kern_synch.c revision 1.173 1 1.173 ad /* $NetBSD: kern_synch.c,v 1.173 2006/11/03 20:46:00 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.148 mycroft * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.63 thorpej * NASA Ames Research Center.
10 1.148 mycroft * This code is derived from software contributed to The NetBSD Foundation
11 1.148 mycroft * by Charles M. Hannum.
12 1.63 thorpej *
13 1.63 thorpej * Redistribution and use in source and binary forms, with or without
14 1.63 thorpej * modification, are permitted provided that the following conditions
15 1.63 thorpej * are met:
16 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer.
18 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
19 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
20 1.63 thorpej * documentation and/or other materials provided with the distribution.
21 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
22 1.63 thorpej * must display the following acknowledgement:
23 1.63 thorpej * This product includes software developed by the NetBSD
24 1.63 thorpej * Foundation, Inc. and its contributors.
25 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
26 1.63 thorpej * contributors may be used to endorse or promote products derived
27 1.63 thorpej * from this software without specific prior written permission.
28 1.63 thorpej *
29 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
40 1.63 thorpej */
41 1.26 cgd
42 1.26 cgd /*-
43 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
44 1.26 cgd * The Regents of the University of California. All rights reserved.
45 1.26 cgd * (c) UNIX System Laboratories, Inc.
46 1.26 cgd * All or some portions of this file are derived from material licensed
47 1.26 cgd * to the University of California by American Telephone and Telegraph
48 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49 1.26 cgd * the permission of UNIX System Laboratories, Inc.
50 1.26 cgd *
51 1.26 cgd * Redistribution and use in source and binary forms, with or without
52 1.26 cgd * modification, are permitted provided that the following conditions
53 1.26 cgd * are met:
54 1.26 cgd * 1. Redistributions of source code must retain the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer.
56 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
57 1.26 cgd * notice, this list of conditions and the following disclaimer in the
58 1.26 cgd * documentation and/or other materials provided with the distribution.
59 1.136 agc * 3. Neither the name of the University nor the names of its contributors
60 1.26 cgd * may be used to endorse or promote products derived from this software
61 1.26 cgd * without specific prior written permission.
62 1.26 cgd *
63 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 1.26 cgd * SUCH DAMAGE.
74 1.26 cgd *
75 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
76 1.26 cgd */
77 1.106 lukem
78 1.106 lukem #include <sys/cdefs.h>
79 1.173 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.173 2006/11/03 20:46:00 ad Exp $");
80 1.48 mrg
81 1.52 jonathan #include "opt_ddb.h"
82 1.51 thorpej #include "opt_ktrace.h"
83 1.109 yamt #include "opt_kstack.h"
84 1.82 thorpej #include "opt_lockdebug.h"
85 1.83 thorpej #include "opt_multiprocessor.h"
86 1.110 briggs #include "opt_perfctrs.h"
87 1.26 cgd
88 1.26 cgd #include <sys/param.h>
89 1.26 cgd #include <sys/systm.h>
90 1.68 thorpej #include <sys/callout.h>
91 1.26 cgd #include <sys/proc.h>
92 1.26 cgd #include <sys/kernel.h>
93 1.26 cgd #include <sys/buf.h>
94 1.111 briggs #if defined(PERFCTRS)
95 1.110 briggs #include <sys/pmc.h>
96 1.111 briggs #endif
97 1.26 cgd #include <sys/signalvar.h>
98 1.26 cgd #include <sys/resourcevar.h>
99 1.55 ross #include <sys/sched.h>
100 1.122 thorpej #include <sys/sa.h>
101 1.122 thorpej #include <sys/savar.h>
102 1.161 elad #include <sys/kauth.h>
103 1.47 mrg
104 1.47 mrg #include <uvm/uvm_extern.h>
105 1.47 mrg
106 1.26 cgd #ifdef KTRACE
107 1.26 cgd #include <sys/ktrace.h>
108 1.26 cgd #endif
109 1.26 cgd
110 1.26 cgd #include <machine/cpu.h>
111 1.34 christos
112 1.26 cgd int lbolt; /* once a second sleep address */
113 1.88 sommerfe int rrticks; /* number of hardclock ticks per roundrobin() */
114 1.26 cgd
115 1.173 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
116 1.173 ad #define XXX_SCHED_LOCK simple_lock(&sched_lock)
117 1.173 ad #define XXX_SCHED_UNLOCK simple_unlock(&sched_lock)
118 1.173 ad #else
119 1.173 ad #define XXX_SCHED_LOCK /* nothing */
120 1.173 ad #define XXX_SCHED_UNLOCK /* nothing */
121 1.173 ad #endif
122 1.173 ad
123 1.73 thorpej /*
124 1.152 yamt * Sleep queues.
125 1.152 yamt *
126 1.152 yamt * We're only looking at 7 bits of the address; everything is
127 1.152 yamt * aligned to 4, lots of things are aligned to greater powers
128 1.152 yamt * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
129 1.152 yamt */
130 1.152 yamt #define SLPQUE_TABLESIZE 128
131 1.152 yamt #define SLPQUE_LOOKUP(x) (((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
132 1.152 yamt
133 1.152 yamt #define SLPQUE(ident) (&sched_slpque[SLPQUE_LOOKUP(ident)])
134 1.152 yamt
135 1.152 yamt /*
136 1.73 thorpej * The global scheduler state.
137 1.73 thorpej */
138 1.73 thorpej struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
139 1.159 perry volatile uint32_t sched_whichqs; /* bitmap of non-empty queues */
140 1.73 thorpej struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
141 1.73 thorpej
142 1.83 thorpej struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
143 1.83 thorpej
144 1.77 thorpej void schedcpu(void *);
145 1.122 thorpej void updatepri(struct lwp *);
146 1.77 thorpej void endtsleep(void *);
147 1.34 christos
148 1.158 perry inline void sa_awaken(struct lwp *);
149 1.158 perry inline void awaken(struct lwp *);
150 1.63 thorpej
151 1.143 yamt struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
152 1.157 yamt static unsigned int schedcpu_ticks;
153 1.122 thorpej
154 1.122 thorpej
155 1.26 cgd /*
156 1.26 cgd * Force switch among equal priority processes every 100ms.
157 1.88 sommerfe * Called from hardclock every hz/10 == rrticks hardclock ticks.
158 1.26 cgd */
159 1.26 cgd /* ARGSUSED */
160 1.26 cgd void
161 1.89 sommerfe roundrobin(struct cpu_info *ci)
162 1.26 cgd {
163 1.89 sommerfe struct schedstate_percpu *spc = &ci->ci_schedstate;
164 1.26 cgd
165 1.88 sommerfe spc->spc_rrticks = rrticks;
166 1.130 nathanw
167 1.122 thorpej if (curlwp != NULL) {
168 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
169 1.69 thorpej /*
170 1.69 thorpej * The process has already been through a roundrobin
171 1.69 thorpej * without switching and may be hogging the CPU.
172 1.69 thorpej * Indicate that the process should yield.
173 1.69 thorpej */
174 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
175 1.69 thorpej } else
176 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
177 1.69 thorpej }
178 1.87 thorpej need_resched(curcpu());
179 1.26 cgd }
180 1.26 cgd
181 1.153 yamt #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
182 1.153 yamt #define NICE_WEIGHT 2 /* priorities per nice level */
183 1.153 yamt
184 1.153 yamt #define ESTCPU_SHIFT 11
185 1.153 yamt #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
186 1.153 yamt #define ESTCPULIM(e) min((e), ESTCPU_MAX)
187 1.153 yamt
188 1.26 cgd /*
189 1.26 cgd * Constants for digital decay and forget:
190 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
191 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
192 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
193 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
194 1.26 cgd *
195 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
196 1.26 cgd *
197 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
198 1.26 cgd * That is, the system wants to compute a value of decay such
199 1.26 cgd * that the following for loop:
200 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
201 1.26 cgd * p_estcpu *= decay;
202 1.26 cgd * will compute
203 1.26 cgd * p_estcpu *= 0.1;
204 1.26 cgd * for all values of loadavg:
205 1.26 cgd *
206 1.26 cgd * Mathematically this loop can be expressed by saying:
207 1.26 cgd * decay ** (5 * loadavg) ~= .1
208 1.26 cgd *
209 1.26 cgd * The system computes decay as:
210 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
211 1.26 cgd *
212 1.26 cgd * We wish to prove that the system's computation of decay
213 1.26 cgd * will always fulfill the equation:
214 1.26 cgd * decay ** (5 * loadavg) ~= .1
215 1.26 cgd *
216 1.26 cgd * If we compute b as:
217 1.26 cgd * b = 2 * loadavg
218 1.26 cgd * then
219 1.26 cgd * decay = b / (b + 1)
220 1.26 cgd *
221 1.26 cgd * We now need to prove two things:
222 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
223 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
224 1.130 nathanw *
225 1.26 cgd * Facts:
226 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
227 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
228 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
229 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
230 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
231 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
232 1.26 cgd * ln(.1) =~ -2.30
233 1.26 cgd *
234 1.26 cgd * Proof of (1):
235 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
236 1.26 cgd * solving for factor,
237 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
238 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
239 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
240 1.26 cgd *
241 1.26 cgd * Proof of (2):
242 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
243 1.26 cgd * solving for power,
244 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
245 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
246 1.26 cgd *
247 1.26 cgd * Actual power values for the implemented algorithm are as follows:
248 1.26 cgd * loadav: 1 2 3 4
249 1.26 cgd * power: 5.68 10.32 14.94 19.55
250 1.26 cgd */
251 1.26 cgd
252 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
253 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
254 1.153 yamt
255 1.153 yamt static fixpt_t
256 1.153 yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
257 1.153 yamt {
258 1.153 yamt
259 1.153 yamt if (estcpu == 0) {
260 1.153 yamt return 0;
261 1.153 yamt }
262 1.153 yamt
263 1.153 yamt #if !defined(_LP64)
264 1.153 yamt /* avoid 64bit arithmetics. */
265 1.153 yamt #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
266 1.153 yamt if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
267 1.153 yamt return estcpu * loadfac / (loadfac + FSCALE);
268 1.153 yamt }
269 1.153 yamt #endif /* !defined(_LP64) */
270 1.153 yamt
271 1.153 yamt return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
272 1.153 yamt }
273 1.26 cgd
274 1.157 yamt /*
275 1.157 yamt * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
276 1.157 yamt * sleeping for at least seven times the loadfactor will decay p_estcpu to
277 1.157 yamt * less than (1 << ESTCPU_SHIFT).
278 1.157 yamt *
279 1.157 yamt * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
280 1.157 yamt */
281 1.157 yamt static fixpt_t
282 1.157 yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
283 1.157 yamt {
284 1.157 yamt
285 1.157 yamt if ((n << FSHIFT) >= 7 * loadfac) {
286 1.157 yamt return 0;
287 1.157 yamt }
288 1.157 yamt
289 1.157 yamt while (estcpu != 0 && n > 1) {
290 1.157 yamt estcpu = decay_cpu(loadfac, estcpu);
291 1.157 yamt n--;
292 1.157 yamt }
293 1.157 yamt
294 1.157 yamt return estcpu;
295 1.157 yamt }
296 1.157 yamt
297 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
298 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
299 1.26 cgd
300 1.26 cgd /*
301 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
302 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
303 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
304 1.26 cgd *
305 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
306 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
307 1.26 cgd *
308 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
309 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
310 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
311 1.26 cgd */
312 1.26 cgd #define CCPU_SHIFT 11
313 1.26 cgd
314 1.26 cgd /*
315 1.26 cgd * Recompute process priorities, every hz ticks.
316 1.26 cgd */
317 1.26 cgd /* ARGSUSED */
318 1.26 cgd void
319 1.171 yamt schedcpu(void *arg)
320 1.26 cgd {
321 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
322 1.122 thorpej struct lwp *l;
323 1.71 augustss struct proc *p;
324 1.122 thorpej int s, minslp;
325 1.66 ross int clkhz;
326 1.26 cgd
327 1.157 yamt schedcpu_ticks++;
328 1.157 yamt
329 1.62 thorpej proclist_lock_read();
330 1.145 yamt PROCLIST_FOREACH(p, &allproc) {
331 1.26 cgd /*
332 1.26 cgd * Increment time in/out of memory and sleep time
333 1.26 cgd * (if sleeping). We ignore overflow; with 16-bit int's
334 1.26 cgd * (remember them?) overflow takes 45 days.
335 1.26 cgd */
336 1.122 thorpej minslp = 2;
337 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
338 1.122 thorpej l->l_swtime++;
339 1.130 nathanw if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
340 1.122 thorpej l->l_stat == LSSUSPENDED) {
341 1.122 thorpej l->l_slptime++;
342 1.122 thorpej minslp = min(minslp, l->l_slptime);
343 1.122 thorpej } else
344 1.122 thorpej minslp = 0;
345 1.122 thorpej }
346 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
347 1.26 cgd /*
348 1.26 cgd * If the process has slept the entire second,
349 1.26 cgd * stop recalculating its priority until it wakes up.
350 1.26 cgd */
351 1.122 thorpej if (minslp > 1)
352 1.26 cgd continue;
353 1.26 cgd s = splstatclock(); /* prevent state changes */
354 1.26 cgd /*
355 1.26 cgd * p_pctcpu is only for ps.
356 1.26 cgd */
357 1.66 ross clkhz = stathz != 0 ? stathz : hz;
358 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
359 1.66 ross p->p_pctcpu += (clkhz == 100)?
360 1.26 cgd ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
361 1.26 cgd 100 * (((fixpt_t) p->p_cpticks)
362 1.66 ross << (FSHIFT - CCPU_SHIFT)) / clkhz;
363 1.26 cgd #else
364 1.26 cgd p->p_pctcpu += ((FSCALE - ccpu) *
365 1.66 ross (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
366 1.26 cgd #endif
367 1.26 cgd p->p_cpticks = 0;
368 1.153 yamt p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
369 1.120 pk splx(s); /* Done with the process CPU ticks update */
370 1.120 pk SCHED_LOCK(s);
371 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
372 1.122 thorpej if (l->l_slptime > 1)
373 1.122 thorpej continue;
374 1.122 thorpej resetpriority(l);
375 1.122 thorpej if (l->l_priority >= PUSER) {
376 1.122 thorpej if (l->l_stat == LSRUN &&
377 1.122 thorpej (l->l_flag & L_INMEM) &&
378 1.122 thorpej (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
379 1.122 thorpej remrunqueue(l);
380 1.122 thorpej l->l_priority = l->l_usrpri;
381 1.122 thorpej setrunqueue(l);
382 1.122 thorpej } else
383 1.122 thorpej l->l_priority = l->l_usrpri;
384 1.122 thorpej }
385 1.26 cgd }
386 1.120 pk SCHED_UNLOCK(s);
387 1.26 cgd }
388 1.61 thorpej proclist_unlock_read();
389 1.47 mrg uvm_meter();
390 1.67 fvdl wakeup((caddr_t)&lbolt);
391 1.143 yamt callout_schedule(&schedcpu_ch, hz);
392 1.26 cgd }
393 1.26 cgd
394 1.26 cgd /*
395 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
396 1.26 cgd */
397 1.26 cgd void
398 1.122 thorpej updatepri(struct lwp *l)
399 1.26 cgd {
400 1.122 thorpej struct proc *p = l->l_proc;
401 1.83 thorpej fixpt_t loadfac;
402 1.83 thorpej
403 1.83 thorpej SCHED_ASSERT_LOCKED();
404 1.157 yamt KASSERT(l->l_slptime > 1);
405 1.83 thorpej
406 1.83 thorpej loadfac = loadfactor(averunnable.ldavg[0]);
407 1.26 cgd
408 1.157 yamt l->l_slptime--; /* the first time was done in schedcpu */
409 1.157 yamt /* XXX NJWLWP */
410 1.157 yamt p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
411 1.122 thorpej resetpriority(l);
412 1.26 cgd }
413 1.26 cgd
414 1.26 cgd /*
415 1.26 cgd * During autoconfiguration or after a panic, a sleep will simply
416 1.26 cgd * lower the priority briefly to allow interrupts, then return.
417 1.26 cgd * The priority to be used (safepri) is machine-dependent, thus this
418 1.26 cgd * value is initialized and maintained in the machine-dependent layers.
419 1.26 cgd * This priority will typically be 0, or the lowest priority
420 1.26 cgd * that is safe for use on the interrupt stack; it can be made
421 1.26 cgd * higher to block network software interrupts after panics.
422 1.26 cgd */
423 1.26 cgd int safepri;
424 1.26 cgd
425 1.26 cgd /*
426 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
427 1.26 cgd * performed on the specified identifier. The process will then be made
428 1.26 cgd * runnable with the specified priority. Sleeps at most timo/hz seconds
429 1.26 cgd * (0 means no timeout). If pri includes PCATCH flag, signals are checked
430 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
431 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
432 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
433 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
434 1.26 cgd * call should be interrupted by the signal (return EINTR).
435 1.77 thorpej *
436 1.103 jdolecek * The interlock is held until the scheduler_slock is acquired. The
437 1.77 thorpej * interlock will be locked before returning back to the caller
438 1.77 thorpej * unless the PNORELOCK flag is specified, in which case the
439 1.77 thorpej * interlock will always be unlocked upon return.
440 1.26 cgd */
441 1.26 cgd int
442 1.158 perry ltsleep(volatile const void *ident, int priority, const char *wmesg, int timo,
443 1.158 perry volatile struct simplelock *interlock)
444 1.26 cgd {
445 1.122 thorpej struct lwp *l = curlwp;
446 1.123 christos struct proc *p = l ? l->l_proc : NULL;
447 1.71 augustss struct slpque *qp;
448 1.150 chs struct sadata_upcall *sau;
449 1.77 thorpej int sig, s;
450 1.77 thorpej int catch = priority & PCATCH;
451 1.77 thorpej int relock = (priority & PNORELOCK) == 0;
452 1.122 thorpej int exiterr = (priority & PNOEXITERR) == 0;
453 1.26 cgd
454 1.77 thorpej /*
455 1.77 thorpej * XXXSMP
456 1.77 thorpej * This is probably bogus. Figure out what the right
457 1.77 thorpej * thing to do here really is.
458 1.130 nathanw * Note that not sleeping if ltsleep is called with curlwp == NULL
459 1.78 sommerfe * in the shutdown case is disgusting but partly necessary given
460 1.78 sommerfe * how shutdown (barely) works.
461 1.77 thorpej */
462 1.122 thorpej if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
463 1.26 cgd /*
464 1.26 cgd * After a panic, or during autoconfiguration,
465 1.26 cgd * just give interrupts a chance, then just return;
466 1.26 cgd * don't run any other procs or panic below,
467 1.26 cgd * in case this is the idle process and already asleep.
468 1.26 cgd */
469 1.42 cgd s = splhigh();
470 1.26 cgd splx(safepri);
471 1.26 cgd splx(s);
472 1.77 thorpej if (interlock != NULL && relock == 0)
473 1.77 thorpej simple_unlock(interlock);
474 1.26 cgd return (0);
475 1.26 cgd }
476 1.78 sommerfe
477 1.102 thorpej KASSERT(p != NULL);
478 1.105 chs LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
479 1.42 cgd
480 1.42 cgd #ifdef KTRACE
481 1.42 cgd if (KTRPOINT(p, KTR_CSW))
482 1.154 christos ktrcsw(l, 1, 0);
483 1.42 cgd #endif
484 1.77 thorpej
485 1.150 chs /*
486 1.150 chs * XXX We need to allocate the sadata_upcall structure here,
487 1.150 chs * XXX since we can't sleep while waiting for memory inside
488 1.150 chs * XXX sa_upcall(). It would be nice if we could safely
489 1.150 chs * XXX allocate the sadata_upcall structure on the stack, here.
490 1.150 chs */
491 1.150 chs if (l->l_flag & L_SA) {
492 1.150 chs sau = sadata_upcall_alloc(0);
493 1.150 chs } else {
494 1.150 chs sau = NULL;
495 1.150 chs }
496 1.150 chs
497 1.83 thorpej SCHED_LOCK(s);
498 1.42 cgd
499 1.26 cgd #ifdef DIAGNOSTIC
500 1.64 thorpej if (ident == NULL)
501 1.77 thorpej panic("ltsleep: ident == NULL");
502 1.122 thorpej if (l->l_stat != LSONPROC)
503 1.122 thorpej panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
504 1.122 thorpej if (l->l_back != NULL)
505 1.77 thorpej panic("ltsleep: p_back != NULL");
506 1.26 cgd #endif
507 1.77 thorpej
508 1.122 thorpej l->l_wchan = ident;
509 1.122 thorpej l->l_wmesg = wmesg;
510 1.122 thorpej l->l_slptime = 0;
511 1.122 thorpej l->l_priority = priority & PRIMASK;
512 1.77 thorpej
513 1.73 thorpej qp = SLPQUE(ident);
514 1.26 cgd if (qp->sq_head == 0)
515 1.122 thorpej qp->sq_head = l;
516 1.122 thorpej else {
517 1.122 thorpej *qp->sq_tailp = l;
518 1.122 thorpej }
519 1.122 thorpej *(qp->sq_tailp = &l->l_forw) = 0;
520 1.77 thorpej
521 1.26 cgd if (timo)
522 1.122 thorpej callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
523 1.77 thorpej
524 1.77 thorpej /*
525 1.77 thorpej * We can now release the interlock; the scheduler_slock
526 1.77 thorpej * is held, so a thread can't get in to do wakeup() before
527 1.77 thorpej * we do the switch.
528 1.77 thorpej *
529 1.77 thorpej * XXX We leave the code block here, after inserting ourselves
530 1.77 thorpej * on the sleep queue, because we might want a more clever
531 1.77 thorpej * data structure for the sleep queues at some point.
532 1.77 thorpej */
533 1.77 thorpej if (interlock != NULL)
534 1.77 thorpej simple_unlock(interlock);
535 1.77 thorpej
536 1.26 cgd /*
537 1.26 cgd * We put ourselves on the sleep queue and start our timeout
538 1.26 cgd * before calling CURSIG, as we could stop there, and a wakeup
539 1.26 cgd * or a SIGCONT (or both) could occur while we were stopped.
540 1.26 cgd * A SIGCONT would cause us to be marked as SSLEEP
541 1.26 cgd * without resuming us, thus we must be ready for sleep
542 1.26 cgd * when CURSIG is called. If the wakeup happens while we're
543 1.26 cgd * stopped, p->p_wchan will be 0 upon return from CURSIG.
544 1.26 cgd */
545 1.26 cgd if (catch) {
546 1.173 ad XXX_SCHED_UNLOCK;
547 1.122 thorpej l->l_flag |= L_SINTR;
548 1.137 itojun if (((sig = CURSIG(l)) != 0) ||
549 1.137 itojun ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
550 1.173 ad XXX_SCHED_LOCK;
551 1.122 thorpej if (l->l_wchan != NULL)
552 1.122 thorpej unsleep(l);
553 1.122 thorpej l->l_stat = LSONPROC;
554 1.83 thorpej SCHED_UNLOCK(s);
555 1.26 cgd goto resume;
556 1.26 cgd }
557 1.173 ad XXX_SCHED_LOCK;
558 1.122 thorpej if (l->l_wchan == NULL) {
559 1.172 yamt SCHED_UNLOCK(s);
560 1.26 cgd catch = 0;
561 1.26 cgd goto resume;
562 1.26 cgd }
563 1.26 cgd } else
564 1.26 cgd sig = 0;
565 1.122 thorpej l->l_stat = LSSLEEP;
566 1.122 thorpej p->p_nrlwps--;
567 1.26 cgd p->p_stats->p_ru.ru_nvcsw++;
568 1.83 thorpej SCHED_ASSERT_LOCKED();
569 1.122 thorpej if (l->l_flag & L_SA)
570 1.150 chs sa_switch(l, sau, SA_UPCALL_BLOCKED);
571 1.122 thorpej else
572 1.122 thorpej mi_switch(l, NULL);
573 1.83 thorpej
574 1.167 mrg #ifdef KERN_SYNCH_BPENDTSLEEP_LABEL
575 1.165 tsutsui /*
576 1.165 tsutsui * XXX
577 1.165 tsutsui * gcc4 optimizer will duplicate this asm statement on some arch
578 1.165 tsutsui * and it will cause a multiple symbol definition error in gas.
579 1.167 mrg * the kernel Makefile is setup to use -fno-reorder-blocks if
580 1.167 mrg * this option is set.
581 1.165 tsutsui */
582 1.26 cgd /* handy breakpoint location after process "wakes" */
583 1.140 kleink __asm(".globl bpendtsleep\nbpendtsleep:");
584 1.26 cgd #endif
585 1.122 thorpej /*
586 1.122 thorpej * p->p_nrlwps is incremented by whoever made us runnable again,
587 1.122 thorpej * either setrunnable() or awaken().
588 1.122 thorpej */
589 1.77 thorpej
590 1.83 thorpej SCHED_ASSERT_UNLOCKED();
591 1.83 thorpej splx(s);
592 1.83 thorpej
593 1.77 thorpej resume:
594 1.122 thorpej KDASSERT(l->l_cpu != NULL);
595 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
596 1.122 thorpej l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
597 1.122 thorpej
598 1.122 thorpej l->l_flag &= ~L_SINTR;
599 1.122 thorpej if (l->l_flag & L_TIMEOUT) {
600 1.135 matt l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
601 1.26 cgd if (sig == 0) {
602 1.26 cgd #ifdef KTRACE
603 1.26 cgd if (KTRPOINT(p, KTR_CSW))
604 1.154 christos ktrcsw(l, 0, 0);
605 1.26 cgd #endif
606 1.77 thorpej if (relock && interlock != NULL)
607 1.77 thorpej simple_lock(interlock);
608 1.26 cgd return (EWOULDBLOCK);
609 1.26 cgd }
610 1.26 cgd } else if (timo)
611 1.122 thorpej callout_stop(&l->l_tsleep_ch);
612 1.135 matt
613 1.135 matt if (catch) {
614 1.135 matt const int cancelled = l->l_flag & L_CANCELLED;
615 1.135 matt l->l_flag &= ~L_CANCELLED;
616 1.135 matt if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
617 1.26 cgd #ifdef KTRACE
618 1.135 matt if (KTRPOINT(p, KTR_CSW))
619 1.154 christos ktrcsw(l, 0, 0);
620 1.26 cgd #endif
621 1.135 matt if (relock && interlock != NULL)
622 1.135 matt simple_lock(interlock);
623 1.135 matt /*
624 1.135 matt * If this sleep was canceled, don't let the syscall
625 1.135 matt * restart.
626 1.135 matt */
627 1.135 matt if (cancelled ||
628 1.135 matt (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
629 1.135 matt return (EINTR);
630 1.135 matt return (ERESTART);
631 1.135 matt }
632 1.26 cgd }
633 1.126 pk
634 1.126 pk #ifdef KTRACE
635 1.126 pk if (KTRPOINT(p, KTR_CSW))
636 1.154 christos ktrcsw(l, 0, 0);
637 1.126 pk #endif
638 1.126 pk if (relock && interlock != NULL)
639 1.126 pk simple_lock(interlock);
640 1.126 pk
641 1.122 thorpej /* XXXNJW this is very much a kluge.
642 1.130 nathanw * revisit. a better way of preventing looping/hanging syscalls like
643 1.122 thorpej * wait4() and _lwp_wait() from wedging an exiting process
644 1.122 thorpej * would be preferred.
645 1.122 thorpej */
646 1.137 itojun if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
647 1.122 thorpej return (EINTR);
648 1.26 cgd return (0);
649 1.26 cgd }
650 1.26 cgd
651 1.26 cgd /*
652 1.26 cgd * Implement timeout for tsleep.
653 1.26 cgd * If process hasn't been awakened (wchan non-zero),
654 1.26 cgd * set timeout flag and undo the sleep. If proc
655 1.26 cgd * is stopped, just unsleep so it will remain stopped.
656 1.26 cgd */
657 1.26 cgd void
658 1.77 thorpej endtsleep(void *arg)
659 1.26 cgd {
660 1.122 thorpej struct lwp *l;
661 1.26 cgd int s;
662 1.26 cgd
663 1.122 thorpej l = (struct lwp *)arg;
664 1.83 thorpej SCHED_LOCK(s);
665 1.122 thorpej if (l->l_wchan) {
666 1.122 thorpej if (l->l_stat == LSSLEEP)
667 1.122 thorpej setrunnable(l);
668 1.26 cgd else
669 1.122 thorpej unsleep(l);
670 1.122 thorpej l->l_flag |= L_TIMEOUT;
671 1.26 cgd }
672 1.83 thorpej SCHED_UNLOCK(s);
673 1.26 cgd }
674 1.26 cgd
675 1.26 cgd /*
676 1.26 cgd * Remove a process from its wait queue
677 1.26 cgd */
678 1.26 cgd void
679 1.122 thorpej unsleep(struct lwp *l)
680 1.26 cgd {
681 1.71 augustss struct slpque *qp;
682 1.122 thorpej struct lwp **hp;
683 1.26 cgd
684 1.83 thorpej SCHED_ASSERT_LOCKED();
685 1.83 thorpej
686 1.122 thorpej if (l->l_wchan) {
687 1.122 thorpej hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
688 1.122 thorpej while (*hp != l)
689 1.122 thorpej hp = &(*hp)->l_forw;
690 1.122 thorpej *hp = l->l_forw;
691 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
692 1.26 cgd qp->sq_tailp = hp;
693 1.122 thorpej l->l_wchan = 0;
694 1.26 cgd }
695 1.26 cgd }
696 1.26 cgd
697 1.158 perry inline void
698 1.139 cl sa_awaken(struct lwp *l)
699 1.139 cl {
700 1.147 perry
701 1.139 cl SCHED_ASSERT_LOCKED();
702 1.139 cl
703 1.142 cl if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
704 1.139 cl l->l_flag &= ~L_SA_IDLE;
705 1.139 cl }
706 1.139 cl
707 1.26 cgd /*
708 1.63 thorpej * Optimized-for-wakeup() version of setrunnable().
709 1.63 thorpej */
710 1.158 perry inline void
711 1.122 thorpej awaken(struct lwp *l)
712 1.63 thorpej {
713 1.63 thorpej
714 1.83 thorpej SCHED_ASSERT_LOCKED();
715 1.130 nathanw
716 1.139 cl if (l->l_proc->p_sa)
717 1.139 cl sa_awaken(l);
718 1.139 cl
719 1.122 thorpej if (l->l_slptime > 1)
720 1.122 thorpej updatepri(l);
721 1.122 thorpej l->l_slptime = 0;
722 1.122 thorpej l->l_stat = LSRUN;
723 1.122 thorpej l->l_proc->p_nrlwps++;
724 1.93 bouyer /*
725 1.93 bouyer * Since curpriority is a user priority, p->p_priority
726 1.119 thorpej * is always better than curpriority on the last CPU on
727 1.119 thorpej * which it ran.
728 1.118 thorpej *
729 1.119 thorpej * XXXSMP See affinity comment in resched_proc().
730 1.93 bouyer */
731 1.122 thorpej if (l->l_flag & L_INMEM) {
732 1.122 thorpej setrunqueue(l);
733 1.122 thorpej KASSERT(l->l_cpu != NULL);
734 1.122 thorpej need_resched(l->l_cpu);
735 1.93 bouyer } else
736 1.93 bouyer sched_wakeup(&proc0);
737 1.83 thorpej }
738 1.83 thorpej
739 1.83 thorpej #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
740 1.83 thorpej void
741 1.83 thorpej sched_unlock_idle(void)
742 1.83 thorpej {
743 1.83 thorpej
744 1.83 thorpej simple_unlock(&sched_lock);
745 1.63 thorpej }
746 1.63 thorpej
747 1.83 thorpej void
748 1.83 thorpej sched_lock_idle(void)
749 1.83 thorpej {
750 1.83 thorpej
751 1.83 thorpej simple_lock(&sched_lock);
752 1.83 thorpej }
753 1.83 thorpej #endif /* MULTIPROCESSOR || LOCKDEBUG */
754 1.83 thorpej
755 1.63 thorpej /*
756 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
757 1.26 cgd */
758 1.83 thorpej
759 1.26 cgd void
760 1.158 perry wakeup(volatile const void *ident)
761 1.26 cgd {
762 1.83 thorpej int s;
763 1.83 thorpej
764 1.83 thorpej SCHED_ASSERT_UNLOCKED();
765 1.83 thorpej
766 1.83 thorpej SCHED_LOCK(s);
767 1.83 thorpej sched_wakeup(ident);
768 1.83 thorpej SCHED_UNLOCK(s);
769 1.83 thorpej }
770 1.83 thorpej
771 1.83 thorpej void
772 1.158 perry sched_wakeup(volatile const void *ident)
773 1.83 thorpej {
774 1.71 augustss struct slpque *qp;
775 1.122 thorpej struct lwp *l, **q;
776 1.26 cgd
777 1.83 thorpej SCHED_ASSERT_LOCKED();
778 1.77 thorpej
779 1.73 thorpej qp = SLPQUE(ident);
780 1.77 thorpej restart:
781 1.122 thorpej for (q = &qp->sq_head; (l = *q) != NULL; ) {
782 1.26 cgd #ifdef DIAGNOSTIC
783 1.130 nathanw if (l->l_back || (l->l_stat != LSSLEEP &&
784 1.122 thorpej l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
785 1.26 cgd panic("wakeup");
786 1.26 cgd #endif
787 1.122 thorpej if (l->l_wchan == ident) {
788 1.122 thorpej l->l_wchan = 0;
789 1.122 thorpej *q = l->l_forw;
790 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
791 1.26 cgd qp->sq_tailp = q;
792 1.122 thorpej if (l->l_stat == LSSLEEP) {
793 1.122 thorpej awaken(l);
794 1.26 cgd goto restart;
795 1.26 cgd }
796 1.26 cgd } else
797 1.122 thorpej q = &l->l_forw;
798 1.63 thorpej }
799 1.63 thorpej }
800 1.63 thorpej
801 1.63 thorpej /*
802 1.63 thorpej * Make the highest priority process first in line on the specified
803 1.63 thorpej * identifier runnable.
804 1.63 thorpej */
805 1.63 thorpej void
806 1.158 perry wakeup_one(volatile const void *ident)
807 1.63 thorpej {
808 1.63 thorpej struct slpque *qp;
809 1.122 thorpej struct lwp *l, **q;
810 1.122 thorpej struct lwp *best_sleepp, **best_sleepq;
811 1.122 thorpej struct lwp *best_stopp, **best_stopq;
812 1.63 thorpej int s;
813 1.63 thorpej
814 1.63 thorpej best_sleepp = best_stopp = NULL;
815 1.63 thorpej best_sleepq = best_stopq = NULL;
816 1.63 thorpej
817 1.83 thorpej SCHED_LOCK(s);
818 1.77 thorpej
819 1.73 thorpej qp = SLPQUE(ident);
820 1.77 thorpej
821 1.122 thorpej for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
822 1.63 thorpej #ifdef DIAGNOSTIC
823 1.130 nathanw if (l->l_back || (l->l_stat != LSSLEEP &&
824 1.122 thorpej l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
825 1.63 thorpej panic("wakeup_one");
826 1.63 thorpej #endif
827 1.122 thorpej if (l->l_wchan == ident) {
828 1.122 thorpej if (l->l_stat == LSSLEEP) {
829 1.63 thorpej if (best_sleepp == NULL ||
830 1.122 thorpej l->l_priority < best_sleepp->l_priority) {
831 1.122 thorpej best_sleepp = l;
832 1.63 thorpej best_sleepq = q;
833 1.63 thorpej }
834 1.63 thorpej } else {
835 1.63 thorpej if (best_stopp == NULL ||
836 1.122 thorpej l->l_priority < best_stopp->l_priority) {
837 1.122 thorpej best_stopp = l;
838 1.63 thorpej best_stopq = q;
839 1.63 thorpej }
840 1.63 thorpej }
841 1.63 thorpej }
842 1.63 thorpej }
843 1.63 thorpej
844 1.63 thorpej /*
845 1.63 thorpej * Consider any SSLEEP process higher than the highest priority SSTOP
846 1.63 thorpej * process.
847 1.63 thorpej */
848 1.63 thorpej if (best_sleepp != NULL) {
849 1.122 thorpej l = best_sleepp;
850 1.63 thorpej q = best_sleepq;
851 1.63 thorpej } else {
852 1.122 thorpej l = best_stopp;
853 1.63 thorpej q = best_stopq;
854 1.63 thorpej }
855 1.63 thorpej
856 1.122 thorpej if (l != NULL) {
857 1.122 thorpej l->l_wchan = NULL;
858 1.122 thorpej *q = l->l_forw;
859 1.122 thorpej if (qp->sq_tailp == &l->l_forw)
860 1.63 thorpej qp->sq_tailp = q;
861 1.122 thorpej if (l->l_stat == LSSLEEP)
862 1.122 thorpej awaken(l);
863 1.26 cgd }
864 1.83 thorpej SCHED_UNLOCK(s);
865 1.117 gmcgarry }
866 1.117 gmcgarry
867 1.117 gmcgarry /*
868 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
869 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
870 1.117 gmcgarry * current process explicitly requests it (eg sched_yield(2) in compat code).
871 1.117 gmcgarry */
872 1.117 gmcgarry void
873 1.117 gmcgarry yield(void)
874 1.117 gmcgarry {
875 1.122 thorpej struct lwp *l = curlwp;
876 1.117 gmcgarry int s;
877 1.117 gmcgarry
878 1.117 gmcgarry SCHED_LOCK(s);
879 1.122 thorpej l->l_priority = l->l_usrpri;
880 1.122 thorpej l->l_stat = LSRUN;
881 1.122 thorpej setrunqueue(l);
882 1.122 thorpej l->l_proc->p_stats->p_ru.ru_nvcsw++;
883 1.122 thorpej mi_switch(l, NULL);
884 1.117 gmcgarry SCHED_ASSERT_UNLOCKED();
885 1.117 gmcgarry splx(s);
886 1.69 thorpej }
887 1.69 thorpej
888 1.69 thorpej /*
889 1.69 thorpej * General preemption call. Puts the current process back on its run queue
890 1.156 rpaulo * and performs an involuntary context switch.
891 1.156 rpaulo * The 'more' ("more work to do") argument is boolean. Returning to userspace
892 1.156 rpaulo * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
893 1.156 rpaulo * This will be used to indicate to the SA subsystem that the LWP is
894 1.156 rpaulo * not yet finished in the kernel.
895 1.69 thorpej */
896 1.122 thorpej
897 1.69 thorpej void
898 1.122 thorpej preempt(int more)
899 1.69 thorpej {
900 1.122 thorpej struct lwp *l = curlwp;
901 1.122 thorpej int r, s;
902 1.69 thorpej
903 1.83 thorpej SCHED_LOCK(s);
904 1.122 thorpej l->l_priority = l->l_usrpri;
905 1.122 thorpej l->l_stat = LSRUN;
906 1.122 thorpej setrunqueue(l);
907 1.122 thorpej l->l_proc->p_stats->p_ru.ru_nivcsw++;
908 1.122 thorpej r = mi_switch(l, NULL);
909 1.83 thorpej SCHED_ASSERT_UNLOCKED();
910 1.69 thorpej splx(s);
911 1.122 thorpej if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
912 1.122 thorpej sa_preempt(l);
913 1.69 thorpej }
914 1.69 thorpej
915 1.69 thorpej /*
916 1.72 thorpej * The machine independent parts of context switch.
917 1.86 thorpej * Must be called at splsched() (no higher!) and with
918 1.86 thorpej * the sched_lock held.
919 1.122 thorpej * Switch to "new" if non-NULL, otherwise let cpu_switch choose
920 1.122 thorpej * the next lwp.
921 1.130 nathanw *
922 1.122 thorpej * Returns 1 if another process was actually run.
923 1.26 cgd */
924 1.122 thorpej int
925 1.122 thorpej mi_switch(struct lwp *l, struct lwp *newl)
926 1.26 cgd {
927 1.76 thorpej struct schedstate_percpu *spc;
928 1.71 augustss struct rlimit *rlim;
929 1.71 augustss long s, u;
930 1.26 cgd struct timeval tv;
931 1.144 yamt int hold_count;
932 1.122 thorpej struct proc *p = l->l_proc;
933 1.122 thorpej int retval;
934 1.26 cgd
935 1.83 thorpej SCHED_ASSERT_LOCKED();
936 1.83 thorpej
937 1.90 sommerfe /*
938 1.90 sommerfe * Release the kernel_lock, as we are about to yield the CPU.
939 1.90 sommerfe * The scheduler lock is still held until cpu_switch()
940 1.90 sommerfe * selects a new process and removes it from the run queue.
941 1.90 sommerfe */
942 1.144 yamt hold_count = KERNEL_LOCK_RELEASE_ALL();
943 1.85 sommerfe
944 1.122 thorpej KDASSERT(l->l_cpu != NULL);
945 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
946 1.113 gmcgarry
947 1.122 thorpej spc = &l->l_cpu->ci_schedstate;
948 1.76 thorpej
949 1.160 chs #ifdef LOCKDEBUG
950 1.82 thorpej spinlock_switchcheck();
951 1.81 thorpej simple_lock_switchcheck();
952 1.50 fvdl #endif
953 1.81 thorpej
954 1.26 cgd /*
955 1.26 cgd * Compute the amount of time during which the current
956 1.113 gmcgarry * process was running.
957 1.26 cgd */
958 1.26 cgd microtime(&tv);
959 1.130 nathanw u = p->p_rtime.tv_usec +
960 1.122 thorpej (tv.tv_usec - spc->spc_runtime.tv_usec);
961 1.73 thorpej s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
962 1.26 cgd if (u < 0) {
963 1.26 cgd u += 1000000;
964 1.26 cgd s--;
965 1.26 cgd } else if (u >= 1000000) {
966 1.26 cgd u -= 1000000;
967 1.26 cgd s++;
968 1.26 cgd }
969 1.114 gmcgarry p->p_rtime.tv_usec = u;
970 1.114 gmcgarry p->p_rtime.tv_sec = s;
971 1.26 cgd
972 1.26 cgd /*
973 1.69 thorpej * Process is about to yield the CPU; clear the appropriate
974 1.69 thorpej * scheduling flags.
975 1.69 thorpej */
976 1.73 thorpej spc->spc_flags &= ~SPCF_SWITCHCLEAR;
977 1.109 yamt
978 1.109 yamt #ifdef KSTACK_CHECK_MAGIC
979 1.124 yamt kstack_check_magic(l);
980 1.109 yamt #endif
981 1.26 cgd
982 1.113 gmcgarry /*
983 1.114 gmcgarry * If we are using h/w performance counters, save context.
984 1.113 gmcgarry */
985 1.114 gmcgarry #if PERFCTRS
986 1.166 christos if (PMC_ENABLED(p)) {
987 1.114 gmcgarry pmc_save_context(p);
988 1.166 christos }
989 1.110 briggs #endif
990 1.113 gmcgarry
991 1.113 gmcgarry /*
992 1.114 gmcgarry * Switch to the new current process. When we
993 1.114 gmcgarry * run again, we'll return back here.
994 1.113 gmcgarry */
995 1.114 gmcgarry uvmexp.swtch++;
996 1.122 thorpej if (newl == NULL) {
997 1.122 thorpej retval = cpu_switch(l, NULL);
998 1.122 thorpej } else {
999 1.122 thorpej remrunqueue(newl);
1000 1.122 thorpej cpu_switchto(l, newl);
1001 1.122 thorpej retval = 0;
1002 1.122 thorpej }
1003 1.110 briggs
1004 1.110 briggs /*
1005 1.114 gmcgarry * If we are using h/w performance counters, restore context.
1006 1.26 cgd */
1007 1.114 gmcgarry #if PERFCTRS
1008 1.166 christos if (PMC_ENABLED(p)) {
1009 1.114 gmcgarry pmc_restore_context(p);
1010 1.166 christos }
1011 1.114 gmcgarry #endif
1012 1.110 briggs
1013 1.110 briggs /*
1014 1.114 gmcgarry * Make sure that MD code released the scheduler lock before
1015 1.114 gmcgarry * resuming us.
1016 1.110 briggs */
1017 1.114 gmcgarry SCHED_ASSERT_UNLOCKED();
1018 1.83 thorpej
1019 1.83 thorpej /*
1020 1.76 thorpej * We're running again; record our new start time. We might
1021 1.76 thorpej * be running on a new CPU now, so don't use the cache'd
1022 1.76 thorpej * schedstate_percpu pointer.
1023 1.76 thorpej */
1024 1.122 thorpej KDASSERT(l->l_cpu != NULL);
1025 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
1026 1.122 thorpej microtime(&l->l_cpu->ci_schedstate.spc_runtime);
1027 1.85 sommerfe
1028 1.90 sommerfe /*
1029 1.173 ad * Reacquire the kernel_lock now. We do this after we've
1030 1.173 ad * released the scheduler lock to avoid deadlock, and before
1031 1.173 ad * we reacquire the interlock.
1032 1.173 ad */
1033 1.173 ad KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
1034 1.173 ad
1035 1.173 ad /*
1036 1.169 yamt * Check if the process exceeds its CPU resource allocation.
1037 1.169 yamt * If over max, kill it. In any case, if it has run for more
1038 1.169 yamt * than 10 minutes, reduce priority to give others a chance.
1039 1.169 yamt */
1040 1.169 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1041 1.169 yamt if (s >= rlim->rlim_cur) {
1042 1.169 yamt if (s >= rlim->rlim_max) {
1043 1.169 yamt psignal(p, SIGKILL);
1044 1.169 yamt } else {
1045 1.169 yamt psignal(p, SIGXCPU);
1046 1.169 yamt if (rlim->rlim_cur < rlim->rlim_max)
1047 1.169 yamt rlim->rlim_cur += 5;
1048 1.169 yamt }
1049 1.169 yamt }
1050 1.169 yamt if (autonicetime && s > autonicetime &&
1051 1.169 yamt kauth_cred_geteuid(p->p_cred) && p->p_nice == NZERO) {
1052 1.169 yamt SCHED_LOCK(s);
1053 1.169 yamt p->p_nice = autoniceval + NZERO;
1054 1.169 yamt resetpriority(l);
1055 1.169 yamt SCHED_UNLOCK(s);
1056 1.169 yamt }
1057 1.169 yamt
1058 1.122 thorpej return retval;
1059 1.26 cgd }
1060 1.26 cgd
1061 1.26 cgd /*
1062 1.26 cgd * Initialize the (doubly-linked) run queues
1063 1.26 cgd * to be empty.
1064 1.26 cgd */
1065 1.26 cgd void
1066 1.26 cgd rqinit()
1067 1.26 cgd {
1068 1.71 augustss int i;
1069 1.26 cgd
1070 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
1071 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
1072 1.122 thorpej (struct lwp *)&sched_qs[i];
1073 1.26 cgd }
1074 1.26 cgd
1075 1.158 perry static inline void
1076 1.122 thorpej resched_proc(struct lwp *l, u_char pri)
1077 1.119 thorpej {
1078 1.119 thorpej struct cpu_info *ci;
1079 1.119 thorpej
1080 1.119 thorpej /*
1081 1.119 thorpej * XXXSMP
1082 1.122 thorpej * Since l->l_cpu persists across a context switch,
1083 1.119 thorpej * this gives us *very weak* processor affinity, in
1084 1.119 thorpej * that we notify the CPU on which the process last
1085 1.119 thorpej * ran that it should try to switch.
1086 1.119 thorpej *
1087 1.119 thorpej * This does not guarantee that the process will run on
1088 1.119 thorpej * that processor next, because another processor might
1089 1.119 thorpej * grab it the next time it performs a context switch.
1090 1.119 thorpej *
1091 1.119 thorpej * This also does not handle the case where its last
1092 1.119 thorpej * CPU is running a higher-priority process, but every
1093 1.119 thorpej * other CPU is running a lower-priority process. There
1094 1.119 thorpej * are ways to handle this situation, but they're not
1095 1.119 thorpej * currently very pretty, and we also need to weigh the
1096 1.119 thorpej * cost of moving a process from one CPU to another.
1097 1.119 thorpej *
1098 1.119 thorpej * XXXSMP
1099 1.119 thorpej * There is also the issue of locking the other CPU's
1100 1.119 thorpej * sched state, which we currently do not do.
1101 1.119 thorpej */
1102 1.122 thorpej ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1103 1.121 thorpej if (pri < ci->ci_schedstate.spc_curpriority)
1104 1.119 thorpej need_resched(ci);
1105 1.119 thorpej }
1106 1.119 thorpej
1107 1.26 cgd /*
1108 1.26 cgd * Change process state to be runnable,
1109 1.26 cgd * placing it on the run queue if it is in memory,
1110 1.26 cgd * and awakening the swapper if it isn't in memory.
1111 1.26 cgd */
1112 1.26 cgd void
1113 1.122 thorpej setrunnable(struct lwp *l)
1114 1.26 cgd {
1115 1.122 thorpej struct proc *p = l->l_proc;
1116 1.26 cgd
1117 1.83 thorpej SCHED_ASSERT_LOCKED();
1118 1.83 thorpej
1119 1.122 thorpej switch (l->l_stat) {
1120 1.26 cgd case 0:
1121 1.122 thorpej case LSRUN:
1122 1.122 thorpej case LSONPROC:
1123 1.122 thorpej case LSZOMB:
1124 1.122 thorpej case LSDEAD:
1125 1.26 cgd default:
1126 1.127 matt panic("setrunnable: lwp %p state was %d", l, l->l_stat);
1127 1.122 thorpej case LSSTOP:
1128 1.33 mycroft /*
1129 1.33 mycroft * If we're being traced (possibly because someone attached us
1130 1.33 mycroft * while we were stopped), check for a signal from the debugger.
1131 1.33 mycroft */
1132 1.53 mycroft if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1133 1.99 jdolecek sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1134 1.101 thorpej CHECKSIGS(p);
1135 1.53 mycroft }
1136 1.122 thorpej case LSSLEEP:
1137 1.122 thorpej unsleep(l); /* e.g. when sending signals */
1138 1.26 cgd break;
1139 1.26 cgd
1140 1.122 thorpej case LSIDL:
1141 1.122 thorpej break;
1142 1.122 thorpej case LSSUSPENDED:
1143 1.26 cgd break;
1144 1.26 cgd }
1145 1.139 cl
1146 1.139 cl if (l->l_proc->p_sa)
1147 1.139 cl sa_awaken(l);
1148 1.139 cl
1149 1.122 thorpej l->l_stat = LSRUN;
1150 1.122 thorpej p->p_nrlwps++;
1151 1.122 thorpej
1152 1.122 thorpej if (l->l_flag & L_INMEM)
1153 1.122 thorpej setrunqueue(l);
1154 1.122 thorpej
1155 1.122 thorpej if (l->l_slptime > 1)
1156 1.122 thorpej updatepri(l);
1157 1.122 thorpej l->l_slptime = 0;
1158 1.122 thorpej if ((l->l_flag & L_INMEM) == 0)
1159 1.83 thorpej sched_wakeup((caddr_t)&proc0);
1160 1.119 thorpej else
1161 1.122 thorpej resched_proc(l, l->l_priority);
1162 1.26 cgd }
1163 1.26 cgd
1164 1.26 cgd /*
1165 1.26 cgd * Compute the priority of a process when running in user mode.
1166 1.26 cgd * Arrange to reschedule if the resulting priority is better
1167 1.26 cgd * than that of the current process.
1168 1.26 cgd */
1169 1.26 cgd void
1170 1.122 thorpej resetpriority(struct lwp *l)
1171 1.26 cgd {
1172 1.71 augustss unsigned int newpriority;
1173 1.122 thorpej struct proc *p = l->l_proc;
1174 1.26 cgd
1175 1.83 thorpej SCHED_ASSERT_LOCKED();
1176 1.83 thorpej
1177 1.153 yamt newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
1178 1.122 thorpej NICE_WEIGHT * (p->p_nice - NZERO);
1179 1.26 cgd newpriority = min(newpriority, MAXPRI);
1180 1.122 thorpej l->l_usrpri = newpriority;
1181 1.122 thorpej resched_proc(l, l->l_usrpri);
1182 1.122 thorpej }
1183 1.122 thorpej
1184 1.130 nathanw /*
1185 1.122 thorpej * Recompute priority for all LWPs in a process.
1186 1.122 thorpej */
1187 1.122 thorpej void
1188 1.122 thorpej resetprocpriority(struct proc *p)
1189 1.122 thorpej {
1190 1.122 thorpej struct lwp *l;
1191 1.122 thorpej
1192 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling)
1193 1.122 thorpej resetpriority(l);
1194 1.55 ross }
1195 1.55 ross
1196 1.55 ross /*
1197 1.56 ross * We adjust the priority of the current process. The priority of a process
1198 1.141 wiz * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
1199 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
1200 1.56 ross * will compute a different value each time p_estcpu increases. This can
1201 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
1202 1.141 wiz * queue will not change. The CPU usage estimator ramps up quite quickly
1203 1.56 ross * when the process is running (linearly), and decays away exponentially, at
1204 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
1205 1.80 nathanw * principle is that the system will 90% forget that the process used a lot
1206 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
1207 1.56 ross * processes which haven't run much recently, and to round-robin among other
1208 1.56 ross * processes.
1209 1.55 ross */
1210 1.55 ross
1211 1.55 ross void
1212 1.122 thorpej schedclock(struct lwp *l)
1213 1.55 ross {
1214 1.122 thorpej struct proc *p = l->l_proc;
1215 1.83 thorpej int s;
1216 1.77 thorpej
1217 1.153 yamt p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
1218 1.83 thorpej SCHED_LOCK(s);
1219 1.122 thorpej resetpriority(l);
1220 1.83 thorpej SCHED_UNLOCK(s);
1221 1.130 nathanw
1222 1.122 thorpej if (l->l_priority >= PUSER)
1223 1.122 thorpej l->l_priority = l->l_usrpri;
1224 1.26 cgd }
1225 1.94 bouyer
1226 1.94 bouyer void
1227 1.94 bouyer suspendsched()
1228 1.94 bouyer {
1229 1.122 thorpej struct lwp *l;
1230 1.97 enami int s;
1231 1.94 bouyer
1232 1.94 bouyer /*
1233 1.130 nathanw * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1234 1.122 thorpej * LSSUSPENDED.
1235 1.94 bouyer */
1236 1.95 thorpej proclist_lock_read();
1237 1.95 thorpej SCHED_LOCK(s);
1238 1.122 thorpej LIST_FOREACH(l, &alllwp, l_list) {
1239 1.122 thorpej if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1240 1.94 bouyer continue;
1241 1.122 thorpej
1242 1.122 thorpej switch (l->l_stat) {
1243 1.122 thorpej case LSRUN:
1244 1.122 thorpej l->l_proc->p_nrlwps--;
1245 1.122 thorpej if ((l->l_flag & L_INMEM) != 0)
1246 1.122 thorpej remrunqueue(l);
1247 1.97 enami /* FALLTHROUGH */
1248 1.122 thorpej case LSSLEEP:
1249 1.122 thorpej l->l_stat = LSSUSPENDED;
1250 1.97 enami break;
1251 1.122 thorpej case LSONPROC:
1252 1.97 enami /*
1253 1.97 enami * XXX SMP: we need to deal with processes on
1254 1.97 enami * others CPU !
1255 1.97 enami */
1256 1.97 enami break;
1257 1.97 enami default:
1258 1.97 enami break;
1259 1.94 bouyer }
1260 1.94 bouyer }
1261 1.94 bouyer SCHED_UNLOCK(s);
1262 1.97 enami proclist_unlock_read();
1263 1.94 bouyer }
1264 1.113 gmcgarry
1265 1.113 gmcgarry /*
1266 1.151 yamt * scheduler_fork_hook:
1267 1.151 yamt *
1268 1.151 yamt * Inherit the parent's scheduler history.
1269 1.151 yamt */
1270 1.151 yamt void
1271 1.151 yamt scheduler_fork_hook(struct proc *parent, struct proc *child)
1272 1.151 yamt {
1273 1.151 yamt
1274 1.157 yamt child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
1275 1.157 yamt child->p_forktime = schedcpu_ticks;
1276 1.151 yamt }
1277 1.151 yamt
1278 1.151 yamt /*
1279 1.151 yamt * scheduler_wait_hook:
1280 1.151 yamt *
1281 1.151 yamt * Chargeback parents for the sins of their children.
1282 1.151 yamt */
1283 1.151 yamt void
1284 1.151 yamt scheduler_wait_hook(struct proc *parent, struct proc *child)
1285 1.151 yamt {
1286 1.157 yamt fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1287 1.157 yamt fixpt_t estcpu;
1288 1.151 yamt
1289 1.151 yamt /* XXX Only if parent != init?? */
1290 1.157 yamt
1291 1.157 yamt estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
1292 1.157 yamt schedcpu_ticks - child->p_forktime);
1293 1.157 yamt if (child->p_estcpu > estcpu) {
1294 1.157 yamt parent->p_estcpu =
1295 1.157 yamt ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
1296 1.157 yamt }
1297 1.151 yamt }
1298 1.151 yamt
1299 1.151 yamt /*
1300 1.113 gmcgarry * Low-level routines to access the run queue. Optimised assembler
1301 1.113 gmcgarry * routines can override these.
1302 1.113 gmcgarry */
1303 1.113 gmcgarry
1304 1.113 gmcgarry #ifndef __HAVE_MD_RUNQUEUE
1305 1.115 nisimura
1306 1.130 nathanw /*
1307 1.134 matt * On some architectures, it's faster to use a MSB ordering for the priorites
1308 1.134 matt * than the traditional LSB ordering.
1309 1.134 matt */
1310 1.134 matt #ifdef __HAVE_BIGENDIAN_BITOPS
1311 1.134 matt #define RQMASK(n) (0x80000000 >> (n))
1312 1.134 matt #else
1313 1.134 matt #define RQMASK(n) (0x00000001 << (n))
1314 1.134 matt #endif
1315 1.134 matt
1316 1.134 matt /*
1317 1.115 nisimura * The primitives that manipulate the run queues. whichqs tells which
1318 1.115 nisimura * of the 32 queues qs have processes in them. Setrunqueue puts processes
1319 1.115 nisimura * into queues, remrunqueue removes them from queues. The running process is
1320 1.115 nisimura * on no queue, other processes are on a queue related to p->p_priority,
1321 1.115 nisimura * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1322 1.115 nisimura * available queues.
1323 1.130 nathanw */
1324 1.113 gmcgarry
1325 1.146 matt #ifdef RQDEBUG
1326 1.146 matt static void
1327 1.146 matt checkrunqueue(int whichq, struct lwp *l)
1328 1.146 matt {
1329 1.146 matt const struct prochd * const rq = &sched_qs[whichq];
1330 1.146 matt struct lwp *l2;
1331 1.146 matt int found = 0;
1332 1.146 matt int die = 0;
1333 1.146 matt int empty = 1;
1334 1.164 christos for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
1335 1.146 matt if (l2->l_stat != LSRUN) {
1336 1.146 matt printf("checkrunqueue[%d]: lwp %p state (%d) "
1337 1.146 matt " != LSRUN\n", whichq, l2, l2->l_stat);
1338 1.146 matt }
1339 1.146 matt if (l2->l_back->l_forw != l2) {
1340 1.146 matt printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1341 1.146 matt "corrupt %p\n", whichq, l2, l2->l_back,
1342 1.146 matt l2->l_back->l_forw);
1343 1.146 matt die = 1;
1344 1.146 matt }
1345 1.146 matt if (l2->l_forw->l_back != l2) {
1346 1.146 matt printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1347 1.146 matt "corrupt %p\n", whichq, l2, l2->l_forw,
1348 1.146 matt l2->l_forw->l_back);
1349 1.146 matt die = 1;
1350 1.146 matt }
1351 1.146 matt if (l2 == l)
1352 1.146 matt found = 1;
1353 1.146 matt empty = 0;
1354 1.146 matt }
1355 1.146 matt if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1356 1.146 matt printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1357 1.146 matt whichq, rq);
1358 1.146 matt die = 1;
1359 1.146 matt } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1360 1.146 matt printf("checkrunqueue[%d]: bit clear for non-empty "
1361 1.146 matt "run-queue %p\n", whichq, rq);
1362 1.146 matt die = 1;
1363 1.146 matt }
1364 1.146 matt if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1365 1.146 matt printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1366 1.146 matt whichq, l);
1367 1.146 matt die = 1;
1368 1.146 matt }
1369 1.146 matt if (l != NULL && empty) {
1370 1.146 matt printf("checkrunqueue[%d]: empty run-queue %p with "
1371 1.146 matt "active lwp %p\n", whichq, rq, l);
1372 1.146 matt die = 1;
1373 1.146 matt }
1374 1.146 matt if (l != NULL && !found) {
1375 1.146 matt printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1376 1.146 matt whichq, l, rq);
1377 1.146 matt die = 1;
1378 1.146 matt }
1379 1.146 matt if (die)
1380 1.146 matt panic("checkrunqueue: inconsistency found");
1381 1.146 matt }
1382 1.146 matt #endif /* RQDEBUG */
1383 1.146 matt
1384 1.113 gmcgarry void
1385 1.122 thorpej setrunqueue(struct lwp *l)
1386 1.113 gmcgarry {
1387 1.113 gmcgarry struct prochd *rq;
1388 1.122 thorpej struct lwp *prev;
1389 1.152 yamt const int whichq = l->l_priority / PPQ;
1390 1.113 gmcgarry
1391 1.146 matt #ifdef RQDEBUG
1392 1.146 matt checkrunqueue(whichq, NULL);
1393 1.146 matt #endif
1394 1.113 gmcgarry #ifdef DIAGNOSTIC
1395 1.122 thorpej if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1396 1.113 gmcgarry panic("setrunqueue");
1397 1.113 gmcgarry #endif
1398 1.134 matt sched_whichqs |= RQMASK(whichq);
1399 1.113 gmcgarry rq = &sched_qs[whichq];
1400 1.113 gmcgarry prev = rq->ph_rlink;
1401 1.122 thorpej l->l_forw = (struct lwp *)rq;
1402 1.122 thorpej rq->ph_rlink = l;
1403 1.122 thorpej prev->l_forw = l;
1404 1.122 thorpej l->l_back = prev;
1405 1.146 matt #ifdef RQDEBUG
1406 1.146 matt checkrunqueue(whichq, l);
1407 1.146 matt #endif
1408 1.113 gmcgarry }
1409 1.113 gmcgarry
1410 1.113 gmcgarry void
1411 1.122 thorpej remrunqueue(struct lwp *l)
1412 1.113 gmcgarry {
1413 1.122 thorpej struct lwp *prev, *next;
1414 1.152 yamt const int whichq = l->l_priority / PPQ;
1415 1.146 matt #ifdef RQDEBUG
1416 1.146 matt checkrunqueue(whichq, l);
1417 1.146 matt #endif
1418 1.113 gmcgarry #ifdef DIAGNOSTIC
1419 1.134 matt if (((sched_whichqs & RQMASK(whichq)) == 0))
1420 1.146 matt panic("remrunqueue: bit %d not set", whichq);
1421 1.113 gmcgarry #endif
1422 1.122 thorpej prev = l->l_back;
1423 1.122 thorpej l->l_back = NULL;
1424 1.122 thorpej next = l->l_forw;
1425 1.122 thorpej prev->l_forw = next;
1426 1.122 thorpej next->l_back = prev;
1427 1.113 gmcgarry if (prev == next)
1428 1.134 matt sched_whichqs &= ~RQMASK(whichq);
1429 1.146 matt #ifdef RQDEBUG
1430 1.146 matt checkrunqueue(whichq, NULL);
1431 1.146 matt #endif
1432 1.113 gmcgarry }
1433 1.113 gmcgarry
1434 1.134 matt #undef RQMASK
1435 1.134 matt #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1436