kern_synch.c revision 1.177.2.21 1 1.177.2.21 rmind /* $NetBSD: kern_synch.c,v 1.177.2.21 2007/04/02 00:28:08 rmind Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.174 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.177.2.5 rmind * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.177.2.5 rmind * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
21 1.63 thorpej * must display the following acknowledgement:
22 1.63 thorpej * This product includes software developed by the NetBSD
23 1.63 thorpej * Foundation, Inc. and its contributors.
24 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.63 thorpej * contributors may be used to endorse or promote products derived
26 1.63 thorpej * from this software without specific prior written permission.
27 1.63 thorpej *
28 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
39 1.63 thorpej */
40 1.26 cgd
41 1.26 cgd /*-
42 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.26 cgd * The Regents of the University of California. All rights reserved.
44 1.26 cgd * (c) UNIX System Laboratories, Inc.
45 1.26 cgd * All or some portions of this file are derived from material licensed
46 1.26 cgd * to the University of California by American Telephone and Telegraph
47 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.26 cgd * the permission of UNIX System Laboratories, Inc.
49 1.26 cgd *
50 1.26 cgd * Redistribution and use in source and binary forms, with or without
51 1.26 cgd * modification, are permitted provided that the following conditions
52 1.26 cgd * are met:
53 1.26 cgd * 1. Redistributions of source code must retain the above copyright
54 1.26 cgd * notice, this list of conditions and the following disclaimer.
55 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
56 1.26 cgd * notice, this list of conditions and the following disclaimer in the
57 1.26 cgd * documentation and/or other materials provided with the distribution.
58 1.136 agc * 3. Neither the name of the University nor the names of its contributors
59 1.26 cgd * may be used to endorse or promote products derived from this software
60 1.26 cgd * without specific prior written permission.
61 1.26 cgd *
62 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.26 cgd * SUCH DAMAGE.
73 1.26 cgd *
74 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.26 cgd */
76 1.106 lukem
77 1.106 lukem #include <sys/cdefs.h>
78 1.177.2.21 rmind __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.177.2.21 2007/04/02 00:28:08 rmind Exp $");
79 1.48 mrg
80 1.109 yamt #include "opt_kstack.h"
81 1.82 thorpej #include "opt_lockdebug.h"
82 1.83 thorpej #include "opt_multiprocessor.h"
83 1.110 briggs #include "opt_perfctrs.h"
84 1.26 cgd
85 1.174 ad #define __MUTEX_PRIVATE
86 1.174 ad
87 1.26 cgd #include <sys/param.h>
88 1.26 cgd #include <sys/systm.h>
89 1.26 cgd #include <sys/proc.h>
90 1.26 cgd #include <sys/kernel.h>
91 1.111 briggs #if defined(PERFCTRS)
92 1.110 briggs #include <sys/pmc.h>
93 1.111 briggs #endif
94 1.177.2.8 yamt #include <sys/cpu.h>
95 1.26 cgd #include <sys/resourcevar.h>
96 1.55 ross #include <sys/sched.h>
97 1.177.2.10 yamt #include <sys/syscall_stats.h>
98 1.174 ad #include <sys/sleepq.h>
99 1.174 ad #include <sys/lockdebug.h>
100 1.47 mrg
101 1.47 mrg #include <uvm/uvm_extern.h>
102 1.47 mrg
103 1.177.2.21 rmind struct callout sched_pstats_ch = CALLOUT_INITIALIZER_SETFUNC(sched_pstats, NULL);
104 1.177.2.21 rmind unsigned int sched_pstats_ticks;
105 1.177.2.21 rmind
106 1.26 cgd int lbolt; /* once a second sleep address */
107 1.26 cgd
108 1.177.2.10 yamt static void sched_unsleep(struct lwp *);
109 1.177.2.10 yamt static void sched_changepri(struct lwp *, pri_t);
110 1.177.2.10 yamt static void sched_lendpri(struct lwp *, pri_t);
111 1.122 thorpej
112 1.174 ad syncobj_t sleep_syncobj = {
113 1.174 ad SOBJ_SLEEPQ_SORTED,
114 1.174 ad sleepq_unsleep,
115 1.177.2.10 yamt sleepq_changepri,
116 1.177.2.10 yamt sleepq_lendpri,
117 1.177.2.10 yamt syncobj_noowner,
118 1.174 ad };
119 1.174 ad
120 1.174 ad syncobj_t sched_syncobj = {
121 1.174 ad SOBJ_SLEEPQ_SORTED,
122 1.174 ad sched_unsleep,
123 1.177.2.10 yamt sched_changepri,
124 1.177.2.10 yamt sched_lendpri,
125 1.177.2.10 yamt syncobj_noowner,
126 1.174 ad };
127 1.122 thorpej
128 1.26 cgd /*
129 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
130 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
131 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
132 1.174 ad * maintained in the machine-dependent layers. This priority will typically
133 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
134 1.174 ad * it can be made higher to block network software interrupts after panics.
135 1.26 cgd */
136 1.174 ad int safepri;
137 1.26 cgd
138 1.26 cgd /*
139 1.174 ad * OBSOLETE INTERFACE
140 1.174 ad *
141 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
142 1.26 cgd * performed on the specified identifier. The process will then be made
143 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
144 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
145 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
146 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
147 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
148 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
149 1.26 cgd * call should be interrupted by the signal (return EINTR).
150 1.77 thorpej *
151 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
152 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
153 1.174 ad * is specified, in which case the interlock will always be unlocked upon
154 1.174 ad * return.
155 1.26 cgd */
156 1.26 cgd int
157 1.177.2.10 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
158 1.174 ad volatile struct simplelock *interlock)
159 1.26 cgd {
160 1.122 thorpej struct lwp *l = curlwp;
161 1.174 ad sleepq_t *sq;
162 1.174 ad int error, catch;
163 1.26 cgd
164 1.174 ad if (sleepq_dontsleep(l)) {
165 1.174 ad (void)sleepq_abort(NULL, 0);
166 1.174 ad if ((priority & PNORELOCK) != 0)
167 1.77 thorpej simple_unlock(interlock);
168 1.174 ad return 0;
169 1.26 cgd }
170 1.78 sommerfe
171 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
172 1.174 ad sleepq_enter(sq, l);
173 1.42 cgd
174 1.174 ad if (interlock != NULL) {
175 1.174 ad LOCK_ASSERT(simple_lock_held(interlock));
176 1.174 ad simple_unlock(interlock);
177 1.150 chs }
178 1.150 chs
179 1.174 ad catch = priority & PCATCH;
180 1.174 ad sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
181 1.174 ad &sleep_syncobj);
182 1.174 ad error = sleepq_unblock(timo, catch);
183 1.126 pk
184 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
185 1.126 pk simple_lock(interlock);
186 1.174 ad
187 1.174 ad return error;
188 1.26 cgd }
189 1.26 cgd
190 1.177.2.15 rmind int
191 1.177.2.15 rmind mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
192 1.177.2.15 rmind kmutex_t *mtx)
193 1.177.2.15 rmind {
194 1.177.2.15 rmind struct lwp *l = curlwp;
195 1.177.2.15 rmind sleepq_t *sq;
196 1.177.2.15 rmind int error, catch;
197 1.177.2.15 rmind
198 1.177.2.15 rmind if (sleepq_dontsleep(l)) {
199 1.177.2.15 rmind (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
200 1.177.2.15 rmind return 0;
201 1.177.2.15 rmind }
202 1.177.2.15 rmind
203 1.177.2.15 rmind sq = sleeptab_lookup(&sleeptab, ident);
204 1.177.2.15 rmind sleepq_enter(sq, l);
205 1.177.2.15 rmind mutex_exit(mtx);
206 1.177.2.15 rmind
207 1.177.2.15 rmind catch = priority & PCATCH;
208 1.177.2.15 rmind sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
209 1.177.2.15 rmind &sleep_syncobj);
210 1.177.2.15 rmind error = sleepq_unblock(timo, catch);
211 1.177.2.15 rmind
212 1.177.2.15 rmind if ((priority & PNORELOCK) == 0)
213 1.177.2.15 rmind mutex_enter(mtx);
214 1.177.2.15 rmind
215 1.177.2.15 rmind return error;
216 1.177.2.15 rmind }
217 1.177.2.15 rmind
218 1.26 cgd /*
219 1.174 ad * General sleep call for situations where a wake-up is not expected.
220 1.26 cgd */
221 1.174 ad int
222 1.177.2.10 yamt kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
223 1.26 cgd {
224 1.174 ad struct lwp *l = curlwp;
225 1.174 ad sleepq_t *sq;
226 1.174 ad int error;
227 1.26 cgd
228 1.174 ad if (sleepq_dontsleep(l))
229 1.174 ad return sleepq_abort(NULL, 0);
230 1.26 cgd
231 1.174 ad if (mtx != NULL)
232 1.174 ad mutex_exit(mtx);
233 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
234 1.174 ad sleepq_enter(sq, l);
235 1.174 ad sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
236 1.174 ad error = sleepq_unblock(timo, intr);
237 1.174 ad if (mtx != NULL)
238 1.174 ad mutex_enter(mtx);
239 1.83 thorpej
240 1.174 ad return error;
241 1.139 cl }
242 1.139 cl
243 1.26 cgd /*
244 1.174 ad * OBSOLETE INTERFACE
245 1.174 ad *
246 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
247 1.26 cgd */
248 1.26 cgd void
249 1.174 ad wakeup(wchan_t ident)
250 1.26 cgd {
251 1.174 ad sleepq_t *sq;
252 1.83 thorpej
253 1.174 ad if (cold)
254 1.174 ad return;
255 1.83 thorpej
256 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
257 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
258 1.63 thorpej }
259 1.63 thorpej
260 1.63 thorpej /*
261 1.174 ad * OBSOLETE INTERFACE
262 1.174 ad *
263 1.63 thorpej * Make the highest priority process first in line on the specified
264 1.63 thorpej * identifier runnable.
265 1.63 thorpej */
266 1.174 ad void
267 1.174 ad wakeup_one(wchan_t ident)
268 1.63 thorpej {
269 1.174 ad sleepq_t *sq;
270 1.63 thorpej
271 1.174 ad if (cold)
272 1.174 ad return;
273 1.174 ad
274 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
275 1.174 ad sleepq_wake(sq, ident, 1);
276 1.174 ad }
277 1.63 thorpej
278 1.117 gmcgarry
279 1.117 gmcgarry /*
280 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
281 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
282 1.117 gmcgarry * current process explicitly requests it (eg sched_yield(2) in compat code).
283 1.117 gmcgarry */
284 1.117 gmcgarry void
285 1.117 gmcgarry yield(void)
286 1.117 gmcgarry {
287 1.122 thorpej struct lwp *l = curlwp;
288 1.117 gmcgarry
289 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
290 1.174 ad lwp_lock(l);
291 1.174 ad if (l->l_stat == LSONPROC) {
292 1.177.2.18 rmind KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
293 1.174 ad l->l_priority = l->l_usrpri;
294 1.174 ad }
295 1.174 ad l->l_nvcsw++;
296 1.177.2.13 rmind mi_switch(l);
297 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
298 1.69 thorpej }
299 1.69 thorpej
300 1.69 thorpej /*
301 1.69 thorpej * General preemption call. Puts the current process back on its run queue
302 1.156 rpaulo * and performs an involuntary context switch.
303 1.69 thorpej */
304 1.69 thorpej void
305 1.174 ad preempt(void)
306 1.69 thorpej {
307 1.122 thorpej struct lwp *l = curlwp;
308 1.69 thorpej
309 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
310 1.174 ad lwp_lock(l);
311 1.174 ad if (l->l_stat == LSONPROC) {
312 1.177.2.18 rmind KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
313 1.174 ad l->l_priority = l->l_usrpri;
314 1.174 ad }
315 1.174 ad l->l_nivcsw++;
316 1.177.2.13 rmind (void)mi_switch(l);
317 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
318 1.69 thorpej }
319 1.69 thorpej
320 1.69 thorpej /*
321 1.177.2.3 yamt * Compute the amount of time during which the current lwp was running.
322 1.177.2.3 yamt *
323 1.177.2.3 yamt * - update l_rtime unless it's an idle lwp.
324 1.177.2.3 yamt * - update spc_runtime for the next lwp.
325 1.177.2.3 yamt */
326 1.177.2.3 yamt
327 1.177.2.3 yamt static inline void
328 1.177.2.3 yamt updatertime(struct lwp *l, struct schedstate_percpu *spc)
329 1.177.2.3 yamt {
330 1.177.2.3 yamt struct timeval tv;
331 1.177.2.3 yamt long s, u;
332 1.177.2.3 yamt
333 1.177.2.10 yamt if ((l->l_flag & LW_IDLE) != 0) {
334 1.177.2.3 yamt microtime(&spc->spc_runtime);
335 1.177.2.3 yamt return;
336 1.177.2.3 yamt }
337 1.177.2.3 yamt
338 1.177.2.3 yamt microtime(&tv);
339 1.177.2.3 yamt u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
340 1.177.2.3 yamt s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
341 1.177.2.3 yamt if (u < 0) {
342 1.177.2.3 yamt u += 1000000;
343 1.177.2.3 yamt s--;
344 1.177.2.3 yamt } else if (u >= 1000000) {
345 1.177.2.3 yamt u -= 1000000;
346 1.177.2.3 yamt s++;
347 1.177.2.3 yamt }
348 1.177.2.3 yamt l->l_rtime.tv_usec = u;
349 1.177.2.3 yamt l->l_rtime.tv_sec = s;
350 1.177.2.3 yamt
351 1.177.2.3 yamt spc->spc_runtime = tv;
352 1.177.2.3 yamt }
353 1.177.2.3 yamt
354 1.177.2.3 yamt /*
355 1.177.2.14 rmind * The machine independent parts of context switch.
356 1.130 nathanw *
357 1.122 thorpej * Returns 1 if another process was actually run.
358 1.26 cgd */
359 1.122 thorpej int
360 1.177.2.13 rmind mi_switch(struct lwp *l)
361 1.26 cgd {
362 1.76 thorpej struct schedstate_percpu *spc;
363 1.177.2.13 rmind struct lwp *newl;
364 1.174 ad int retval, oldspl;
365 1.26 cgd
366 1.174 ad LOCK_ASSERT(lwp_locked(l, NULL));
367 1.174 ad
368 1.174 ad #ifdef LOCKDEBUG
369 1.174 ad spinlock_switchcheck();
370 1.174 ad simple_lock_switchcheck();
371 1.174 ad #endif
372 1.174 ad #ifdef KSTACK_CHECK_MAGIC
373 1.174 ad kstack_check_magic(l);
374 1.174 ad #endif
375 1.83 thorpej
376 1.90 sommerfe /*
377 1.174 ad * It's safe to read the per CPU schedstate unlocked here, as all we
378 1.174 ad * are after is the run time and that's guarenteed to have been last
379 1.174 ad * updated by this CPU.
380 1.90 sommerfe */
381 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
382 1.122 thorpej spc = &l->l_cpu->ci_schedstate;
383 1.76 thorpej
384 1.177.2.10 yamt /* Count time spent in current system call */
385 1.177.2.10 yamt SYSCALL_TIME_SLEEP(l);
386 1.177.2.10 yamt
387 1.26 cgd /*
388 1.174 ad * XXXSMP If we are using h/w performance counters, save context.
389 1.69 thorpej */
390 1.174 ad #if PERFCTRS
391 1.175 christos if (PMC_ENABLED(l->l_proc)) {
392 1.175 christos pmc_save_context(l->l_proc);
393 1.174 ad }
394 1.109 yamt #endif
395 1.26 cgd
396 1.113 gmcgarry /*
397 1.177.2.16 rmind * If on the CPU and we have gotten this far, then we must yield.
398 1.177.2.16 rmind */
399 1.177.2.16 rmind KASSERT(l->l_stat != LSRUN);
400 1.177.2.16 rmind if (l->l_stat == LSONPROC) {
401 1.177.2.18 rmind KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
402 1.177.2.16 rmind l->l_stat = LSRUN;
403 1.177.2.16 rmind if ((l->l_flag & LW_IDLE) == 0) {
404 1.177.2.16 rmind sched_enqueue(l, true);
405 1.177.2.16 rmind }
406 1.177.2.16 rmind }
407 1.177.2.16 rmind
408 1.177.2.16 rmind /*
409 1.174 ad * Process is about to yield the CPU; clear the appropriate
410 1.174 ad * scheduling flags.
411 1.174 ad */
412 1.174 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
413 1.174 ad
414 1.177.2.2 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
415 1.174 ad
416 1.174 ad /*
417 1.177.2.18 rmind * Acquire the spc_mutex if necessary.
418 1.177.2.2 yamt */
419 1.177.2.2 yamt #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
420 1.177.2.18 rmind if (l->l_mutex != spc->spc_mutex) {
421 1.177.2.18 rmind mutex_enter(spc->spc_mutex);
422 1.177.2.2 yamt }
423 1.177.2.2 yamt #endif
424 1.177.2.14 rmind /*
425 1.177.2.16 rmind * Let sched_nextlwp() select the LWP to run the CPU next.
426 1.177.2.14 rmind * If no LWP is runnable, switch to the idle LWP.
427 1.177.2.14 rmind */
428 1.177.2.19 rmind newl = sched_nextlwp();
429 1.177.2.16 rmind if (newl) {
430 1.177.2.16 rmind sched_dequeue(newl);
431 1.177.2.16 rmind } else {
432 1.177.2.1 yamt newl = l->l_cpu->ci_data.cpu_idlelwp;
433 1.177.2.1 yamt KASSERT(newl != NULL);
434 1.177.2.1 yamt }
435 1.177.2.18 rmind KASSERT(lwp_locked(newl, spc->spc_mutex));
436 1.177.2.7 yamt newl->l_stat = LSONPROC;
437 1.177.2.7 yamt newl->l_cpu = l->l_cpu;
438 1.177.2.17 ad newl->l_flag |= LW_RUNNING;
439 1.177.2.2 yamt
440 1.177.2.2 yamt #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
441 1.177.2.18 rmind if (l->l_mutex != spc->spc_mutex) {
442 1.177.2.18 rmind mutex_exit(spc->spc_mutex);
443 1.177.2.2 yamt }
444 1.177.2.2 yamt #endif
445 1.177.2.2 yamt
446 1.177.2.3 yamt updatertime(l, spc);
447 1.177.2.1 yamt if (l != newl) {
448 1.177.2.1 yamt struct lwp *prevlwp;
449 1.177.2.1 yamt
450 1.177.2.20 ad /* Unlocked, but for statistics only. */
451 1.177.2.1 yamt uvmexp.swtch++;
452 1.177.2.20 ad
453 1.177.2.20 ad /* Save old VM context. */
454 1.177.2.1 yamt pmap_deactivate(l);
455 1.177.2.20 ad
456 1.177.2.20 ad /* Switch to the new LWP.. */
457 1.177.2.17 ad l->l_flag &= ~LW_RUNNING;
458 1.177.2.20 ad oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
459 1.177.2.1 yamt prevlwp = cpu_switchto(l, newl);
460 1.177.2.20 ad
461 1.177.2.20 ad /* .. we have switched. */
462 1.177.2.20 ad curlwp = l;
463 1.177.2.20 ad if (prevlwp != NULL) {
464 1.177.2.20 ad curcpu()->ci_mtx_oldspl = oldspl;
465 1.177.2.20 ad lwp_unlock(prevlwp);
466 1.177.2.20 ad } else {
467 1.177.2.20 ad splx(oldspl);
468 1.177.2.20 ad }
469 1.177.2.20 ad
470 1.177.2.20 ad /* Restore VM context. */
471 1.177.2.1 yamt pmap_activate(l);
472 1.177.2.1 yamt retval = 1;
473 1.177.2.1 yamt } else {
474 1.177.2.20 ad /* Nothing to do - just unlock and return. */
475 1.177.2.20 ad lwp_unlock(l);
476 1.122 thorpej retval = 0;
477 1.122 thorpej }
478 1.110 briggs
479 1.177.2.1 yamt KASSERT(l == curlwp);
480 1.177.2.1 yamt KASSERT(l->l_stat == LSONPROC);
481 1.177.2.1 yamt
482 1.110 briggs /*
483 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
484 1.26 cgd */
485 1.114 gmcgarry #if PERFCTRS
486 1.175 christos if (PMC_ENABLED(l->l_proc)) {
487 1.175 christos pmc_restore_context(l->l_proc);
488 1.166 christos }
489 1.114 gmcgarry #endif
490 1.110 briggs
491 1.110 briggs /*
492 1.76 thorpej * We're running again; record our new start time. We might
493 1.174 ad * be running on a new CPU now, so don't use the cached
494 1.76 thorpej * schedstate_percpu pointer.
495 1.76 thorpej */
496 1.177.2.10 yamt SYSCALL_TIME_WAKEUP(l);
497 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
498 1.177.2.20 ad LOCKDEBUG_BARRIER(NULL, 1);
499 1.169 yamt
500 1.122 thorpej return retval;
501 1.26 cgd }
502 1.26 cgd
503 1.26 cgd /*
504 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
505 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
506 1.174 ad *
507 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
508 1.26 cgd */
509 1.26 cgd void
510 1.122 thorpej setrunnable(struct lwp *l)
511 1.26 cgd {
512 1.122 thorpej struct proc *p = l->l_proc;
513 1.174 ad sigset_t *ss;
514 1.26 cgd
515 1.177.2.10 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
516 1.177.2.10 yamt KASSERT(mutex_owned(&p->p_smutex));
517 1.177.2.10 yamt KASSERT(lwp_locked(l, NULL));
518 1.83 thorpej
519 1.122 thorpej switch (l->l_stat) {
520 1.122 thorpej case LSSTOP:
521 1.33 mycroft /*
522 1.33 mycroft * If we're being traced (possibly because someone attached us
523 1.33 mycroft * while we were stopped), check for a signal from the debugger.
524 1.33 mycroft */
525 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
526 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
527 1.174 ad ss = &l->l_sigpend.sp_set;
528 1.174 ad else
529 1.174 ad ss = &p->p_sigpend.sp_set;
530 1.174 ad sigaddset(ss, p->p_xstat);
531 1.174 ad signotify(l);
532 1.53 mycroft }
533 1.174 ad p->p_nrlwps++;
534 1.26 cgd break;
535 1.174 ad case LSSUSPENDED:
536 1.177.2.10 yamt l->l_flag &= ~LW_WSUSPEND;
537 1.174 ad p->p_nrlwps++;
538 1.122 thorpej break;
539 1.174 ad case LSSLEEP:
540 1.174 ad KASSERT(l->l_wchan != NULL);
541 1.26 cgd break;
542 1.174 ad default:
543 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
544 1.26 cgd }
545 1.139 cl
546 1.174 ad /*
547 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
548 1.174 ad * again. If not, mark it as still sleeping.
549 1.174 ad */
550 1.174 ad if (l->l_wchan != NULL) {
551 1.174 ad l->l_stat = LSSLEEP;
552 1.177.2.10 yamt /* lwp_unsleep() will release the lock. */
553 1.177.2.10 yamt lwp_unsleep(l);
554 1.174 ad return;
555 1.174 ad }
556 1.139 cl
557 1.177.2.18 rmind LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
558 1.122 thorpej
559 1.174 ad /*
560 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
561 1.174 ad * about to call mi_switch(), in which case it will yield.
562 1.174 ad */
563 1.177.2.17 ad if ((l->l_flag & LW_RUNNING) != 0) {
564 1.174 ad l->l_stat = LSONPROC;
565 1.174 ad l->l_slptime = 0;
566 1.174 ad lwp_unlock(l);
567 1.174 ad return;
568 1.174 ad }
569 1.122 thorpej
570 1.174 ad /*
571 1.174 ad * Set the LWP runnable. If it's swapped out, we need to wake the swapper
572 1.174 ad * to bring it back in. Otherwise, enter it into a run queue.
573 1.174 ad */
574 1.177.2.5 rmind sched_setrunnable(l);
575 1.174 ad l->l_stat = LSRUN;
576 1.122 thorpej l->l_slptime = 0;
577 1.174 ad
578 1.177.2.10 yamt if (l->l_flag & LW_INMEM) {
579 1.177.2.16 rmind sched_enqueue(l, false);
580 1.177.2.10 yamt resched_cpu(l);
581 1.174 ad lwp_unlock(l);
582 1.174 ad } else {
583 1.174 ad lwp_unlock(l);
584 1.177 ad uvm_kick_scheduler();
585 1.174 ad }
586 1.26 cgd }
587 1.26 cgd
588 1.174 ad /*
589 1.174 ad * suspendsched:
590 1.174 ad *
591 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
592 1.174 ad */
593 1.94 bouyer void
594 1.174 ad suspendsched(void)
595 1.94 bouyer {
596 1.174 ad #ifdef MULTIPROCESSOR
597 1.174 ad CPU_INFO_ITERATOR cii;
598 1.174 ad struct cpu_info *ci;
599 1.174 ad #endif
600 1.122 thorpej struct lwp *l;
601 1.174 ad struct proc *p;
602 1.94 bouyer
603 1.94 bouyer /*
604 1.174 ad * We do this by process in order not to violate the locking rules.
605 1.94 bouyer */
606 1.174 ad mutex_enter(&proclist_mutex);
607 1.174 ad PROCLIST_FOREACH(p, &allproc) {
608 1.174 ad mutex_enter(&p->p_smutex);
609 1.174 ad
610 1.177.2.10 yamt if ((p->p_flag & PK_SYSTEM) != 0) {
611 1.174 ad mutex_exit(&p->p_smutex);
612 1.94 bouyer continue;
613 1.174 ad }
614 1.174 ad
615 1.174 ad p->p_stat = SSTOP;
616 1.174 ad
617 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
618 1.174 ad if (l == curlwp)
619 1.174 ad continue;
620 1.174 ad
621 1.174 ad lwp_lock(l);
622 1.122 thorpej
623 1.97 enami /*
624 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
625 1.174 ad * when it tries to return to user mode. We want to
626 1.174 ad * try and get to get as many LWPs as possible to
627 1.174 ad * the user / kernel boundary, so that they will
628 1.174 ad * release any locks that they hold.
629 1.97 enami */
630 1.177.2.10 yamt l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
631 1.174 ad
632 1.174 ad if (l->l_stat == LSSLEEP &&
633 1.177.2.10 yamt (l->l_flag & LW_SINTR) != 0) {
634 1.174 ad /* setrunnable() will release the lock. */
635 1.174 ad setrunnable(l);
636 1.174 ad continue;
637 1.174 ad }
638 1.174 ad
639 1.174 ad lwp_unlock(l);
640 1.94 bouyer }
641 1.174 ad
642 1.174 ad mutex_exit(&p->p_smutex);
643 1.94 bouyer }
644 1.174 ad mutex_exit(&proclist_mutex);
645 1.174 ad
646 1.174 ad /*
647 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
648 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
649 1.174 ad */
650 1.174 ad #ifdef MULTIPROCESSOR
651 1.174 ad for (CPU_INFO_FOREACH(cii, ci))
652 1.177.2.9 yamt cpu_need_resched(ci, 0);
653 1.174 ad #else
654 1.177.2.9 yamt cpu_need_resched(curcpu(), 0);
655 1.174 ad #endif
656 1.94 bouyer }
657 1.113 gmcgarry
658 1.113 gmcgarry /*
659 1.174 ad * sched_kpri:
660 1.174 ad *
661 1.174 ad * Scale a priority level to a kernel priority level, usually
662 1.174 ad * for an LWP that is about to sleep.
663 1.174 ad */
664 1.177.2.10 yamt pri_t
665 1.174 ad sched_kpri(struct lwp *l)
666 1.174 ad {
667 1.174 ad /*
668 1.174 ad * Scale user priorities (127 -> 50) up to kernel priorities
669 1.174 ad * in the range (49 -> 8). Reserve the top 8 kernel priorities
670 1.174 ad * for high priority kthreads. Kernel priorities passed in
671 1.174 ad * are left "as is". XXX This is somewhat arbitrary.
672 1.174 ad */
673 1.174 ad static const uint8_t kpri_tab[] = {
674 1.174 ad 0, 1, 2, 3, 4, 5, 6, 7,
675 1.174 ad 8, 9, 10, 11, 12, 13, 14, 15,
676 1.174 ad 16, 17, 18, 19, 20, 21, 22, 23,
677 1.174 ad 24, 25, 26, 27, 28, 29, 30, 31,
678 1.174 ad 32, 33, 34, 35, 36, 37, 38, 39,
679 1.174 ad 40, 41, 42, 43, 44, 45, 46, 47,
680 1.174 ad 48, 49, 8, 8, 9, 9, 10, 10,
681 1.174 ad 11, 11, 12, 12, 13, 14, 14, 15,
682 1.174 ad 15, 16, 16, 17, 17, 18, 18, 19,
683 1.174 ad 20, 20, 21, 21, 22, 22, 23, 23,
684 1.174 ad 24, 24, 25, 26, 26, 27, 27, 28,
685 1.174 ad 28, 29, 29, 30, 30, 31, 32, 32,
686 1.174 ad 33, 33, 34, 34, 35, 35, 36, 36,
687 1.174 ad 37, 38, 38, 39, 39, 40, 40, 41,
688 1.174 ad 41, 42, 42, 43, 44, 44, 45, 45,
689 1.174 ad 46, 46, 47, 47, 48, 48, 49, 49,
690 1.174 ad };
691 1.174 ad
692 1.177.2.10 yamt return (pri_t)kpri_tab[l->l_usrpri];
693 1.174 ad }
694 1.174 ad
695 1.174 ad /*
696 1.174 ad * sched_unsleep:
697 1.174 ad *
698 1.174 ad * The is called when the LWP has not been awoken normally but instead
699 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
700 1.174 ad * it's not a valid action for running or idle LWPs.
701 1.174 ad */
702 1.177.2.10 yamt static void
703 1.174 ad sched_unsleep(struct lwp *l)
704 1.174 ad {
705 1.174 ad
706 1.174 ad lwp_unlock(l);
707 1.174 ad panic("sched_unsleep");
708 1.174 ad }
709 1.174 ad
710 1.177.2.5 rmind inline void
711 1.177.2.10 yamt resched_cpu(struct lwp *l)
712 1.174 ad {
713 1.177.2.5 rmind struct cpu_info *ci;
714 1.177.2.10 yamt const pri_t pri = lwp_eprio(l);
715 1.174 ad
716 1.177.2.5 rmind /*
717 1.177.2.5 rmind * XXXSMP
718 1.177.2.5 rmind * Since l->l_cpu persists across a context switch,
719 1.177.2.5 rmind * this gives us *very weak* processor affinity, in
720 1.177.2.5 rmind * that we notify the CPU on which the process last
721 1.177.2.5 rmind * ran that it should try to switch.
722 1.177.2.5 rmind *
723 1.177.2.5 rmind * This does not guarantee that the process will run on
724 1.177.2.5 rmind * that processor next, because another processor might
725 1.177.2.5 rmind * grab it the next time it performs a context switch.
726 1.177.2.5 rmind *
727 1.177.2.5 rmind * This also does not handle the case where its last
728 1.177.2.5 rmind * CPU is running a higher-priority process, but every
729 1.177.2.5 rmind * other CPU is running a lower-priority process. There
730 1.177.2.5 rmind * are ways to handle this situation, but they're not
731 1.177.2.5 rmind * currently very pretty, and we also need to weigh the
732 1.177.2.5 rmind * cost of moving a process from one CPU to another.
733 1.177.2.5 rmind */
734 1.177.2.5 rmind ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
735 1.177.2.5 rmind if (pri < ci->ci_schedstate.spc_curpriority)
736 1.177.2.9 yamt cpu_need_resched(ci, 0);
737 1.177.2.1 yamt }
738 1.177.2.10 yamt
739 1.177.2.10 yamt static void
740 1.177.2.10 yamt sched_changepri(struct lwp *l, pri_t pri)
741 1.177.2.10 yamt {
742 1.177.2.10 yamt
743 1.177.2.18 rmind LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
744 1.177.2.10 yamt
745 1.177.2.10 yamt l->l_usrpri = pri;
746 1.177.2.10 yamt if (l->l_priority < PUSER)
747 1.177.2.10 yamt return;
748 1.177.2.10 yamt
749 1.177.2.10 yamt if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
750 1.177.2.10 yamt l->l_priority = pri;
751 1.177.2.10 yamt return;
752 1.177.2.10 yamt }
753 1.177.2.10 yamt
754 1.177.2.11 yamt sched_dequeue(l);
755 1.177.2.10 yamt l->l_priority = pri;
756 1.177.2.16 rmind sched_enqueue(l, false);
757 1.177.2.10 yamt resched_cpu(l);
758 1.177.2.10 yamt }
759 1.177.2.10 yamt
760 1.177.2.10 yamt static void
761 1.177.2.11 yamt sched_lendpri(struct lwp *l, pri_t pri)
762 1.177.2.10 yamt {
763 1.177.2.10 yamt
764 1.177.2.18 rmind LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
765 1.177.2.10 yamt
766 1.177.2.10 yamt if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
767 1.177.2.10 yamt l->l_inheritedprio = pri;
768 1.177.2.10 yamt return;
769 1.177.2.10 yamt }
770 1.177.2.10 yamt
771 1.177.2.11 yamt sched_dequeue(l);
772 1.177.2.10 yamt l->l_inheritedprio = pri;
773 1.177.2.16 rmind sched_enqueue(l, false);
774 1.177.2.10 yamt resched_cpu(l);
775 1.177.2.10 yamt }
776 1.177.2.10 yamt
777 1.177.2.10 yamt struct lwp *
778 1.177.2.10 yamt syncobj_noowner(wchan_t wchan)
779 1.177.2.10 yamt {
780 1.177.2.10 yamt
781 1.177.2.10 yamt return NULL;
782 1.177.2.10 yamt }
783 1.177.2.21 rmind
784 1.177.2.21 rmind
785 1.177.2.21 rmind /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
786 1.177.2.21 rmind fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
787 1.177.2.21 rmind
788 1.177.2.21 rmind /*
789 1.177.2.21 rmind * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
790 1.177.2.21 rmind * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
791 1.177.2.21 rmind * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
792 1.177.2.21 rmind *
793 1.177.2.21 rmind * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
794 1.177.2.21 rmind * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
795 1.177.2.21 rmind *
796 1.177.2.21 rmind * If you dont want to bother with the faster/more-accurate formula, you
797 1.177.2.21 rmind * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
798 1.177.2.21 rmind * (more general) method of calculating the %age of CPU used by a process.
799 1.177.2.21 rmind */
800 1.177.2.21 rmind #define CCPU_SHIFT (FSHIFT + 1)
801 1.177.2.21 rmind
802 1.177.2.21 rmind /*
803 1.177.2.21 rmind * sched_pstats:
804 1.177.2.21 rmind *
805 1.177.2.21 rmind * Update process statistics and check CPU resource allocation.
806 1.177.2.21 rmind * Call scheduler-specific hook to eventually adjust process/LWP
807 1.177.2.21 rmind * priorities.
808 1.177.2.21 rmind *
809 1.177.2.21 rmind * XXXSMP This needs to be reorganised in order to reduce the locking
810 1.177.2.21 rmind * burden.
811 1.177.2.21 rmind */
812 1.177.2.21 rmind /* ARGSUSED */
813 1.177.2.21 rmind void
814 1.177.2.21 rmind sched_pstats(void *arg)
815 1.177.2.21 rmind {
816 1.177.2.21 rmind struct rlimit *rlim;
817 1.177.2.21 rmind struct lwp *l;
818 1.177.2.21 rmind struct proc *p;
819 1.177.2.21 rmind int minslp, sig, clkhz;
820 1.177.2.21 rmind long runtm;
821 1.177.2.21 rmind
822 1.177.2.21 rmind sched_pstats_ticks++;
823 1.177.2.21 rmind
824 1.177.2.21 rmind mutex_enter(&proclist_mutex);
825 1.177.2.21 rmind PROCLIST_FOREACH(p, &allproc) {
826 1.177.2.21 rmind /*
827 1.177.2.21 rmind * Increment time in/out of memory and sleep time (if
828 1.177.2.21 rmind * sleeping). We ignore overflow; with 16-bit int's
829 1.177.2.21 rmind * (remember them?) overflow takes 45 days.
830 1.177.2.21 rmind */
831 1.177.2.21 rmind minslp = 2;
832 1.177.2.21 rmind mutex_enter(&p->p_smutex);
833 1.177.2.21 rmind runtm = p->p_rtime.tv_sec;
834 1.177.2.21 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
835 1.177.2.21 rmind if ((l->l_flag & LW_IDLE) != 0)
836 1.177.2.21 rmind continue;
837 1.177.2.21 rmind lwp_lock(l);
838 1.177.2.21 rmind runtm += l->l_rtime.tv_sec;
839 1.177.2.21 rmind l->l_swtime++;
840 1.177.2.21 rmind if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
841 1.177.2.21 rmind l->l_stat == LSSUSPENDED) {
842 1.177.2.21 rmind l->l_slptime++;
843 1.177.2.21 rmind minslp = min(minslp, l->l_slptime);
844 1.177.2.21 rmind } else
845 1.177.2.21 rmind minslp = 0;
846 1.177.2.21 rmind lwp_unlock(l);
847 1.177.2.21 rmind }
848 1.177.2.21 rmind
849 1.177.2.21 rmind /*
850 1.177.2.21 rmind * Check if the process exceeds its CPU resource allocation.
851 1.177.2.21 rmind * If over max, kill it.
852 1.177.2.21 rmind */
853 1.177.2.21 rmind rlim = &p->p_rlimit[RLIMIT_CPU];
854 1.177.2.21 rmind sig = 0;
855 1.177.2.21 rmind if (runtm >= rlim->rlim_cur) {
856 1.177.2.21 rmind if (runtm >= rlim->rlim_max)
857 1.177.2.21 rmind sig = SIGKILL;
858 1.177.2.21 rmind else {
859 1.177.2.21 rmind sig = SIGXCPU;
860 1.177.2.21 rmind if (rlim->rlim_cur < rlim->rlim_max)
861 1.177.2.21 rmind rlim->rlim_cur += 5;
862 1.177.2.21 rmind }
863 1.177.2.21 rmind }
864 1.177.2.21 rmind
865 1.177.2.21 rmind mutex_spin_enter(&p->p_stmutex);
866 1.177.2.21 rmind if (minslp < 1) {
867 1.177.2.21 rmind /*
868 1.177.2.21 rmind * p_pctcpu is only for ps.
869 1.177.2.21 rmind */
870 1.177.2.21 rmind p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
871 1.177.2.21 rmind clkhz = stathz != 0 ? stathz : hz;
872 1.177.2.21 rmind #if (FSHIFT >= CCPU_SHIFT)
873 1.177.2.21 rmind p->p_pctcpu += (clkhz == 100)?
874 1.177.2.21 rmind ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
875 1.177.2.21 rmind 100 * (((fixpt_t) p->p_cpticks)
876 1.177.2.21 rmind << (FSHIFT - CCPU_SHIFT)) / clkhz;
877 1.177.2.21 rmind #else
878 1.177.2.21 rmind p->p_pctcpu += ((FSCALE - ccpu) *
879 1.177.2.21 rmind (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
880 1.177.2.21 rmind #endif
881 1.177.2.21 rmind p->p_cpticks = 0;
882 1.177.2.21 rmind }
883 1.177.2.21 rmind
884 1.177.2.21 rmind sched_pstats_hook(p, minslp);
885 1.177.2.21 rmind mutex_spin_exit(&p->p_stmutex);
886 1.177.2.21 rmind mutex_exit(&p->p_smutex);
887 1.177.2.21 rmind if (sig) {
888 1.177.2.21 rmind psignal(p, sig);
889 1.177.2.21 rmind }
890 1.177.2.21 rmind }
891 1.177.2.21 rmind mutex_exit(&proclist_mutex);
892 1.177.2.21 rmind uvm_meter();
893 1.177.2.21 rmind wakeup(&lbolt);
894 1.177.2.21 rmind callout_schedule(&sched_pstats_ch, hz);
895 1.177.2.21 rmind }
896