Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.166.2.6
      1  1.166.2.6        ad /*	$NetBSD: kern_synch.c,v 1.166.2.6 2006/11/18 21:39:22 ad Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4  1.166.2.2        ad  * Copyright (c) 1999, 2000, 2004, 2006 The NetBSD Foundation, Inc.
      5       1.63   thorpej  * All rights reserved.
      6       1.63   thorpej  *
      7       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.166.2.2        ad  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     10       1.63   thorpej  *
     11       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     12       1.63   thorpej  * modification, are permitted provided that the following conditions
     13       1.63   thorpej  * are met:
     14       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     15       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     16       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     19       1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     20       1.63   thorpej  *    must display the following acknowledgement:
     21       1.63   thorpej  *	This product includes software developed by the NetBSD
     22       1.63   thorpej  *	Foundation, Inc. and its contributors.
     23       1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24       1.63   thorpej  *    contributors may be used to endorse or promote products derived
     25       1.63   thorpej  *    from this software without specific prior written permission.
     26       1.63   thorpej  *
     27       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38       1.63   thorpej  */
     39       1.26       cgd 
     40       1.26       cgd /*-
     41       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     43       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     44       1.26       cgd  * All or some portions of this file are derived from material licensed
     45       1.26       cgd  * to the University of California by American Telephone and Telegraph
     46       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     48       1.26       cgd  *
     49       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     50       1.26       cgd  * modification, are permitted provided that the following conditions
     51       1.26       cgd  * are met:
     52       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     53       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     54       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     55       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     56       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     57      1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     58       1.26       cgd  *    may be used to endorse or promote products derived from this software
     59       1.26       cgd  *    without specific prior written permission.
     60       1.26       cgd  *
     61       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     62       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     63       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     64       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     65       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     66       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     67       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     68       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     69       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     70       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     71       1.26       cgd  * SUCH DAMAGE.
     72       1.26       cgd  *
     73       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     74       1.26       cgd  */
     75      1.106     lukem 
     76      1.106     lukem #include <sys/cdefs.h>
     77  1.166.2.6        ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.166.2.6 2006/11/18 21:39:22 ad Exp $");
     78       1.48       mrg 
     79       1.52  jonathan #include "opt_ddb.h"
     80      1.109      yamt #include "opt_kstack.h"
     81       1.82   thorpej #include "opt_lockdebug.h"
     82       1.83   thorpej #include "opt_multiprocessor.h"
     83      1.110    briggs #include "opt_perfctrs.h"
     84       1.26       cgd 
     85  1.166.2.2        ad #define	__MUTEX_PRIVATE
     86  1.166.2.2        ad 
     87       1.26       cgd #include <sys/param.h>
     88       1.26       cgd #include <sys/systm.h>
     89       1.68   thorpej #include <sys/callout.h>
     90       1.26       cgd #include <sys/proc.h>
     91       1.26       cgd #include <sys/kernel.h>
     92       1.26       cgd #include <sys/buf.h>
     93      1.111    briggs #if defined(PERFCTRS)
     94      1.110    briggs #include <sys/pmc.h>
     95      1.111    briggs #endif
     96       1.26       cgd #include <sys/signalvar.h>
     97       1.26       cgd #include <sys/resourcevar.h>
     98       1.55      ross #include <sys/sched.h>
     99      1.122   thorpej #include <sys/sa.h>
    100      1.122   thorpej #include <sys/savar.h>
    101      1.161      elad #include <sys/kauth.h>
    102  1.166.2.2        ad #include <sys/sleepq.h>
    103  1.166.2.2        ad #include <sys/lockdebug.h>
    104       1.47       mrg 
    105       1.47       mrg #include <uvm/uvm_extern.h>
    106       1.47       mrg 
    107       1.26       cgd #include <machine/cpu.h>
    108       1.34  christos 
    109       1.26       cgd int	lbolt;			/* once a second sleep address */
    110       1.88  sommerfe int	rrticks;		/* number of hardclock ticks per roundrobin() */
    111       1.26       cgd 
    112       1.73   thorpej /*
    113       1.73   thorpej  * The global scheduler state.
    114       1.73   thorpej  */
    115  1.166.2.4        ad kmutex_t	sched_mutex;		/* global sched state mutex */
    116  1.166.2.2        ad struct prochd	sched_qs[RUNQUE_NQS];	/* run queues */
    117      1.159     perry volatile uint32_t sched_whichqs;	/* bitmap of non-empty queues */
    118       1.34  christos 
    119  1.166.2.2        ad void	schedcpu(void *);
    120  1.166.2.2        ad void	updatepri(struct lwp *);
    121  1.166.2.2        ad void	sa_awaken(struct lwp *);
    122       1.63   thorpej 
    123  1.166.2.4        ad void	sched_unsleep(struct lwp *);
    124  1.166.2.4        ad void	sched_changepri(struct lwp *, int);
    125  1.166.2.4        ad 
    126      1.143      yamt struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    127      1.157      yamt static unsigned int schedcpu_ticks;
    128      1.122   thorpej 
    129  1.166.2.4        ad syncobj_t sleep_syncobj = {
    130  1.166.2.4        ad 	SOBJ_SLEEPQ_SORTED,
    131  1.166.2.4        ad 	sleepq_unsleep,
    132  1.166.2.4        ad 	sleepq_changepri
    133  1.166.2.4        ad };
    134  1.166.2.4        ad 
    135  1.166.2.4        ad syncobj_t sched_syncobj = {
    136  1.166.2.4        ad 	SOBJ_SLEEPQ_SORTED,
    137  1.166.2.4        ad 	sched_unsleep,
    138  1.166.2.4        ad 	sched_changepri
    139  1.166.2.4        ad };
    140  1.166.2.4        ad 
    141       1.26       cgd /*
    142       1.26       cgd  * Force switch among equal priority processes every 100ms.
    143       1.88  sommerfe  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    144       1.26       cgd  */
    145       1.26       cgd /* ARGSUSED */
    146       1.26       cgd void
    147       1.89  sommerfe roundrobin(struct cpu_info *ci)
    148       1.26       cgd {
    149       1.89  sommerfe 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    150       1.26       cgd 
    151       1.88  sommerfe 	spc->spc_rrticks = rrticks;
    152      1.130   nathanw 
    153      1.122   thorpej 	if (curlwp != NULL) {
    154       1.73   thorpej 		if (spc->spc_flags & SPCF_SEENRR) {
    155       1.69   thorpej 			/*
    156       1.69   thorpej 			 * The process has already been through a roundrobin
    157       1.69   thorpej 			 * without switching and may be hogging the CPU.
    158       1.69   thorpej 			 * Indicate that the process should yield.
    159       1.69   thorpej 			 */
    160       1.73   thorpej 			spc->spc_flags |= SPCF_SHOULDYIELD;
    161       1.69   thorpej 		} else
    162       1.73   thorpej 			spc->spc_flags |= SPCF_SEENRR;
    163       1.69   thorpej 	}
    164  1.166.2.2        ad 	cpu_need_resched(curcpu());
    165       1.26       cgd }
    166       1.26       cgd 
    167      1.153      yamt #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    168      1.153      yamt #define	NICE_WEIGHT 2			/* priorities per nice level */
    169      1.153      yamt 
    170      1.153      yamt #define	ESTCPU_SHIFT	11
    171      1.153      yamt #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    172      1.153      yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    173      1.153      yamt 
    174       1.26       cgd /*
    175       1.26       cgd  * Constants for digital decay and forget:
    176       1.26       cgd  *	90% of (p_estcpu) usage in 5 * loadav time
    177       1.26       cgd  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    178       1.26       cgd  *          Note that, as ps(1) mentions, this can let percentages
    179       1.26       cgd  *          total over 100% (I've seen 137.9% for 3 processes).
    180       1.26       cgd  *
    181       1.26       cgd  * Note that hardclock updates p_estcpu and p_cpticks independently.
    182       1.26       cgd  *
    183       1.26       cgd  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    184       1.26       cgd  * That is, the system wants to compute a value of decay such
    185       1.26       cgd  * that the following for loop:
    186       1.26       cgd  * 	for (i = 0; i < (5 * loadavg); i++)
    187       1.26       cgd  * 		p_estcpu *= decay;
    188       1.26       cgd  * will compute
    189       1.26       cgd  * 	p_estcpu *= 0.1;
    190       1.26       cgd  * for all values of loadavg:
    191       1.26       cgd  *
    192       1.26       cgd  * Mathematically this loop can be expressed by saying:
    193       1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    194       1.26       cgd  *
    195       1.26       cgd  * The system computes decay as:
    196       1.26       cgd  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    197       1.26       cgd  *
    198       1.26       cgd  * We wish to prove that the system's computation of decay
    199       1.26       cgd  * will always fulfill the equation:
    200       1.26       cgd  * 	decay ** (5 * loadavg) ~= .1
    201       1.26       cgd  *
    202       1.26       cgd  * If we compute b as:
    203       1.26       cgd  * 	b = 2 * loadavg
    204       1.26       cgd  * then
    205       1.26       cgd  * 	decay = b / (b + 1)
    206       1.26       cgd  *
    207       1.26       cgd  * We now need to prove two things:
    208       1.26       cgd  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    209       1.26       cgd  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    210      1.130   nathanw  *
    211       1.26       cgd  * Facts:
    212       1.26       cgd  *         For x close to zero, exp(x) =~ 1 + x, since
    213       1.26       cgd  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    214       1.26       cgd  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    215       1.26       cgd  *         For x close to zero, ln(1+x) =~ x, since
    216       1.26       cgd  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    217       1.26       cgd  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    218       1.26       cgd  *         ln(.1) =~ -2.30
    219       1.26       cgd  *
    220       1.26       cgd  * Proof of (1):
    221       1.26       cgd  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    222       1.26       cgd  *	solving for factor,
    223       1.26       cgd  *      ln(factor) =~ (-2.30/5*loadav), or
    224       1.26       cgd  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    225       1.26       cgd  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    226       1.26       cgd  *
    227       1.26       cgd  * Proof of (2):
    228       1.26       cgd  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    229       1.26       cgd  *	solving for power,
    230       1.26       cgd  *      power*ln(b/(b+1)) =~ -2.30, or
    231       1.26       cgd  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    232       1.26       cgd  *
    233       1.26       cgd  * Actual power values for the implemented algorithm are as follows:
    234       1.26       cgd  *      loadav: 1       2       3       4
    235       1.26       cgd  *      power:  5.68    10.32   14.94   19.55
    236       1.26       cgd  */
    237       1.26       cgd 
    238       1.26       cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    239       1.26       cgd #define	loadfactor(loadav)	(2 * (loadav))
    240      1.153      yamt 
    241      1.153      yamt static fixpt_t
    242      1.153      yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    243      1.153      yamt {
    244      1.153      yamt 
    245      1.153      yamt 	if (estcpu == 0) {
    246      1.153      yamt 		return 0;
    247      1.153      yamt 	}
    248      1.153      yamt 
    249      1.153      yamt #if !defined(_LP64)
    250      1.153      yamt 	/* avoid 64bit arithmetics. */
    251      1.153      yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    252      1.153      yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    253      1.153      yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    254      1.153      yamt 	}
    255      1.153      yamt #endif /* !defined(_LP64) */
    256      1.153      yamt 
    257      1.153      yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    258      1.153      yamt }
    259       1.26       cgd 
    260      1.157      yamt /*
    261      1.157      yamt  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    262      1.157      yamt  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    263      1.157      yamt  * less than (1 << ESTCPU_SHIFT).
    264      1.157      yamt  *
    265      1.157      yamt  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    266      1.157      yamt  */
    267      1.157      yamt static fixpt_t
    268      1.157      yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    269      1.157      yamt {
    270      1.157      yamt 
    271      1.157      yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    272      1.157      yamt 		return 0;
    273      1.157      yamt 	}
    274      1.157      yamt 
    275      1.157      yamt 	while (estcpu != 0 && n > 1) {
    276      1.157      yamt 		estcpu = decay_cpu(loadfac, estcpu);
    277      1.157      yamt 		n--;
    278      1.157      yamt 	}
    279      1.157      yamt 
    280      1.157      yamt 	return estcpu;
    281      1.157      yamt }
    282      1.157      yamt 
    283       1.26       cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    284       1.26       cgd fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    285       1.26       cgd 
    286       1.26       cgd /*
    287       1.26       cgd  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    288       1.26       cgd  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    289       1.26       cgd  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    290       1.26       cgd  *
    291       1.26       cgd  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    292       1.26       cgd  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    293       1.26       cgd  *
    294       1.26       cgd  * If you dont want to bother with the faster/more-accurate formula, you
    295       1.26       cgd  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    296       1.26       cgd  * (more general) method of calculating the %age of CPU used by a process.
    297       1.26       cgd  */
    298       1.26       cgd #define	CCPU_SHIFT	11
    299       1.26       cgd 
    300       1.26       cgd /*
    301       1.26       cgd  * Recompute process priorities, every hz ticks.
    302       1.26       cgd  */
    303       1.26       cgd /* ARGSUSED */
    304       1.26       cgd void
    305       1.77   thorpej schedcpu(void *arg)
    306       1.26       cgd {
    307       1.71  augustss 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    308  1.166.2.2        ad 	struct rlimit *rlim;
    309      1.122   thorpej 	struct lwp *l;
    310       1.71  augustss 	struct proc *p;
    311      1.122   thorpej 	int s, minslp;
    312       1.66      ross 	int clkhz;
    313  1.166.2.2        ad 	long runtm;
    314       1.26       cgd 
    315      1.157      yamt 	schedcpu_ticks++;
    316      1.157      yamt 
    317  1.166.2.1        ad 	mutex_enter(&proclist_mutex);
    318      1.145      yamt 	PROCLIST_FOREACH(p, &allproc) {
    319       1.26       cgd 		/*
    320  1.166.2.2        ad 		 * Increment time in/out of memory and sleep time (if
    321  1.166.2.2        ad 		 * sleeping).  We ignore overflow; with 16-bit int's
    322       1.26       cgd 		 * (remember them?) overflow takes 45 days.
    323  1.166.2.2        ad 		 *
    324  1.166.2.2        ad 		 * XXXSMP Should create an activeproc list so that we
    325  1.166.2.2        ad 		 * don't touch every proc+LWP in the system on a regular
    326  1.166.2.2        ad 		 * basis. l->l_swtime/l->l_slptime can become deltas.
    327       1.26       cgd 		 */
    328      1.122   thorpej 		minslp = 2;
    329  1.166.2.2        ad 		runtm = 0;
    330  1.166.2.2        ad 		mutex_enter(&p->p_smutex);
    331      1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    332  1.166.2.2        ad 			lwp_lock(l);
    333  1.166.2.2        ad 			runtm += l->l_rtime.tv_sec;
    334      1.122   thorpej 			l->l_swtime++;
    335      1.130   nathanw 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    336      1.122   thorpej 			    l->l_stat == LSSUSPENDED) {
    337      1.122   thorpej 				l->l_slptime++;
    338      1.122   thorpej 				minslp = min(minslp, l->l_slptime);
    339      1.122   thorpej 			} else
    340      1.122   thorpej 				minslp = 0;
    341  1.166.2.2        ad 			lwp_unlock(l);
    342      1.122   thorpej 		}
    343       1.26       cgd 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    344  1.166.2.2        ad 
    345  1.166.2.2        ad 		/*
    346  1.166.2.2        ad 		 * Check if the process exceeds its CPU resource allocation.
    347  1.166.2.2        ad 		 * If over max, kill it.  In any case, if it has run for more
    348  1.166.2.2        ad 		 * than autonicetime, reduce priority to give others a chance.
    349  1.166.2.2        ad 		 */
    350  1.166.2.2        ad 		rlim = &p->p_rlimit[RLIMIT_CPU];
    351  1.166.2.2        ad 		if (runtm >= rlim->rlim_cur) {
    352  1.166.2.2        ad 			if (runtm >= rlim->rlim_max)
    353  1.166.2.2        ad 				psignal(p, SIGKILL);
    354  1.166.2.2        ad 			else {
    355  1.166.2.2        ad 				psignal(p, SIGXCPU);
    356  1.166.2.2        ad 				if (rlim->rlim_cur < rlim->rlim_max)
    357  1.166.2.2        ad 					rlim->rlim_cur += 5;
    358  1.166.2.2        ad 			}
    359  1.166.2.2        ad 		}
    360  1.166.2.2        ad 		if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
    361  1.166.2.2        ad 		    && kauth_cred_geteuid(p->p_cred)) {
    362  1.166.2.2        ad 			p->p_nice = autoniceval + NZERO;
    363  1.166.2.2        ad 			resetprocpriority(p);
    364  1.166.2.2        ad 		}
    365  1.166.2.2        ad 
    366       1.26       cgd 		/*
    367       1.26       cgd 		 * If the process has slept the entire second,
    368       1.26       cgd 		 * stop recalculating its priority until it wakes up.
    369       1.26       cgd 		 */
    370  1.166.2.2        ad 		if (minslp > 1) {
    371  1.166.2.2        ad 			mutex_exit(&p->p_smutex);
    372       1.26       cgd 			continue;
    373  1.166.2.2        ad 		}
    374  1.166.2.4        ad 		s = splstatclock();	/* XXXSMP prevent state changes */
    375       1.26       cgd 		/*
    376       1.26       cgd 		 * p_pctcpu is only for ps.
    377       1.26       cgd 		 */
    378       1.66      ross 		clkhz = stathz != 0 ? stathz : hz;
    379       1.26       cgd #if	(FSHIFT >= CCPU_SHIFT)
    380       1.66      ross 		p->p_pctcpu += (clkhz == 100)?
    381       1.26       cgd 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    382       1.26       cgd                 	100 * (((fixpt_t) p->p_cpticks)
    383       1.66      ross 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    384       1.26       cgd #else
    385       1.26       cgd 		p->p_pctcpu += ((FSCALE - ccpu) *
    386       1.66      ross 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    387       1.26       cgd #endif
    388       1.26       cgd 		p->p_cpticks = 0;
    389      1.153      yamt 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    390      1.120        pk 		splx(s);	/* Done with the process CPU ticks update */
    391      1.122   thorpej 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    392  1.166.2.2        ad 			lwp_lock(l);
    393  1.166.2.2        ad 			if (l->l_slptime > 1) {
    394  1.166.2.2        ad 				lwp_unlock(l);
    395      1.122   thorpej 				continue;
    396  1.166.2.2        ad 			}
    397      1.122   thorpej 			resetpriority(l);
    398      1.122   thorpej 			if (l->l_priority >= PUSER) {
    399      1.122   thorpej 				if (l->l_stat == LSRUN &&
    400      1.122   thorpej 				    (l->l_flag & L_INMEM) &&
    401      1.122   thorpej 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    402  1.166.2.4        ad 				    	lwp_changepri(l, l->l_usrpri);
    403      1.122   thorpej 				} else
    404      1.122   thorpej 					l->l_priority = l->l_usrpri;
    405      1.122   thorpej 			}
    406  1.166.2.2        ad 			lwp_unlock(l);
    407       1.26       cgd 		}
    408  1.166.2.2        ad 		mutex_exit(&p->p_smutex);
    409       1.26       cgd 	}
    410  1.166.2.1        ad 	mutex_exit(&proclist_mutex);
    411       1.47       mrg 	uvm_meter();
    412       1.67      fvdl 	wakeup((caddr_t)&lbolt);
    413      1.143      yamt 	callout_schedule(&schedcpu_ch, hz);
    414       1.26       cgd }
    415       1.26       cgd 
    416       1.26       cgd /*
    417       1.26       cgd  * Recalculate the priority of a process after it has slept for a while.
    418       1.26       cgd  */
    419       1.26       cgd void
    420      1.122   thorpej updatepri(struct lwp *l)
    421       1.26       cgd {
    422      1.122   thorpej 	struct proc *p = l->l_proc;
    423       1.83   thorpej 	fixpt_t loadfac;
    424       1.83   thorpej 
    425  1.166.2.2        ad 	LOCK_ASSERT(lwp_locked(l, NULL));
    426      1.157      yamt 	KASSERT(l->l_slptime > 1);
    427       1.83   thorpej 
    428       1.83   thorpej 	loadfac = loadfactor(averunnable.ldavg[0]);
    429       1.26       cgd 
    430      1.157      yamt 	l->l_slptime--; /* the first time was done in schedcpu */
    431      1.157      yamt 	/* XXX NJWLWP */
    432  1.166.2.2        ad 	/* XXXSMP occasionaly unlocked. */
    433      1.157      yamt 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    434      1.122   thorpej 	resetpriority(l);
    435       1.26       cgd }
    436       1.26       cgd 
    437       1.26       cgd /*
    438  1.166.2.2        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    439  1.166.2.2        ad  * priority briefly to allow interrupts, then return.  The priority to be
    440  1.166.2.2        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    441  1.166.2.2        ad  * maintained in the machine-dependent layers.  This priority will typically
    442  1.166.2.2        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    443  1.166.2.2        ad  * it can be made higher to block network software interrupts after panics.
    444       1.26       cgd  */
    445  1.166.2.2        ad int	safepri;
    446       1.26       cgd 
    447       1.26       cgd /*
    448  1.166.2.2        ad  * ltsleep: see mtsleep() for comments.
    449       1.26       cgd  */
    450       1.26       cgd int
    451  1.166.2.2        ad ltsleep(wchan_t ident, int priority, const char *wmesg, int timo,
    452  1.166.2.2        ad 	volatile struct simplelock *interlock)
    453       1.26       cgd {
    454      1.122   thorpej 	struct lwp *l = curlwp;
    455  1.166.2.2        ad 	sleepq_t *sq;
    456  1.166.2.2        ad 	int error;
    457       1.26       cgd 
    458  1.166.2.2        ad 	if (sleepq_dontsleep(l)) {
    459  1.166.2.2        ad 		(void)sleepq_abort(NULL, 0);
    460  1.166.2.2        ad 		if ((priority & PNORELOCK) != 0)
    461       1.77   thorpej 			simple_unlock(interlock);
    462  1.166.2.2        ad 		return 0;
    463      1.122   thorpej 	}
    464       1.77   thorpej 
    465  1.166.2.4        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    466  1.166.2.4        ad 
    467  1.166.2.4        ad 	sleepq_enter(sq, priority & PRIMASK, ident, wmesg, timo,
    468  1.166.2.4        ad 	    priority & PCATCH, &sleep_syncobj);
    469       1.77   thorpej 
    470  1.166.2.2        ad 	if (interlock != NULL) {
    471  1.166.2.2        ad 		LOCK_ASSERT(simple_lock_held(interlock));
    472       1.77   thorpej 		simple_unlock(interlock);
    473       1.26       cgd 	}
    474      1.126        pk 
    475  1.166.2.2        ad 	error = sleepq_block(sq, timo);
    476  1.166.2.4        ad 	sleepq_unblock();
    477      1.126        pk 
    478  1.166.2.2        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    479  1.166.2.2        ad 		simple_lock(interlock);
    480  1.166.2.2        ad 
    481  1.166.2.2        ad 	return error;
    482       1.26       cgd }
    483       1.26       cgd 
    484  1.166.2.2        ad /*
    485  1.166.2.2        ad  * General sleep call.  Suspends the current process until a wakeup is
    486  1.166.2.2        ad  * performed on the specified identifier.  The process will then be made
    487  1.166.2.2        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    488  1.166.2.2        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    489  1.166.2.2        ad  * before and after sleeping, else signals are not checked.  Returns 0 if
    490  1.166.2.2        ad  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    491  1.166.2.2        ad  * signal needs to be delivered, ERESTART is returned if the current system
    492  1.166.2.2        ad  * call should be restarted if possible, and EINTR is returned if the system
    493  1.166.2.2        ad  * call should be interrupted by the signal (return EINTR).
    494  1.166.2.2        ad  *
    495  1.166.2.2        ad  * The interlock is held until we are on a sleep queue. The interlock will
    496  1.166.2.2        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    497  1.166.2.2        ad  * is specified, in which case the interlock will always be unlocked upon
    498  1.166.2.2        ad  * return.
    499  1.166.2.2        ad  */
    500  1.166.2.1        ad int
    501  1.166.2.2        ad mtsleep(wchan_t ident, int priority, const char *wmesg, int timo,
    502  1.166.2.2        ad 	kmutex_t *mtx)
    503  1.166.2.1        ad {
    504  1.166.2.1        ad 	struct lwp *l = curlwp;
    505  1.166.2.2        ad 	sleepq_t *sq;
    506  1.166.2.2        ad 	int error;
    507  1.166.2.1        ad 
    508  1.166.2.2        ad 	if (sleepq_dontsleep(l))
    509  1.166.2.2        ad 		return sleepq_abort(mtx, priority & PNORELOCK);
    510  1.166.2.1        ad 
    511  1.166.2.4        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    512  1.166.2.4        ad 
    513  1.166.2.4        ad 	sleepq_enter(sq, priority & PRIMASK, ident, wmesg, timo,
    514  1.166.2.4        ad 	    priority & PCATCH, &sleep_syncobj);
    515  1.166.2.1        ad 
    516  1.166.2.1        ad 	if (mtx != NULL) {
    517  1.166.2.2        ad 		LOCK_ASSERT(mutex_owned(mtx));
    518  1.166.2.4        ad 		mutex_exit(mtx);
    519  1.166.2.1        ad 	}
    520  1.166.2.1        ad 
    521  1.166.2.2        ad 	error = sleepq_block(sq, timo);
    522  1.166.2.4        ad 	sleepq_unblock();
    523  1.166.2.1        ad 
    524  1.166.2.2        ad 	if (mtx != NULL && (priority & PNORELOCK) == 0)
    525  1.166.2.1        ad 		mutex_enter(mtx);
    526  1.166.2.2        ad 
    527  1.166.2.2        ad 	return error;
    528  1.166.2.1        ad }
    529  1.166.2.1        ad 
    530       1.26       cgd void
    531      1.139        cl sa_awaken(struct lwp *l)
    532      1.139        cl {
    533      1.147     perry 
    534  1.166.2.2        ad 	LOCK_ASSERT(lwp_locked(l, NULL));
    535      1.139        cl 
    536      1.142        cl 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    537      1.139        cl 		l->l_flag &= ~L_SA_IDLE;
    538      1.139        cl }
    539      1.139        cl 
    540       1.26       cgd /*
    541       1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    542       1.26       cgd  */
    543       1.26       cgd void
    544  1.166.2.2        ad wakeup(wchan_t ident)
    545       1.26       cgd {
    546  1.166.2.2        ad 	sleepq_t *sq;
    547       1.83   thorpej 
    548  1.166.2.2        ad 	if (cold)
    549  1.166.2.2        ad 		return;
    550       1.83   thorpej 
    551  1.166.2.4        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    552  1.166.2.5        ad 	sleepq_wake(sq, ident, (u_int)-1);
    553       1.63   thorpej }
    554       1.63   thorpej 
    555       1.63   thorpej /*
    556       1.63   thorpej  * Make the highest priority process first in line on the specified
    557       1.63   thorpej  * identifier runnable.
    558       1.63   thorpej  */
    559  1.166.2.2        ad void
    560  1.166.2.2        ad wakeup_one(wchan_t ident)
    561       1.63   thorpej {
    562  1.166.2.2        ad 	sleepq_t *sq;
    563       1.77   thorpej 
    564  1.166.2.2        ad 	if (cold)
    565  1.166.2.2        ad 		return;
    566  1.166.2.2        ad 
    567  1.166.2.4        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    568  1.166.2.5        ad 	sleepq_wake(sq, ident, 1);
    569      1.117  gmcgarry }
    570      1.117  gmcgarry 
    571  1.166.2.2        ad 
    572      1.117  gmcgarry /*
    573      1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    574      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    575      1.117  gmcgarry  * current process explicitly requests it (eg sched_yield(2) in compat code).
    576      1.117  gmcgarry  */
    577      1.117  gmcgarry void
    578      1.117  gmcgarry yield(void)
    579      1.117  gmcgarry {
    580      1.122   thorpej 	struct lwp *l = curlwp;
    581      1.117  gmcgarry 
    582  1.166.2.2        ad 	lwp_lock(l);
    583  1.166.2.2        ad 	if (l->l_stat == LSONPROC) {
    584  1.166.2.3        ad 		KASSERT(lwp_locked(l, &sched_mutex));
    585  1.166.2.2        ad 		l->l_priority = l->l_usrpri;
    586  1.166.2.2        ad 	}
    587  1.166.2.2        ad 	l->l_nvcsw++;
    588      1.122   thorpej 	mi_switch(l, NULL);
    589       1.69   thorpej }
    590       1.69   thorpej 
    591       1.69   thorpej /*
    592       1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    593      1.156    rpaulo  * and performs an involuntary context switch.
    594      1.156    rpaulo  * The 'more' ("more work to do") argument is boolean. Returning to userspace
    595      1.156    rpaulo  * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
    596      1.156    rpaulo  * This will be used to indicate to the SA subsystem that the LWP is
    597      1.156    rpaulo  * not yet finished in the kernel.
    598       1.69   thorpej  */
    599       1.69   thorpej void
    600      1.122   thorpej preempt(int more)
    601       1.69   thorpej {
    602      1.122   thorpej 	struct lwp *l = curlwp;
    603  1.166.2.2        ad 	int r;
    604       1.69   thorpej 
    605  1.166.2.2        ad 	lwp_lock(l);
    606  1.166.2.2        ad 	if (l->l_stat == LSONPROC) {
    607  1.166.2.3        ad 		KASSERT(lwp_locked(l, &sched_mutex));
    608  1.166.2.2        ad 		l->l_priority = l->l_usrpri;
    609  1.166.2.2        ad 	}
    610  1.166.2.2        ad 	l->l_nivcsw++;
    611      1.122   thorpej 	r = mi_switch(l, NULL);
    612  1.166.2.4        ad 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    613      1.122   thorpej 		sa_preempt(l);
    614       1.69   thorpej }
    615       1.69   thorpej 
    616       1.69   thorpej /*
    617  1.166.2.2        ad  * The machine independent parts of context switch.  Switch to "new"
    618  1.166.2.2        ad  * if non-NULL, otherwise let cpu_switch choose the next lwp.
    619      1.130   nathanw  *
    620      1.122   thorpej  * Returns 1 if another process was actually run.
    621       1.26       cgd  */
    622      1.122   thorpej int
    623      1.122   thorpej mi_switch(struct lwp *l, struct lwp *newl)
    624       1.26       cgd {
    625       1.76   thorpej 	struct schedstate_percpu *spc;
    626       1.26       cgd 	struct timeval tv;
    627      1.144      yamt 	int hold_count;
    628  1.166.2.2        ad 	int retval, oldspl;
    629  1.166.2.2        ad 	long s, u;
    630  1.166.2.2        ad #if PERFCTRS
    631      1.122   thorpej 	struct proc *p = l->l_proc;
    632  1.166.2.2        ad #endif
    633       1.26       cgd 
    634  1.166.2.2        ad 	LOCK_ASSERT(lwp_locked(l, NULL));
    635       1.83   thorpej 
    636       1.90  sommerfe 	/*
    637       1.90  sommerfe 	 * Release the kernel_lock, as we are about to yield the CPU.
    638       1.90  sommerfe 	 */
    639  1.166.2.4        ad 	hold_count = KERNEL_UNLOCK(0, l);
    640       1.85  sommerfe 
    641      1.160       chs #ifdef LOCKDEBUG
    642       1.82   thorpej 	spinlock_switchcheck();
    643       1.81   thorpej 	simple_lock_switchcheck();
    644       1.50      fvdl #endif
    645  1.166.2.2        ad #ifdef KSTACK_CHECK_MAGIC
    646  1.166.2.2        ad 	kstack_check_magic(l);
    647  1.166.2.2        ad #endif
    648  1.166.2.2        ad 
    649  1.166.2.2        ad 	/*
    650  1.166.2.2        ad 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    651  1.166.2.2        ad 	 * are after is the run time and that's guarenteed to have been last
    652  1.166.2.2        ad 	 * updated by this CPU.
    653  1.166.2.2        ad 	 */
    654  1.166.2.2        ad 	KDASSERT(l->l_cpu != NULL);
    655  1.166.2.2        ad 	KDASSERT(l->l_cpu == curcpu());
    656  1.166.2.2        ad 	spc = &l->l_cpu->ci_schedstate;
    657       1.81   thorpej 
    658       1.26       cgd 	/*
    659       1.26       cgd 	 * Compute the amount of time during which the current
    660      1.113  gmcgarry 	 * process was running.
    661       1.26       cgd 	 */
    662       1.26       cgd 	microtime(&tv);
    663  1.166.2.2        ad 	u = l->l_rtime.tv_usec +
    664      1.122   thorpej 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    665  1.166.2.2        ad 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    666       1.26       cgd 	if (u < 0) {
    667       1.26       cgd 		u += 1000000;
    668       1.26       cgd 		s--;
    669       1.26       cgd 	} else if (u >= 1000000) {
    670       1.26       cgd 		u -= 1000000;
    671       1.26       cgd 		s++;
    672       1.26       cgd 	}
    673  1.166.2.2        ad 	l->l_rtime.tv_usec = u;
    674  1.166.2.2        ad 	l->l_rtime.tv_sec = s;
    675       1.26       cgd 
    676       1.26       cgd 	/*
    677  1.166.2.2        ad 	 * XXXSMP If we are using h/w performance counters, save context.
    678       1.26       cgd 	 */
    679  1.166.2.2        ad #if PERFCTRS
    680  1.166.2.2        ad 	if (PMC_ENABLED(p)) {
    681  1.166.2.2        ad 		pmc_save_context(p);
    682       1.26       cgd 	}
    683  1.166.2.2        ad #endif
    684  1.166.2.2        ad 
    685  1.166.2.2        ad 	/*
    686  1.166.2.2        ad 	 * Acquire the sched_mutex if necessary.  It will be released by
    687  1.166.2.2        ad 	 * cpu_switch once it has decided to idle, or picked another LWP
    688  1.166.2.2        ad 	 * to run.
    689  1.166.2.2        ad 	 */
    690  1.166.2.4        ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    691  1.166.2.4        ad 	if (l->l_mutex != &sched_mutex) {
    692  1.166.2.2        ad 		mutex_enter(&sched_mutex);
    693  1.166.2.4        ad 		lwp_unlock(l);
    694       1.26       cgd 	}
    695  1.166.2.3        ad #endif
    696  1.166.2.3        ad 
    697  1.166.2.3        ad 	/*
    698  1.166.2.3        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    699  1.166.2.3        ad 	 */
    700  1.166.2.3        ad 	KASSERT(l->l_stat != LSRUN);
    701  1.166.2.3        ad 	if (l->l_stat == LSONPROC) {
    702  1.166.2.4        ad 		KASSERT(lwp_locked(l, &sched_mutex));
    703  1.166.2.3        ad 		l->l_stat = LSRUN;
    704  1.166.2.3        ad 		setrunqueue(l);
    705  1.166.2.3        ad 	}
    706  1.166.2.2        ad 	uvmexp.swtch++;
    707       1.69   thorpej 
    708       1.69   thorpej 	/*
    709       1.69   thorpej 	 * Process is about to yield the CPU; clear the appropriate
    710       1.69   thorpej 	 * scheduling flags.
    711       1.69   thorpej 	 */
    712       1.73   thorpej 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    713      1.109      yamt 
    714  1.166.2.2        ad 	LOCKDEBUG_BARRIER(&sched_mutex, 1);
    715      1.113  gmcgarry 
    716      1.113  gmcgarry 	/*
    717  1.166.2.2        ad 	 * Switch to the new current LWP.  When we run again, we'll
    718  1.166.2.2        ad 	 * return back here.
    719      1.113  gmcgarry 	 */
    720  1.166.2.4        ad 	oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    721  1.166.2.4        ad 
    722  1.166.2.4        ad 	if (newl == NULL || newl->l_back == NULL)
    723      1.122   thorpej 		retval = cpu_switch(l, NULL);
    724  1.166.2.2        ad 	else {
    725  1.166.2.4        ad 		KASSERT(lwp_locked(newl, &sched_mutex));
    726      1.122   thorpej 		remrunqueue(newl);
    727      1.122   thorpej 		cpu_switchto(l, newl);
    728      1.122   thorpej 		retval = 0;
    729      1.122   thorpej 	}
    730      1.110    briggs 
    731      1.110    briggs 	/*
    732  1.166.2.2        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    733       1.26       cgd 	 */
    734      1.114  gmcgarry #if PERFCTRS
    735      1.166  christos 	if (PMC_ENABLED(p)) {
    736      1.114  gmcgarry 		pmc_restore_context(p);
    737      1.166  christos 	}
    738      1.114  gmcgarry #endif
    739      1.110    briggs 
    740      1.110    briggs 	/*
    741       1.76   thorpej 	 * We're running again; record our new start time.  We might
    742  1.166.2.2        ad 	 * be running on a new CPU now, so don't use the cached
    743       1.76   thorpej 	 * schedstate_percpu pointer.
    744       1.76   thorpej 	 */
    745      1.122   thorpej 	KDASSERT(l->l_cpu != NULL);
    746      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    747      1.122   thorpej 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    748       1.85  sommerfe 
    749       1.90  sommerfe 	/*
    750  1.166.2.4        ad 	 * Reacquire the kernel_lock.
    751       1.90  sommerfe 	 */
    752  1.166.2.2        ad 	splx(oldspl);
    753  1.166.2.4        ad 	KERNEL_LOCK(hold_count, l);
    754      1.122   thorpej 
    755      1.122   thorpej 	return retval;
    756       1.26       cgd }
    757       1.26       cgd 
    758       1.26       cgd /*
    759       1.26       cgd  * Initialize the (doubly-linked) run queues
    760       1.26       cgd  * to be empty.
    761       1.26       cgd  */
    762       1.26       cgd void
    763       1.26       cgd rqinit()
    764       1.26       cgd {
    765       1.71  augustss 	int i;
    766       1.26       cgd 
    767       1.73   thorpej 	for (i = 0; i < RUNQUE_NQS; i++)
    768       1.73   thorpej 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    769      1.122   thorpej 		    (struct lwp *)&sched_qs[i];
    770  1.166.2.2        ad 
    771  1.166.2.2        ad 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    772       1.26       cgd }
    773       1.26       cgd 
    774      1.158     perry static inline void
    775  1.166.2.2        ad resched_lwp(struct lwp *l, u_char pri)
    776      1.119   thorpej {
    777      1.119   thorpej 	struct cpu_info *ci;
    778      1.119   thorpej 
    779  1.166.2.2        ad 	LOCK_ASSERT(lwp_locked(l, NULL));
    780  1.166.2.2        ad 
    781      1.119   thorpej 	/*
    782      1.119   thorpej 	 * XXXSMP
    783      1.122   thorpej 	 * Since l->l_cpu persists across a context switch,
    784      1.119   thorpej 	 * this gives us *very weak* processor affinity, in
    785      1.119   thorpej 	 * that we notify the CPU on which the process last
    786      1.119   thorpej 	 * ran that it should try to switch.
    787      1.119   thorpej 	 *
    788      1.119   thorpej 	 * This does not guarantee that the process will run on
    789      1.119   thorpej 	 * that processor next, because another processor might
    790      1.119   thorpej 	 * grab it the next time it performs a context switch.
    791      1.119   thorpej 	 *
    792      1.119   thorpej 	 * This also does not handle the case where its last
    793      1.119   thorpej 	 * CPU is running a higher-priority process, but every
    794      1.119   thorpej 	 * other CPU is running a lower-priority process.  There
    795      1.119   thorpej 	 * are ways to handle this situation, but they're not
    796      1.119   thorpej 	 * currently very pretty, and we also need to weigh the
    797      1.119   thorpej 	 * cost of moving a process from one CPU to another.
    798      1.119   thorpej 	 */
    799      1.122   thorpej 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    800      1.121   thorpej 	if (pri < ci->ci_schedstate.spc_curpriority)
    801  1.166.2.2        ad 		cpu_need_resched(ci);
    802      1.119   thorpej }
    803      1.119   thorpej 
    804       1.26       cgd /*
    805  1.166.2.2        ad  * Change process state to be runnable, placing it on the run queue if it is
    806  1.166.2.2        ad  * in memory, and awakening the swapper if it isn't in memory.
    807  1.166.2.2        ad  *
    808  1.166.2.2        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    809       1.26       cgd  */
    810       1.26       cgd void
    811      1.122   thorpej setrunnable(struct lwp *l)
    812       1.26       cgd {
    813      1.122   thorpej 	struct proc *p = l->l_proc;
    814  1.166.2.3        ad 	struct cpu_info *ci;
    815       1.26       cgd 
    816  1.166.2.2        ad 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    817  1.166.2.2        ad 	LOCK_ASSERT(lwp_locked(l, NULL));
    818       1.83   thorpej 
    819      1.122   thorpej 	switch (l->l_stat) {
    820      1.122   thorpej 	case LSSTOP:
    821       1.33   mycroft 		/*
    822       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    823       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    824       1.33   mycroft 		 */
    825  1.166.2.4        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    826  1.166.2.3        ad 			sigaddset(&l->l_sigpend->sp_set, p->p_xstat);
    827  1.166.2.2        ad 			signotify(l);
    828       1.53   mycroft 		}
    829  1.166.2.2        ad 		p->p_nrlwps++;
    830      1.122   thorpej 		break;
    831      1.122   thorpej 	case LSSUSPENDED:
    832  1.166.2.4        ad 		l->l_flag &= ~L_WSUSPEND;
    833  1.166.2.2        ad 		p->p_nrlwps++;
    834  1.166.2.2        ad 		break;
    835  1.166.2.2        ad 	case LSSLEEP:
    836  1.166.2.4        ad 		/*
    837  1.166.2.4        ad 		 * If the LWP was sleeping interruptably, then it's OK to
    838  1.166.2.4        ad 		 * start it again.  If not, mark it as still sleeping.
    839  1.166.2.4        ad 		 */
    840  1.166.2.4        ad 		KASSERT(l->l_wchan != NULL);
    841  1.166.2.2        ad 
    842  1.166.2.4        ad 		if ((l->l_flag & L_SINTR) != 0) {
    843  1.166.2.4        ad 			/* lwp_unsleep() will release the lock. */
    844  1.166.2.4        ad 			lwp_unsleep(l);
    845  1.166.2.4        ad 		} else {
    846  1.166.2.4        ad 			lwp_unlock(l);
    847  1.166.2.4        ad #ifdef DIAGNOSTIC
    848  1.166.2.4        ad 			panic("setrunnable: !L_SINTR");
    849  1.166.2.4        ad #endif
    850  1.166.2.4        ad 		}
    851  1.166.2.2        ad 		return;
    852  1.166.2.4        ad 	default:
    853  1.166.2.4        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    854       1.26       cgd 	}
    855      1.139        cl 
    856      1.139        cl 	if (l->l_proc->p_sa)
    857      1.139        cl 		sa_awaken(l);
    858      1.139        cl 
    859  1.166.2.3        ad 	/*
    860  1.166.2.4        ad 	 * Set in sched_mutex as it the LWP's current mutex.  If the LWP is
    861  1.166.2.4        ad 	 * still on the CPU, mark it as LSONPROC.  It may be about to call
    862  1.166.2.4        ad 	 * mi_switch(), in which case it will yield.
    863  1.166.2.3        ad 	 */
    864  1.166.2.3        ad 	lwp_relock(l, &sched_mutex);
    865      1.122   thorpej 
    866  1.166.2.3        ad 	if ((ci = l->l_cpu) != NULL && ci->ci_curlwp == l) {
    867  1.166.2.3        ad 		l->l_stat = LSONPROC;
    868  1.166.2.3        ad 		l->l_slptime = 0;
    869  1.166.2.3        ad 		lwp_unlock(l);
    870  1.166.2.3        ad 		return;
    871  1.166.2.3        ad 	}
    872      1.122   thorpej 
    873  1.166.2.3        ad 	/*
    874  1.166.2.3        ad 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    875  1.166.2.3        ad 	 * to bring it back in.  Otherwise, enter it into a run queue.
    876  1.166.2.3        ad 	 */
    877  1.166.2.3        ad 	l->l_stat = LSRUN;
    878      1.122   thorpej 	if (l->l_slptime > 1)
    879      1.122   thorpej 		updatepri(l);
    880      1.122   thorpej 	l->l_slptime = 0;
    881  1.166.2.2        ad 
    882  1.166.2.2        ad 	if (l->l_flag & L_INMEM) {
    883  1.166.2.2        ad 		setrunqueue(l);
    884  1.166.2.2        ad 		resched_lwp(l, l->l_priority);
    885  1.166.2.2        ad 		lwp_unlock(l);
    886  1.166.2.2        ad 	} else {
    887  1.166.2.2        ad 		lwp_unlock(l);
    888  1.166.2.2        ad 		wakeup(&proc0);
    889  1.166.2.2        ad 	}
    890       1.26       cgd }
    891       1.26       cgd 
    892       1.26       cgd /*
    893       1.26       cgd  * Compute the priority of a process when running in user mode.
    894       1.26       cgd  * Arrange to reschedule if the resulting priority is better
    895       1.26       cgd  * than that of the current process.
    896       1.26       cgd  */
    897       1.26       cgd void
    898      1.122   thorpej resetpriority(struct lwp *l)
    899       1.26       cgd {
    900       1.71  augustss 	unsigned int newpriority;
    901      1.122   thorpej 	struct proc *p = l->l_proc;
    902       1.26       cgd 
    903  1.166.2.2        ad 	LOCK_ASSERT(lwp_locked(l, NULL));
    904       1.83   thorpej 
    905  1.166.2.2        ad 	/* XXXSMP proc values will be accessed unlocked */
    906      1.153      yamt 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
    907      1.122   thorpej 			NICE_WEIGHT * (p->p_nice - NZERO);
    908       1.26       cgd 	newpriority = min(newpriority, MAXPRI);
    909      1.122   thorpej 	l->l_usrpri = newpriority;
    910  1.166.2.2        ad 	resched_lwp(l, l->l_usrpri);
    911      1.122   thorpej }
    912      1.122   thorpej 
    913      1.130   nathanw /*
    914      1.122   thorpej  * Recompute priority for all LWPs in a process.
    915      1.122   thorpej  */
    916      1.122   thorpej void
    917      1.122   thorpej resetprocpriority(struct proc *p)
    918      1.122   thorpej {
    919      1.122   thorpej 	struct lwp *l;
    920      1.122   thorpej 
    921  1.166.2.2        ad 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    922  1.166.2.2        ad 
    923  1.166.2.2        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    924  1.166.2.2        ad 		lwp_lock(l);
    925  1.166.2.2        ad 		resetpriority(l);
    926  1.166.2.2        ad 		lwp_unlock(l);
    927  1.166.2.2        ad 	}
    928       1.55      ross }
    929       1.55      ross 
    930       1.55      ross /*
    931       1.56      ross  * We adjust the priority of the current process.  The priority of a process
    932      1.141       wiz  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    933       1.56      ross  * is increased here.  The formula for computing priorities (in kern_synch.c)
    934       1.56      ross  * will compute a different value each time p_estcpu increases. This can
    935       1.56      ross  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    936      1.141       wiz  * queue will not change.  The CPU usage estimator ramps up quite quickly
    937       1.56      ross  * when the process is running (linearly), and decays away exponentially, at
    938       1.56      ross  * a rate which is proportionally slower when the system is busy.  The basic
    939       1.80   nathanw  * principle is that the system will 90% forget that the process used a lot
    940       1.56      ross  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    941       1.56      ross  * processes which haven't run much recently, and to round-robin among other
    942       1.56      ross  * processes.
    943       1.55      ross  */
    944       1.55      ross 
    945       1.55      ross void
    946      1.122   thorpej schedclock(struct lwp *l)
    947       1.55      ross {
    948      1.122   thorpej 	struct proc *p = l->l_proc;
    949  1.166.2.2        ad 
    950  1.166.2.2        ad 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    951       1.77   thorpej 
    952      1.153      yamt 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    953      1.130   nathanw 
    954  1.166.2.2        ad 	lwp_lock(l);
    955  1.166.2.2        ad 	resetpriority(l);
    956      1.122   thorpej 	if (l->l_priority >= PUSER)
    957      1.122   thorpej 		l->l_priority = l->l_usrpri;
    958  1.166.2.2        ad 	lwp_unlock(l);
    959       1.26       cgd }
    960       1.94    bouyer 
    961  1.166.2.2        ad /*
    962  1.166.2.2        ad  * suspendsched:
    963  1.166.2.2        ad  *
    964  1.166.2.4        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    965  1.166.2.2        ad  */
    966       1.94    bouyer void
    967  1.166.2.4        ad suspendsched(void)
    968       1.94    bouyer {
    969  1.166.2.4        ad 	CPU_INFO_ITERATOR cii;
    970  1.166.2.4        ad 	struct cpu_info *ci;
    971      1.122   thorpej 	struct lwp *l;
    972  1.166.2.2        ad 	struct proc *p;
    973       1.94    bouyer 
    974  1.166.2.4        ad 	/*
    975  1.166.2.4        ad 	 * We do this by process in order not to violate the locking rules.
    976  1.166.2.4        ad 	 */
    977  1.166.2.4        ad 	rw_enter(&proclist_lock, RW_READER);
    978  1.166.2.4        ad 	PROCLIST_FOREACH(p, &allproc) {
    979  1.166.2.4        ad 		mutex_enter(&p->p_smutex);
    980  1.166.2.4        ad 
    981  1.166.2.4        ad 		if ((p->p_flag & P_SYSTEM) != 0) {
    982  1.166.2.4        ad 			mutex_exit(&p->p_smutex);
    983       1.94    bouyer 			continue;
    984  1.166.2.4        ad 		}
    985      1.122   thorpej 
    986  1.166.2.4        ad 		p->p_stat = SSTOP;
    987  1.166.2.2        ad 
    988  1.166.2.4        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    989  1.166.2.4        ad 			if (l == curlwp)
    990  1.166.2.4        ad 				continue;
    991  1.166.2.4        ad 
    992  1.166.2.4        ad 			lwp_lock(l);
    993  1.166.2.4        ad 
    994  1.166.2.4        ad 			/*
    995  1.166.2.4        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    996  1.166.2.4        ad 			 * when it tries to return to user mode.  We want to
    997  1.166.2.4        ad 			 * try and get to get as many LWPs as possible to
    998  1.166.2.4        ad 			 * the user / kernel boundary, so that they will
    999  1.166.2.4        ad 			 * release any locks that they hold.
   1000  1.166.2.4        ad 			 */
   1001  1.166.2.4        ad 			l->l_flag |= (L_WREBOOT | L_WSUSPEND);
   1002  1.166.2.4        ad 
   1003  1.166.2.4        ad 			if (l->l_stat == LSSLEEP &&
   1004  1.166.2.4        ad 			    (l->l_flag & L_SINTR) != 0) {
   1005  1.166.2.4        ad 				/* setrunnable() will release the lock. */
   1006  1.166.2.4        ad 				setrunnable(l);
   1007  1.166.2.4        ad 				continue;
   1008  1.166.2.4        ad 			}
   1009  1.166.2.4        ad 
   1010  1.166.2.4        ad 			lwp_unlock(l);
   1011       1.94    bouyer 		}
   1012  1.166.2.4        ad 
   1013  1.166.2.4        ad 		mutex_exit(&p->p_smutex);
   1014       1.94    bouyer 	}
   1015  1.166.2.4        ad 	rw_exit(&proclist_lock);
   1016  1.166.2.4        ad 
   1017  1.166.2.4        ad 	/*
   1018  1.166.2.4        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1019  1.166.2.4        ad 	 * They'll trap into the kernel and suspend themselves in userret().
   1020  1.166.2.4        ad 	 */
   1021  1.166.2.4        ad 	sched_lock(0);
   1022  1.166.2.4        ad 	for (CPU_INFO_FOREACH(cii, ci))
   1023  1.166.2.4        ad 		cpu_need_resched(ci);
   1024  1.166.2.4        ad 	sched_unlock(0);
   1025       1.94    bouyer }
   1026      1.113  gmcgarry 
   1027      1.113  gmcgarry /*
   1028      1.151      yamt  * scheduler_fork_hook:
   1029      1.151      yamt  *
   1030      1.151      yamt  *	Inherit the parent's scheduler history.
   1031      1.151      yamt  */
   1032      1.151      yamt void
   1033      1.151      yamt scheduler_fork_hook(struct proc *parent, struct proc *child)
   1034      1.151      yamt {
   1035      1.151      yamt 
   1036  1.166.2.4        ad 	LOCK_ASSERT(mutex_owned(&parent->p_smutex));
   1037  1.166.2.4        ad 
   1038      1.157      yamt 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
   1039      1.157      yamt 	child->p_forktime = schedcpu_ticks;
   1040      1.151      yamt }
   1041      1.151      yamt 
   1042      1.151      yamt /*
   1043      1.151      yamt  * scheduler_wait_hook:
   1044      1.151      yamt  *
   1045      1.151      yamt  *	Chargeback parents for the sins of their children.
   1046      1.151      yamt  */
   1047      1.151      yamt void
   1048      1.151      yamt scheduler_wait_hook(struct proc *parent, struct proc *child)
   1049      1.151      yamt {
   1050      1.157      yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
   1051      1.157      yamt 	fixpt_t estcpu;
   1052      1.151      yamt 
   1053      1.151      yamt 	/* XXX Only if parent != init?? */
   1054      1.157      yamt 
   1055  1.166.2.2        ad 	mutex_enter(&parent->p_smutex);
   1056      1.157      yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
   1057      1.157      yamt 	    schedcpu_ticks - child->p_forktime);
   1058  1.166.2.2        ad 	if (child->p_estcpu > estcpu)
   1059      1.157      yamt 		parent->p_estcpu =
   1060      1.157      yamt 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
   1061  1.166.2.2        ad 	mutex_exit(&parent->p_smutex);
   1062      1.151      yamt }
   1063      1.151      yamt 
   1064      1.151      yamt /*
   1065  1.166.2.4        ad  * sched_kpri:
   1066  1.166.2.4        ad  *
   1067  1.166.2.4        ad  *	Given an LWP a priority boost before it sleeps.  Currently we scale
   1068  1.166.2.4        ad  *	user priorites into the range 60 -> 40, and kernel priorities into
   1069  1.166.2.4        ad  *	40 -> 0.
   1070  1.166.2.1        ad  */
   1071  1.166.2.1        ad int
   1072  1.166.2.1        ad sched_kpri(struct lwp *l)
   1073  1.166.2.1        ad {
   1074  1.166.2.6        ad 	static const uint8_t kpri_tab[] = {
   1075  1.166.2.4        ad 		 0,   0,   1,   2,   3,   4,   4,   5,
   1076  1.166.2.4        ad 		 6,   7,   8,   8,   9,  10,  11,  12,
   1077  1.166.2.4        ad 		12,  13,  14,  15,  16,  16,  17,  18,
   1078  1.166.2.4        ad 		19,  20,  20,  21,  22,  23,  24,  24,
   1079  1.166.2.4        ad 		25,  26,  27,  28,  28,  29,  30,  31,
   1080  1.166.2.4        ad 		32,  32,  33,  34,  35,  36,  36,  37,
   1081  1.166.2.4        ad 		38,  39,  40,  40,  40,  40,  41,  41,
   1082  1.166.2.4        ad 		41,  41,  42,  42,  42,  42,  43,  43,
   1083  1.166.2.4        ad 		43,  43,  44,  44,  44,  44,  45,  45,
   1084  1.166.2.4        ad 		45,  45,  46,  46,  46,  47,  47,  47,
   1085  1.166.2.4        ad 		47,  48,  48,  48,  48,  49,  49,  49,
   1086  1.166.2.4        ad 		49,  50,  50,  50,  50,  51,  51,  51,
   1087  1.166.2.4        ad 		51,  52,  52,  52,  52,  53,  53,  53,
   1088  1.166.2.4        ad 		54,  54,  54,  54,  55,  55,  55,  55,
   1089  1.166.2.4        ad 		56,  56,  56,  56,  57,  57,  57,  57,
   1090  1.166.2.4        ad 		58,  58,  58,  58,  59,  59,  59,  60,
   1091  1.166.2.4        ad 	};
   1092  1.166.2.4        ad 
   1093  1.166.2.4        ad 	return kpri_tab[l->l_priority];
   1094  1.166.2.1        ad }
   1095  1.166.2.1        ad 
   1096  1.166.2.4        ad /*
   1097  1.166.2.4        ad  * sched_unsleep:
   1098  1.166.2.4        ad  *
   1099  1.166.2.4        ad  *	The is called when the LWP has not been awoken normally but instead
   1100  1.166.2.4        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
   1101  1.166.2.4        ad  *	it's not a valid action for running or idle LWPs.
   1102  1.166.2.4        ad  */
   1103  1.166.2.3        ad void
   1104  1.166.2.4        ad sched_unsleep(struct lwp *l)
   1105  1.166.2.3        ad {
   1106  1.166.2.3        ad 
   1107  1.166.2.4        ad 	lwp_unlock(l);
   1108  1.166.2.4        ad 	panic("sched_unsleep");
   1109  1.166.2.3        ad }
   1110  1.166.2.3        ad 
   1111  1.166.2.4        ad /*
   1112  1.166.2.4        ad  * sched_changepri:
   1113  1.166.2.4        ad  *
   1114  1.166.2.4        ad  *	Adjust the priority of an LWP.
   1115  1.166.2.4        ad  */
   1116  1.166.2.3        ad void
   1117  1.166.2.4        ad sched_changepri(struct lwp *l, int pri)
   1118  1.166.2.3        ad {
   1119  1.166.2.4        ad 	struct cpu_info *ci;
   1120  1.166.2.3        ad 
   1121  1.166.2.4        ad 	/*
   1122  1.166.2.4        ad 	 * XXXSMP
   1123  1.166.2.4        ad 	 * Since l->l_cpu persists across a context switch,
   1124  1.166.2.4        ad 	 * this gives us *very weak* processor affinity, in
   1125  1.166.2.4        ad 	 * that we notify the CPU on which the process last
   1126  1.166.2.4        ad 	 * ran that it should try to switch.
   1127  1.166.2.4        ad 	 *
   1128  1.166.2.4        ad 	 * This does not guarantee that the process will run on
   1129  1.166.2.4        ad 	 * that processor next, because another processor might
   1130  1.166.2.4        ad 	 * grab it the next time it performs a context switch.
   1131  1.166.2.4        ad 	 *
   1132  1.166.2.4        ad 	 * This also does not handle the case where its last
   1133  1.166.2.4        ad 	 * CPU is running a higher-priority process, but every
   1134  1.166.2.4        ad 	 * other CPU is running a lower-priority process.  There
   1135  1.166.2.4        ad 	 * are ways to handle this situation, but they're not
   1136  1.166.2.4        ad 	 * currently very pretty, and we also need to weigh the
   1137  1.166.2.4        ad 	 * cost of moving a process from one CPU to another.
   1138  1.166.2.4        ad 	 */
   1139  1.166.2.4        ad 	if (l->l_stat != LSRUN || (l->l_flag & L_INMEM) == 0) {
   1140  1.166.2.4        ad 		l->l_priority = pri;
   1141  1.166.2.4        ad 		return;
   1142  1.166.2.4        ad 	}
   1143  1.166.2.4        ad 
   1144  1.166.2.4        ad 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1145  1.166.2.4        ad 
   1146  1.166.2.4        ad 	remrunqueue(l);
   1147  1.166.2.4        ad 	l->l_priority = pri;
   1148  1.166.2.4        ad 	setrunqueue(l);
   1149  1.166.2.4        ad 
   1150  1.166.2.4        ad 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1151  1.166.2.4        ad 	if (pri < ci->ci_schedstate.spc_curpriority)
   1152  1.166.2.4        ad 		cpu_need_resched(ci);
   1153  1.166.2.3        ad }
   1154  1.166.2.3        ad 
   1155  1.166.2.1        ad /*
   1156      1.113  gmcgarry  * Low-level routines to access the run queue.  Optimised assembler
   1157      1.113  gmcgarry  * routines can override these.
   1158      1.113  gmcgarry  */
   1159      1.113  gmcgarry 
   1160      1.113  gmcgarry #ifndef __HAVE_MD_RUNQUEUE
   1161      1.115  nisimura 
   1162      1.130   nathanw /*
   1163      1.134      matt  * On some architectures, it's faster to use a MSB ordering for the priorites
   1164      1.134      matt  * than the traditional LSB ordering.
   1165      1.134      matt  */
   1166      1.134      matt #ifdef __HAVE_BIGENDIAN_BITOPS
   1167      1.134      matt #define	RQMASK(n) (0x80000000 >> (n))
   1168      1.134      matt #else
   1169      1.134      matt #define	RQMASK(n) (0x00000001 << (n))
   1170      1.134      matt #endif
   1171      1.134      matt 
   1172      1.134      matt /*
   1173      1.115  nisimura  * The primitives that manipulate the run queues.  whichqs tells which
   1174      1.115  nisimura  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1175      1.115  nisimura  * into queues, remrunqueue removes them from queues.  The running process is
   1176      1.115  nisimura  * on no queue, other processes are on a queue related to p->p_priority,
   1177      1.115  nisimura  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1178      1.115  nisimura  * available queues.
   1179      1.130   nathanw  */
   1180      1.146      matt #ifdef RQDEBUG
   1181      1.146      matt static void
   1182      1.146      matt checkrunqueue(int whichq, struct lwp *l)
   1183      1.146      matt {
   1184      1.146      matt 	const struct prochd * const rq = &sched_qs[whichq];
   1185      1.146      matt 	struct lwp *l2;
   1186      1.146      matt 	int found = 0;
   1187      1.146      matt 	int die = 0;
   1188      1.146      matt 	int empty = 1;
   1189      1.164  christos 	for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
   1190      1.146      matt 		if (l2->l_stat != LSRUN) {
   1191      1.146      matt 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1192      1.146      matt 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1193      1.146      matt 		}
   1194      1.146      matt 		if (l2->l_back->l_forw != l2) {
   1195      1.146      matt 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1196      1.146      matt 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1197      1.146      matt 			    l2->l_back->l_forw);
   1198      1.146      matt 			die = 1;
   1199      1.146      matt 		}
   1200      1.146      matt 		if (l2->l_forw->l_back != l2) {
   1201      1.146      matt 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1202      1.146      matt 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1203      1.146      matt 			    l2->l_forw->l_back);
   1204      1.146      matt 			die = 1;
   1205      1.146      matt 		}
   1206      1.146      matt 		if (l2 == l)
   1207      1.146      matt 			found = 1;
   1208      1.146      matt 		empty = 0;
   1209      1.146      matt 	}
   1210      1.146      matt 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1211      1.146      matt 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1212      1.146      matt 		    whichq, rq);
   1213      1.146      matt 		die = 1;
   1214      1.146      matt 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1215      1.146      matt 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1216      1.146      matt 		    "run-queue %p\n", whichq, rq);
   1217      1.146      matt 		die = 1;
   1218      1.146      matt 	}
   1219      1.146      matt 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1220      1.146      matt 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1221      1.146      matt 		    whichq, l);
   1222      1.146      matt 		die = 1;
   1223      1.146      matt 	}
   1224      1.146      matt 	if (l != NULL && empty) {
   1225      1.146      matt 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1226      1.146      matt 		    "active lwp %p\n", whichq, rq, l);
   1227      1.146      matt 		die = 1;
   1228      1.146      matt 	}
   1229      1.146      matt 	if (l != NULL && !found) {
   1230      1.146      matt 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1231      1.146      matt 		    whichq, l, rq);
   1232      1.146      matt 		die = 1;
   1233      1.146      matt 	}
   1234      1.146      matt 	if (die)
   1235      1.146      matt 		panic("checkrunqueue: inconsistency found");
   1236      1.146      matt }
   1237      1.146      matt #endif /* RQDEBUG */
   1238      1.146      matt 
   1239      1.113  gmcgarry void
   1240      1.122   thorpej setrunqueue(struct lwp *l)
   1241      1.113  gmcgarry {
   1242      1.113  gmcgarry 	struct prochd *rq;
   1243      1.122   thorpej 	struct lwp *prev;
   1244      1.152      yamt 	const int whichq = l->l_priority / PPQ;
   1245      1.113  gmcgarry 
   1246  1.166.2.3        ad 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1247  1.166.2.2        ad 
   1248      1.146      matt #ifdef RQDEBUG
   1249      1.146      matt 	checkrunqueue(whichq, NULL);
   1250      1.146      matt #endif
   1251      1.113  gmcgarry #ifdef DIAGNOSTIC
   1252  1.166.2.2        ad 	if (l->l_back != NULL || l->l_stat != LSRUN)
   1253      1.113  gmcgarry 		panic("setrunqueue");
   1254      1.113  gmcgarry #endif
   1255      1.134      matt 	sched_whichqs |= RQMASK(whichq);
   1256      1.113  gmcgarry 	rq = &sched_qs[whichq];
   1257      1.113  gmcgarry 	prev = rq->ph_rlink;
   1258      1.122   thorpej 	l->l_forw = (struct lwp *)rq;
   1259      1.122   thorpej 	rq->ph_rlink = l;
   1260      1.122   thorpej 	prev->l_forw = l;
   1261      1.122   thorpej 	l->l_back = prev;
   1262      1.146      matt #ifdef RQDEBUG
   1263      1.146      matt 	checkrunqueue(whichq, l);
   1264      1.146      matt #endif
   1265      1.113  gmcgarry }
   1266      1.113  gmcgarry 
   1267      1.113  gmcgarry void
   1268      1.122   thorpej remrunqueue(struct lwp *l)
   1269      1.113  gmcgarry {
   1270      1.122   thorpej 	struct lwp *prev, *next;
   1271      1.152      yamt 	const int whichq = l->l_priority / PPQ;
   1272  1.166.2.2        ad 
   1273  1.166.2.2        ad 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1274  1.166.2.2        ad 
   1275      1.146      matt #ifdef RQDEBUG
   1276      1.146      matt 	checkrunqueue(whichq, l);
   1277      1.146      matt #endif
   1278  1.166.2.2        ad 
   1279  1.166.2.2        ad #if defined(DIAGNOSTIC)
   1280  1.166.2.2        ad 	if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
   1281  1.166.2.2        ad 		/* Shouldn't happen - interrupts disabled. */
   1282      1.146      matt 		panic("remrunqueue: bit %d not set", whichq);
   1283  1.166.2.2        ad 	}
   1284      1.113  gmcgarry #endif
   1285      1.122   thorpej 	prev = l->l_back;
   1286      1.122   thorpej 	l->l_back = NULL;
   1287      1.122   thorpej 	next = l->l_forw;
   1288      1.122   thorpej 	prev->l_forw = next;
   1289      1.122   thorpej 	next->l_back = prev;
   1290      1.113  gmcgarry 	if (prev == next)
   1291      1.134      matt 		sched_whichqs &= ~RQMASK(whichq);
   1292      1.146      matt #ifdef RQDEBUG
   1293      1.146      matt 	checkrunqueue(whichq, NULL);
   1294      1.146      matt #endif
   1295      1.113  gmcgarry }
   1296      1.113  gmcgarry 
   1297      1.134      matt #undef RQMASK
   1298      1.134      matt #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1299