kern_synch.c revision 1.177.2.7 1 1.177.2.6 yamt /* $NetBSD: kern_synch.c,v 1.177.2.7 2007/02/23 11:55:43 yamt Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.174 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.177.2.5 rmind * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.177.2.5 rmind * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
21 1.63 thorpej * must display the following acknowledgement:
22 1.63 thorpej * This product includes software developed by the NetBSD
23 1.63 thorpej * Foundation, Inc. and its contributors.
24 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.63 thorpej * contributors may be used to endorse or promote products derived
26 1.63 thorpej * from this software without specific prior written permission.
27 1.63 thorpej *
28 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
39 1.63 thorpej */
40 1.26 cgd
41 1.26 cgd /*-
42 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.26 cgd * The Regents of the University of California. All rights reserved.
44 1.26 cgd * (c) UNIX System Laboratories, Inc.
45 1.26 cgd * All or some portions of this file are derived from material licensed
46 1.26 cgd * to the University of California by American Telephone and Telegraph
47 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.26 cgd * the permission of UNIX System Laboratories, Inc.
49 1.26 cgd *
50 1.26 cgd * Redistribution and use in source and binary forms, with or without
51 1.26 cgd * modification, are permitted provided that the following conditions
52 1.26 cgd * are met:
53 1.26 cgd * 1. Redistributions of source code must retain the above copyright
54 1.26 cgd * notice, this list of conditions and the following disclaimer.
55 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
56 1.26 cgd * notice, this list of conditions and the following disclaimer in the
57 1.26 cgd * documentation and/or other materials provided with the distribution.
58 1.136 agc * 3. Neither the name of the University nor the names of its contributors
59 1.26 cgd * may be used to endorse or promote products derived from this software
60 1.26 cgd * without specific prior written permission.
61 1.26 cgd *
62 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.26 cgd * SUCH DAMAGE.
73 1.26 cgd *
74 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.26 cgd */
76 1.106 lukem
77 1.106 lukem #include <sys/cdefs.h>
78 1.177.2.6 yamt __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.177.2.7 2007/02/23 11:55:43 yamt Exp $");
79 1.48 mrg
80 1.109 yamt #include "opt_kstack.h"
81 1.82 thorpej #include "opt_lockdebug.h"
82 1.83 thorpej #include "opt_multiprocessor.h"
83 1.110 briggs #include "opt_perfctrs.h"
84 1.26 cgd
85 1.174 ad #define __MUTEX_PRIVATE
86 1.174 ad
87 1.26 cgd #include <sys/param.h>
88 1.26 cgd #include <sys/systm.h>
89 1.26 cgd #include <sys/proc.h>
90 1.26 cgd #include <sys/kernel.h>
91 1.111 briggs #if defined(PERFCTRS)
92 1.110 briggs #include <sys/pmc.h>
93 1.111 briggs #endif
94 1.26 cgd #include <sys/resourcevar.h>
95 1.55 ross #include <sys/sched.h>
96 1.174 ad #include <sys/sleepq.h>
97 1.174 ad #include <sys/lockdebug.h>
98 1.47 mrg
99 1.47 mrg #include <uvm/uvm_extern.h>
100 1.47 mrg
101 1.26 cgd #include <machine/cpu.h>
102 1.34 christos
103 1.26 cgd int lbolt; /* once a second sleep address */
104 1.26 cgd
105 1.152 yamt /*
106 1.73 thorpej * The global scheduler state.
107 1.73 thorpej */
108 1.174 ad kmutex_t sched_mutex; /* global sched state mutex */
109 1.34 christos
110 1.174 ad void sched_unsleep(struct lwp *);
111 1.122 thorpej
112 1.174 ad syncobj_t sleep_syncobj = {
113 1.174 ad SOBJ_SLEEPQ_SORTED,
114 1.174 ad sleepq_unsleep,
115 1.174 ad sleepq_changepri
116 1.174 ad };
117 1.174 ad
118 1.174 ad syncobj_t sched_syncobj = {
119 1.174 ad SOBJ_SLEEPQ_SORTED,
120 1.174 ad sched_unsleep,
121 1.174 ad sched_changepri
122 1.174 ad };
123 1.122 thorpej
124 1.26 cgd /*
125 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
126 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
127 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
128 1.174 ad * maintained in the machine-dependent layers. This priority will typically
129 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
130 1.174 ad * it can be made higher to block network software interrupts after panics.
131 1.26 cgd */
132 1.174 ad int safepri;
133 1.26 cgd
134 1.26 cgd /*
135 1.174 ad * OBSOLETE INTERFACE
136 1.174 ad *
137 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
138 1.26 cgd * performed on the specified identifier. The process will then be made
139 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
140 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
141 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
142 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
143 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
144 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
145 1.26 cgd * call should be interrupted by the signal (return EINTR).
146 1.77 thorpej *
147 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
148 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
149 1.174 ad * is specified, in which case the interlock will always be unlocked upon
150 1.174 ad * return.
151 1.26 cgd */
152 1.26 cgd int
153 1.174 ad ltsleep(wchan_t ident, int priority, const char *wmesg, int timo,
154 1.174 ad volatile struct simplelock *interlock)
155 1.26 cgd {
156 1.122 thorpej struct lwp *l = curlwp;
157 1.174 ad sleepq_t *sq;
158 1.174 ad int error, catch;
159 1.26 cgd
160 1.174 ad if (sleepq_dontsleep(l)) {
161 1.174 ad (void)sleepq_abort(NULL, 0);
162 1.174 ad if ((priority & PNORELOCK) != 0)
163 1.77 thorpej simple_unlock(interlock);
164 1.174 ad return 0;
165 1.26 cgd }
166 1.78 sommerfe
167 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
168 1.174 ad sleepq_enter(sq, l);
169 1.42 cgd
170 1.174 ad if (interlock != NULL) {
171 1.174 ad LOCK_ASSERT(simple_lock_held(interlock));
172 1.174 ad simple_unlock(interlock);
173 1.150 chs }
174 1.150 chs
175 1.174 ad catch = priority & PCATCH;
176 1.174 ad sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
177 1.174 ad &sleep_syncobj);
178 1.174 ad error = sleepq_unblock(timo, catch);
179 1.126 pk
180 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
181 1.126 pk simple_lock(interlock);
182 1.174 ad
183 1.174 ad return error;
184 1.26 cgd }
185 1.26 cgd
186 1.26 cgd /*
187 1.174 ad * General sleep call for situations where a wake-up is not expected.
188 1.26 cgd */
189 1.174 ad int
190 1.174 ad kpause(const char *wmesg, boolean_t intr, int timo, kmutex_t *mtx)
191 1.26 cgd {
192 1.174 ad struct lwp *l = curlwp;
193 1.174 ad sleepq_t *sq;
194 1.174 ad int error;
195 1.26 cgd
196 1.174 ad if (sleepq_dontsleep(l))
197 1.174 ad return sleepq_abort(NULL, 0);
198 1.26 cgd
199 1.174 ad if (mtx != NULL)
200 1.174 ad mutex_exit(mtx);
201 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
202 1.174 ad sleepq_enter(sq, l);
203 1.174 ad sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
204 1.174 ad error = sleepq_unblock(timo, intr);
205 1.174 ad if (mtx != NULL)
206 1.174 ad mutex_enter(mtx);
207 1.83 thorpej
208 1.174 ad return error;
209 1.139 cl }
210 1.139 cl
211 1.26 cgd /*
212 1.174 ad * OBSOLETE INTERFACE
213 1.174 ad *
214 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
215 1.26 cgd */
216 1.26 cgd void
217 1.174 ad wakeup(wchan_t ident)
218 1.26 cgd {
219 1.174 ad sleepq_t *sq;
220 1.83 thorpej
221 1.174 ad if (cold)
222 1.174 ad return;
223 1.83 thorpej
224 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
225 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
226 1.63 thorpej }
227 1.63 thorpej
228 1.63 thorpej /*
229 1.174 ad * OBSOLETE INTERFACE
230 1.174 ad *
231 1.63 thorpej * Make the highest priority process first in line on the specified
232 1.63 thorpej * identifier runnable.
233 1.63 thorpej */
234 1.174 ad void
235 1.174 ad wakeup_one(wchan_t ident)
236 1.63 thorpej {
237 1.174 ad sleepq_t *sq;
238 1.63 thorpej
239 1.174 ad if (cold)
240 1.174 ad return;
241 1.174 ad
242 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
243 1.174 ad sleepq_wake(sq, ident, 1);
244 1.174 ad }
245 1.63 thorpej
246 1.117 gmcgarry
247 1.117 gmcgarry /*
248 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
249 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
250 1.117 gmcgarry * current process explicitly requests it (eg sched_yield(2) in compat code).
251 1.117 gmcgarry */
252 1.117 gmcgarry void
253 1.117 gmcgarry yield(void)
254 1.117 gmcgarry {
255 1.122 thorpej struct lwp *l = curlwp;
256 1.117 gmcgarry
257 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
258 1.174 ad lwp_lock(l);
259 1.174 ad if (l->l_stat == LSONPROC) {
260 1.174 ad KASSERT(lwp_locked(l, &sched_mutex));
261 1.174 ad l->l_priority = l->l_usrpri;
262 1.174 ad }
263 1.174 ad l->l_nvcsw++;
264 1.122 thorpej mi_switch(l, NULL);
265 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
266 1.69 thorpej }
267 1.69 thorpej
268 1.69 thorpej /*
269 1.69 thorpej * General preemption call. Puts the current process back on its run queue
270 1.156 rpaulo * and performs an involuntary context switch.
271 1.69 thorpej */
272 1.69 thorpej void
273 1.174 ad preempt(void)
274 1.69 thorpej {
275 1.122 thorpej struct lwp *l = curlwp;
276 1.69 thorpej
277 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
278 1.174 ad lwp_lock(l);
279 1.174 ad if (l->l_stat == LSONPROC) {
280 1.174 ad KASSERT(lwp_locked(l, &sched_mutex));
281 1.174 ad l->l_priority = l->l_usrpri;
282 1.174 ad }
283 1.174 ad l->l_nivcsw++;
284 1.174 ad (void)mi_switch(l, NULL);
285 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
286 1.69 thorpej }
287 1.69 thorpej
288 1.69 thorpej /*
289 1.177.2.1 yamt * sched_switch_unlock: update 'curlwp' and release old lwp.
290 1.177.2.1 yamt */
291 1.177.2.1 yamt
292 1.177.2.1 yamt void
293 1.177.2.1 yamt sched_switch_unlock(struct lwp *old, struct lwp *new)
294 1.177.2.1 yamt {
295 1.177.2.1 yamt
296 1.177.2.1 yamt KASSERT(old == NULL || old == curlwp);
297 1.177.2.1 yamt
298 1.177.2.1 yamt if (old != NULL) {
299 1.177.2.4 yamt LOCKDEBUG_BARRIER(old->l_mutex, 1);
300 1.177.2.1 yamt } else {
301 1.177.2.1 yamt LOCKDEBUG_BARRIER(NULL, 1);
302 1.177.2.1 yamt }
303 1.177.2.1 yamt
304 1.177.2.1 yamt curlwp = new;
305 1.177.2.1 yamt if (old != NULL) {
306 1.177.2.2 yamt lwp_unlock(old);
307 1.177.2.1 yamt }
308 1.177.2.1 yamt spl0();
309 1.177.2.1 yamt }
310 1.177.2.1 yamt
311 1.177.2.1 yamt /*
312 1.177.2.3 yamt * Compute the amount of time during which the current lwp was running.
313 1.177.2.3 yamt *
314 1.177.2.3 yamt * - update l_rtime unless it's an idle lwp.
315 1.177.2.3 yamt * - update spc_runtime for the next lwp.
316 1.177.2.3 yamt */
317 1.177.2.3 yamt
318 1.177.2.3 yamt static inline void
319 1.177.2.3 yamt updatertime(struct lwp *l, struct schedstate_percpu *spc)
320 1.177.2.3 yamt {
321 1.177.2.3 yamt struct timeval tv;
322 1.177.2.3 yamt long s, u;
323 1.177.2.3 yamt
324 1.177.2.3 yamt if ((l->l_flag & L_IDLE) != 0) {
325 1.177.2.3 yamt microtime(&spc->spc_runtime);
326 1.177.2.3 yamt return;
327 1.177.2.3 yamt }
328 1.177.2.3 yamt
329 1.177.2.3 yamt microtime(&tv);
330 1.177.2.3 yamt u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
331 1.177.2.3 yamt s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
332 1.177.2.3 yamt if (u < 0) {
333 1.177.2.3 yamt u += 1000000;
334 1.177.2.3 yamt s--;
335 1.177.2.3 yamt } else if (u >= 1000000) {
336 1.177.2.3 yamt u -= 1000000;
337 1.177.2.3 yamt s++;
338 1.177.2.3 yamt }
339 1.177.2.3 yamt l->l_rtime.tv_usec = u;
340 1.177.2.3 yamt l->l_rtime.tv_sec = s;
341 1.177.2.3 yamt
342 1.177.2.3 yamt spc->spc_runtime = tv;
343 1.177.2.3 yamt }
344 1.177.2.3 yamt
345 1.177.2.3 yamt /*
346 1.174 ad * The machine independent parts of context switch. Switch to "new"
347 1.174 ad * if non-NULL, otherwise let cpu_switch choose the next lwp.
348 1.130 nathanw *
349 1.122 thorpej * Returns 1 if another process was actually run.
350 1.26 cgd */
351 1.122 thorpej int
352 1.122 thorpej mi_switch(struct lwp *l, struct lwp *newl)
353 1.26 cgd {
354 1.76 thorpej struct schedstate_percpu *spc;
355 1.174 ad int retval, oldspl;
356 1.26 cgd
357 1.174 ad LOCK_ASSERT(lwp_locked(l, NULL));
358 1.174 ad
359 1.174 ad #ifdef LOCKDEBUG
360 1.174 ad spinlock_switchcheck();
361 1.174 ad simple_lock_switchcheck();
362 1.174 ad #endif
363 1.174 ad #ifdef KSTACK_CHECK_MAGIC
364 1.174 ad kstack_check_magic(l);
365 1.174 ad #endif
366 1.83 thorpej
367 1.90 sommerfe /*
368 1.174 ad * It's safe to read the per CPU schedstate unlocked here, as all we
369 1.174 ad * are after is the run time and that's guarenteed to have been last
370 1.174 ad * updated by this CPU.
371 1.90 sommerfe */
372 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
373 1.122 thorpej spc = &l->l_cpu->ci_schedstate;
374 1.76 thorpej
375 1.26 cgd /*
376 1.174 ad * XXXSMP If we are using h/w performance counters, save context.
377 1.69 thorpej */
378 1.174 ad #if PERFCTRS
379 1.175 christos if (PMC_ENABLED(l->l_proc)) {
380 1.175 christos pmc_save_context(l->l_proc);
381 1.174 ad }
382 1.109 yamt #endif
383 1.26 cgd
384 1.113 gmcgarry /*
385 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
386 1.113 gmcgarry */
387 1.174 ad KASSERT(l->l_stat != LSRUN);
388 1.174 ad if (l->l_stat == LSONPROC) {
389 1.174 ad KASSERT(lwp_locked(l, &sched_mutex));
390 1.174 ad l->l_stat = LSRUN;
391 1.177.2.1 yamt if ((l->l_flag & L_IDLE) == 0) {
392 1.177.2.5 rmind sched_enqueue(l);
393 1.177.2.1 yamt }
394 1.174 ad }
395 1.114 gmcgarry uvmexp.swtch++;
396 1.174 ad
397 1.174 ad /*
398 1.174 ad * Process is about to yield the CPU; clear the appropriate
399 1.174 ad * scheduling flags.
400 1.174 ad */
401 1.174 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
402 1.174 ad
403 1.177.2.2 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
404 1.174 ad
405 1.174 ad /*
406 1.177.2.1 yamt * Switch to the new LWP if necessary.
407 1.177.2.1 yamt * When we run again, we'll return back here.
408 1.174 ad */
409 1.174 ad oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
410 1.174 ad
411 1.177.2.2 yamt /*
412 1.177.2.2 yamt * Acquire the sched_mutex if necessary.
413 1.177.2.2 yamt */
414 1.177.2.2 yamt #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
415 1.177.2.2 yamt if (l->l_mutex != &sched_mutex) {
416 1.177.2.2 yamt mutex_enter(&sched_mutex);
417 1.177.2.2 yamt }
418 1.177.2.2 yamt #endif
419 1.177.2.2 yamt
420 1.177.2.1 yamt if (newl == NULL) {
421 1.177.2.5 rmind newl = sched_nextlwp();
422 1.177.2.1 yamt }
423 1.177.2.1 yamt if (newl != NULL) {
424 1.174 ad KASSERT(lwp_locked(newl, &sched_mutex));
425 1.177.2.5 rmind sched_dequeue(newl);
426 1.177.2.1 yamt } else {
427 1.177.2.1 yamt newl = l->l_cpu->ci_data.cpu_idlelwp;
428 1.177.2.1 yamt KASSERT(newl != NULL);
429 1.177.2.1 yamt }
430 1.177.2.7 yamt KASSERT(lwp_locked(newl, &sched_mutex));
431 1.177.2.7 yamt newl->l_stat = LSONPROC;
432 1.177.2.7 yamt newl->l_cpu = l->l_cpu;
433 1.177.2.2 yamt
434 1.177.2.2 yamt #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
435 1.177.2.2 yamt if (l->l_mutex != &sched_mutex) {
436 1.177.2.2 yamt mutex_exit(&sched_mutex);
437 1.177.2.2 yamt }
438 1.177.2.2 yamt #endif
439 1.177.2.2 yamt
440 1.177.2.3 yamt updatertime(l, spc);
441 1.177.2.1 yamt if (l != newl) {
442 1.177.2.1 yamt struct lwp *prevlwp;
443 1.177.2.1 yamt
444 1.177.2.1 yamt uvmexp.swtch++;
445 1.177.2.1 yamt pmap_deactivate(l);
446 1.177.2.1 yamt prevlwp = cpu_switchto(l, newl);
447 1.177.2.1 yamt sched_switch_unlock(prevlwp, l);
448 1.177.2.1 yamt pmap_activate(l);
449 1.177.2.1 yamt retval = 1;
450 1.177.2.1 yamt } else {
451 1.177.2.1 yamt sched_switch_unlock(l, l);
452 1.122 thorpej retval = 0;
453 1.122 thorpej }
454 1.110 briggs
455 1.177.2.1 yamt KASSERT(l == curlwp);
456 1.177.2.1 yamt KASSERT(l->l_stat == LSONPROC);
457 1.177.2.1 yamt
458 1.110 briggs /*
459 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
460 1.26 cgd */
461 1.114 gmcgarry #if PERFCTRS
462 1.175 christos if (PMC_ENABLED(l->l_proc)) {
463 1.175 christos pmc_restore_context(l->l_proc);
464 1.166 christos }
465 1.114 gmcgarry #endif
466 1.110 briggs
467 1.110 briggs /*
468 1.76 thorpej * We're running again; record our new start time. We might
469 1.174 ad * be running on a new CPU now, so don't use the cached
470 1.76 thorpej * schedstate_percpu pointer.
471 1.76 thorpej */
472 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
473 1.169 yamt
474 1.177.2.1 yamt (void)splsched();
475 1.177.2.1 yamt splx(oldspl);
476 1.122 thorpej return retval;
477 1.26 cgd }
478 1.26 cgd
479 1.26 cgd /*
480 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
481 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
482 1.174 ad *
483 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
484 1.26 cgd */
485 1.26 cgd void
486 1.122 thorpej setrunnable(struct lwp *l)
487 1.26 cgd {
488 1.122 thorpej struct proc *p = l->l_proc;
489 1.174 ad sigset_t *ss;
490 1.26 cgd
491 1.177.2.1 yamt KASSERT((l->l_flag & L_IDLE) == 0);
492 1.174 ad LOCK_ASSERT(mutex_owned(&p->p_smutex));
493 1.174 ad LOCK_ASSERT(lwp_locked(l, NULL));
494 1.83 thorpej
495 1.122 thorpej switch (l->l_stat) {
496 1.122 thorpej case LSSTOP:
497 1.33 mycroft /*
498 1.33 mycroft * If we're being traced (possibly because someone attached us
499 1.33 mycroft * while we were stopped), check for a signal from the debugger.
500 1.33 mycroft */
501 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
502 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
503 1.174 ad ss = &l->l_sigpend.sp_set;
504 1.174 ad else
505 1.174 ad ss = &p->p_sigpend.sp_set;
506 1.174 ad sigaddset(ss, p->p_xstat);
507 1.174 ad signotify(l);
508 1.53 mycroft }
509 1.174 ad p->p_nrlwps++;
510 1.26 cgd break;
511 1.174 ad case LSSUSPENDED:
512 1.174 ad l->l_flag &= ~L_WSUSPEND;
513 1.174 ad p->p_nrlwps++;
514 1.122 thorpej break;
515 1.174 ad case LSSLEEP:
516 1.174 ad KASSERT(l->l_wchan != NULL);
517 1.26 cgd break;
518 1.174 ad default:
519 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
520 1.26 cgd }
521 1.139 cl
522 1.174 ad /*
523 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
524 1.174 ad * again. If not, mark it as still sleeping.
525 1.174 ad */
526 1.174 ad if (l->l_wchan != NULL) {
527 1.174 ad l->l_stat = LSSLEEP;
528 1.174 ad if ((l->l_flag & L_SINTR) != 0)
529 1.174 ad lwp_unsleep(l);
530 1.174 ad else {
531 1.174 ad lwp_unlock(l);
532 1.174 ad #ifdef DIAGNOSTIC
533 1.174 ad panic("setrunnable: !L_SINTR");
534 1.174 ad #endif
535 1.174 ad }
536 1.174 ad return;
537 1.174 ad }
538 1.139 cl
539 1.174 ad LOCK_ASSERT(lwp_locked(l, &sched_mutex));
540 1.122 thorpej
541 1.174 ad /*
542 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
543 1.174 ad * about to call mi_switch(), in which case it will yield.
544 1.174 ad *
545 1.174 ad * XXXSMP Will need to change for preemption.
546 1.174 ad */
547 1.174 ad #ifdef MULTIPROCESSOR
548 1.174 ad if (l->l_cpu->ci_curlwp == l) {
549 1.174 ad #else
550 1.174 ad if (l == curlwp) {
551 1.174 ad #endif
552 1.174 ad l->l_stat = LSONPROC;
553 1.174 ad l->l_slptime = 0;
554 1.174 ad lwp_unlock(l);
555 1.174 ad return;
556 1.174 ad }
557 1.122 thorpej
558 1.174 ad /*
559 1.174 ad * Set the LWP runnable. If it's swapped out, we need to wake the swapper
560 1.174 ad * to bring it back in. Otherwise, enter it into a run queue.
561 1.174 ad */
562 1.177.2.5 rmind sched_setrunnable(l);
563 1.174 ad l->l_stat = LSRUN;
564 1.122 thorpej l->l_slptime = 0;
565 1.174 ad
566 1.174 ad if (l->l_flag & L_INMEM) {
567 1.177.2.5 rmind sched_enqueue(l);
568 1.177.2.5 rmind resched_cpu(l, l->l_priority);
569 1.174 ad lwp_unlock(l);
570 1.174 ad } else {
571 1.174 ad lwp_unlock(l);
572 1.177 ad uvm_kick_scheduler();
573 1.174 ad }
574 1.26 cgd }
575 1.26 cgd
576 1.174 ad /*
577 1.174 ad * suspendsched:
578 1.174 ad *
579 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
580 1.174 ad */
581 1.94 bouyer void
582 1.174 ad suspendsched(void)
583 1.94 bouyer {
584 1.174 ad #ifdef MULTIPROCESSOR
585 1.174 ad CPU_INFO_ITERATOR cii;
586 1.174 ad struct cpu_info *ci;
587 1.174 ad #endif
588 1.122 thorpej struct lwp *l;
589 1.174 ad struct proc *p;
590 1.94 bouyer
591 1.94 bouyer /*
592 1.174 ad * We do this by process in order not to violate the locking rules.
593 1.94 bouyer */
594 1.174 ad mutex_enter(&proclist_mutex);
595 1.174 ad PROCLIST_FOREACH(p, &allproc) {
596 1.174 ad mutex_enter(&p->p_smutex);
597 1.174 ad
598 1.174 ad if ((p->p_flag & P_SYSTEM) != 0) {
599 1.174 ad mutex_exit(&p->p_smutex);
600 1.94 bouyer continue;
601 1.174 ad }
602 1.174 ad
603 1.174 ad p->p_stat = SSTOP;
604 1.174 ad
605 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
606 1.174 ad if (l == curlwp)
607 1.174 ad continue;
608 1.174 ad
609 1.174 ad lwp_lock(l);
610 1.122 thorpej
611 1.97 enami /*
612 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
613 1.174 ad * when it tries to return to user mode. We want to
614 1.174 ad * try and get to get as many LWPs as possible to
615 1.174 ad * the user / kernel boundary, so that they will
616 1.174 ad * release any locks that they hold.
617 1.97 enami */
618 1.174 ad l->l_flag |= (L_WREBOOT | L_WSUSPEND);
619 1.174 ad
620 1.174 ad if (l->l_stat == LSSLEEP &&
621 1.174 ad (l->l_flag & L_SINTR) != 0) {
622 1.174 ad /* setrunnable() will release the lock. */
623 1.174 ad setrunnable(l);
624 1.174 ad continue;
625 1.174 ad }
626 1.174 ad
627 1.174 ad lwp_unlock(l);
628 1.94 bouyer }
629 1.174 ad
630 1.174 ad mutex_exit(&p->p_smutex);
631 1.94 bouyer }
632 1.174 ad mutex_exit(&proclist_mutex);
633 1.174 ad
634 1.174 ad /*
635 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
636 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
637 1.174 ad */
638 1.174 ad sched_lock(0);
639 1.174 ad #ifdef MULTIPROCESSOR
640 1.174 ad for (CPU_INFO_FOREACH(cii, ci))
641 1.174 ad cpu_need_resched(ci);
642 1.174 ad #else
643 1.174 ad cpu_need_resched(curcpu());
644 1.174 ad #endif
645 1.174 ad sched_unlock(0);
646 1.94 bouyer }
647 1.113 gmcgarry
648 1.113 gmcgarry /*
649 1.174 ad * sched_kpri:
650 1.174 ad *
651 1.174 ad * Scale a priority level to a kernel priority level, usually
652 1.174 ad * for an LWP that is about to sleep.
653 1.174 ad */
654 1.174 ad int
655 1.174 ad sched_kpri(struct lwp *l)
656 1.174 ad {
657 1.174 ad /*
658 1.174 ad * Scale user priorities (127 -> 50) up to kernel priorities
659 1.174 ad * in the range (49 -> 8). Reserve the top 8 kernel priorities
660 1.174 ad * for high priority kthreads. Kernel priorities passed in
661 1.174 ad * are left "as is". XXX This is somewhat arbitrary.
662 1.174 ad */
663 1.174 ad static const uint8_t kpri_tab[] = {
664 1.174 ad 0, 1, 2, 3, 4, 5, 6, 7,
665 1.174 ad 8, 9, 10, 11, 12, 13, 14, 15,
666 1.174 ad 16, 17, 18, 19, 20, 21, 22, 23,
667 1.174 ad 24, 25, 26, 27, 28, 29, 30, 31,
668 1.174 ad 32, 33, 34, 35, 36, 37, 38, 39,
669 1.174 ad 40, 41, 42, 43, 44, 45, 46, 47,
670 1.174 ad 48, 49, 8, 8, 9, 9, 10, 10,
671 1.174 ad 11, 11, 12, 12, 13, 14, 14, 15,
672 1.174 ad 15, 16, 16, 17, 17, 18, 18, 19,
673 1.174 ad 20, 20, 21, 21, 22, 22, 23, 23,
674 1.174 ad 24, 24, 25, 26, 26, 27, 27, 28,
675 1.174 ad 28, 29, 29, 30, 30, 31, 32, 32,
676 1.174 ad 33, 33, 34, 34, 35, 35, 36, 36,
677 1.174 ad 37, 38, 38, 39, 39, 40, 40, 41,
678 1.174 ad 41, 42, 42, 43, 44, 44, 45, 45,
679 1.174 ad 46, 46, 47, 47, 48, 48, 49, 49,
680 1.174 ad };
681 1.174 ad
682 1.174 ad return kpri_tab[l->l_usrpri];
683 1.174 ad }
684 1.174 ad
685 1.174 ad /*
686 1.174 ad * sched_unsleep:
687 1.174 ad *
688 1.174 ad * The is called when the LWP has not been awoken normally but instead
689 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
690 1.174 ad * it's not a valid action for running or idle LWPs.
691 1.174 ad */
692 1.174 ad void
693 1.174 ad sched_unsleep(struct lwp *l)
694 1.174 ad {
695 1.174 ad
696 1.174 ad lwp_unlock(l);
697 1.174 ad panic("sched_unsleep");
698 1.174 ad }
699 1.174 ad
700 1.177.2.5 rmind inline void
701 1.177.2.5 rmind resched_cpu(struct lwp *l, u_char pri)
702 1.174 ad {
703 1.177.2.5 rmind struct cpu_info *ci;
704 1.174 ad
705 1.177.2.5 rmind /*
706 1.177.2.5 rmind * XXXSMP
707 1.177.2.5 rmind * Since l->l_cpu persists across a context switch,
708 1.177.2.5 rmind * this gives us *very weak* processor affinity, in
709 1.177.2.5 rmind * that we notify the CPU on which the process last
710 1.177.2.5 rmind * ran that it should try to switch.
711 1.177.2.5 rmind *
712 1.177.2.5 rmind * This does not guarantee that the process will run on
713 1.177.2.5 rmind * that processor next, because another processor might
714 1.177.2.5 rmind * grab it the next time it performs a context switch.
715 1.177.2.5 rmind *
716 1.177.2.5 rmind * This also does not handle the case where its last
717 1.177.2.5 rmind * CPU is running a higher-priority process, but every
718 1.177.2.5 rmind * other CPU is running a lower-priority process. There
719 1.177.2.5 rmind * are ways to handle this situation, but they're not
720 1.177.2.5 rmind * currently very pretty, and we also need to weigh the
721 1.177.2.5 rmind * cost of moving a process from one CPU to another.
722 1.177.2.5 rmind *
723 1.177.2.5 rmind * XXXSMP
724 1.177.2.5 rmind * There is also the issue of locking the other CPU's
725 1.177.2.5 rmind * sched state, which we currently do not do.
726 1.177.2.5 rmind */
727 1.177.2.5 rmind ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
728 1.177.2.5 rmind if (pri < ci->ci_schedstate.spc_curpriority)
729 1.177.2.5 rmind cpu_need_resched(ci);
730 1.177.2.1 yamt }
731