case where its last
793 1.119 thorpej * CPU is running a higher-priority process, but every
794 1.119 thorpej * other CPU is running a lower-priority process. There
795 1.119 thorpej * are ways to handle this situation, but they're not
796 1.119 thorpej * currently very pretty, and we also need to weigh the
797 1.119 thorpej * cost of moving a process from one CPU to another.
798 1.119 thorpej */
799 1.122 thorpej ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
800 1.121 thorpej if (pri < ci->ci_schedstate.spc_curpriority)
801 1.166.2.2 ad cpu_need_resched(ci);
802 1.119 thorpej }
803 1.119 thorpej
804 1.26 cgd /*
805 1.166.2.2 ad * Change process state to be runnable, placing it on the run queue if it is
806 1.166.2.2 ad * in memory, and awakening the swapper if it isn't in memory.
807 1.166.2.2 ad *
808 1.166.2.2 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
809 1.26 cgd */
810 1.26 cgd void
811 1.122 thorpej setrunnable(struct lwp *l)
812 1.26 cgd {
813 1.122 thorpej struct proc *p = l->l_proc;
814 1.166.2.3 ad struct cpu_info *ci;
815 1.26 cgd
816 1.166.2.2 ad LOCK_ASSERT(mutex_owned(&p->p_smutex));
817 1.166.2.2 ad LOCK_ASSERT(lwp_locked(l, NULL));
818 1.83 thorpej
819 1.122 thorpej switch (l->l_stat) {
820 1.122 thorpej case LSSTOP:
821 1.33 mycroft /*
822 1.33 mycroft * If we're being traced (possibly because someone attached us
823 1.33 mycroft * while we were stopped), check for a signal from the debugger.
824 1.33 mycroft */
825 1.166.2.4 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
826 1.166.2.3 ad sigaddset(&l->l_sigpend->sp_set, p->p_xstat);
827 1.166.2.2 ad signotify(l);
828 1.53 mycroft }
829 1.166.2.2 ad p->p_nrlwps++;
830 1.122 thorpej break;
831 1.122 thorpej case LSSUSPENDED:
832 1.166.2.4 ad l->l_flag &= ~L_WSUSPEND;
833 1.166.2.2 ad p->p_nrlwps++;
834 1.166.2.2 ad break;
835 1.166.2.2 ad case LSSLEEP:
836 1.166.2.4 ad /*
837 1.166.2.4 ad * If the LWP was sleeping interruptably, then it's OK to
838 1.166.2.4 ad * start it again. If not, mark it as still sleeping.
839 1.166.2.4 ad */
840 1.166.2.4 ad KASSERT(l->l_wchan != NULL);
841 1.166.2.2 ad
842 1.166.2.4 ad if ((l->l_flag & L_SINTR) != 0) {
843 1.166.2.4 ad /* lwp_unsleep() will release the lock. */
844 1.166.2.4 ad lwp_unsleep(l);
845 1.166.2.4 ad } else {
846 1.166.2.4 ad lwp_unlock(l);
847 1.166.2.4 ad #ifdef DIAGNOSTIC
848 1.166.2.4 ad panic("setrunnable: !L_SINTR");
849 1.166.2.4 ad #endif
850 1.166.2.4 ad }
851 1.166.2.2 ad return;
852 1.166.2.4 ad default:
853 1.166.2.4 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
854 1.26 cgd }
855 1.139 cl
856 1.139 cl if (l->l_proc->p_sa)
857 1.139 cl sa_awaken(l);
858 1.139 cl
859 1.166.2.3 ad /*
860 1.166.2.4 ad * Set in sched_mutex as it the LWP's current mutex. If the LWP is
861 1.166.2.4 ad * still on the CPU, mark it as LSONPROC. It may be about to call
862 1.166.2.4 ad * mi_switch(), in which case it will yield.
863 1.166.2.3 ad */
864 1.166.2.3 ad lwp_relock(l, &sched_mutex);
865 1.122 thorpej
866 1.166.2.3 ad if ((ci = l->l_cpu) != NULL && ci->ci_curlwp == l) {
867 1.166.2.3 ad l->l_stat = LSONPROC;
868 1.166.2.3 ad l->l_slptime = 0;
869 1.166.2.3 ad lwp_unlock(l);
870 1.166.2.3 ad return;
871 1.166.2.3 ad }
872 1.122 thorpej
873 1.166.2.3 ad /*
874 1.166.2.3 ad * Set the LWP runnable. If it's swapped out, we need to wake the swapper
875 1.166.2.3 ad * to bring it back in. Otherwise, enter it into a run queue.
876 1.166.2.3 ad */
877 1.166.2.3 ad l->l_stat = LSRUN;
878 1.122 thorpej if (l->l_slptime > 1)
879 1.122 thorpej updatepri(l);
880 1.122 thorpej l->l_slptime = 0;
881 1.166.2.2 ad
882 1.166.2.2 ad if (l->l_flag & L_INMEM) {
883 1.166.2.2 ad setrunqueue(l);
884 1.166.2.2 ad resched_lwp(l, l->l_priority);
885 1.166.2.2 ad lwp_unlock(l);
886 1.166.2.2 ad } else {
887 1.166.2.2 ad lwp_unlock(l);
888 1.166.2.2 ad wakeup(&proc0);
889 1.166.2.2 ad }
890 1.26 cgd }
891 1.26 cgd
892 1.26 cgd /*
893 1.26 cgd * Compute the priority of a process when running in user mode.
894 1.26 cgd * Arrange to reschedule if the resulting priority is better
895 1.26 cgd * than that of the current process.
896 1.26 cgd */
897 1.26 cgd void
898 1.122 thorpej resetpriority(struct lwp *l)
899 1.26 cgd {
900 1.71 augustss unsigned int newpriority;
901 1.122 thorpej struct proc *p = l->l_proc;
902 1.26 cgd
903 1.166.2.2 ad LOCK_ASSERT(lwp_locked(l, NULL));
904 1.83 thorpej
905 1.166.2.2 ad /* XXXSMP proc values will be accessed unlocked */
906 1.153 yamt newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
907 1.122 thorpej NICE_WEIGHT * (p->p_nice - NZERO);
908 1.26 cgd newpriority = min(newpriority, MAXPRI);
909 1.122 thorpej l->l_usrpri = newpriority;
910 1.166.2.2 ad resched_lwp(l, l->l_usrpri);
911 1.122 thorpej }
912 1.122 thorpej
913 1.130 nathanw /*
914 1.122 thorpej * Recompute priority for all LWPs in a process.
915 1.122 thorpej */
916 1.122 thorpej void
917 1.122 thorpej resetprocpriority(struct proc *p)
918 1.122 thorpej {
919 1.122 thorpej struct lwp *l;
920 1.122 thorpej
921 1.166.2.2 ad LOCK_ASSERT(mutex_owned(&p->p_smutex));
922 1.166.2.2 ad
923 1.166.2.2 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
924 1.166.2.2 ad lwp_lock(l);
925 1.166.2.2 ad resetpriority(l);
926 1.166.2.2 ad lwp_unlock(l);
927 1.166.2.2 ad }
928 1.55 ross }
929 1.55 ross
930 1.55 ross /*
931 1.56 ross * We adjust the priority of the current process. The priority of a process
932 1.141 wiz * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
933 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
934 1.56 ross * will compute a different value each time p_estcpu increases. This can
935 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
936 1.141 wiz * queue will not change. The CPU usage estimator ramps up quite quickly
937 1.56 ross * when the process is running (linearly), and decays away exponentially, at
938 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
939 1.80 nathanw * principle is that the system will 90% forget that the process used a lot
940 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
941 1.56 ross * processes which haven't run much recently, and to round-robin among other
942 1.56 ross * processes.
943 1.55 ross */
944 1.55 ross
945 1.55 ross void
946 1.122 thorpej schedclock(struct lwp *l)
947 1.55 ross {
948 1.122 thorpej struct proc *p = l->l_proc;
949 1.166.2.2 ad
950 1.166.2.2 ad LOCK_ASSERT(mutex_owned(&p->p_smutex));
951 1.77 thorpej
952 1.153 yamt p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
953 1.130 nathanw
954 1.166.2.2 ad lwp_lock(l);
955 1.166.2.2 ad resetpriority(l);
956 1.122 thorpej if (l->l_priority >= PUSER)
957 1.122 thorpej l->l_priority = l->l_usrpri;
958 1.166.2.2 ad lwp_unlock(l);
959 1.26 cgd }
960 1.94 bouyer
961 1.166.2.2 ad /*
962 1.166.2.2 ad * suspendsched:
963 1.166.2.2 ad *
964 1.166.2.4 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
965 1.166.2.2 ad */
966 1.94 bouyer void
967 1.166.2.4 ad suspendsched(void)
968 1.94 bouyer {
969 1.166.2.4 ad CPU_INFO_ITERATOR cii;
970 1.166.2.4 ad struct cpu_info *ci;
971 1.122 thorpej struct lwp *l;
972 1.166.2.2 ad struct proc *p;
973 1.94 bouyer
974 1.166.2.4 ad /*
975 1.166.2.4 ad * We do this by process in order not to violate the locking rules.
976 1.166.2.4 ad */
977 1.166.2.4 ad rw_enter(&proclist_lock, RW_READER);
978 1.166.2.4 ad PROCLIST_FOREACH(p, &allproc) {
979 1.166.2.4 ad mutex_enter(&p->p_smutex);
980 1.166.2.4 ad
981 1.166.2.4 ad if ((p->p_flag & P_SYSTEM) != 0) {
982 1.166.2.4 ad mutex_exit(&p->p_smutex);
983 1.94 bouyer continue;
984 1.166.2.4 ad }
985 1.122 thorpej
986 1.166.2.4 ad p->p_stat = SSTOP;
987 1.166.2.2 ad
988 1.166.2.4 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
989 1.166.2.4 ad if (l == curlwp)
990 1.166.2.4 ad continue;
991 1.166.2.4 ad
992 1.166.2.4 ad lwp_lock(l);
993 1.166.2.4 ad
994 1.166.2.4 ad /*
995 1.166.2.4 ad * Set L_WREBOOT so that the LWP will suspend itself
996 1.166.2.4 ad * when it tries to return to user mode. We want to
997 1.166.2.4 ad * try and get to get as many LWPs as possible to
998 1.166.2.4 ad * the user / kernel boundary, so that they will
999 1.166.2.4 ad * release any locks that they hold.
1000 1.166.2.4 ad */
1001 1.166.2.4 ad l->l_flag |= (L_WREBOOT | L_WSUSPEND);
1002 1.166.2.4 ad
1003 1.166.2.4 ad if (l->l_stat == LSSLEEP &&
1004 1.166.2.4 ad (l->l_flag & L_SINTR) != 0) {
1005 1.166.2.4 ad /* setrunnable() will release the lock. */
1006 1.166.2.4 ad setrunnable(l);
1007 1.166.2.4 ad continue;
1008 1.166.2.4 ad }
1009 1.166.2.4 ad
1010 1.166.2.4 ad lwp_unlock(l);
1011 1.94 bouyer }
1012 1.166.2.4 ad
1013 1.166.2.4 ad mutex_exit(&p->p_smutex);
1014 1.94 bouyer }
1015 1.166.2.4 ad rw_exit(&proclist_lock);
1016 1.166.2.4 ad
1017 1.166.2.4 ad /*
1018 1.166.2.4 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1019 1.166.2.4 ad * They'll trap into the kernel and suspend themselves in userret().
1020 1.166.2.4 ad */
1021 1.166.2.4 ad sched_lock(0);
1022 1.166.2.4 ad for (CPU_INFO_FOREACH(cii, ci))
1023 1.166.2.4 ad cpu_need_resched(ci);
1024 1.166.2.4 ad sched_unlock(0);
1025 1.94 bouyer }
1026 1.113 gmcgarry
1027 1.113 gmcgarry /*
1028 1.151 yamt * scheduler_fork_hook:
1029 1.151 yamt *
1030 1.151 yamt * Inherit the parent's scheduler history.
1031 1.151 yamt */
1032 1.151 yamt void
1033 1.151 yamt scheduler_fork_hook(struct proc *parent, struct proc *child)
1034 1.151 yamt {
1035 1.151 yamt
1036 1.166.2.4 ad LOCK_ASSERT(mutex_owned(&parent->p_smutex));
1037 1.166.2.4 ad
1038 1.157 yamt child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
1039 1.157 yamt child->p_forktime = schedcpu_ticks;
1040 1.151 yamt }
1041 1.151 yamt
1042 1.151 yamt /*
1043 1.151 yamt * scheduler_wait_hook:
1044 1.151 yamt *
1045 1.151 yamt * Chargeback parents for the sins of their children.
1046 1.151 yamt */
1047 1.151 yamt void
1048 1.151 yamt scheduler_wait_hook(struct proc *parent, struct proc *child)
1049 1.151 yamt {
1050 1.157 yamt fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1051 1.157 yamt fixpt_t estcpu;
1052 1.151 yamt
1053 1.151 yamt /* XXX Only if parent != init?? */
1054 1.157 yamt
1055 1.166.2.2 ad mutex_enter(&parent->p_smutex);
1056 1.157 yamt estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
1057 1.157 yamt schedcpu_ticks - child->p_forktime);
1058 1.166.2.2 ad if (child->p_estcpu > estcpu)
1059 1.157 yamt parent->p_estcpu =
1060 1.157 yamt ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
1061 1.166.2.2 ad mutex_exit(&parent->p_smutex);
1062 1.151 yamt }
1063 1.151 yamt
1064 1.151 yamt /*
1065 1.166.2.4 ad * sched_kpri:
1066 1.166.2.4 ad *
1067 1.166.2.4 ad * Given an LWP a priority boost before it sleeps. Currently we scale
1068 1.166.2.4 ad * user priorites into the range 60 -> 40, and kernel priorities into
1069 1.166.2.4 ad * 40 -> 0.
1070 1.166.2.1 ad */
1071 1.166.2.1 ad int
1072 1.166.2.1 ad sched_kpri(struct lwp *l)
1073 1.166.2.1 ad {
1074 1.166.2.6 ad static const uint8_t kpri_tab[] = {
1075 1.166.2.4 ad 0, 0, 1, 2, 3, 4, 4, 5,
1076 1.166.2.4 ad 6, 7, 8, 8, 9, 10, 11, 12,
1077 1.166.2.4 ad 12, 13, 14, 15, 16, 16, 17, 18,
1078 1.166.2.4 ad 19, 20, 20, 21, 22, 23, 24, 24,
1079 1.166.2.4 ad 25, 26, 27, 28, 28, 29, 30, 31,
1080 1.166.2.4 ad 32, 32, 33, 34, 35, 36, 36, 37,
1081 1.166.2.4 ad 38, 39, 40, 40, 40, 40, 41, 41,
1082 1.166.2.4 ad 41, 41, 42, 42, 42, 42, 43, 43,
1083 1.166.2.4 ad 43, 43, 44, 44, 44, 44, 45, 45,
1084 1.166.2.4 ad 45, 45, 46, 46, 46, 47, 47, 47,
1085 1.166.2.4 ad 47, 48, 48, 48, 48, 49, 49, 49,
1086 1.166.2.4 ad 49, 50, 50, 50, 50, 51, 51, 51,
1087 1.166.2.4 ad 51, 52, 52, 52, 52, 53, 53, 53,
1088 1.166.2.4 ad 54, 54, 54, 54, 55, 55, 55, 55,
1089 1.166.2.4 ad 56, 56, 56, 56, 57, 57, 57, 57,
1090 1.166.2.4 ad 58, 58, 58, 58, 59, 59, 59, 60,
1091 1.166.2.4 ad };
1092 1.166.2.4 ad
1093 1.166.2.4 ad return kpri_tab[l->l_priority];
1094 1.166.2.1 ad }
1095 1.166.2.1 ad
1096 1.166.2.4 ad /*
1097 1.166.2.4 ad * sched_unsleep:
1098 1.166.2.4 ad *
1099 1.166.2.4 ad * The is called when the LWP has not been awoken normally but instead
1100 1.166.2.4 ad * interrupted: for example, if the sleep timed out. Because of this,
1101 1.166.2.4 ad * it's not a valid action for running or idle LWPs.
1102 1.166.2.4 ad */
1103 1.166.2.3 ad void
1104 1.166.2.4 ad sched_unsleep(struct lwp *l)
1105 1.166.2.3 ad {
1106 1.166.2.3 ad
1107 1.166.2.4 ad lwp_unlock(l);
1108 1.166.2.4 ad panic("sched_unsleep");
1109 1.166.2.3 ad }
1110 1.166.2.3 ad
1111 1.166.2.4 ad /*
1112 1.166.2.4 ad * sched_changepri:
1113 1.166.2.4 ad *
1114 1.166.2.4 ad * Adjust the priority of an LWP.
1115 1.166.2.4 ad */
1116 1.166.2.3 ad void
1117 1.166.2.4 ad sched_changepri(struct lwp *l, int pri)
1118 1.166.2.3 ad {
1119 1.166.2.4 ad struct cpu_info *ci;
1120 1.166.2.3 ad
1121 1.166.2.4 ad /*
1122 1.166.2.4 ad * XXXSMP
1123 1.166.2.4 ad * Since l->l_cpu persists across a context switch,
1124 1.166.2.4 ad * this gives us *very weak* processor affinity, in
1125 1.166.2.4 ad * that we notify the CPU on which the process last
1126 1.166.2.4 ad * ran that it should try to switch.
1127 1.166.2.4 ad *
1128 1.166.2.4 ad * This does not guarantee that the process will run on
1129 1.166.2.4 ad * that processor next, because another processor might
1130 1.166.2.4 ad * grab it the next time it performs a context switch.
1131 1.166.2.4 ad *
1132 1.166.2.4 ad * This also does not handle the case where its last
1133 1.166.2.4 ad * CPU is running a higher-priority process, but every
1134 1.166.2.4 ad * other CPU is running a lower-priority process. There
1135 1.166.2.4 ad * are ways to handle this situation, but they're not
1136 1.166.2.4 ad * currently very pretty, and we also need to weigh the
1137 1.166.2.4 ad * cost of moving a process from one CPU to another.
1138 1.166.2.4 ad */
1139 1.166.2.4 ad if (l->l_stat != LSRUN || (l->l_flag & L_INMEM) == 0) {
1140 1.166.2.4 ad l->l_priority = pri;
1141 1.166.2.4 ad return;
1142 1.166.2.4 ad }
1143 1.166.2.4 ad
1144 1.166.2.4 ad LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1145 1.166.2.4 ad
1146 1.166.2.4 ad remrunqueue(l);
1147 1.166.2.4 ad l->l_priority = pri;
1148 1.166.2.4 ad setrunqueue(l);
1149 1.166.2.4 ad
1150 1.166.2.4 ad ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1151 1.166.2.4 ad if (pri < ci->ci_schedstate.spc_curpriority)
1152 1.166.2.4 ad cpu_need_resched(ci);
1153 1.166.2.3 ad }
1154 1.166.2.3 ad
1155 1.166.2.1 ad /*
1156 1.113 gmcgarry * Low-level routines to access the run queue. Optimised assembler
1157 1.113 gmcgarry * routines can override these.
1158 1.113 gmcgarry */
1159 1.113 gmcgarry
1160 1.113 gmcgarry #ifndef __HAVE_MD_RUNQUEUE
1161 1.115 nisimura
1162 1.130 nathanw /*
1163 1.134 matt * On some architectures, it's faster to use a MSB ordering for the priorites
1164 1.134 matt * than the traditional LSB ordering.
1165 1.134 matt */
1166 1.134 matt #ifdef __HAVE_BIGENDIAN_BITOPS
1167 1.134 matt #define RQMASK(n) (0x80000000 >> (n))
1168 1.134 matt #else
1169 1.134 matt #define RQMASK(n) (0x00000001 << (n))
1170 1.134 matt #endif
1171 1.134 matt
1172 1.134 matt /*
1173 1.115 nisimura * The primitives that manipulate the run queues. whichqs tells which
1174 1.115 nisimura * of the 32 queues qs have processes in them. Setrunqueue puts processes
1175 1.115 nisimura * into queues, remrunqueue removes them from queues. The running process is
1176 1.115 nisimura * on no queue, other processes are on a queue related to p->p_priority,
1177 1.115 nisimura * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1178 1.115 nisimura * available queues.
1179 1.130 nathanw */
1180 1.146 matt #ifdef RQDEBUG
1181 1.146 matt static void
1182 1.146 matt checkrunqueue(int whichq, struct lwp *l)
1183 1.146 matt {
1184 1.146 matt const struct prochd * const rq = &sched_qs[whichq];
1185 1.146 matt struct lwp *l2;
1186 1.146 matt int found = 0;
1187 1.146 matt int die = 0;
1188 1.146 matt int empty = 1;
1189 1.164 christos for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
1190 1.146 matt if (l2->l_stat != LSRUN) {
1191 1.146 matt printf("checkrunqueue[%d]: lwp %p state (%d) "
1192 1.146 matt " != LSRUN\n", whichq, l2, l2->l_stat);
1193 1.146 matt }
1194 1.146 matt if (l2->l_back->l_forw != l2) {
1195 1.146 matt printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1196 1.146 matt "corrupt %p\n", whichq, l2, l2->l_back,
1197 1.146 matt l2->l_back->l_forw);
1198 1.146 matt die = 1;
1199 1.146 matt }
1200 1.146 matt if (l2->l_forw->l_back != l2) {
1201 1.146 matt printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1202 1.146 matt "corrupt %p\n", whichq, l2, l2->l_forw,
1203 1.146 matt l2->l_forw->l_back);
1204 1.146 matt die = 1;
1205 1.146 matt }
1206 1.146 matt if (l2 == l)
1207 1.146 matt found = 1;
1208 1.146 matt empty = 0;
1209 1.146 matt }
1210 1.146 matt if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1211 1.146 matt printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1212 1.146 matt whichq, rq);
1213 1.146 matt die = 1;
1214 1.146 matt } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1215 1.146 matt printf("checkrunqueue[%d]: bit clear for non-empty "
1216 1.146 matt "run-queue %p\n", whichq, rq);
1217 1.146 matt die = 1;
1218 1.146 matt }
1219 1.146 matt if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1220 1.146 matt printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1221 1.146 matt whichq, l);
1222 1.146 matt die = 1;
1223 1.146 matt }
1224 1.146 matt if (l != NULL && empty) {
1225 1.146 matt printf("checkrunqueue[%d]: empty run-queue %p with "
1226 1.146 matt "active lwp %p\n", whichq, rq, l);
1227 1.146 matt die = 1;
1228 1.146 matt }
1229 1.146 matt if (l != NULL && !found) {
1230 1.146 matt printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1231 1.146 matt whichq, l, rq);
1232 1.146 matt die = 1;
1233 1.146 matt }
1234 1.146 matt if (die)
1235 1.146 matt panic("checkrunqueue: inconsistency found");
1236 1.146 matt }
1237 1.146 matt #endif /* RQDEBUG */
1238 1.146 matt
1239 1.113 gmcgarry void
1240 1.122 thorpej setrunqueue(struct lwp *l)
1241 1.113 gmcgarry {
1242 1.113 gmcgarry struct prochd *rq;
1243 1.122 thorpej struct lwp *prev;
1244 1.152 yamt const int whichq = l->l_priority / PPQ;
1245 1.113 gmcgarry
1246 1.166.2.3 ad LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1247 1.166.2.2 ad
1248 1.146 matt #ifdef RQDEBUG
1249 1.146 matt checkrunqueue(whichq, NULL);
1250 1.146 matt #endif
1251 1.113 gmcgarry #ifdef DIAGNOSTIC
1252 1.166.2.2 ad if (l->l_back != NULL || l->l_stat != LSRUN)
1253 1.113 gmcgarry panic("setrunqueue");
1254 1.113 gmcgarry #endif
1255 1.134 matt sched_whichqs |= RQMASK(whichq);
1256 1.113 gmcgarry rq = &sched_qs[whichq];
1257 1.113 gmcgarry prev = rq->ph_rlink;
1258 1.122 thorpej l->l_forw = (struct lwp *)rq;
1259 1.122 thorpej rq->ph_rlink = l;
1260 1.122 thorpej prev->l_forw = l;
1261 1.122 thorpej l->l_back = prev;
1262 1.146 matt #ifdef RQDEBUG
1263 1.146 matt checkrunqueue(whichq, l);
1264 1.146 matt #endif
1265 1.113 gmcgarry }
1266 1.113 gmcgarry
1267 1.113 gmcgarry void
1268 1.122 thorpej remrunqueue(struct lwp *l)
1269 1.113 gmcgarry {
1270 1.122 thorpej struct lwp *prev, *next;
1271 1.152 yamt const int whichq = l->l_priority / PPQ;
1272 1.166.2.2 ad
1273 1.166.2.2 ad LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1274 1.166.2.2 ad
1275 1.146 matt #ifdef RQDEBUG
1276 1.146 matt checkrunqueue(whichq, l);
1277 1.146 matt #endif
1278 1.166.2.2 ad
1279 1.166.2.2 ad #if defined(DIAGNOSTIC)
1280 1.166.2.2 ad if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
1281 1.166.2.2 ad /* Shouldn't happen - interrupts disabled. */
1282 1.146 matt panic("remrunqueue: bit %d not set", whichq);
1283 1.166.2.2 ad }
1284 1.113 gmcgarry #endif
1285 1.122 thorpej prev = l->l_back;
1286 1.122 thorpej l->l_back = NULL;
1287 1.122 thorpej next = l->l_forw;
1288 1.122 thorpej prev->l_forw = next;
1289 1.122 thorpej next->l_back = prev;
1290 1.113 gmcgarry if (prev == next)
1291 1.134 matt sched_whichqs &= ~RQMASK(whichq);
1292 1.146 matt #ifdef RQDEBUG
1293 1.146 matt checkrunqueue(whichq, NULL);
1294 1.146 matt #endif
1295 1.113 gmcgarry }
1296 1.113 gmcgarry
1297 1.134 matt #undef RQMASK
1298 1.134 matt #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1299