kern_synch.c revision 1.177.2.2 1 1.177.2.1 yamt /* $NetBSD: kern_synch.c,v 1.177.2.2 2007/02/17 11:00:52 yamt Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.174 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.174 ad * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 1.63 thorpej *
11 1.63 thorpej * Redistribution and use in source and binary forms, with or without
12 1.63 thorpej * modification, are permitted provided that the following conditions
13 1.63 thorpej * are met:
14 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.63 thorpej * notice, this list of conditions and the following disclaimer.
16 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.63 thorpej * documentation and/or other materials provided with the distribution.
19 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.63 thorpej * must display the following acknowledgement:
21 1.63 thorpej * This product includes software developed by the NetBSD
22 1.63 thorpej * Foundation, Inc. and its contributors.
23 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.63 thorpej * contributors may be used to endorse or promote products derived
25 1.63 thorpej * from this software without specific prior written permission.
26 1.63 thorpej *
27 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.63 thorpej */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.136 agc * 3. Neither the name of the University nor the names of its contributors
58 1.26 cgd * may be used to endorse or promote products derived from this software
59 1.26 cgd * without specific prior written permission.
60 1.26 cgd *
61 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 1.26 cgd * SUCH DAMAGE.
72 1.26 cgd *
73 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
74 1.26 cgd */
75 1.106 lukem
76 1.106 lukem #include <sys/cdefs.h>
77 1.177.2.1 yamt __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.177.2.2 2007/02/17 11:00:52 yamt Exp $");
78 1.48 mrg
79 1.52 jonathan #include "opt_ddb.h"
80 1.109 yamt #include "opt_kstack.h"
81 1.82 thorpej #include "opt_lockdebug.h"
82 1.83 thorpej #include "opt_multiprocessor.h"
83 1.110 briggs #include "opt_perfctrs.h"
84 1.26 cgd
85 1.174 ad #define __MUTEX_PRIVATE
86 1.174 ad
87 1.26 cgd #include <sys/param.h>
88 1.26 cgd #include <sys/systm.h>
89 1.68 thorpej #include <sys/callout.h>
90 1.26 cgd #include <sys/proc.h>
91 1.26 cgd #include <sys/kernel.h>
92 1.26 cgd #include <sys/buf.h>
93 1.111 briggs #if defined(PERFCTRS)
94 1.110 briggs #include <sys/pmc.h>
95 1.111 briggs #endif
96 1.26 cgd #include <sys/signalvar.h>
97 1.26 cgd #include <sys/resourcevar.h>
98 1.55 ross #include <sys/sched.h>
99 1.161 elad #include <sys/kauth.h>
100 1.174 ad #include <sys/sleepq.h>
101 1.174 ad #include <sys/lockdebug.h>
102 1.47 mrg
103 1.47 mrg #include <uvm/uvm_extern.h>
104 1.47 mrg
105 1.26 cgd #include <machine/cpu.h>
106 1.34 christos
107 1.26 cgd int lbolt; /* once a second sleep address */
108 1.88 sommerfe int rrticks; /* number of hardclock ticks per roundrobin() */
109 1.26 cgd
110 1.152 yamt /*
111 1.73 thorpej * The global scheduler state.
112 1.73 thorpej */
113 1.174 ad kmutex_t sched_mutex; /* global sched state mutex */
114 1.174 ad struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
115 1.159 perry volatile uint32_t sched_whichqs; /* bitmap of non-empty queues */
116 1.83 thorpej
117 1.174 ad void schedcpu(void *);
118 1.174 ad void updatepri(struct lwp *);
119 1.34 christos
120 1.174 ad void sched_unsleep(struct lwp *);
121 1.174 ad void sched_changepri(struct lwp *, int);
122 1.63 thorpej
123 1.143 yamt struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
124 1.157 yamt static unsigned int schedcpu_ticks;
125 1.122 thorpej
126 1.174 ad syncobj_t sleep_syncobj = {
127 1.174 ad SOBJ_SLEEPQ_SORTED,
128 1.174 ad sleepq_unsleep,
129 1.174 ad sleepq_changepri
130 1.174 ad };
131 1.174 ad
132 1.174 ad syncobj_t sched_syncobj = {
133 1.174 ad SOBJ_SLEEPQ_SORTED,
134 1.174 ad sched_unsleep,
135 1.174 ad sched_changepri
136 1.174 ad };
137 1.122 thorpej
138 1.26 cgd /*
139 1.26 cgd * Force switch among equal priority processes every 100ms.
140 1.88 sommerfe * Called from hardclock every hz/10 == rrticks hardclock ticks.
141 1.26 cgd */
142 1.26 cgd /* ARGSUSED */
143 1.26 cgd void
144 1.89 sommerfe roundrobin(struct cpu_info *ci)
145 1.26 cgd {
146 1.89 sommerfe struct schedstate_percpu *spc = &ci->ci_schedstate;
147 1.26 cgd
148 1.88 sommerfe spc->spc_rrticks = rrticks;
149 1.130 nathanw
150 1.177.2.1 yamt if (!CURCPU_IDLE_P()) {
151 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
152 1.69 thorpej /*
153 1.69 thorpej * The process has already been through a roundrobin
154 1.69 thorpej * without switching and may be hogging the CPU.
155 1.69 thorpej * Indicate that the process should yield.
156 1.69 thorpej */
157 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
158 1.69 thorpej } else
159 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
160 1.69 thorpej }
161 1.174 ad cpu_need_resched(curcpu());
162 1.26 cgd }
163 1.26 cgd
164 1.153 yamt #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
165 1.153 yamt #define NICE_WEIGHT 2 /* priorities per nice level */
166 1.153 yamt
167 1.153 yamt #define ESTCPU_SHIFT 11
168 1.153 yamt #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
169 1.153 yamt #define ESTCPULIM(e) min((e), ESTCPU_MAX)
170 1.153 yamt
171 1.26 cgd /*
172 1.26 cgd * Constants for digital decay and forget:
173 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
174 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
175 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
176 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
177 1.26 cgd *
178 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
179 1.26 cgd *
180 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
181 1.26 cgd * That is, the system wants to compute a value of decay such
182 1.26 cgd * that the following for loop:
183 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
184 1.26 cgd * p_estcpu *= decay;
185 1.26 cgd * will compute
186 1.26 cgd * p_estcpu *= 0.1;
187 1.26 cgd * for all values of loadavg:
188 1.26 cgd *
189 1.26 cgd * Mathematically this loop can be expressed by saying:
190 1.26 cgd * decay ** (5 * loadavg) ~= .1
191 1.26 cgd *
192 1.26 cgd * The system computes decay as:
193 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
194 1.26 cgd *
195 1.26 cgd * We wish to prove that the system's computation of decay
196 1.26 cgd * will always fulfill the equation:
197 1.26 cgd * decay ** (5 * loadavg) ~= .1
198 1.26 cgd *
199 1.26 cgd * If we compute b as:
200 1.26 cgd * b = 2 * loadavg
201 1.26 cgd * then
202 1.26 cgd * decay = b / (b + 1)
203 1.26 cgd *
204 1.26 cgd * We now need to prove two things:
205 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
206 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
207 1.130 nathanw *
208 1.26 cgd * Facts:
209 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
210 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
211 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
212 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
213 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
214 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
215 1.26 cgd * ln(.1) =~ -2.30
216 1.26 cgd *
217 1.26 cgd * Proof of (1):
218 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
219 1.26 cgd * solving for factor,
220 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
221 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
222 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
223 1.26 cgd *
224 1.26 cgd * Proof of (2):
225 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
226 1.26 cgd * solving for power,
227 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
228 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
229 1.26 cgd *
230 1.26 cgd * Actual power values for the implemented algorithm are as follows:
231 1.26 cgd * loadav: 1 2 3 4
232 1.26 cgd * power: 5.68 10.32 14.94 19.55
233 1.26 cgd */
234 1.26 cgd
235 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
236 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
237 1.153 yamt
238 1.153 yamt static fixpt_t
239 1.153 yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
240 1.153 yamt {
241 1.153 yamt
242 1.153 yamt if (estcpu == 0) {
243 1.153 yamt return 0;
244 1.153 yamt }
245 1.153 yamt
246 1.153 yamt #if !defined(_LP64)
247 1.153 yamt /* avoid 64bit arithmetics. */
248 1.153 yamt #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
249 1.153 yamt if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
250 1.153 yamt return estcpu * loadfac / (loadfac + FSCALE);
251 1.153 yamt }
252 1.153 yamt #endif /* !defined(_LP64) */
253 1.153 yamt
254 1.153 yamt return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
255 1.153 yamt }
256 1.26 cgd
257 1.157 yamt /*
258 1.157 yamt * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
259 1.157 yamt * sleeping for at least seven times the loadfactor will decay p_estcpu to
260 1.157 yamt * less than (1 << ESTCPU_SHIFT).
261 1.157 yamt *
262 1.157 yamt * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
263 1.157 yamt */
264 1.157 yamt static fixpt_t
265 1.157 yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
266 1.157 yamt {
267 1.157 yamt
268 1.157 yamt if ((n << FSHIFT) >= 7 * loadfac) {
269 1.157 yamt return 0;
270 1.157 yamt }
271 1.157 yamt
272 1.157 yamt while (estcpu != 0 && n > 1) {
273 1.157 yamt estcpu = decay_cpu(loadfac, estcpu);
274 1.157 yamt n--;
275 1.157 yamt }
276 1.157 yamt
277 1.157 yamt return estcpu;
278 1.157 yamt }
279 1.157 yamt
280 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
281 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
282 1.26 cgd
283 1.26 cgd /*
284 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
285 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
286 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
287 1.26 cgd *
288 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
289 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
290 1.26 cgd *
291 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
292 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
293 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
294 1.26 cgd */
295 1.26 cgd #define CCPU_SHIFT 11
296 1.26 cgd
297 1.26 cgd /*
298 1.174 ad * schedcpu:
299 1.174 ad *
300 1.174 ad * Recompute process priorities, every hz ticks.
301 1.174 ad *
302 1.174 ad * XXXSMP This needs to be reorganised in order to reduce the locking
303 1.174 ad * burden.
304 1.26 cgd */
305 1.26 cgd /* ARGSUSED */
306 1.26 cgd void
307 1.171 yamt schedcpu(void *arg)
308 1.26 cgd {
309 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
310 1.174 ad struct rlimit *rlim;
311 1.122 thorpej struct lwp *l;
312 1.71 augustss struct proc *p;
313 1.174 ad int minslp, clkhz, sig;
314 1.174 ad long runtm;
315 1.26 cgd
316 1.157 yamt schedcpu_ticks++;
317 1.157 yamt
318 1.174 ad mutex_enter(&proclist_mutex);
319 1.145 yamt PROCLIST_FOREACH(p, &allproc) {
320 1.26 cgd /*
321 1.174 ad * Increment time in/out of memory and sleep time (if
322 1.174 ad * sleeping). We ignore overflow; with 16-bit int's
323 1.26 cgd * (remember them?) overflow takes 45 days.
324 1.26 cgd */
325 1.122 thorpej minslp = 2;
326 1.174 ad mutex_enter(&p->p_smutex);
327 1.174 ad runtm = p->p_rtime.tv_sec;
328 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
329 1.177.2.1 yamt if ((l->l_flag & L_IDLE) != 0)
330 1.177.2.1 yamt continue;
331 1.174 ad lwp_lock(l);
332 1.174 ad runtm += l->l_rtime.tv_sec;
333 1.122 thorpej l->l_swtime++;
334 1.130 nathanw if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
335 1.122 thorpej l->l_stat == LSSUSPENDED) {
336 1.122 thorpej l->l_slptime++;
337 1.122 thorpej minslp = min(minslp, l->l_slptime);
338 1.122 thorpej } else
339 1.122 thorpej minslp = 0;
340 1.174 ad lwp_unlock(l);
341 1.122 thorpej }
342 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
343 1.174 ad
344 1.174 ad /*
345 1.174 ad * Check if the process exceeds its CPU resource allocation.
346 1.174 ad * If over max, kill it.
347 1.174 ad */
348 1.174 ad rlim = &p->p_rlimit[RLIMIT_CPU];
349 1.174 ad sig = 0;
350 1.174 ad if (runtm >= rlim->rlim_cur) {
351 1.174 ad if (runtm >= rlim->rlim_max)
352 1.174 ad sig = SIGKILL;
353 1.174 ad else {
354 1.174 ad sig = SIGXCPU;
355 1.174 ad if (rlim->rlim_cur < rlim->rlim_max)
356 1.174 ad rlim->rlim_cur += 5;
357 1.174 ad }
358 1.174 ad }
359 1.174 ad
360 1.174 ad /*
361 1.174 ad * If the process has run for more than autonicetime, reduce
362 1.174 ad * priority to give others a chance.
363 1.174 ad */
364 1.174 ad if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
365 1.174 ad && kauth_cred_geteuid(p->p_cred)) {
366 1.174 ad mutex_spin_enter(&p->p_stmutex);
367 1.174 ad p->p_nice = autoniceval + NZERO;
368 1.174 ad resetprocpriority(p);
369 1.174 ad mutex_spin_exit(&p->p_stmutex);
370 1.174 ad }
371 1.174 ad
372 1.26 cgd /*
373 1.26 cgd * If the process has slept the entire second,
374 1.26 cgd * stop recalculating its priority until it wakes up.
375 1.26 cgd */
376 1.174 ad if (minslp <= 1) {
377 1.174 ad /*
378 1.174 ad * p_pctcpu is only for ps.
379 1.174 ad */
380 1.174 ad mutex_spin_enter(&p->p_stmutex);
381 1.174 ad clkhz = stathz != 0 ? stathz : hz;
382 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
383 1.174 ad p->p_pctcpu += (clkhz == 100)?
384 1.174 ad ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
385 1.174 ad 100 * (((fixpt_t) p->p_cpticks)
386 1.174 ad << (FSHIFT - CCPU_SHIFT)) / clkhz;
387 1.26 cgd #else
388 1.174 ad p->p_pctcpu += ((FSCALE - ccpu) *
389 1.174 ad (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
390 1.26 cgd #endif
391 1.174 ad p->p_cpticks = 0;
392 1.174 ad p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
393 1.174 ad
394 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
395 1.177.2.1 yamt if ((l->l_flag & L_IDLE) != 0)
396 1.177.2.1 yamt continue;
397 1.174 ad lwp_lock(l);
398 1.174 ad if (l->l_slptime <= 1 &&
399 1.174 ad l->l_priority >= PUSER)
400 1.174 ad resetpriority(l);
401 1.174 ad lwp_unlock(l);
402 1.122 thorpej }
403 1.174 ad mutex_spin_exit(&p->p_stmutex);
404 1.174 ad }
405 1.174 ad
406 1.174 ad mutex_exit(&p->p_smutex);
407 1.174 ad if (sig) {
408 1.174 ad psignal(p, sig);
409 1.26 cgd }
410 1.26 cgd }
411 1.174 ad mutex_exit(&proclist_mutex);
412 1.47 mrg uvm_meter();
413 1.67 fvdl wakeup((caddr_t)&lbolt);
414 1.143 yamt callout_schedule(&schedcpu_ch, hz);
415 1.26 cgd }
416 1.26 cgd
417 1.26 cgd /*
418 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
419 1.26 cgd */
420 1.26 cgd void
421 1.122 thorpej updatepri(struct lwp *l)
422 1.26 cgd {
423 1.122 thorpej struct proc *p = l->l_proc;
424 1.83 thorpej fixpt_t loadfac;
425 1.83 thorpej
426 1.174 ad LOCK_ASSERT(lwp_locked(l, NULL));
427 1.157 yamt KASSERT(l->l_slptime > 1);
428 1.83 thorpej
429 1.83 thorpej loadfac = loadfactor(averunnable.ldavg[0]);
430 1.26 cgd
431 1.157 yamt l->l_slptime--; /* the first time was done in schedcpu */
432 1.157 yamt /* XXX NJWLWP */
433 1.174 ad /* XXXSMP occasionally unlocked, should be per-LWP */
434 1.157 yamt p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
435 1.122 thorpej resetpriority(l);
436 1.26 cgd }
437 1.26 cgd
438 1.26 cgd /*
439 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
440 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
441 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
442 1.174 ad * maintained in the machine-dependent layers. This priority will typically
443 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
444 1.174 ad * it can be made higher to block network software interrupts after panics.
445 1.26 cgd */
446 1.174 ad int safepri;
447 1.26 cgd
448 1.26 cgd /*
449 1.174 ad * OBSOLETE INTERFACE
450 1.174 ad *
451 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
452 1.26 cgd * performed on the specified identifier. The process will then be made
453 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
454 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
455 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
456 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
457 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
458 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
459 1.26 cgd * call should be interrupted by the signal (return EINTR).
460 1.77 thorpej *
461 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
462 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
463 1.174 ad * is specified, in which case the interlock will always be unlocked upon
464 1.174 ad * return.
465 1.26 cgd */
466 1.26 cgd int
467 1.174 ad ltsleep(wchan_t ident, int priority, const char *wmesg, int timo,
468 1.174 ad volatile struct simplelock *interlock)
469 1.26 cgd {
470 1.122 thorpej struct lwp *l = curlwp;
471 1.174 ad sleepq_t *sq;
472 1.174 ad int error, catch;
473 1.26 cgd
474 1.174 ad if (sleepq_dontsleep(l)) {
475 1.174 ad (void)sleepq_abort(NULL, 0);
476 1.174 ad if ((priority & PNORELOCK) != 0)
477 1.77 thorpej simple_unlock(interlock);
478 1.174 ad return 0;
479 1.26 cgd }
480 1.78 sommerfe
481 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
482 1.174 ad sleepq_enter(sq, l);
483 1.42 cgd
484 1.174 ad if (interlock != NULL) {
485 1.174 ad LOCK_ASSERT(simple_lock_held(interlock));
486 1.174 ad simple_unlock(interlock);
487 1.150 chs }
488 1.150 chs
489 1.174 ad catch = priority & PCATCH;
490 1.174 ad sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
491 1.174 ad &sleep_syncobj);
492 1.174 ad error = sleepq_unblock(timo, catch);
493 1.126 pk
494 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
495 1.126 pk simple_lock(interlock);
496 1.174 ad
497 1.174 ad return error;
498 1.26 cgd }
499 1.26 cgd
500 1.26 cgd /*
501 1.174 ad * General sleep call for situations where a wake-up is not expected.
502 1.26 cgd */
503 1.174 ad int
504 1.174 ad kpause(const char *wmesg, boolean_t intr, int timo, kmutex_t *mtx)
505 1.26 cgd {
506 1.174 ad struct lwp *l = curlwp;
507 1.174 ad sleepq_t *sq;
508 1.174 ad int error;
509 1.26 cgd
510 1.174 ad if (sleepq_dontsleep(l))
511 1.174 ad return sleepq_abort(NULL, 0);
512 1.26 cgd
513 1.174 ad if (mtx != NULL)
514 1.174 ad mutex_exit(mtx);
515 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
516 1.174 ad sleepq_enter(sq, l);
517 1.174 ad sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
518 1.174 ad error = sleepq_unblock(timo, intr);
519 1.174 ad if (mtx != NULL)
520 1.174 ad mutex_enter(mtx);
521 1.83 thorpej
522 1.174 ad return error;
523 1.139 cl }
524 1.139 cl
525 1.26 cgd /*
526 1.174 ad * OBSOLETE INTERFACE
527 1.174 ad *
528 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
529 1.26 cgd */
530 1.26 cgd void
531 1.174 ad wakeup(wchan_t ident)
532 1.26 cgd {
533 1.174 ad sleepq_t *sq;
534 1.83 thorpej
535 1.174 ad if (cold)
536 1.174 ad return;
537 1.83 thorpej
538 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
539 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
540 1.63 thorpej }
541 1.63 thorpej
542 1.63 thorpej /*
543 1.174 ad * OBSOLETE INTERFACE
544 1.174 ad *
545 1.63 thorpej * Make the highest priority process first in line on the specified
546 1.63 thorpej * identifier runnable.
547 1.63 thorpej */
548 1.174 ad void
549 1.174 ad wakeup_one(wchan_t ident)
550 1.63 thorpej {
551 1.174 ad sleepq_t *sq;
552 1.63 thorpej
553 1.174 ad if (cold)
554 1.174 ad return;
555 1.174 ad
556 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
557 1.174 ad sleepq_wake(sq, ident, 1);
558 1.174 ad }
559 1.63 thorpej
560 1.117 gmcgarry
561 1.117 gmcgarry /*
562 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
563 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
564 1.117 gmcgarry * current process explicitly requests it (eg sched_yield(2) in compat code).
565 1.117 gmcgarry */
566 1.117 gmcgarry void
567 1.117 gmcgarry yield(void)
568 1.117 gmcgarry {
569 1.122 thorpej struct lwp *l = curlwp;
570 1.117 gmcgarry
571 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
572 1.174 ad lwp_lock(l);
573 1.174 ad if (l->l_stat == LSONPROC) {
574 1.174 ad KASSERT(lwp_locked(l, &sched_mutex));
575 1.174 ad l->l_priority = l->l_usrpri;
576 1.174 ad }
577 1.174 ad l->l_nvcsw++;
578 1.122 thorpej mi_switch(l, NULL);
579 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
580 1.69 thorpej }
581 1.69 thorpej
582 1.69 thorpej /*
583 1.69 thorpej * General preemption call. Puts the current process back on its run queue
584 1.156 rpaulo * and performs an involuntary context switch.
585 1.69 thorpej */
586 1.69 thorpej void
587 1.174 ad preempt(void)
588 1.69 thorpej {
589 1.122 thorpej struct lwp *l = curlwp;
590 1.69 thorpej
591 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
592 1.174 ad lwp_lock(l);
593 1.174 ad if (l->l_stat == LSONPROC) {
594 1.174 ad KASSERT(lwp_locked(l, &sched_mutex));
595 1.174 ad l->l_priority = l->l_usrpri;
596 1.174 ad }
597 1.174 ad l->l_nivcsw++;
598 1.174 ad (void)mi_switch(l, NULL);
599 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
600 1.69 thorpej }
601 1.69 thorpej
602 1.69 thorpej /*
603 1.177.2.1 yamt * sched_switch_unlock: update 'curlwp' and release old lwp.
604 1.177.2.1 yamt */
605 1.177.2.1 yamt
606 1.177.2.1 yamt void
607 1.177.2.1 yamt sched_switch_unlock(struct lwp *old, struct lwp *new)
608 1.177.2.1 yamt {
609 1.177.2.1 yamt
610 1.177.2.1 yamt KASSERT(old == NULL || old == curlwp);
611 1.177.2.1 yamt
612 1.177.2.1 yamt if (old != NULL) {
613 1.177.2.2 yamt LOCKDEBUG_BARRIER(&old->l_mutex, 1);
614 1.177.2.1 yamt } else {
615 1.177.2.1 yamt LOCKDEBUG_BARRIER(NULL, 1);
616 1.177.2.1 yamt }
617 1.177.2.1 yamt
618 1.177.2.1 yamt curlwp = new;
619 1.177.2.1 yamt if (old != NULL) {
620 1.177.2.2 yamt lwp_unlock(old);
621 1.177.2.1 yamt }
622 1.177.2.1 yamt spl0();
623 1.177.2.1 yamt }
624 1.177.2.1 yamt
625 1.177.2.1 yamt /*
626 1.174 ad * The machine independent parts of context switch. Switch to "new"
627 1.174 ad * if non-NULL, otherwise let cpu_switch choose the next lwp.
628 1.130 nathanw *
629 1.122 thorpej * Returns 1 if another process was actually run.
630 1.26 cgd */
631 1.122 thorpej int
632 1.122 thorpej mi_switch(struct lwp *l, struct lwp *newl)
633 1.26 cgd {
634 1.76 thorpej struct schedstate_percpu *spc;
635 1.174 ad struct timeval tv;
636 1.174 ad int retval, oldspl;
637 1.71 augustss long s, u;
638 1.26 cgd
639 1.174 ad LOCK_ASSERT(lwp_locked(l, NULL));
640 1.174 ad
641 1.174 ad #ifdef LOCKDEBUG
642 1.174 ad spinlock_switchcheck();
643 1.174 ad simple_lock_switchcheck();
644 1.174 ad #endif
645 1.174 ad #ifdef KSTACK_CHECK_MAGIC
646 1.174 ad kstack_check_magic(l);
647 1.174 ad #endif
648 1.83 thorpej
649 1.90 sommerfe /*
650 1.174 ad * It's safe to read the per CPU schedstate unlocked here, as all we
651 1.174 ad * are after is the run time and that's guarenteed to have been last
652 1.174 ad * updated by this CPU.
653 1.90 sommerfe */
654 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
655 1.122 thorpej spc = &l->l_cpu->ci_schedstate;
656 1.76 thorpej
657 1.177.2.1 yamt if ((l->l_flag & L_IDLE) == 0) {
658 1.177.2.1 yamt /*
659 1.177.2.1 yamt * Compute the amount of time during which the current
660 1.177.2.1 yamt * process was running.
661 1.177.2.1 yamt */
662 1.177.2.1 yamt microtime(&tv);
663 1.177.2.1 yamt u = l->l_rtime.tv_usec +
664 1.177.2.1 yamt (tv.tv_usec - spc->spc_runtime.tv_usec);
665 1.177.2.1 yamt s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
666 1.177.2.1 yamt if (u < 0) {
667 1.177.2.1 yamt u += 1000000;
668 1.177.2.1 yamt s--;
669 1.177.2.1 yamt } else if (u >= 1000000) {
670 1.177.2.1 yamt u -= 1000000;
671 1.177.2.1 yamt s++;
672 1.177.2.1 yamt }
673 1.177.2.1 yamt l->l_rtime.tv_usec = u;
674 1.177.2.1 yamt l->l_rtime.tv_sec = s;
675 1.26 cgd }
676 1.26 cgd
677 1.26 cgd /*
678 1.174 ad * XXXSMP If we are using h/w performance counters, save context.
679 1.69 thorpej */
680 1.174 ad #if PERFCTRS
681 1.175 christos if (PMC_ENABLED(l->l_proc)) {
682 1.175 christos pmc_save_context(l->l_proc);
683 1.174 ad }
684 1.109 yamt #endif
685 1.26 cgd
686 1.113 gmcgarry /*
687 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
688 1.113 gmcgarry */
689 1.174 ad KASSERT(l->l_stat != LSRUN);
690 1.174 ad if (l->l_stat == LSONPROC) {
691 1.174 ad KASSERT(lwp_locked(l, &sched_mutex));
692 1.174 ad l->l_stat = LSRUN;
693 1.177.2.1 yamt if ((l->l_flag & L_IDLE) == 0) {
694 1.177.2.1 yamt setrunqueue(l);
695 1.177.2.1 yamt }
696 1.174 ad }
697 1.114 gmcgarry uvmexp.swtch++;
698 1.174 ad
699 1.174 ad /*
700 1.174 ad * Process is about to yield the CPU; clear the appropriate
701 1.174 ad * scheduling flags.
702 1.174 ad */
703 1.174 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
704 1.174 ad
705 1.177.2.2 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
706 1.174 ad
707 1.174 ad /*
708 1.177.2.1 yamt * Switch to the new LWP if necessary.
709 1.177.2.1 yamt * When we run again, we'll return back here.
710 1.174 ad */
711 1.174 ad oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
712 1.174 ad
713 1.177.2.2 yamt /*
714 1.177.2.2 yamt * Acquire the sched_mutex if necessary.
715 1.177.2.2 yamt */
716 1.177.2.2 yamt #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
717 1.177.2.2 yamt if (l->l_mutex != &sched_mutex) {
718 1.177.2.2 yamt mutex_enter(&sched_mutex);
719 1.177.2.2 yamt }
720 1.177.2.2 yamt #endif
721 1.177.2.2 yamt
722 1.177.2.1 yamt if (newl == NULL) {
723 1.177.2.1 yamt newl = nextrunqueue();
724 1.177.2.1 yamt }
725 1.177.2.1 yamt if (newl != NULL) {
726 1.174 ad KASSERT(lwp_locked(newl, &sched_mutex));
727 1.122 thorpej remrunqueue(newl);
728 1.177.2.1 yamt } else {
729 1.177.2.1 yamt newl = l->l_cpu->ci_data.cpu_idlelwp;
730 1.177.2.1 yamt KASSERT(newl != NULL);
731 1.177.2.1 yamt }
732 1.177.2.2 yamt
733 1.177.2.2 yamt #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
734 1.177.2.2 yamt if (l->l_mutex != &sched_mutex) {
735 1.177.2.2 yamt mutex_exit(&sched_mutex);
736 1.177.2.2 yamt }
737 1.177.2.2 yamt #endif
738 1.177.2.2 yamt
739 1.177.2.1 yamt newl->l_stat = LSONPROC;
740 1.177.2.1 yamt if (l != newl) {
741 1.177.2.1 yamt struct lwp *prevlwp;
742 1.177.2.1 yamt
743 1.177.2.1 yamt uvmexp.swtch++;
744 1.177.2.1 yamt pmap_deactivate(l);
745 1.177.2.1 yamt newl->l_cpu = l->l_cpu;
746 1.177.2.1 yamt prevlwp = cpu_switchto(l, newl);
747 1.177.2.1 yamt sched_switch_unlock(prevlwp, l);
748 1.177.2.1 yamt pmap_activate(l);
749 1.177.2.1 yamt retval = 1;
750 1.177.2.1 yamt } else {
751 1.177.2.1 yamt sched_switch_unlock(l, l);
752 1.122 thorpej retval = 0;
753 1.122 thorpej }
754 1.110 briggs
755 1.177.2.1 yamt KASSERT(l == curlwp);
756 1.177.2.1 yamt KASSERT(l->l_stat == LSONPROC);
757 1.177.2.1 yamt
758 1.110 briggs /*
759 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
760 1.26 cgd */
761 1.114 gmcgarry #if PERFCTRS
762 1.175 christos if (PMC_ENABLED(l->l_proc)) {
763 1.175 christos pmc_restore_context(l->l_proc);
764 1.166 christos }
765 1.114 gmcgarry #endif
766 1.110 briggs
767 1.110 briggs /*
768 1.76 thorpej * We're running again; record our new start time. We might
769 1.174 ad * be running on a new CPU now, so don't use the cached
770 1.76 thorpej * schedstate_percpu pointer.
771 1.76 thorpej */
772 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
773 1.177.2.1 yamt if ((l->l_flag & L_IDLE) == 0) {
774 1.177.2.1 yamt microtime(&l->l_cpu->ci_schedstate.spc_runtime);
775 1.177.2.1 yamt }
776 1.169 yamt
777 1.177.2.1 yamt (void)splsched();
778 1.177.2.1 yamt splx(oldspl);
779 1.122 thorpej return retval;
780 1.26 cgd }
781 1.26 cgd
782 1.26 cgd /*
783 1.26 cgd * Initialize the (doubly-linked) run queues
784 1.26 cgd * to be empty.
785 1.26 cgd */
786 1.26 cgd void
787 1.26 cgd rqinit()
788 1.26 cgd {
789 1.71 augustss int i;
790 1.26 cgd
791 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
792 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
793 1.122 thorpej (struct lwp *)&sched_qs[i];
794 1.174 ad
795 1.174 ad mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
796 1.26 cgd }
797 1.26 cgd
798 1.158 perry static inline void
799 1.174 ad resched_lwp(struct lwp *l, u_char pri)
800 1.119 thorpej {
801 1.119 thorpej struct cpu_info *ci;
802 1.119 thorpej
803 1.119 thorpej /*
804 1.119 thorpej * XXXSMP
805 1.122 thorpej * Since l->l_cpu persists across a context switch,
806 1.119 thorpej * this gives us *very weak* processor affinity, in
807 1.119 thorpej * that we notify the CPU on which the process last
808 1.119 thorpej * ran that it should try to switch.
809 1.119 thorpej *
810 1.119 thorpej * This does not guarantee that the process will run on
811 1.119 thorpej * that processor next, because another processor might
812 1.119 thorpej * grab it the next time it performs a context switch.
813 1.119 thorpej *
814 1.119 thorpej * This also does not handle the case where its last
815 1.119 thorpej * CPU is running a higher-priority process, but every
816 1.119 thorpej * other CPU is running a lower-priority process. There
817 1.119 thorpej * are ways to handle this situation, but they're not
818 1.119 thorpej * currently very pretty, and we also need to weigh the
819 1.119 thorpej * cost of moving a process from one CPU to another.
820 1.119 thorpej *
821 1.119 thorpej * XXXSMP
822 1.119 thorpej * There is also the issue of locking the other CPU's
823 1.119 thorpej * sched state, which we currently do not do.
824 1.119 thorpej */
825 1.122 thorpej ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
826 1.121 thorpej if (pri < ci->ci_schedstate.spc_curpriority)
827 1.174 ad cpu_need_resched(ci);
828 1.119 thorpej }
829 1.119 thorpej
830 1.26 cgd /*
831 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
832 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
833 1.174 ad *
834 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
835 1.26 cgd */
836 1.26 cgd void
837 1.122 thorpej setrunnable(struct lwp *l)
838 1.26 cgd {
839 1.122 thorpej struct proc *p = l->l_proc;
840 1.174 ad sigset_t *ss;
841 1.26 cgd
842 1.177.2.1 yamt KASSERT((l->l_flag & L_IDLE) == 0);
843 1.174 ad LOCK_ASSERT(mutex_owned(&p->p_smutex));
844 1.174 ad LOCK_ASSERT(lwp_locked(l, NULL));
845 1.83 thorpej
846 1.122 thorpej switch (l->l_stat) {
847 1.122 thorpej case LSSTOP:
848 1.33 mycroft /*
849 1.33 mycroft * If we're being traced (possibly because someone attached us
850 1.33 mycroft * while we were stopped), check for a signal from the debugger.
851 1.33 mycroft */
852 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
853 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
854 1.174 ad ss = &l->l_sigpend.sp_set;
855 1.174 ad else
856 1.174 ad ss = &p->p_sigpend.sp_set;
857 1.174 ad sigaddset(ss, p->p_xstat);
858 1.174 ad signotify(l);
859 1.53 mycroft }
860 1.174 ad p->p_nrlwps++;
861 1.26 cgd break;
862 1.174 ad case LSSUSPENDED:
863 1.174 ad l->l_flag &= ~L_WSUSPEND;
864 1.174 ad p->p_nrlwps++;
865 1.122 thorpej break;
866 1.174 ad case LSSLEEP:
867 1.174 ad KASSERT(l->l_wchan != NULL);
868 1.26 cgd break;
869 1.174 ad default:
870 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
871 1.26 cgd }
872 1.139 cl
873 1.174 ad /*
874 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
875 1.174 ad * again. If not, mark it as still sleeping.
876 1.174 ad */
877 1.174 ad if (l->l_wchan != NULL) {
878 1.174 ad l->l_stat = LSSLEEP;
879 1.174 ad if ((l->l_flag & L_SINTR) != 0)
880 1.174 ad lwp_unsleep(l);
881 1.174 ad else {
882 1.174 ad lwp_unlock(l);
883 1.174 ad #ifdef DIAGNOSTIC
884 1.174 ad panic("setrunnable: !L_SINTR");
885 1.174 ad #endif
886 1.174 ad }
887 1.174 ad return;
888 1.174 ad }
889 1.139 cl
890 1.174 ad LOCK_ASSERT(lwp_locked(l, &sched_mutex));
891 1.122 thorpej
892 1.174 ad /*
893 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
894 1.174 ad * about to call mi_switch(), in which case it will yield.
895 1.174 ad *
896 1.174 ad * XXXSMP Will need to change for preemption.
897 1.174 ad */
898 1.174 ad #ifdef MULTIPROCESSOR
899 1.174 ad if (l->l_cpu->ci_curlwp == l) {
900 1.174 ad #else
901 1.174 ad if (l == curlwp) {
902 1.174 ad #endif
903 1.174 ad l->l_stat = LSONPROC;
904 1.174 ad l->l_slptime = 0;
905 1.174 ad lwp_unlock(l);
906 1.174 ad return;
907 1.174 ad }
908 1.122 thorpej
909 1.174 ad /*
910 1.174 ad * Set the LWP runnable. If it's swapped out, we need to wake the swapper
911 1.174 ad * to bring it back in. Otherwise, enter it into a run queue.
912 1.174 ad */
913 1.122 thorpej if (l->l_slptime > 1)
914 1.122 thorpej updatepri(l);
915 1.174 ad l->l_stat = LSRUN;
916 1.122 thorpej l->l_slptime = 0;
917 1.174 ad
918 1.174 ad if (l->l_flag & L_INMEM) {
919 1.174 ad setrunqueue(l);
920 1.174 ad resched_lwp(l, l->l_priority);
921 1.174 ad lwp_unlock(l);
922 1.174 ad } else {
923 1.174 ad lwp_unlock(l);
924 1.177 ad uvm_kick_scheduler();
925 1.174 ad }
926 1.26 cgd }
927 1.26 cgd
928 1.177.2.1 yamt boolean_t
929 1.177.2.1 yamt sched_curcpu_runnable_p(void)
930 1.177.2.1 yamt {
931 1.177.2.1 yamt
932 1.177.2.1 yamt return sched_whichqs != 0;
933 1.177.2.1 yamt }
934 1.177.2.1 yamt
935 1.26 cgd /*
936 1.26 cgd * Compute the priority of a process when running in user mode.
937 1.26 cgd * Arrange to reschedule if the resulting priority is better
938 1.26 cgd * than that of the current process.
939 1.26 cgd */
940 1.26 cgd void
941 1.122 thorpej resetpriority(struct lwp *l)
942 1.26 cgd {
943 1.71 augustss unsigned int newpriority;
944 1.122 thorpej struct proc *p = l->l_proc;
945 1.26 cgd
946 1.174 ad /* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
947 1.174 ad LOCK_ASSERT(lwp_locked(l, NULL));
948 1.174 ad
949 1.174 ad if ((l->l_flag & L_SYSTEM) != 0)
950 1.174 ad return;
951 1.83 thorpej
952 1.153 yamt newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
953 1.174 ad NICE_WEIGHT * (p->p_nice - NZERO);
954 1.26 cgd newpriority = min(newpriority, MAXPRI);
955 1.174 ad lwp_changepri(l, newpriority);
956 1.122 thorpej }
957 1.122 thorpej
958 1.130 nathanw /*
959 1.122 thorpej * Recompute priority for all LWPs in a process.
960 1.122 thorpej */
961 1.122 thorpej void
962 1.122 thorpej resetprocpriority(struct proc *p)
963 1.122 thorpej {
964 1.122 thorpej struct lwp *l;
965 1.122 thorpej
966 1.174 ad LOCK_ASSERT(mutex_owned(&p->p_stmutex));
967 1.174 ad
968 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
969 1.174 ad lwp_lock(l);
970 1.174 ad resetpriority(l);
971 1.174 ad lwp_unlock(l);
972 1.174 ad }
973 1.55 ross }
974 1.55 ross
975 1.55 ross /*
976 1.56 ross * We adjust the priority of the current process. The priority of a process
977 1.141 wiz * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
978 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
979 1.56 ross * will compute a different value each time p_estcpu increases. This can
980 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
981 1.141 wiz * queue will not change. The CPU usage estimator ramps up quite quickly
982 1.56 ross * when the process is running (linearly), and decays away exponentially, at
983 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
984 1.80 nathanw * principle is that the system will 90% forget that the process used a lot
985 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
986 1.56 ross * processes which haven't run much recently, and to round-robin among other
987 1.56 ross * processes.
988 1.55 ross */
989 1.55 ross
990 1.55 ross void
991 1.122 thorpej schedclock(struct lwp *l)
992 1.55 ross {
993 1.122 thorpej struct proc *p = l->l_proc;
994 1.77 thorpej
995 1.177.2.1 yamt KASSERT(!CURCPU_IDLE_P());
996 1.174 ad mutex_spin_enter(&p->p_stmutex);
997 1.153 yamt p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
998 1.174 ad lwp_lock(l);
999 1.122 thorpej resetpriority(l);
1000 1.174 ad mutex_spin_exit(&p->p_stmutex);
1001 1.174 ad if ((l->l_flag & L_SYSTEM) == 0 && l->l_priority >= PUSER)
1002 1.122 thorpej l->l_priority = l->l_usrpri;
1003 1.174 ad lwp_unlock(l);
1004 1.26 cgd }
1005 1.94 bouyer
1006 1.174 ad /*
1007 1.174 ad * suspendsched:
1008 1.174 ad *
1009 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1010 1.174 ad */
1011 1.94 bouyer void
1012 1.174 ad suspendsched(void)
1013 1.94 bouyer {
1014 1.174 ad #ifdef MULTIPROCESSOR
1015 1.174 ad CPU_INFO_ITERATOR cii;
1016 1.174 ad struct cpu_info *ci;
1017 1.174 ad #endif
1018 1.122 thorpej struct lwp *l;
1019 1.174 ad struct proc *p;
1020 1.94 bouyer
1021 1.94 bouyer /*
1022 1.174 ad * We do this by process in order not to violate the locking rules.
1023 1.94 bouyer */
1024 1.174 ad mutex_enter(&proclist_mutex);
1025 1.174 ad PROCLIST_FOREACH(p, &allproc) {
1026 1.174 ad mutex_enter(&p->p_smutex);
1027 1.174 ad
1028 1.174 ad if ((p->p_flag & P_SYSTEM) != 0) {
1029 1.174 ad mutex_exit(&p->p_smutex);
1030 1.94 bouyer continue;
1031 1.174 ad }
1032 1.174 ad
1033 1.174 ad p->p_stat = SSTOP;
1034 1.174 ad
1035 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1036 1.174 ad if (l == curlwp)
1037 1.174 ad continue;
1038 1.174 ad
1039 1.174 ad lwp_lock(l);
1040 1.122 thorpej
1041 1.97 enami /*
1042 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
1043 1.174 ad * when it tries to return to user mode. We want to
1044 1.174 ad * try and get to get as many LWPs as possible to
1045 1.174 ad * the user / kernel boundary, so that they will
1046 1.174 ad * release any locks that they hold.
1047 1.97 enami */
1048 1.174 ad l->l_flag |= (L_WREBOOT | L_WSUSPEND);
1049 1.174 ad
1050 1.174 ad if (l->l_stat == LSSLEEP &&
1051 1.174 ad (l->l_flag & L_SINTR) != 0) {
1052 1.174 ad /* setrunnable() will release the lock. */
1053 1.174 ad setrunnable(l);
1054 1.174 ad continue;
1055 1.174 ad }
1056 1.174 ad
1057 1.174 ad lwp_unlock(l);
1058 1.94 bouyer }
1059 1.174 ad
1060 1.174 ad mutex_exit(&p->p_smutex);
1061 1.94 bouyer }
1062 1.174 ad mutex_exit(&proclist_mutex);
1063 1.174 ad
1064 1.174 ad /*
1065 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1066 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
1067 1.174 ad */
1068 1.174 ad sched_lock(0);
1069 1.174 ad #ifdef MULTIPROCESSOR
1070 1.174 ad for (CPU_INFO_FOREACH(cii, ci))
1071 1.174 ad cpu_need_resched(ci);
1072 1.174 ad #else
1073 1.174 ad cpu_need_resched(curcpu());
1074 1.174 ad #endif
1075 1.174 ad sched_unlock(0);
1076 1.94 bouyer }
1077 1.113 gmcgarry
1078 1.113 gmcgarry /*
1079 1.151 yamt * scheduler_fork_hook:
1080 1.151 yamt *
1081 1.151 yamt * Inherit the parent's scheduler history.
1082 1.151 yamt */
1083 1.151 yamt void
1084 1.151 yamt scheduler_fork_hook(struct proc *parent, struct proc *child)
1085 1.151 yamt {
1086 1.151 yamt
1087 1.174 ad LOCK_ASSERT(mutex_owned(&parent->p_smutex));
1088 1.174 ad
1089 1.157 yamt child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
1090 1.157 yamt child->p_forktime = schedcpu_ticks;
1091 1.151 yamt }
1092 1.151 yamt
1093 1.151 yamt /*
1094 1.151 yamt * scheduler_wait_hook:
1095 1.151 yamt *
1096 1.151 yamt * Chargeback parents for the sins of their children.
1097 1.151 yamt */
1098 1.151 yamt void
1099 1.151 yamt scheduler_wait_hook(struct proc *parent, struct proc *child)
1100 1.151 yamt {
1101 1.157 yamt fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1102 1.157 yamt fixpt_t estcpu;
1103 1.151 yamt
1104 1.151 yamt /* XXX Only if parent != init?? */
1105 1.157 yamt
1106 1.174 ad mutex_spin_enter(&parent->p_stmutex);
1107 1.157 yamt estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
1108 1.157 yamt schedcpu_ticks - child->p_forktime);
1109 1.174 ad if (child->p_estcpu > estcpu)
1110 1.157 yamt parent->p_estcpu =
1111 1.157 yamt ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
1112 1.174 ad mutex_spin_exit(&parent->p_stmutex);
1113 1.174 ad }
1114 1.174 ad
1115 1.174 ad /*
1116 1.174 ad * sched_kpri:
1117 1.174 ad *
1118 1.174 ad * Scale a priority level to a kernel priority level, usually
1119 1.174 ad * for an LWP that is about to sleep.
1120 1.174 ad */
1121 1.174 ad int
1122 1.174 ad sched_kpri(struct lwp *l)
1123 1.174 ad {
1124 1.174 ad /*
1125 1.174 ad * Scale user priorities (127 -> 50) up to kernel priorities
1126 1.174 ad * in the range (49 -> 8). Reserve the top 8 kernel priorities
1127 1.174 ad * for high priority kthreads. Kernel priorities passed in
1128 1.174 ad * are left "as is". XXX This is somewhat arbitrary.
1129 1.174 ad */
1130 1.174 ad static const uint8_t kpri_tab[] = {
1131 1.174 ad 0, 1, 2, 3, 4, 5, 6, 7,
1132 1.174 ad 8, 9, 10, 11, 12, 13, 14, 15,
1133 1.174 ad 16, 17, 18, 19, 20, 21, 22, 23,
1134 1.174 ad 24, 25, 26, 27, 28, 29, 30, 31,
1135 1.174 ad 32, 33, 34, 35, 36, 37, 38, 39,
1136 1.174 ad 40, 41, 42, 43, 44, 45, 46, 47,
1137 1.174 ad 48, 49, 8, 8, 9, 9, 10, 10,
1138 1.174 ad 11, 11, 12, 12, 13, 14, 14, 15,
1139 1.174 ad 15, 16, 16, 17, 17, 18, 18, 19,
1140 1.174 ad 20, 20, 21, 21, 22, 22, 23, 23,
1141 1.174 ad 24, 24, 25, 26, 26, 27, 27, 28,
1142 1.174 ad 28, 29, 29, 30, 30, 31, 32, 32,
1143 1.174 ad 33, 33, 34, 34, 35, 35, 36, 36,
1144 1.174 ad 37, 38, 38, 39, 39, 40, 40, 41,
1145 1.174 ad 41, 42, 42, 43, 44, 44, 45, 45,
1146 1.174 ad 46, 46, 47, 47, 48, 48, 49, 49,
1147 1.174 ad };
1148 1.174 ad
1149 1.174 ad return kpri_tab[l->l_usrpri];
1150 1.174 ad }
1151 1.174 ad
1152 1.174 ad /*
1153 1.174 ad * sched_unsleep:
1154 1.174 ad *
1155 1.174 ad * The is called when the LWP has not been awoken normally but instead
1156 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1157 1.174 ad * it's not a valid action for running or idle LWPs.
1158 1.174 ad */
1159 1.174 ad void
1160 1.174 ad sched_unsleep(struct lwp *l)
1161 1.174 ad {
1162 1.174 ad
1163 1.174 ad lwp_unlock(l);
1164 1.174 ad panic("sched_unsleep");
1165 1.174 ad }
1166 1.174 ad
1167 1.174 ad /*
1168 1.174 ad * sched_changepri:
1169 1.174 ad *
1170 1.174 ad * Adjust the priority of an LWP.
1171 1.174 ad */
1172 1.174 ad void
1173 1.174 ad sched_changepri(struct lwp *l, int pri)
1174 1.174 ad {
1175 1.174 ad
1176 1.174 ad LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1177 1.174 ad
1178 1.174 ad l->l_usrpri = pri;
1179 1.174 ad
1180 1.174 ad if (l->l_priority < PUSER)
1181 1.174 ad return;
1182 1.174 ad if (l->l_stat != LSRUN || (l->l_flag & L_INMEM) == 0 ||
1183 1.174 ad (l->l_priority / PPQ) == (pri / PPQ)) {
1184 1.174 ad l->l_priority = pri;
1185 1.174 ad return;
1186 1.157 yamt }
1187 1.174 ad
1188 1.174 ad remrunqueue(l);
1189 1.174 ad l->l_priority = pri;
1190 1.174 ad setrunqueue(l);
1191 1.174 ad resched_lwp(l, pri);
1192 1.151 yamt }
1193 1.151 yamt
1194 1.151 yamt /*
1195 1.134 matt * On some architectures, it's faster to use a MSB ordering for the priorites
1196 1.134 matt * than the traditional LSB ordering.
1197 1.134 matt */
1198 1.134 matt #ifdef __HAVE_BIGENDIAN_BITOPS
1199 1.134 matt #define RQMASK(n) (0x80000000 >> (n))
1200 1.134 matt #else
1201 1.134 matt #define RQMASK(n) (0x00000001 << (n))
1202 1.134 matt #endif
1203 1.134 matt
1204 1.134 matt /*
1205 1.177.2.1 yamt * Low-level routines to access the run queue. Optimised assembler
1206 1.177.2.1 yamt * routines can override these.
1207 1.177.2.1 yamt */
1208 1.177.2.1 yamt
1209 1.177.2.1 yamt #ifndef __HAVE_MD_RUNQUEUE
1210 1.177.2.1 yamt
1211 1.177.2.1 yamt /*
1212 1.115 nisimura * The primitives that manipulate the run queues. whichqs tells which
1213 1.115 nisimura * of the 32 queues qs have processes in them. Setrunqueue puts processes
1214 1.115 nisimura * into queues, remrunqueue removes them from queues. The running process is
1215 1.115 nisimura * on no queue, other processes are on a queue related to p->p_priority,
1216 1.115 nisimura * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1217 1.115 nisimura * available queues.
1218 1.130 nathanw */
1219 1.146 matt #ifdef RQDEBUG
1220 1.146 matt static void
1221 1.146 matt checkrunqueue(int whichq, struct lwp *l)
1222 1.146 matt {
1223 1.146 matt const struct prochd * const rq = &sched_qs[whichq];
1224 1.146 matt struct lwp *l2;
1225 1.146 matt int found = 0;
1226 1.146 matt int die = 0;
1227 1.146 matt int empty = 1;
1228 1.164 christos for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
1229 1.146 matt if (l2->l_stat != LSRUN) {
1230 1.146 matt printf("checkrunqueue[%d]: lwp %p state (%d) "
1231 1.146 matt " != LSRUN\n", whichq, l2, l2->l_stat);
1232 1.146 matt }
1233 1.146 matt if (l2->l_back->l_forw != l2) {
1234 1.146 matt printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1235 1.146 matt "corrupt %p\n", whichq, l2, l2->l_back,
1236 1.146 matt l2->l_back->l_forw);
1237 1.146 matt die = 1;
1238 1.146 matt }
1239 1.146 matt if (l2->l_forw->l_back != l2) {
1240 1.146 matt printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1241 1.146 matt "corrupt %p\n", whichq, l2, l2->l_forw,
1242 1.146 matt l2->l_forw->l_back);
1243 1.146 matt die = 1;
1244 1.146 matt }
1245 1.146 matt if (l2 == l)
1246 1.146 matt found = 1;
1247 1.146 matt empty = 0;
1248 1.146 matt }
1249 1.146 matt if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1250 1.146 matt printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1251 1.146 matt whichq, rq);
1252 1.146 matt die = 1;
1253 1.146 matt } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1254 1.146 matt printf("checkrunqueue[%d]: bit clear for non-empty "
1255 1.146 matt "run-queue %p\n", whichq, rq);
1256 1.146 matt die = 1;
1257 1.146 matt }
1258 1.146 matt if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1259 1.146 matt printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1260 1.146 matt whichq, l);
1261 1.146 matt die = 1;
1262 1.146 matt }
1263 1.146 matt if (l != NULL && empty) {
1264 1.146 matt printf("checkrunqueue[%d]: empty run-queue %p with "
1265 1.146 matt "active lwp %p\n", whichq, rq, l);
1266 1.146 matt die = 1;
1267 1.146 matt }
1268 1.146 matt if (l != NULL && !found) {
1269 1.146 matt printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1270 1.146 matt whichq, l, rq);
1271 1.146 matt die = 1;
1272 1.146 matt }
1273 1.146 matt if (die)
1274 1.146 matt panic("checkrunqueue: inconsistency found");
1275 1.146 matt }
1276 1.146 matt #endif /* RQDEBUG */
1277 1.146 matt
1278 1.113 gmcgarry void
1279 1.122 thorpej setrunqueue(struct lwp *l)
1280 1.113 gmcgarry {
1281 1.113 gmcgarry struct prochd *rq;
1282 1.122 thorpej struct lwp *prev;
1283 1.152 yamt const int whichq = l->l_priority / PPQ;
1284 1.113 gmcgarry
1285 1.174 ad LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1286 1.174 ad
1287 1.146 matt #ifdef RQDEBUG
1288 1.146 matt checkrunqueue(whichq, NULL);
1289 1.146 matt #endif
1290 1.113 gmcgarry #ifdef DIAGNOSTIC
1291 1.174 ad if (l->l_back != NULL || l->l_stat != LSRUN)
1292 1.113 gmcgarry panic("setrunqueue");
1293 1.113 gmcgarry #endif
1294 1.134 matt sched_whichqs |= RQMASK(whichq);
1295 1.113 gmcgarry rq = &sched_qs[whichq];
1296 1.113 gmcgarry prev = rq->ph_rlink;
1297 1.122 thorpej l->l_forw = (struct lwp *)rq;
1298 1.122 thorpej rq->ph_rlink = l;
1299 1.122 thorpej prev->l_forw = l;
1300 1.122 thorpej l->l_back = prev;
1301 1.146 matt #ifdef RQDEBUG
1302 1.146 matt checkrunqueue(whichq, l);
1303 1.146 matt #endif
1304 1.113 gmcgarry }
1305 1.113 gmcgarry
1306 1.174 ad /*
1307 1.174 ad * XXXSMP When LWP dispatch (cpu_switch()) is changed to use remrunqueue(),
1308 1.174 ad * drop of the effective priority level from kernel to user needs to be
1309 1.174 ad * moved here from userret(). The assignment in userret() is currently
1310 1.174 ad * done unlocked.
1311 1.174 ad */
1312 1.113 gmcgarry void
1313 1.122 thorpej remrunqueue(struct lwp *l)
1314 1.113 gmcgarry {
1315 1.122 thorpej struct lwp *prev, *next;
1316 1.152 yamt const int whichq = l->l_priority / PPQ;
1317 1.174 ad
1318 1.174 ad LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1319 1.174 ad
1320 1.146 matt #ifdef RQDEBUG
1321 1.146 matt checkrunqueue(whichq, l);
1322 1.146 matt #endif
1323 1.174 ad
1324 1.174 ad #if defined(DIAGNOSTIC)
1325 1.174 ad if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
1326 1.174 ad /* Shouldn't happen - interrupts disabled. */
1327 1.146 matt panic("remrunqueue: bit %d not set", whichq);
1328 1.174 ad }
1329 1.113 gmcgarry #endif
1330 1.122 thorpej prev = l->l_back;
1331 1.122 thorpej l->l_back = NULL;
1332 1.122 thorpej next = l->l_forw;
1333 1.122 thorpej prev->l_forw = next;
1334 1.122 thorpej next->l_back = prev;
1335 1.113 gmcgarry if (prev == next)
1336 1.134 matt sched_whichqs &= ~RQMASK(whichq);
1337 1.146 matt #ifdef RQDEBUG
1338 1.146 matt checkrunqueue(whichq, NULL);
1339 1.146 matt #endif
1340 1.113 gmcgarry }
1341 1.113 gmcgarry
1342 1.177.2.1 yamt struct lwp *
1343 1.177.2.1 yamt nextrunqueue(void)
1344 1.177.2.1 yamt {
1345 1.177.2.1 yamt const struct prochd *rq;
1346 1.177.2.1 yamt struct lwp *l;
1347 1.177.2.1 yamt int whichq;
1348 1.177.2.1 yamt
1349 1.177.2.1 yamt if (sched_whichqs == 0) {
1350 1.177.2.1 yamt return NULL;
1351 1.177.2.1 yamt }
1352 1.177.2.1 yamt #ifdef __HAVE_BIGENDIAN_BITOPS
1353 1.177.2.1 yamt for (whichq = 0; ; whichq++) {
1354 1.177.2.1 yamt if ((sched_whichqs & RQMASK(whichq)) != 0) {
1355 1.177.2.1 yamt break;
1356 1.177.2.1 yamt }
1357 1.177.2.1 yamt }
1358 1.177.2.1 yamt #else
1359 1.177.2.1 yamt whichq = ffs(sched_whichqs) - 1;
1360 1.177.2.1 yamt #endif
1361 1.177.2.1 yamt rq = &sched_qs[whichq];
1362 1.177.2.1 yamt l = rq->ph_link;
1363 1.177.2.1 yamt return l;
1364 1.177.2.1 yamt }
1365 1.177.2.1 yamt
1366 1.134 matt #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1367 1.177.2.1 yamt
1368 1.177.2.1 yamt #if defined(DDB)
1369 1.177.2.1 yamt void
1370 1.177.2.1 yamt sched_print_runqueue(void (*pr)(const char *, ...))
1371 1.177.2.1 yamt {
1372 1.177.2.1 yamt struct prochd *ph;
1373 1.177.2.1 yamt struct lwp *l;
1374 1.177.2.1 yamt int i, first;
1375 1.177.2.1 yamt
1376 1.177.2.1 yamt for (i = 0; i < RUNQUE_NQS; i++)
1377 1.177.2.1 yamt {
1378 1.177.2.1 yamt first = 1;
1379 1.177.2.1 yamt ph = &sched_qs[i];
1380 1.177.2.1 yamt for (l = ph->ph_link; l != (void *)ph; l = l->l_forw) {
1381 1.177.2.1 yamt if (first) {
1382 1.177.2.1 yamt (*pr)("%c%d",
1383 1.177.2.1 yamt (sched_whichqs & RQMASK(i))
1384 1.177.2.1 yamt ? ' ' : '!', i);
1385 1.177.2.1 yamt first = 0;
1386 1.177.2.1 yamt }
1387 1.177.2.1 yamt (*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
1388 1.177.2.1 yamt l->l_proc->p_pid,
1389 1.177.2.1 yamt l->l_lid, l->l_proc->p_comm,
1390 1.177.2.1 yamt (int)l->l_priority, (int)l->l_usrpri);
1391 1.177.2.1 yamt }
1392 1.177.2.1 yamt }
1393 1.177.2.1 yamt }
1394 1.177.2.1 yamt #endif /* defined(DDB) */
1395 1.177.2.1 yamt #undef RQMASK
1396