Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.177.2.21
      1  1.177.2.21     rmind /*	$NetBSD: kern_synch.c,v 1.177.2.21 2007/04/02 00:28:08 rmind Exp $	*/
      2        1.63   thorpej 
      3        1.63   thorpej /*-
      4       1.174        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5        1.63   thorpej  * All rights reserved.
      6        1.63   thorpej  *
      7        1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8        1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9   1.177.2.5     rmind  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10   1.177.2.5     rmind  * Daniel Sieger.
     11        1.63   thorpej  *
     12        1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13        1.63   thorpej  * modification, are permitted provided that the following conditions
     14        1.63   thorpej  * are met:
     15        1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16        1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17        1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18        1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19        1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20        1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     21        1.63   thorpej  *    must display the following acknowledgement:
     22        1.63   thorpej  *	This product includes software developed by the NetBSD
     23        1.63   thorpej  *	Foundation, Inc. and its contributors.
     24        1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25        1.63   thorpej  *    contributors may be used to endorse or promote products derived
     26        1.63   thorpej  *    from this software without specific prior written permission.
     27        1.63   thorpej  *
     28        1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29        1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30        1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31        1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32        1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33        1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34        1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35        1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36        1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37        1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38        1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     39        1.63   thorpej  */
     40        1.26       cgd 
     41        1.26       cgd /*-
     42        1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43        1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     44        1.26       cgd  * (c) UNIX System Laboratories, Inc.
     45        1.26       cgd  * All or some portions of this file are derived from material licensed
     46        1.26       cgd  * to the University of California by American Telephone and Telegraph
     47        1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48        1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     49        1.26       cgd  *
     50        1.26       cgd  * Redistribution and use in source and binary forms, with or without
     51        1.26       cgd  * modification, are permitted provided that the following conditions
     52        1.26       cgd  * are met:
     53        1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     54        1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     55        1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     56        1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     57        1.26       cgd  *    documentation and/or other materials provided with the distribution.
     58       1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     59        1.26       cgd  *    may be used to endorse or promote products derived from this software
     60        1.26       cgd  *    without specific prior written permission.
     61        1.26       cgd  *
     62        1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63        1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64        1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65        1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66        1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67        1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68        1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69        1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70        1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71        1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72        1.26       cgd  * SUCH DAMAGE.
     73        1.26       cgd  *
     74        1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75        1.26       cgd  */
     76       1.106     lukem 
     77       1.106     lukem #include <sys/cdefs.h>
     78  1.177.2.21     rmind __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.177.2.21 2007/04/02 00:28:08 rmind Exp $");
     79        1.48       mrg 
     80       1.109      yamt #include "opt_kstack.h"
     81        1.82   thorpej #include "opt_lockdebug.h"
     82        1.83   thorpej #include "opt_multiprocessor.h"
     83       1.110    briggs #include "opt_perfctrs.h"
     84        1.26       cgd 
     85       1.174        ad #define	__MUTEX_PRIVATE
     86       1.174        ad 
     87        1.26       cgd #include <sys/param.h>
     88        1.26       cgd #include <sys/systm.h>
     89        1.26       cgd #include <sys/proc.h>
     90        1.26       cgd #include <sys/kernel.h>
     91       1.111    briggs #if defined(PERFCTRS)
     92       1.110    briggs #include <sys/pmc.h>
     93       1.111    briggs #endif
     94   1.177.2.8      yamt #include <sys/cpu.h>
     95        1.26       cgd #include <sys/resourcevar.h>
     96        1.55      ross #include <sys/sched.h>
     97  1.177.2.10      yamt #include <sys/syscall_stats.h>
     98       1.174        ad #include <sys/sleepq.h>
     99       1.174        ad #include <sys/lockdebug.h>
    100        1.47       mrg 
    101        1.47       mrg #include <uvm/uvm_extern.h>
    102        1.47       mrg 
    103  1.177.2.21     rmind struct callout sched_pstats_ch = CALLOUT_INITIALIZER_SETFUNC(sched_pstats, NULL);
    104  1.177.2.21     rmind unsigned int sched_pstats_ticks;
    105  1.177.2.21     rmind 
    106        1.26       cgd int	lbolt;			/* once a second sleep address */
    107        1.26       cgd 
    108  1.177.2.10      yamt static void	sched_unsleep(struct lwp *);
    109  1.177.2.10      yamt static void	sched_changepri(struct lwp *, pri_t);
    110  1.177.2.10      yamt static void	sched_lendpri(struct lwp *, pri_t);
    111       1.122   thorpej 
    112       1.174        ad syncobj_t sleep_syncobj = {
    113       1.174        ad 	SOBJ_SLEEPQ_SORTED,
    114       1.174        ad 	sleepq_unsleep,
    115  1.177.2.10      yamt 	sleepq_changepri,
    116  1.177.2.10      yamt 	sleepq_lendpri,
    117  1.177.2.10      yamt 	syncobj_noowner,
    118       1.174        ad };
    119       1.174        ad 
    120       1.174        ad syncobj_t sched_syncobj = {
    121       1.174        ad 	SOBJ_SLEEPQ_SORTED,
    122       1.174        ad 	sched_unsleep,
    123  1.177.2.10      yamt 	sched_changepri,
    124  1.177.2.10      yamt 	sched_lendpri,
    125  1.177.2.10      yamt 	syncobj_noowner,
    126       1.174        ad };
    127       1.122   thorpej 
    128        1.26       cgd /*
    129       1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    130       1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    131       1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    132       1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    133       1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    134       1.174        ad  * it can be made higher to block network software interrupts after panics.
    135        1.26       cgd  */
    136       1.174        ad int	safepri;
    137        1.26       cgd 
    138        1.26       cgd /*
    139       1.174        ad  * OBSOLETE INTERFACE
    140       1.174        ad  *
    141        1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    142        1.26       cgd  * performed on the specified identifier.  The process will then be made
    143       1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    144       1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    145        1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    146        1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    147        1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    148        1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    149        1.26       cgd  * call should be interrupted by the signal (return EINTR).
    150        1.77   thorpej  *
    151       1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    152       1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    153       1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    154       1.174        ad  * return.
    155        1.26       cgd  */
    156        1.26       cgd int
    157  1.177.2.10      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    158       1.174        ad 	volatile struct simplelock *interlock)
    159        1.26       cgd {
    160       1.122   thorpej 	struct lwp *l = curlwp;
    161       1.174        ad 	sleepq_t *sq;
    162       1.174        ad 	int error, catch;
    163        1.26       cgd 
    164       1.174        ad 	if (sleepq_dontsleep(l)) {
    165       1.174        ad 		(void)sleepq_abort(NULL, 0);
    166       1.174        ad 		if ((priority & PNORELOCK) != 0)
    167        1.77   thorpej 			simple_unlock(interlock);
    168       1.174        ad 		return 0;
    169        1.26       cgd 	}
    170        1.78  sommerfe 
    171       1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    172       1.174        ad 	sleepq_enter(sq, l);
    173        1.42       cgd 
    174       1.174        ad 	if (interlock != NULL) {
    175       1.174        ad 		LOCK_ASSERT(simple_lock_held(interlock));
    176       1.174        ad 		simple_unlock(interlock);
    177       1.150       chs 	}
    178       1.150       chs 
    179       1.174        ad 	catch = priority & PCATCH;
    180       1.174        ad 	sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
    181       1.174        ad 	    &sleep_syncobj);
    182       1.174        ad 	error = sleepq_unblock(timo, catch);
    183       1.126        pk 
    184       1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    185       1.126        pk 		simple_lock(interlock);
    186       1.174        ad 
    187       1.174        ad 	return error;
    188        1.26       cgd }
    189        1.26       cgd 
    190  1.177.2.15     rmind int
    191  1.177.2.15     rmind mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    192  1.177.2.15     rmind 	kmutex_t *mtx)
    193  1.177.2.15     rmind {
    194  1.177.2.15     rmind 	struct lwp *l = curlwp;
    195  1.177.2.15     rmind 	sleepq_t *sq;
    196  1.177.2.15     rmind 	int error, catch;
    197  1.177.2.15     rmind 
    198  1.177.2.15     rmind 	if (sleepq_dontsleep(l)) {
    199  1.177.2.15     rmind 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    200  1.177.2.15     rmind 		return 0;
    201  1.177.2.15     rmind 	}
    202  1.177.2.15     rmind 
    203  1.177.2.15     rmind 	sq = sleeptab_lookup(&sleeptab, ident);
    204  1.177.2.15     rmind 	sleepq_enter(sq, l);
    205  1.177.2.15     rmind 	mutex_exit(mtx);
    206  1.177.2.15     rmind 
    207  1.177.2.15     rmind 	catch = priority & PCATCH;
    208  1.177.2.15     rmind 	sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
    209  1.177.2.15     rmind 	    &sleep_syncobj);
    210  1.177.2.15     rmind 	error = sleepq_unblock(timo, catch);
    211  1.177.2.15     rmind 
    212  1.177.2.15     rmind 	if ((priority & PNORELOCK) == 0)
    213  1.177.2.15     rmind 		mutex_enter(mtx);
    214  1.177.2.15     rmind 
    215  1.177.2.15     rmind 	return error;
    216  1.177.2.15     rmind }
    217  1.177.2.15     rmind 
    218        1.26       cgd /*
    219       1.174        ad  * General sleep call for situations where a wake-up is not expected.
    220        1.26       cgd  */
    221       1.174        ad int
    222  1.177.2.10      yamt kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    223        1.26       cgd {
    224       1.174        ad 	struct lwp *l = curlwp;
    225       1.174        ad 	sleepq_t *sq;
    226       1.174        ad 	int error;
    227        1.26       cgd 
    228       1.174        ad 	if (sleepq_dontsleep(l))
    229       1.174        ad 		return sleepq_abort(NULL, 0);
    230        1.26       cgd 
    231       1.174        ad 	if (mtx != NULL)
    232       1.174        ad 		mutex_exit(mtx);
    233       1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    234       1.174        ad 	sleepq_enter(sq, l);
    235       1.174        ad 	sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
    236       1.174        ad 	error = sleepq_unblock(timo, intr);
    237       1.174        ad 	if (mtx != NULL)
    238       1.174        ad 		mutex_enter(mtx);
    239        1.83   thorpej 
    240       1.174        ad 	return error;
    241       1.139        cl }
    242       1.139        cl 
    243        1.26       cgd /*
    244       1.174        ad  * OBSOLETE INTERFACE
    245       1.174        ad  *
    246        1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    247        1.26       cgd  */
    248        1.26       cgd void
    249       1.174        ad wakeup(wchan_t ident)
    250        1.26       cgd {
    251       1.174        ad 	sleepq_t *sq;
    252        1.83   thorpej 
    253       1.174        ad 	if (cold)
    254       1.174        ad 		return;
    255        1.83   thorpej 
    256       1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    257       1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    258        1.63   thorpej }
    259        1.63   thorpej 
    260        1.63   thorpej /*
    261       1.174        ad  * OBSOLETE INTERFACE
    262       1.174        ad  *
    263        1.63   thorpej  * Make the highest priority process first in line on the specified
    264        1.63   thorpej  * identifier runnable.
    265        1.63   thorpej  */
    266       1.174        ad void
    267       1.174        ad wakeup_one(wchan_t ident)
    268        1.63   thorpej {
    269       1.174        ad 	sleepq_t *sq;
    270        1.63   thorpej 
    271       1.174        ad 	if (cold)
    272       1.174        ad 		return;
    273       1.174        ad 
    274       1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    275       1.174        ad 	sleepq_wake(sq, ident, 1);
    276       1.174        ad }
    277        1.63   thorpej 
    278       1.117  gmcgarry 
    279       1.117  gmcgarry /*
    280       1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    281       1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    282       1.117  gmcgarry  * current process explicitly requests it (eg sched_yield(2) in compat code).
    283       1.117  gmcgarry  */
    284       1.117  gmcgarry void
    285       1.117  gmcgarry yield(void)
    286       1.117  gmcgarry {
    287       1.122   thorpej 	struct lwp *l = curlwp;
    288       1.117  gmcgarry 
    289       1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    290       1.174        ad 	lwp_lock(l);
    291       1.174        ad 	if (l->l_stat == LSONPROC) {
    292  1.177.2.18     rmind 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    293       1.174        ad 		l->l_priority = l->l_usrpri;
    294       1.174        ad 	}
    295       1.174        ad 	l->l_nvcsw++;
    296  1.177.2.13     rmind 	mi_switch(l);
    297       1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    298        1.69   thorpej }
    299        1.69   thorpej 
    300        1.69   thorpej /*
    301        1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    302       1.156    rpaulo  * and performs an involuntary context switch.
    303        1.69   thorpej  */
    304        1.69   thorpej void
    305       1.174        ad preempt(void)
    306        1.69   thorpej {
    307       1.122   thorpej 	struct lwp *l = curlwp;
    308        1.69   thorpej 
    309       1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    310       1.174        ad 	lwp_lock(l);
    311       1.174        ad 	if (l->l_stat == LSONPROC) {
    312  1.177.2.18     rmind 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    313       1.174        ad 		l->l_priority = l->l_usrpri;
    314       1.174        ad 	}
    315       1.174        ad 	l->l_nivcsw++;
    316  1.177.2.13     rmind 	(void)mi_switch(l);
    317       1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    318        1.69   thorpej }
    319        1.69   thorpej 
    320        1.69   thorpej /*
    321   1.177.2.3      yamt  * Compute the amount of time during which the current lwp was running.
    322   1.177.2.3      yamt  *
    323   1.177.2.3      yamt  * - update l_rtime unless it's an idle lwp.
    324   1.177.2.3      yamt  * - update spc_runtime for the next lwp.
    325   1.177.2.3      yamt  */
    326   1.177.2.3      yamt 
    327   1.177.2.3      yamt static inline void
    328   1.177.2.3      yamt updatertime(struct lwp *l, struct schedstate_percpu *spc)
    329   1.177.2.3      yamt {
    330   1.177.2.3      yamt 	struct timeval tv;
    331   1.177.2.3      yamt 	long s, u;
    332   1.177.2.3      yamt 
    333  1.177.2.10      yamt 	if ((l->l_flag & LW_IDLE) != 0) {
    334   1.177.2.3      yamt 		microtime(&spc->spc_runtime);
    335   1.177.2.3      yamt 		return;
    336   1.177.2.3      yamt 	}
    337   1.177.2.3      yamt 
    338   1.177.2.3      yamt 	microtime(&tv);
    339   1.177.2.3      yamt 	u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    340   1.177.2.3      yamt 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    341   1.177.2.3      yamt 	if (u < 0) {
    342   1.177.2.3      yamt 		u += 1000000;
    343   1.177.2.3      yamt 		s--;
    344   1.177.2.3      yamt 	} else if (u >= 1000000) {
    345   1.177.2.3      yamt 		u -= 1000000;
    346   1.177.2.3      yamt 		s++;
    347   1.177.2.3      yamt 	}
    348   1.177.2.3      yamt 	l->l_rtime.tv_usec = u;
    349   1.177.2.3      yamt 	l->l_rtime.tv_sec = s;
    350   1.177.2.3      yamt 
    351   1.177.2.3      yamt 	spc->spc_runtime = tv;
    352   1.177.2.3      yamt }
    353   1.177.2.3      yamt 
    354   1.177.2.3      yamt /*
    355  1.177.2.14     rmind  * The machine independent parts of context switch.
    356       1.130   nathanw  *
    357       1.122   thorpej  * Returns 1 if another process was actually run.
    358        1.26       cgd  */
    359       1.122   thorpej int
    360  1.177.2.13     rmind mi_switch(struct lwp *l)
    361        1.26       cgd {
    362        1.76   thorpej 	struct schedstate_percpu *spc;
    363  1.177.2.13     rmind 	struct lwp *newl;
    364       1.174        ad 	int retval, oldspl;
    365        1.26       cgd 
    366       1.174        ad 	LOCK_ASSERT(lwp_locked(l, NULL));
    367       1.174        ad 
    368       1.174        ad #ifdef LOCKDEBUG
    369       1.174        ad 	spinlock_switchcheck();
    370       1.174        ad 	simple_lock_switchcheck();
    371       1.174        ad #endif
    372       1.174        ad #ifdef KSTACK_CHECK_MAGIC
    373       1.174        ad 	kstack_check_magic(l);
    374       1.174        ad #endif
    375        1.83   thorpej 
    376        1.90  sommerfe 	/*
    377       1.174        ad 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    378       1.174        ad 	 * are after is the run time and that's guarenteed to have been last
    379       1.174        ad 	 * updated by this CPU.
    380        1.90  sommerfe 	 */
    381       1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    382       1.122   thorpej 	spc = &l->l_cpu->ci_schedstate;
    383        1.76   thorpej 
    384  1.177.2.10      yamt 	/* Count time spent in current system call */
    385  1.177.2.10      yamt 	SYSCALL_TIME_SLEEP(l);
    386  1.177.2.10      yamt 
    387        1.26       cgd 	/*
    388       1.174        ad 	 * XXXSMP If we are using h/w performance counters, save context.
    389        1.69   thorpej 	 */
    390       1.174        ad #if PERFCTRS
    391       1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    392       1.175  christos 		pmc_save_context(l->l_proc);
    393       1.174        ad 	}
    394       1.109      yamt #endif
    395        1.26       cgd 
    396       1.113  gmcgarry 	/*
    397  1.177.2.16     rmind 	 * If on the CPU and we have gotten this far, then we must yield.
    398  1.177.2.16     rmind 	 */
    399  1.177.2.16     rmind 	KASSERT(l->l_stat != LSRUN);
    400  1.177.2.16     rmind 	if (l->l_stat == LSONPROC) {
    401  1.177.2.18     rmind 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    402  1.177.2.16     rmind 		l->l_stat = LSRUN;
    403  1.177.2.16     rmind 		if ((l->l_flag & LW_IDLE) == 0) {
    404  1.177.2.16     rmind 			sched_enqueue(l, true);
    405  1.177.2.16     rmind 		}
    406  1.177.2.16     rmind 	}
    407  1.177.2.16     rmind 
    408  1.177.2.16     rmind 	/*
    409       1.174        ad 	 * Process is about to yield the CPU; clear the appropriate
    410       1.174        ad 	 * scheduling flags.
    411       1.174        ad 	 */
    412       1.174        ad 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    413       1.174        ad 
    414   1.177.2.2      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    415       1.174        ad 
    416       1.174        ad 	/*
    417  1.177.2.18     rmind 	 * Acquire the spc_mutex if necessary.
    418   1.177.2.2      yamt 	 */
    419   1.177.2.2      yamt #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    420  1.177.2.18     rmind 	if (l->l_mutex != spc->spc_mutex) {
    421  1.177.2.18     rmind 		mutex_enter(spc->spc_mutex);
    422   1.177.2.2      yamt 	}
    423   1.177.2.2      yamt #endif
    424  1.177.2.14     rmind 	/*
    425  1.177.2.16     rmind 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    426  1.177.2.14     rmind 	 * If no LWP is runnable, switch to the idle LWP.
    427  1.177.2.14     rmind 	 */
    428  1.177.2.19     rmind 	newl = sched_nextlwp();
    429  1.177.2.16     rmind 	if (newl) {
    430  1.177.2.16     rmind 		sched_dequeue(newl);
    431  1.177.2.16     rmind 	} else {
    432   1.177.2.1      yamt 		newl = l->l_cpu->ci_data.cpu_idlelwp;
    433   1.177.2.1      yamt 		KASSERT(newl != NULL);
    434   1.177.2.1      yamt 	}
    435  1.177.2.18     rmind 	KASSERT(lwp_locked(newl, spc->spc_mutex));
    436   1.177.2.7      yamt 	newl->l_stat = LSONPROC;
    437   1.177.2.7      yamt 	newl->l_cpu = l->l_cpu;
    438  1.177.2.17        ad 	newl->l_flag |= LW_RUNNING;
    439   1.177.2.2      yamt 
    440   1.177.2.2      yamt #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    441  1.177.2.18     rmind 	if (l->l_mutex != spc->spc_mutex) {
    442  1.177.2.18     rmind 		mutex_exit(spc->spc_mutex);
    443   1.177.2.2      yamt 	}
    444   1.177.2.2      yamt #endif
    445   1.177.2.2      yamt 
    446   1.177.2.3      yamt 	updatertime(l, spc);
    447   1.177.2.1      yamt 	if (l != newl) {
    448   1.177.2.1      yamt 		struct lwp *prevlwp;
    449   1.177.2.1      yamt 
    450  1.177.2.20        ad 		/* Unlocked, but for statistics only. */
    451   1.177.2.1      yamt 		uvmexp.swtch++;
    452  1.177.2.20        ad 
    453  1.177.2.20        ad 		/* Save old VM context. */
    454   1.177.2.1      yamt 		pmap_deactivate(l);
    455  1.177.2.20        ad 
    456  1.177.2.20        ad 		/* Switch to the new LWP.. */
    457  1.177.2.17        ad 		l->l_flag &= ~LW_RUNNING;
    458  1.177.2.20        ad 		oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    459   1.177.2.1      yamt 		prevlwp = cpu_switchto(l, newl);
    460  1.177.2.20        ad 
    461  1.177.2.20        ad 		/* .. we have switched. */
    462  1.177.2.20        ad 		curlwp = l;
    463  1.177.2.20        ad 		if (prevlwp != NULL) {
    464  1.177.2.20        ad 			curcpu()->ci_mtx_oldspl = oldspl;
    465  1.177.2.20        ad 			lwp_unlock(prevlwp);
    466  1.177.2.20        ad 		} else {
    467  1.177.2.20        ad 			splx(oldspl);
    468  1.177.2.20        ad 		}
    469  1.177.2.20        ad 
    470  1.177.2.20        ad 		/* Restore VM context. */
    471   1.177.2.1      yamt 		pmap_activate(l);
    472   1.177.2.1      yamt 		retval = 1;
    473   1.177.2.1      yamt 	} else {
    474  1.177.2.20        ad 		/* Nothing to do - just unlock and return. */
    475  1.177.2.20        ad 		lwp_unlock(l);
    476       1.122   thorpej 		retval = 0;
    477       1.122   thorpej 	}
    478       1.110    briggs 
    479   1.177.2.1      yamt 	KASSERT(l == curlwp);
    480   1.177.2.1      yamt 	KASSERT(l->l_stat == LSONPROC);
    481   1.177.2.1      yamt 
    482       1.110    briggs 	/*
    483       1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    484        1.26       cgd 	 */
    485       1.114  gmcgarry #if PERFCTRS
    486       1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    487       1.175  christos 		pmc_restore_context(l->l_proc);
    488       1.166  christos 	}
    489       1.114  gmcgarry #endif
    490       1.110    briggs 
    491       1.110    briggs 	/*
    492        1.76   thorpej 	 * We're running again; record our new start time.  We might
    493       1.174        ad 	 * be running on a new CPU now, so don't use the cached
    494        1.76   thorpej 	 * schedstate_percpu pointer.
    495        1.76   thorpej 	 */
    496  1.177.2.10      yamt 	SYSCALL_TIME_WAKEUP(l);
    497       1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    498  1.177.2.20        ad 	LOCKDEBUG_BARRIER(NULL, 1);
    499       1.169      yamt 
    500       1.122   thorpej 	return retval;
    501        1.26       cgd }
    502        1.26       cgd 
    503        1.26       cgd /*
    504       1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    505       1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    506       1.174        ad  *
    507       1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    508        1.26       cgd  */
    509        1.26       cgd void
    510       1.122   thorpej setrunnable(struct lwp *l)
    511        1.26       cgd {
    512       1.122   thorpej 	struct proc *p = l->l_proc;
    513       1.174        ad 	sigset_t *ss;
    514        1.26       cgd 
    515  1.177.2.10      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    516  1.177.2.10      yamt 	KASSERT(mutex_owned(&p->p_smutex));
    517  1.177.2.10      yamt 	KASSERT(lwp_locked(l, NULL));
    518        1.83   thorpej 
    519       1.122   thorpej 	switch (l->l_stat) {
    520       1.122   thorpej 	case LSSTOP:
    521        1.33   mycroft 		/*
    522        1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    523        1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    524        1.33   mycroft 		 */
    525       1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    526       1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    527       1.174        ad 				ss = &l->l_sigpend.sp_set;
    528       1.174        ad 			else
    529       1.174        ad 				ss = &p->p_sigpend.sp_set;
    530       1.174        ad 			sigaddset(ss, p->p_xstat);
    531       1.174        ad 			signotify(l);
    532        1.53   mycroft 		}
    533       1.174        ad 		p->p_nrlwps++;
    534        1.26       cgd 		break;
    535       1.174        ad 	case LSSUSPENDED:
    536  1.177.2.10      yamt 		l->l_flag &= ~LW_WSUSPEND;
    537       1.174        ad 		p->p_nrlwps++;
    538       1.122   thorpej 		break;
    539       1.174        ad 	case LSSLEEP:
    540       1.174        ad 		KASSERT(l->l_wchan != NULL);
    541        1.26       cgd 		break;
    542       1.174        ad 	default:
    543       1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    544        1.26       cgd 	}
    545       1.139        cl 
    546       1.174        ad 	/*
    547       1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    548       1.174        ad 	 * again.  If not, mark it as still sleeping.
    549       1.174        ad 	 */
    550       1.174        ad 	if (l->l_wchan != NULL) {
    551       1.174        ad 		l->l_stat = LSSLEEP;
    552  1.177.2.10      yamt 		/* lwp_unsleep() will release the lock. */
    553  1.177.2.10      yamt 		lwp_unsleep(l);
    554       1.174        ad 		return;
    555       1.174        ad 	}
    556       1.139        cl 
    557  1.177.2.18     rmind 	LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    558       1.122   thorpej 
    559       1.174        ad 	/*
    560       1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    561       1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    562       1.174        ad 	 */
    563  1.177.2.17        ad 	if ((l->l_flag & LW_RUNNING) != 0) {
    564       1.174        ad 		l->l_stat = LSONPROC;
    565       1.174        ad 		l->l_slptime = 0;
    566       1.174        ad 		lwp_unlock(l);
    567       1.174        ad 		return;
    568       1.174        ad 	}
    569       1.122   thorpej 
    570       1.174        ad 	/*
    571       1.174        ad 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    572       1.174        ad 	 * to bring it back in.  Otherwise, enter it into a run queue.
    573       1.174        ad 	 */
    574   1.177.2.5     rmind 	sched_setrunnable(l);
    575       1.174        ad 	l->l_stat = LSRUN;
    576       1.122   thorpej 	l->l_slptime = 0;
    577       1.174        ad 
    578  1.177.2.10      yamt 	if (l->l_flag & LW_INMEM) {
    579  1.177.2.16     rmind 		sched_enqueue(l, false);
    580  1.177.2.10      yamt 		resched_cpu(l);
    581       1.174        ad 		lwp_unlock(l);
    582       1.174        ad 	} else {
    583       1.174        ad 		lwp_unlock(l);
    584       1.177        ad 		uvm_kick_scheduler();
    585       1.174        ad 	}
    586        1.26       cgd }
    587        1.26       cgd 
    588       1.174        ad /*
    589       1.174        ad  * suspendsched:
    590       1.174        ad  *
    591       1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    592       1.174        ad  */
    593        1.94    bouyer void
    594       1.174        ad suspendsched(void)
    595        1.94    bouyer {
    596       1.174        ad #ifdef MULTIPROCESSOR
    597       1.174        ad 	CPU_INFO_ITERATOR cii;
    598       1.174        ad 	struct cpu_info *ci;
    599       1.174        ad #endif
    600       1.122   thorpej 	struct lwp *l;
    601       1.174        ad 	struct proc *p;
    602        1.94    bouyer 
    603        1.94    bouyer 	/*
    604       1.174        ad 	 * We do this by process in order not to violate the locking rules.
    605        1.94    bouyer 	 */
    606       1.174        ad 	mutex_enter(&proclist_mutex);
    607       1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    608       1.174        ad 		mutex_enter(&p->p_smutex);
    609       1.174        ad 
    610  1.177.2.10      yamt 		if ((p->p_flag & PK_SYSTEM) != 0) {
    611       1.174        ad 			mutex_exit(&p->p_smutex);
    612        1.94    bouyer 			continue;
    613       1.174        ad 		}
    614       1.174        ad 
    615       1.174        ad 		p->p_stat = SSTOP;
    616       1.174        ad 
    617       1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    618       1.174        ad 			if (l == curlwp)
    619       1.174        ad 				continue;
    620       1.174        ad 
    621       1.174        ad 			lwp_lock(l);
    622       1.122   thorpej 
    623        1.97     enami 			/*
    624       1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    625       1.174        ad 			 * when it tries to return to user mode.  We want to
    626       1.174        ad 			 * try and get to get as many LWPs as possible to
    627       1.174        ad 			 * the user / kernel boundary, so that they will
    628       1.174        ad 			 * release any locks that they hold.
    629        1.97     enami 			 */
    630  1.177.2.10      yamt 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    631       1.174        ad 
    632       1.174        ad 			if (l->l_stat == LSSLEEP &&
    633  1.177.2.10      yamt 			    (l->l_flag & LW_SINTR) != 0) {
    634       1.174        ad 				/* setrunnable() will release the lock. */
    635       1.174        ad 				setrunnable(l);
    636       1.174        ad 				continue;
    637       1.174        ad 			}
    638       1.174        ad 
    639       1.174        ad 			lwp_unlock(l);
    640        1.94    bouyer 		}
    641       1.174        ad 
    642       1.174        ad 		mutex_exit(&p->p_smutex);
    643        1.94    bouyer 	}
    644       1.174        ad 	mutex_exit(&proclist_mutex);
    645       1.174        ad 
    646       1.174        ad 	/*
    647       1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    648       1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    649       1.174        ad 	 */
    650       1.174        ad #ifdef MULTIPROCESSOR
    651       1.174        ad 	for (CPU_INFO_FOREACH(cii, ci))
    652   1.177.2.9      yamt 		cpu_need_resched(ci, 0);
    653       1.174        ad #else
    654   1.177.2.9      yamt 	cpu_need_resched(curcpu(), 0);
    655       1.174        ad #endif
    656        1.94    bouyer }
    657       1.113  gmcgarry 
    658       1.113  gmcgarry /*
    659       1.174        ad  * sched_kpri:
    660       1.174        ad  *
    661       1.174        ad  *	Scale a priority level to a kernel priority level, usually
    662       1.174        ad  *	for an LWP that is about to sleep.
    663       1.174        ad  */
    664  1.177.2.10      yamt pri_t
    665       1.174        ad sched_kpri(struct lwp *l)
    666       1.174        ad {
    667       1.174        ad 	/*
    668       1.174        ad 	 * Scale user priorities (127 -> 50) up to kernel priorities
    669       1.174        ad 	 * in the range (49 -> 8).  Reserve the top 8 kernel priorities
    670       1.174        ad 	 * for high priority kthreads.  Kernel priorities passed in
    671       1.174        ad 	 * are left "as is".  XXX This is somewhat arbitrary.
    672       1.174        ad 	 */
    673       1.174        ad 	static const uint8_t kpri_tab[] = {
    674       1.174        ad 		 0,   1,   2,   3,   4,   5,   6,   7,
    675       1.174        ad 		 8,   9,  10,  11,  12,  13,  14,  15,
    676       1.174        ad 		16,  17,  18,  19,  20,  21,  22,  23,
    677       1.174        ad 		24,  25,  26,  27,  28,  29,  30,  31,
    678       1.174        ad 		32,  33,  34,  35,  36,  37,  38,  39,
    679       1.174        ad 		40,  41,  42,  43,  44,  45,  46,  47,
    680       1.174        ad 		48,  49,   8,   8,   9,   9,  10,  10,
    681       1.174        ad 		11,  11,  12,  12,  13,  14,  14,  15,
    682       1.174        ad 		15,  16,  16,  17,  17,  18,  18,  19,
    683       1.174        ad 		20,  20,  21,  21,  22,  22,  23,  23,
    684       1.174        ad 		24,  24,  25,  26,  26,  27,  27,  28,
    685       1.174        ad 		28,  29,  29,  30,  30,  31,  32,  32,
    686       1.174        ad 		33,  33,  34,  34,  35,  35,  36,  36,
    687       1.174        ad 		37,  38,  38,  39,  39,  40,  40,  41,
    688       1.174        ad 		41,  42,  42,  43,  44,  44,  45,  45,
    689       1.174        ad 		46,  46,  47,  47,  48,  48,  49,  49,
    690       1.174        ad 	};
    691       1.174        ad 
    692  1.177.2.10      yamt 	return (pri_t)kpri_tab[l->l_usrpri];
    693       1.174        ad }
    694       1.174        ad 
    695       1.174        ad /*
    696       1.174        ad  * sched_unsleep:
    697       1.174        ad  *
    698       1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    699       1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    700       1.174        ad  *	it's not a valid action for running or idle LWPs.
    701       1.174        ad  */
    702  1.177.2.10      yamt static void
    703       1.174        ad sched_unsleep(struct lwp *l)
    704       1.174        ad {
    705       1.174        ad 
    706       1.174        ad 	lwp_unlock(l);
    707       1.174        ad 	panic("sched_unsleep");
    708       1.174        ad }
    709       1.174        ad 
    710   1.177.2.5     rmind inline void
    711  1.177.2.10      yamt resched_cpu(struct lwp *l)
    712       1.174        ad {
    713   1.177.2.5     rmind 	struct cpu_info *ci;
    714  1.177.2.10      yamt 	const pri_t pri = lwp_eprio(l);
    715       1.174        ad 
    716   1.177.2.5     rmind 	/*
    717   1.177.2.5     rmind 	 * XXXSMP
    718   1.177.2.5     rmind 	 * Since l->l_cpu persists across a context switch,
    719   1.177.2.5     rmind 	 * this gives us *very weak* processor affinity, in
    720   1.177.2.5     rmind 	 * that we notify the CPU on which the process last
    721   1.177.2.5     rmind 	 * ran that it should try to switch.
    722   1.177.2.5     rmind 	 *
    723   1.177.2.5     rmind 	 * This does not guarantee that the process will run on
    724   1.177.2.5     rmind 	 * that processor next, because another processor might
    725   1.177.2.5     rmind 	 * grab it the next time it performs a context switch.
    726   1.177.2.5     rmind 	 *
    727   1.177.2.5     rmind 	 * This also does not handle the case where its last
    728   1.177.2.5     rmind 	 * CPU is running a higher-priority process, but every
    729   1.177.2.5     rmind 	 * other CPU is running a lower-priority process.  There
    730   1.177.2.5     rmind 	 * are ways to handle this situation, but they're not
    731   1.177.2.5     rmind 	 * currently very pretty, and we also need to weigh the
    732   1.177.2.5     rmind 	 * cost of moving a process from one CPU to another.
    733   1.177.2.5     rmind 	 */
    734   1.177.2.5     rmind 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    735   1.177.2.5     rmind 	if (pri < ci->ci_schedstate.spc_curpriority)
    736   1.177.2.9      yamt 		cpu_need_resched(ci, 0);
    737   1.177.2.1      yamt }
    738  1.177.2.10      yamt 
    739  1.177.2.10      yamt static void
    740  1.177.2.10      yamt sched_changepri(struct lwp *l, pri_t pri)
    741  1.177.2.10      yamt {
    742  1.177.2.10      yamt 
    743  1.177.2.18     rmind 	LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    744  1.177.2.10      yamt 
    745  1.177.2.10      yamt 	l->l_usrpri = pri;
    746  1.177.2.10      yamt 	if (l->l_priority < PUSER)
    747  1.177.2.10      yamt 		return;
    748  1.177.2.10      yamt 
    749  1.177.2.10      yamt 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    750  1.177.2.10      yamt 		l->l_priority = pri;
    751  1.177.2.10      yamt 		return;
    752  1.177.2.10      yamt 	}
    753  1.177.2.10      yamt 
    754  1.177.2.11      yamt 	sched_dequeue(l);
    755  1.177.2.10      yamt 	l->l_priority = pri;
    756  1.177.2.16     rmind 	sched_enqueue(l, false);
    757  1.177.2.10      yamt 	resched_cpu(l);
    758  1.177.2.10      yamt }
    759  1.177.2.10      yamt 
    760  1.177.2.10      yamt static void
    761  1.177.2.11      yamt sched_lendpri(struct lwp *l, pri_t pri)
    762  1.177.2.10      yamt {
    763  1.177.2.10      yamt 
    764  1.177.2.18     rmind 	LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    765  1.177.2.10      yamt 
    766  1.177.2.10      yamt 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    767  1.177.2.10      yamt 		l->l_inheritedprio = pri;
    768  1.177.2.10      yamt 		return;
    769  1.177.2.10      yamt 	}
    770  1.177.2.10      yamt 
    771  1.177.2.11      yamt 	sched_dequeue(l);
    772  1.177.2.10      yamt 	l->l_inheritedprio = pri;
    773  1.177.2.16     rmind 	sched_enqueue(l, false);
    774  1.177.2.10      yamt 	resched_cpu(l);
    775  1.177.2.10      yamt }
    776  1.177.2.10      yamt 
    777  1.177.2.10      yamt struct lwp *
    778  1.177.2.10      yamt syncobj_noowner(wchan_t wchan)
    779  1.177.2.10      yamt {
    780  1.177.2.10      yamt 
    781  1.177.2.10      yamt 	return NULL;
    782  1.177.2.10      yamt }
    783  1.177.2.21     rmind 
    784  1.177.2.21     rmind 
    785  1.177.2.21     rmind /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    786  1.177.2.21     rmind fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    787  1.177.2.21     rmind 
    788  1.177.2.21     rmind /*
    789  1.177.2.21     rmind  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    790  1.177.2.21     rmind  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    791  1.177.2.21     rmind  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    792  1.177.2.21     rmind  *
    793  1.177.2.21     rmind  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    794  1.177.2.21     rmind  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    795  1.177.2.21     rmind  *
    796  1.177.2.21     rmind  * If you dont want to bother with the faster/more-accurate formula, you
    797  1.177.2.21     rmind  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    798  1.177.2.21     rmind  * (more general) method of calculating the %age of CPU used by a process.
    799  1.177.2.21     rmind  */
    800  1.177.2.21     rmind #define	CCPU_SHIFT	(FSHIFT + 1)
    801  1.177.2.21     rmind 
    802  1.177.2.21     rmind /*
    803  1.177.2.21     rmind  * sched_pstats:
    804  1.177.2.21     rmind  *
    805  1.177.2.21     rmind  * Update process statistics and check CPU resource allocation.
    806  1.177.2.21     rmind  * Call scheduler-specific hook to eventually adjust process/LWP
    807  1.177.2.21     rmind  * priorities.
    808  1.177.2.21     rmind  *
    809  1.177.2.21     rmind  *	XXXSMP This needs to be reorganised in order to reduce the locking
    810  1.177.2.21     rmind  *	burden.
    811  1.177.2.21     rmind  */
    812  1.177.2.21     rmind /* ARGSUSED */
    813  1.177.2.21     rmind void
    814  1.177.2.21     rmind sched_pstats(void *arg)
    815  1.177.2.21     rmind {
    816  1.177.2.21     rmind 	struct rlimit *rlim;
    817  1.177.2.21     rmind 	struct lwp *l;
    818  1.177.2.21     rmind 	struct proc *p;
    819  1.177.2.21     rmind 	int minslp, sig, clkhz;
    820  1.177.2.21     rmind 	long runtm;
    821  1.177.2.21     rmind 
    822  1.177.2.21     rmind 	sched_pstats_ticks++;
    823  1.177.2.21     rmind 
    824  1.177.2.21     rmind 	mutex_enter(&proclist_mutex);
    825  1.177.2.21     rmind 	PROCLIST_FOREACH(p, &allproc) {
    826  1.177.2.21     rmind 		/*
    827  1.177.2.21     rmind 		 * Increment time in/out of memory and sleep time (if
    828  1.177.2.21     rmind 		 * sleeping).  We ignore overflow; with 16-bit int's
    829  1.177.2.21     rmind 		 * (remember them?) overflow takes 45 days.
    830  1.177.2.21     rmind 		 */
    831  1.177.2.21     rmind 		minslp = 2;
    832  1.177.2.21     rmind 		mutex_enter(&p->p_smutex);
    833  1.177.2.21     rmind 		runtm = p->p_rtime.tv_sec;
    834  1.177.2.21     rmind 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    835  1.177.2.21     rmind 			if ((l->l_flag & LW_IDLE) != 0)
    836  1.177.2.21     rmind 				continue;
    837  1.177.2.21     rmind 			lwp_lock(l);
    838  1.177.2.21     rmind 			runtm += l->l_rtime.tv_sec;
    839  1.177.2.21     rmind 			l->l_swtime++;
    840  1.177.2.21     rmind 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    841  1.177.2.21     rmind 			    l->l_stat == LSSUSPENDED) {
    842  1.177.2.21     rmind 				l->l_slptime++;
    843  1.177.2.21     rmind 				minslp = min(minslp, l->l_slptime);
    844  1.177.2.21     rmind 			} else
    845  1.177.2.21     rmind 				minslp = 0;
    846  1.177.2.21     rmind 			lwp_unlock(l);
    847  1.177.2.21     rmind 		}
    848  1.177.2.21     rmind 
    849  1.177.2.21     rmind 		/*
    850  1.177.2.21     rmind 		 * Check if the process exceeds its CPU resource allocation.
    851  1.177.2.21     rmind 		 * If over max, kill it.
    852  1.177.2.21     rmind 		 */
    853  1.177.2.21     rmind 		rlim = &p->p_rlimit[RLIMIT_CPU];
    854  1.177.2.21     rmind 		sig = 0;
    855  1.177.2.21     rmind 		if (runtm >= rlim->rlim_cur) {
    856  1.177.2.21     rmind 			if (runtm >= rlim->rlim_max)
    857  1.177.2.21     rmind 				sig = SIGKILL;
    858  1.177.2.21     rmind 			else {
    859  1.177.2.21     rmind 				sig = SIGXCPU;
    860  1.177.2.21     rmind 				if (rlim->rlim_cur < rlim->rlim_max)
    861  1.177.2.21     rmind 					rlim->rlim_cur += 5;
    862  1.177.2.21     rmind 			}
    863  1.177.2.21     rmind 		}
    864  1.177.2.21     rmind 
    865  1.177.2.21     rmind 		mutex_spin_enter(&p->p_stmutex);
    866  1.177.2.21     rmind 		if (minslp < 1) {
    867  1.177.2.21     rmind 			/*
    868  1.177.2.21     rmind 			 * p_pctcpu is only for ps.
    869  1.177.2.21     rmind 			 */
    870  1.177.2.21     rmind 			p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    871  1.177.2.21     rmind 			clkhz = stathz != 0 ? stathz : hz;
    872  1.177.2.21     rmind #if	(FSHIFT >= CCPU_SHIFT)
    873  1.177.2.21     rmind 			p->p_pctcpu += (clkhz == 100)?
    874  1.177.2.21     rmind 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    875  1.177.2.21     rmind 				100 * (((fixpt_t) p->p_cpticks)
    876  1.177.2.21     rmind 				       << (FSHIFT - CCPU_SHIFT)) / clkhz;
    877  1.177.2.21     rmind #else
    878  1.177.2.21     rmind 			p->p_pctcpu += ((FSCALE - ccpu) *
    879  1.177.2.21     rmind 					(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    880  1.177.2.21     rmind #endif
    881  1.177.2.21     rmind 			p->p_cpticks = 0;
    882  1.177.2.21     rmind 		}
    883  1.177.2.21     rmind 
    884  1.177.2.21     rmind 		sched_pstats_hook(p, minslp);
    885  1.177.2.21     rmind 		mutex_spin_exit(&p->p_stmutex);
    886  1.177.2.21     rmind 		mutex_exit(&p->p_smutex);
    887  1.177.2.21     rmind 		if (sig) {
    888  1.177.2.21     rmind 			psignal(p, sig);
    889  1.177.2.21     rmind 		}
    890  1.177.2.21     rmind 	}
    891  1.177.2.21     rmind 	mutex_exit(&proclist_mutex);
    892  1.177.2.21     rmind 	uvm_meter();
    893  1.177.2.21     rmind 	wakeup(&lbolt);
    894  1.177.2.21     rmind 	callout_schedule(&sched_pstats_ch, hz);
    895  1.177.2.21     rmind }
    896