kern_synch.c revision 1.185 1 1.184 yamt /* $NetBSD: kern_synch.c,v 1.185 2007/02/27 15:07:29 yamt Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.174 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.174 ad * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 1.63 thorpej *
11 1.63 thorpej * Redistribution and use in source and binary forms, with or without
12 1.63 thorpej * modification, are permitted provided that the following conditions
13 1.63 thorpej * are met:
14 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.63 thorpej * notice, this list of conditions and the following disclaimer.
16 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.63 thorpej * documentation and/or other materials provided with the distribution.
19 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.63 thorpej * must display the following acknowledgement:
21 1.63 thorpej * This product includes software developed by the NetBSD
22 1.63 thorpej * Foundation, Inc. and its contributors.
23 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.63 thorpej * contributors may be used to endorse or promote products derived
25 1.63 thorpej * from this software without specific prior written permission.
26 1.63 thorpej *
27 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.63 thorpej */
39 1.26 cgd
40 1.26 cgd /*-
41 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 1.26 cgd * The Regents of the University of California. All rights reserved.
43 1.26 cgd * (c) UNIX System Laboratories, Inc.
44 1.26 cgd * All or some portions of this file are derived from material licensed
45 1.26 cgd * to the University of California by American Telephone and Telegraph
46 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.26 cgd * the permission of UNIX System Laboratories, Inc.
48 1.26 cgd *
49 1.26 cgd * Redistribution and use in source and binary forms, with or without
50 1.26 cgd * modification, are permitted provided that the following conditions
51 1.26 cgd * are met:
52 1.26 cgd * 1. Redistributions of source code must retain the above copyright
53 1.26 cgd * notice, this list of conditions and the following disclaimer.
54 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.26 cgd * notice, this list of conditions and the following disclaimer in the
56 1.26 cgd * documentation and/or other materials provided with the distribution.
57 1.136 agc * 3. Neither the name of the University nor the names of its contributors
58 1.26 cgd * may be used to endorse or promote products derived from this software
59 1.26 cgd * without specific prior written permission.
60 1.26 cgd *
61 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 1.26 cgd * SUCH DAMAGE.
72 1.26 cgd *
73 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
74 1.26 cgd */
75 1.106 lukem
76 1.106 lukem #include <sys/cdefs.h>
77 1.184 yamt __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.185 2007/02/27 15:07:29 yamt Exp $");
78 1.48 mrg
79 1.52 jonathan #include "opt_ddb.h"
80 1.109 yamt #include "opt_kstack.h"
81 1.82 thorpej #include "opt_lockdebug.h"
82 1.83 thorpej #include "opt_multiprocessor.h"
83 1.110 briggs #include "opt_perfctrs.h"
84 1.26 cgd
85 1.174 ad #define __MUTEX_PRIVATE
86 1.174 ad
87 1.26 cgd #include <sys/param.h>
88 1.26 cgd #include <sys/systm.h>
89 1.68 thorpej #include <sys/callout.h>
90 1.26 cgd #include <sys/proc.h>
91 1.26 cgd #include <sys/kernel.h>
92 1.26 cgd #include <sys/buf.h>
93 1.111 briggs #if defined(PERFCTRS)
94 1.110 briggs #include <sys/pmc.h>
95 1.111 briggs #endif
96 1.26 cgd #include <sys/signalvar.h>
97 1.26 cgd #include <sys/resourcevar.h>
98 1.55 ross #include <sys/sched.h>
99 1.179 dsl #include <sys/syscall_stats.h>
100 1.161 elad #include <sys/kauth.h>
101 1.174 ad #include <sys/sleepq.h>
102 1.174 ad #include <sys/lockdebug.h>
103 1.47 mrg
104 1.47 mrg #include <uvm/uvm_extern.h>
105 1.47 mrg
106 1.26 cgd #include <machine/cpu.h>
107 1.34 christos
108 1.26 cgd int lbolt; /* once a second sleep address */
109 1.88 sommerfe int rrticks; /* number of hardclock ticks per roundrobin() */
110 1.26 cgd
111 1.152 yamt /*
112 1.73 thorpej * The global scheduler state.
113 1.73 thorpej */
114 1.174 ad kmutex_t sched_mutex; /* global sched state mutex */
115 1.174 ad struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
116 1.159 perry volatile uint32_t sched_whichqs; /* bitmap of non-empty queues */
117 1.83 thorpej
118 1.174 ad void schedcpu(void *);
119 1.174 ad void updatepri(struct lwp *);
120 1.34 christos
121 1.174 ad void sched_unsleep(struct lwp *);
122 1.185 yamt void sched_changepri(struct lwp *, pri_t);
123 1.185 yamt void sched_lendpri(struct lwp *, pri_t);
124 1.63 thorpej
125 1.143 yamt struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
126 1.157 yamt static unsigned int schedcpu_ticks;
127 1.122 thorpej
128 1.174 ad syncobj_t sleep_syncobj = {
129 1.174 ad SOBJ_SLEEPQ_SORTED,
130 1.174 ad sleepq_unsleep,
131 1.184 yamt sleepq_changepri,
132 1.184 yamt sleepq_lendpri,
133 1.184 yamt syncobj_noowner,
134 1.174 ad };
135 1.174 ad
136 1.174 ad syncobj_t sched_syncobj = {
137 1.174 ad SOBJ_SLEEPQ_SORTED,
138 1.174 ad sched_unsleep,
139 1.184 yamt sched_changepri,
140 1.184 yamt sched_lendpri,
141 1.184 yamt syncobj_noowner,
142 1.174 ad };
143 1.122 thorpej
144 1.26 cgd /*
145 1.26 cgd * Force switch among equal priority processes every 100ms.
146 1.88 sommerfe * Called from hardclock every hz/10 == rrticks hardclock ticks.
147 1.26 cgd */
148 1.26 cgd /* ARGSUSED */
149 1.26 cgd void
150 1.89 sommerfe roundrobin(struct cpu_info *ci)
151 1.26 cgd {
152 1.89 sommerfe struct schedstate_percpu *spc = &ci->ci_schedstate;
153 1.26 cgd
154 1.88 sommerfe spc->spc_rrticks = rrticks;
155 1.130 nathanw
156 1.122 thorpej if (curlwp != NULL) {
157 1.73 thorpej if (spc->spc_flags & SPCF_SEENRR) {
158 1.69 thorpej /*
159 1.69 thorpej * The process has already been through a roundrobin
160 1.69 thorpej * without switching and may be hogging the CPU.
161 1.69 thorpej * Indicate that the process should yield.
162 1.69 thorpej */
163 1.73 thorpej spc->spc_flags |= SPCF_SHOULDYIELD;
164 1.69 thorpej } else
165 1.73 thorpej spc->spc_flags |= SPCF_SEENRR;
166 1.69 thorpej }
167 1.174 ad cpu_need_resched(curcpu());
168 1.26 cgd }
169 1.26 cgd
170 1.153 yamt #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
171 1.153 yamt #define NICE_WEIGHT 2 /* priorities per nice level */
172 1.153 yamt
173 1.153 yamt #define ESTCPU_SHIFT 11
174 1.153 yamt #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
175 1.153 yamt #define ESTCPULIM(e) min((e), ESTCPU_MAX)
176 1.153 yamt
177 1.26 cgd /*
178 1.26 cgd * Constants for digital decay and forget:
179 1.26 cgd * 90% of (p_estcpu) usage in 5 * loadav time
180 1.26 cgd * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
181 1.26 cgd * Note that, as ps(1) mentions, this can let percentages
182 1.26 cgd * total over 100% (I've seen 137.9% for 3 processes).
183 1.26 cgd *
184 1.26 cgd * Note that hardclock updates p_estcpu and p_cpticks independently.
185 1.26 cgd *
186 1.26 cgd * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
187 1.26 cgd * That is, the system wants to compute a value of decay such
188 1.26 cgd * that the following for loop:
189 1.26 cgd * for (i = 0; i < (5 * loadavg); i++)
190 1.26 cgd * p_estcpu *= decay;
191 1.26 cgd * will compute
192 1.26 cgd * p_estcpu *= 0.1;
193 1.26 cgd * for all values of loadavg:
194 1.26 cgd *
195 1.26 cgd * Mathematically this loop can be expressed by saying:
196 1.26 cgd * decay ** (5 * loadavg) ~= .1
197 1.26 cgd *
198 1.26 cgd * The system computes decay as:
199 1.26 cgd * decay = (2 * loadavg) / (2 * loadavg + 1)
200 1.26 cgd *
201 1.26 cgd * We wish to prove that the system's computation of decay
202 1.26 cgd * will always fulfill the equation:
203 1.26 cgd * decay ** (5 * loadavg) ~= .1
204 1.26 cgd *
205 1.26 cgd * If we compute b as:
206 1.26 cgd * b = 2 * loadavg
207 1.26 cgd * then
208 1.26 cgd * decay = b / (b + 1)
209 1.26 cgd *
210 1.26 cgd * We now need to prove two things:
211 1.26 cgd * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
212 1.26 cgd * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
213 1.130 nathanw *
214 1.26 cgd * Facts:
215 1.26 cgd * For x close to zero, exp(x) =~ 1 + x, since
216 1.26 cgd * exp(x) = 0! + x**1/1! + x**2/2! + ... .
217 1.26 cgd * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
218 1.26 cgd * For x close to zero, ln(1+x) =~ x, since
219 1.26 cgd * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
220 1.26 cgd * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
221 1.26 cgd * ln(.1) =~ -2.30
222 1.26 cgd *
223 1.26 cgd * Proof of (1):
224 1.26 cgd * Solve (factor)**(power) =~ .1 given power (5*loadav):
225 1.26 cgd * solving for factor,
226 1.26 cgd * ln(factor) =~ (-2.30/5*loadav), or
227 1.26 cgd * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
228 1.26 cgd * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
229 1.26 cgd *
230 1.26 cgd * Proof of (2):
231 1.26 cgd * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
232 1.26 cgd * solving for power,
233 1.26 cgd * power*ln(b/(b+1)) =~ -2.30, or
234 1.26 cgd * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
235 1.26 cgd *
236 1.26 cgd * Actual power values for the implemented algorithm are as follows:
237 1.26 cgd * loadav: 1 2 3 4
238 1.26 cgd * power: 5.68 10.32 14.94 19.55
239 1.26 cgd */
240 1.26 cgd
241 1.26 cgd /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
242 1.26 cgd #define loadfactor(loadav) (2 * (loadav))
243 1.153 yamt
244 1.153 yamt static fixpt_t
245 1.153 yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
246 1.153 yamt {
247 1.153 yamt
248 1.153 yamt if (estcpu == 0) {
249 1.153 yamt return 0;
250 1.153 yamt }
251 1.153 yamt
252 1.153 yamt #if !defined(_LP64)
253 1.153 yamt /* avoid 64bit arithmetics. */
254 1.153 yamt #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
255 1.153 yamt if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
256 1.153 yamt return estcpu * loadfac / (loadfac + FSCALE);
257 1.153 yamt }
258 1.153 yamt #endif /* !defined(_LP64) */
259 1.153 yamt
260 1.153 yamt return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
261 1.153 yamt }
262 1.26 cgd
263 1.157 yamt /*
264 1.157 yamt * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
265 1.157 yamt * sleeping for at least seven times the loadfactor will decay p_estcpu to
266 1.157 yamt * less than (1 << ESTCPU_SHIFT).
267 1.157 yamt *
268 1.157 yamt * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
269 1.157 yamt */
270 1.157 yamt static fixpt_t
271 1.157 yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
272 1.157 yamt {
273 1.157 yamt
274 1.157 yamt if ((n << FSHIFT) >= 7 * loadfac) {
275 1.157 yamt return 0;
276 1.157 yamt }
277 1.157 yamt
278 1.157 yamt while (estcpu != 0 && n > 1) {
279 1.157 yamt estcpu = decay_cpu(loadfac, estcpu);
280 1.157 yamt n--;
281 1.157 yamt }
282 1.157 yamt
283 1.157 yamt return estcpu;
284 1.157 yamt }
285 1.157 yamt
286 1.26 cgd /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
287 1.26 cgd fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
288 1.26 cgd
289 1.26 cgd /*
290 1.26 cgd * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
291 1.26 cgd * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
292 1.26 cgd * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
293 1.26 cgd *
294 1.26 cgd * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
295 1.26 cgd * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
296 1.26 cgd *
297 1.26 cgd * If you dont want to bother with the faster/more-accurate formula, you
298 1.26 cgd * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
299 1.26 cgd * (more general) method of calculating the %age of CPU used by a process.
300 1.26 cgd */
301 1.26 cgd #define CCPU_SHIFT 11
302 1.26 cgd
303 1.26 cgd /*
304 1.174 ad * schedcpu:
305 1.174 ad *
306 1.174 ad * Recompute process priorities, every hz ticks.
307 1.174 ad *
308 1.174 ad * XXXSMP This needs to be reorganised in order to reduce the locking
309 1.174 ad * burden.
310 1.26 cgd */
311 1.26 cgd /* ARGSUSED */
312 1.26 cgd void
313 1.171 yamt schedcpu(void *arg)
314 1.26 cgd {
315 1.71 augustss fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
316 1.174 ad struct rlimit *rlim;
317 1.122 thorpej struct lwp *l;
318 1.71 augustss struct proc *p;
319 1.174 ad int minslp, clkhz, sig;
320 1.174 ad long runtm;
321 1.26 cgd
322 1.157 yamt schedcpu_ticks++;
323 1.157 yamt
324 1.174 ad mutex_enter(&proclist_mutex);
325 1.145 yamt PROCLIST_FOREACH(p, &allproc) {
326 1.26 cgd /*
327 1.174 ad * Increment time in/out of memory and sleep time (if
328 1.174 ad * sleeping). We ignore overflow; with 16-bit int's
329 1.26 cgd * (remember them?) overflow takes 45 days.
330 1.26 cgd */
331 1.122 thorpej minslp = 2;
332 1.174 ad mutex_enter(&p->p_smutex);
333 1.174 ad runtm = p->p_rtime.tv_sec;
334 1.122 thorpej LIST_FOREACH(l, &p->p_lwps, l_sibling) {
335 1.174 ad lwp_lock(l);
336 1.174 ad runtm += l->l_rtime.tv_sec;
337 1.122 thorpej l->l_swtime++;
338 1.130 nathanw if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
339 1.122 thorpej l->l_stat == LSSUSPENDED) {
340 1.122 thorpej l->l_slptime++;
341 1.122 thorpej minslp = min(minslp, l->l_slptime);
342 1.122 thorpej } else
343 1.122 thorpej minslp = 0;
344 1.174 ad lwp_unlock(l);
345 1.122 thorpej }
346 1.26 cgd p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
347 1.174 ad
348 1.174 ad /*
349 1.174 ad * Check if the process exceeds its CPU resource allocation.
350 1.174 ad * If over max, kill it.
351 1.174 ad */
352 1.174 ad rlim = &p->p_rlimit[RLIMIT_CPU];
353 1.174 ad sig = 0;
354 1.174 ad if (runtm >= rlim->rlim_cur) {
355 1.174 ad if (runtm >= rlim->rlim_max)
356 1.174 ad sig = SIGKILL;
357 1.174 ad else {
358 1.174 ad sig = SIGXCPU;
359 1.174 ad if (rlim->rlim_cur < rlim->rlim_max)
360 1.174 ad rlim->rlim_cur += 5;
361 1.174 ad }
362 1.174 ad }
363 1.174 ad
364 1.174 ad /*
365 1.174 ad * If the process has run for more than autonicetime, reduce
366 1.174 ad * priority to give others a chance.
367 1.174 ad */
368 1.174 ad if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
369 1.174 ad && kauth_cred_geteuid(p->p_cred)) {
370 1.174 ad mutex_spin_enter(&p->p_stmutex);
371 1.174 ad p->p_nice = autoniceval + NZERO;
372 1.174 ad resetprocpriority(p);
373 1.174 ad mutex_spin_exit(&p->p_stmutex);
374 1.174 ad }
375 1.174 ad
376 1.26 cgd /*
377 1.26 cgd * If the process has slept the entire second,
378 1.26 cgd * stop recalculating its priority until it wakes up.
379 1.26 cgd */
380 1.174 ad if (minslp <= 1) {
381 1.174 ad /*
382 1.174 ad * p_pctcpu is only for ps.
383 1.174 ad */
384 1.174 ad mutex_spin_enter(&p->p_stmutex);
385 1.174 ad clkhz = stathz != 0 ? stathz : hz;
386 1.26 cgd #if (FSHIFT >= CCPU_SHIFT)
387 1.174 ad p->p_pctcpu += (clkhz == 100)?
388 1.174 ad ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
389 1.174 ad 100 * (((fixpt_t) p->p_cpticks)
390 1.174 ad << (FSHIFT - CCPU_SHIFT)) / clkhz;
391 1.26 cgd #else
392 1.174 ad p->p_pctcpu += ((FSCALE - ccpu) *
393 1.174 ad (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
394 1.26 cgd #endif
395 1.174 ad p->p_cpticks = 0;
396 1.174 ad p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
397 1.174 ad
398 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
399 1.174 ad lwp_lock(l);
400 1.174 ad if (l->l_slptime <= 1 &&
401 1.174 ad l->l_priority >= PUSER)
402 1.174 ad resetpriority(l);
403 1.174 ad lwp_unlock(l);
404 1.122 thorpej }
405 1.174 ad mutex_spin_exit(&p->p_stmutex);
406 1.174 ad }
407 1.174 ad
408 1.174 ad mutex_exit(&p->p_smutex);
409 1.174 ad if (sig) {
410 1.174 ad psignal(p, sig);
411 1.26 cgd }
412 1.26 cgd }
413 1.174 ad mutex_exit(&proclist_mutex);
414 1.47 mrg uvm_meter();
415 1.67 fvdl wakeup((caddr_t)&lbolt);
416 1.143 yamt callout_schedule(&schedcpu_ch, hz);
417 1.26 cgd }
418 1.26 cgd
419 1.26 cgd /*
420 1.26 cgd * Recalculate the priority of a process after it has slept for a while.
421 1.26 cgd */
422 1.26 cgd void
423 1.122 thorpej updatepri(struct lwp *l)
424 1.26 cgd {
425 1.122 thorpej struct proc *p = l->l_proc;
426 1.83 thorpej fixpt_t loadfac;
427 1.83 thorpej
428 1.174 ad LOCK_ASSERT(lwp_locked(l, NULL));
429 1.157 yamt KASSERT(l->l_slptime > 1);
430 1.83 thorpej
431 1.83 thorpej loadfac = loadfactor(averunnable.ldavg[0]);
432 1.26 cgd
433 1.157 yamt l->l_slptime--; /* the first time was done in schedcpu */
434 1.157 yamt /* XXX NJWLWP */
435 1.174 ad /* XXXSMP occasionally unlocked, should be per-LWP */
436 1.157 yamt p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
437 1.122 thorpej resetpriority(l);
438 1.26 cgd }
439 1.26 cgd
440 1.26 cgd /*
441 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
442 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
443 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
444 1.174 ad * maintained in the machine-dependent layers. This priority will typically
445 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
446 1.174 ad * it can be made higher to block network software interrupts after panics.
447 1.26 cgd */
448 1.174 ad int safepri;
449 1.26 cgd
450 1.26 cgd /*
451 1.174 ad * OBSOLETE INTERFACE
452 1.174 ad *
453 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
454 1.26 cgd * performed on the specified identifier. The process will then be made
455 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
456 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
457 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
458 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
459 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
460 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
461 1.26 cgd * call should be interrupted by the signal (return EINTR).
462 1.77 thorpej *
463 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
464 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
465 1.174 ad * is specified, in which case the interlock will always be unlocked upon
466 1.174 ad * return.
467 1.26 cgd */
468 1.26 cgd int
469 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
470 1.174 ad volatile struct simplelock *interlock)
471 1.26 cgd {
472 1.122 thorpej struct lwp *l = curlwp;
473 1.174 ad sleepq_t *sq;
474 1.174 ad int error, catch;
475 1.26 cgd
476 1.174 ad if (sleepq_dontsleep(l)) {
477 1.174 ad (void)sleepq_abort(NULL, 0);
478 1.174 ad if ((priority & PNORELOCK) != 0)
479 1.77 thorpej simple_unlock(interlock);
480 1.174 ad return 0;
481 1.26 cgd }
482 1.78 sommerfe
483 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
484 1.174 ad sleepq_enter(sq, l);
485 1.42 cgd
486 1.174 ad if (interlock != NULL) {
487 1.174 ad LOCK_ASSERT(simple_lock_held(interlock));
488 1.174 ad simple_unlock(interlock);
489 1.150 chs }
490 1.150 chs
491 1.174 ad catch = priority & PCATCH;
492 1.174 ad sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
493 1.174 ad &sleep_syncobj);
494 1.174 ad error = sleepq_unblock(timo, catch);
495 1.126 pk
496 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
497 1.126 pk simple_lock(interlock);
498 1.174 ad
499 1.174 ad return error;
500 1.26 cgd }
501 1.26 cgd
502 1.26 cgd /*
503 1.174 ad * General sleep call for situations where a wake-up is not expected.
504 1.26 cgd */
505 1.174 ad int
506 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
507 1.26 cgd {
508 1.174 ad struct lwp *l = curlwp;
509 1.174 ad sleepq_t *sq;
510 1.174 ad int error;
511 1.26 cgd
512 1.174 ad if (sleepq_dontsleep(l))
513 1.174 ad return sleepq_abort(NULL, 0);
514 1.26 cgd
515 1.174 ad if (mtx != NULL)
516 1.174 ad mutex_exit(mtx);
517 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
518 1.174 ad sleepq_enter(sq, l);
519 1.174 ad sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
520 1.174 ad error = sleepq_unblock(timo, intr);
521 1.174 ad if (mtx != NULL)
522 1.174 ad mutex_enter(mtx);
523 1.83 thorpej
524 1.174 ad return error;
525 1.139 cl }
526 1.139 cl
527 1.26 cgd /*
528 1.174 ad * OBSOLETE INTERFACE
529 1.174 ad *
530 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
531 1.26 cgd */
532 1.26 cgd void
533 1.174 ad wakeup(wchan_t ident)
534 1.26 cgd {
535 1.174 ad sleepq_t *sq;
536 1.83 thorpej
537 1.174 ad if (cold)
538 1.174 ad return;
539 1.83 thorpej
540 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
541 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
542 1.63 thorpej }
543 1.63 thorpej
544 1.63 thorpej /*
545 1.174 ad * OBSOLETE INTERFACE
546 1.174 ad *
547 1.63 thorpej * Make the highest priority process first in line on the specified
548 1.63 thorpej * identifier runnable.
549 1.63 thorpej */
550 1.174 ad void
551 1.174 ad wakeup_one(wchan_t ident)
552 1.63 thorpej {
553 1.174 ad sleepq_t *sq;
554 1.63 thorpej
555 1.174 ad if (cold)
556 1.174 ad return;
557 1.174 ad
558 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
559 1.174 ad sleepq_wake(sq, ident, 1);
560 1.174 ad }
561 1.63 thorpej
562 1.117 gmcgarry
563 1.117 gmcgarry /*
564 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
565 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
566 1.117 gmcgarry * current process explicitly requests it (eg sched_yield(2) in compat code).
567 1.117 gmcgarry */
568 1.117 gmcgarry void
569 1.117 gmcgarry yield(void)
570 1.117 gmcgarry {
571 1.122 thorpej struct lwp *l = curlwp;
572 1.117 gmcgarry
573 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
574 1.174 ad lwp_lock(l);
575 1.174 ad if (l->l_stat == LSONPROC) {
576 1.174 ad KASSERT(lwp_locked(l, &sched_mutex));
577 1.174 ad l->l_priority = l->l_usrpri;
578 1.174 ad }
579 1.174 ad l->l_nvcsw++;
580 1.122 thorpej mi_switch(l, NULL);
581 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
582 1.69 thorpej }
583 1.69 thorpej
584 1.69 thorpej /*
585 1.69 thorpej * General preemption call. Puts the current process back on its run queue
586 1.156 rpaulo * and performs an involuntary context switch.
587 1.69 thorpej */
588 1.69 thorpej void
589 1.174 ad preempt(void)
590 1.69 thorpej {
591 1.122 thorpej struct lwp *l = curlwp;
592 1.69 thorpej
593 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
594 1.174 ad lwp_lock(l);
595 1.174 ad if (l->l_stat == LSONPROC) {
596 1.174 ad KASSERT(lwp_locked(l, &sched_mutex));
597 1.174 ad l->l_priority = l->l_usrpri;
598 1.174 ad }
599 1.174 ad l->l_nivcsw++;
600 1.174 ad (void)mi_switch(l, NULL);
601 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
602 1.69 thorpej }
603 1.69 thorpej
604 1.69 thorpej /*
605 1.174 ad * The machine independent parts of context switch. Switch to "new"
606 1.174 ad * if non-NULL, otherwise let cpu_switch choose the next lwp.
607 1.130 nathanw *
608 1.122 thorpej * Returns 1 if another process was actually run.
609 1.26 cgd */
610 1.122 thorpej int
611 1.122 thorpej mi_switch(struct lwp *l, struct lwp *newl)
612 1.26 cgd {
613 1.76 thorpej struct schedstate_percpu *spc;
614 1.174 ad struct timeval tv;
615 1.174 ad int retval, oldspl;
616 1.71 augustss long s, u;
617 1.26 cgd
618 1.174 ad LOCK_ASSERT(lwp_locked(l, NULL));
619 1.174 ad
620 1.174 ad #ifdef LOCKDEBUG
621 1.174 ad spinlock_switchcheck();
622 1.174 ad simple_lock_switchcheck();
623 1.174 ad #endif
624 1.174 ad #ifdef KSTACK_CHECK_MAGIC
625 1.174 ad kstack_check_magic(l);
626 1.174 ad #endif
627 1.83 thorpej
628 1.90 sommerfe /*
629 1.174 ad * It's safe to read the per CPU schedstate unlocked here, as all we
630 1.174 ad * are after is the run time and that's guarenteed to have been last
631 1.174 ad * updated by this CPU.
632 1.90 sommerfe */
633 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
634 1.122 thorpej spc = &l->l_cpu->ci_schedstate;
635 1.76 thorpej
636 1.26 cgd /*
637 1.26 cgd * Compute the amount of time during which the current
638 1.113 gmcgarry * process was running.
639 1.26 cgd */
640 1.26 cgd microtime(&tv);
641 1.174 ad u = l->l_rtime.tv_usec +
642 1.122 thorpej (tv.tv_usec - spc->spc_runtime.tv_usec);
643 1.174 ad s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
644 1.181 dsl if (u < 0) {
645 1.181 dsl u += 1000000;
646 1.181 dsl s--;
647 1.181 dsl } else if (u >= 1000000) {
648 1.181 dsl u -= 1000000;
649 1.181 dsl s++;
650 1.26 cgd }
651 1.174 ad l->l_rtime.tv_usec = u;
652 1.174 ad l->l_rtime.tv_sec = s;
653 1.26 cgd
654 1.180 dsl /* Count time spent in current system call */
655 1.180 dsl SYSCALL_TIME_SLEEP(l);
656 1.180 dsl
657 1.26 cgd /*
658 1.174 ad * XXXSMP If we are using h/w performance counters, save context.
659 1.69 thorpej */
660 1.174 ad #if PERFCTRS
661 1.175 christos if (PMC_ENABLED(l->l_proc)) {
662 1.175 christos pmc_save_context(l->l_proc);
663 1.174 ad }
664 1.109 yamt #endif
665 1.26 cgd
666 1.113 gmcgarry /*
667 1.174 ad * Acquire the sched_mutex if necessary. It will be released by
668 1.174 ad * cpu_switch once it has decided to idle, or picked another LWP
669 1.174 ad * to run.
670 1.113 gmcgarry */
671 1.174 ad #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
672 1.174 ad if (l->l_mutex != &sched_mutex) {
673 1.174 ad mutex_spin_enter(&sched_mutex);
674 1.174 ad lwp_unlock(l);
675 1.166 christos }
676 1.110 briggs #endif
677 1.113 gmcgarry
678 1.113 gmcgarry /*
679 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
680 1.113 gmcgarry */
681 1.174 ad KASSERT(l->l_stat != LSRUN);
682 1.174 ad if (l->l_stat == LSONPROC) {
683 1.174 ad KASSERT(lwp_locked(l, &sched_mutex));
684 1.174 ad l->l_stat = LSRUN;
685 1.174 ad setrunqueue(l);
686 1.174 ad }
687 1.114 gmcgarry uvmexp.swtch++;
688 1.174 ad
689 1.174 ad /*
690 1.174 ad * Process is about to yield the CPU; clear the appropriate
691 1.174 ad * scheduling flags.
692 1.174 ad */
693 1.174 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
694 1.174 ad
695 1.174 ad LOCKDEBUG_BARRIER(&sched_mutex, 1);
696 1.174 ad
697 1.174 ad /*
698 1.174 ad * Switch to the new current LWP. When we run again, we'll
699 1.174 ad * return back here.
700 1.174 ad */
701 1.174 ad oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
702 1.174 ad
703 1.174 ad if (newl == NULL || newl->l_back == NULL)
704 1.122 thorpej retval = cpu_switch(l, NULL);
705 1.174 ad else {
706 1.174 ad KASSERT(lwp_locked(newl, &sched_mutex));
707 1.122 thorpej remrunqueue(newl);
708 1.122 thorpej cpu_switchto(l, newl);
709 1.122 thorpej retval = 0;
710 1.122 thorpej }
711 1.110 briggs
712 1.110 briggs /*
713 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
714 1.26 cgd */
715 1.114 gmcgarry #if PERFCTRS
716 1.175 christos if (PMC_ENABLED(l->l_proc)) {
717 1.175 christos pmc_restore_context(l->l_proc);
718 1.166 christos }
719 1.114 gmcgarry #endif
720 1.110 briggs
721 1.110 briggs /*
722 1.76 thorpej * We're running again; record our new start time. We might
723 1.174 ad * be running on a new CPU now, so don't use the cached
724 1.76 thorpej * schedstate_percpu pointer.
725 1.76 thorpej */
726 1.180 dsl SYSCALL_TIME_WAKEUP(l);
727 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
728 1.122 thorpej microtime(&l->l_cpu->ci_schedstate.spc_runtime);
729 1.174 ad splx(oldspl);
730 1.169 yamt
731 1.122 thorpej return retval;
732 1.26 cgd }
733 1.26 cgd
734 1.26 cgd /*
735 1.26 cgd * Initialize the (doubly-linked) run queues
736 1.26 cgd * to be empty.
737 1.26 cgd */
738 1.26 cgd void
739 1.26 cgd rqinit()
740 1.26 cgd {
741 1.71 augustss int i;
742 1.26 cgd
743 1.73 thorpej for (i = 0; i < RUNQUE_NQS; i++)
744 1.73 thorpej sched_qs[i].ph_link = sched_qs[i].ph_rlink =
745 1.122 thorpej (struct lwp *)&sched_qs[i];
746 1.174 ad
747 1.174 ad mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
748 1.26 cgd }
749 1.26 cgd
750 1.158 perry static inline void
751 1.184 yamt resched_lwp(struct lwp *l)
752 1.119 thorpej {
753 1.119 thorpej struct cpu_info *ci;
754 1.185 yamt const pri_t pri = lwp_eprio(l);
755 1.119 thorpej
756 1.119 thorpej /*
757 1.119 thorpej * XXXSMP
758 1.122 thorpej * Since l->l_cpu persists across a context switch,
759 1.119 thorpej * this gives us *very weak* processor affinity, in
760 1.119 thorpej * that we notify the CPU on which the process last
761 1.119 thorpej * ran that it should try to switch.
762 1.119 thorpej *
763 1.119 thorpej * This does not guarantee that the process will run on
764 1.119 thorpej * that processor next, because another processor might
765 1.119 thorpej * grab it the next time it performs a context switch.
766 1.119 thorpej *
767 1.119 thorpej * This also does not handle the case where its last
768 1.119 thorpej * CPU is running a higher-priority process, but every
769 1.119 thorpej * other CPU is running a lower-priority process. There
770 1.119 thorpej * are ways to handle this situation, but they're not
771 1.119 thorpej * currently very pretty, and we also need to weigh the
772 1.119 thorpej * cost of moving a process from one CPU to another.
773 1.119 thorpej *
774 1.119 thorpej * XXXSMP
775 1.119 thorpej * There is also the issue of locking the other CPU's
776 1.119 thorpej * sched state, which we currently do not do.
777 1.119 thorpej */
778 1.122 thorpej ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
779 1.121 thorpej if (pri < ci->ci_schedstate.spc_curpriority)
780 1.174 ad cpu_need_resched(ci);
781 1.119 thorpej }
782 1.119 thorpej
783 1.26 cgd /*
784 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
785 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
786 1.174 ad *
787 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
788 1.26 cgd */
789 1.26 cgd void
790 1.122 thorpej setrunnable(struct lwp *l)
791 1.26 cgd {
792 1.122 thorpej struct proc *p = l->l_proc;
793 1.174 ad sigset_t *ss;
794 1.26 cgd
795 1.183 ad KASSERT(mutex_owned(&p->p_smutex));
796 1.183 ad KASSERT(lwp_locked(l, NULL));
797 1.83 thorpej
798 1.122 thorpej switch (l->l_stat) {
799 1.122 thorpej case LSSTOP:
800 1.33 mycroft /*
801 1.33 mycroft * If we're being traced (possibly because someone attached us
802 1.33 mycroft * while we were stopped), check for a signal from the debugger.
803 1.33 mycroft */
804 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
805 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
806 1.174 ad ss = &l->l_sigpend.sp_set;
807 1.174 ad else
808 1.174 ad ss = &p->p_sigpend.sp_set;
809 1.174 ad sigaddset(ss, p->p_xstat);
810 1.174 ad signotify(l);
811 1.53 mycroft }
812 1.174 ad p->p_nrlwps++;
813 1.26 cgd break;
814 1.174 ad case LSSUSPENDED:
815 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
816 1.174 ad p->p_nrlwps++;
817 1.122 thorpej break;
818 1.174 ad case LSSLEEP:
819 1.174 ad KASSERT(l->l_wchan != NULL);
820 1.26 cgd break;
821 1.174 ad default:
822 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
823 1.26 cgd }
824 1.139 cl
825 1.174 ad /*
826 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
827 1.174 ad * again. If not, mark it as still sleeping.
828 1.174 ad */
829 1.174 ad if (l->l_wchan != NULL) {
830 1.174 ad l->l_stat = LSSLEEP;
831 1.183 ad /* lwp_unsleep() will release the lock. */
832 1.183 ad lwp_unsleep(l);
833 1.174 ad return;
834 1.174 ad }
835 1.139 cl
836 1.174 ad LOCK_ASSERT(lwp_locked(l, &sched_mutex));
837 1.122 thorpej
838 1.174 ad /*
839 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
840 1.174 ad * about to call mi_switch(), in which case it will yield.
841 1.174 ad *
842 1.174 ad * XXXSMP Will need to change for preemption.
843 1.174 ad */
844 1.174 ad #ifdef MULTIPROCESSOR
845 1.174 ad if (l->l_cpu->ci_curlwp == l) {
846 1.174 ad #else
847 1.174 ad if (l == curlwp) {
848 1.174 ad #endif
849 1.174 ad l->l_stat = LSONPROC;
850 1.174 ad l->l_slptime = 0;
851 1.174 ad lwp_unlock(l);
852 1.174 ad return;
853 1.174 ad }
854 1.122 thorpej
855 1.174 ad /*
856 1.174 ad * Set the LWP runnable. If it's swapped out, we need to wake the swapper
857 1.174 ad * to bring it back in. Otherwise, enter it into a run queue.
858 1.174 ad */
859 1.122 thorpej if (l->l_slptime > 1)
860 1.122 thorpej updatepri(l);
861 1.174 ad l->l_stat = LSRUN;
862 1.122 thorpej l->l_slptime = 0;
863 1.174 ad
864 1.178 pavel if (l->l_flag & LW_INMEM) {
865 1.174 ad setrunqueue(l);
866 1.184 yamt resched_lwp(l);
867 1.174 ad lwp_unlock(l);
868 1.174 ad } else {
869 1.174 ad lwp_unlock(l);
870 1.177 ad uvm_kick_scheduler();
871 1.174 ad }
872 1.26 cgd }
873 1.26 cgd
874 1.26 cgd /*
875 1.26 cgd * Compute the priority of a process when running in user mode.
876 1.26 cgd * Arrange to reschedule if the resulting priority is better
877 1.26 cgd * than that of the current process.
878 1.26 cgd */
879 1.26 cgd void
880 1.122 thorpej resetpriority(struct lwp *l)
881 1.26 cgd {
882 1.185 yamt pri_t newpriority;
883 1.122 thorpej struct proc *p = l->l_proc;
884 1.26 cgd
885 1.174 ad /* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
886 1.174 ad LOCK_ASSERT(lwp_locked(l, NULL));
887 1.174 ad
888 1.178 pavel if ((l->l_flag & LW_SYSTEM) != 0)
889 1.174 ad return;
890 1.83 thorpej
891 1.153 yamt newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
892 1.174 ad NICE_WEIGHT * (p->p_nice - NZERO);
893 1.26 cgd newpriority = min(newpriority, MAXPRI);
894 1.174 ad lwp_changepri(l, newpriority);
895 1.122 thorpej }
896 1.122 thorpej
897 1.130 nathanw /*
898 1.122 thorpej * Recompute priority for all LWPs in a process.
899 1.122 thorpej */
900 1.122 thorpej void
901 1.122 thorpej resetprocpriority(struct proc *p)
902 1.122 thorpej {
903 1.122 thorpej struct lwp *l;
904 1.122 thorpej
905 1.174 ad LOCK_ASSERT(mutex_owned(&p->p_stmutex));
906 1.174 ad
907 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
908 1.174 ad lwp_lock(l);
909 1.174 ad resetpriority(l);
910 1.174 ad lwp_unlock(l);
911 1.174 ad }
912 1.55 ross }
913 1.55 ross
914 1.55 ross /*
915 1.56 ross * We adjust the priority of the current process. The priority of a process
916 1.141 wiz * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
917 1.56 ross * is increased here. The formula for computing priorities (in kern_synch.c)
918 1.56 ross * will compute a different value each time p_estcpu increases. This can
919 1.56 ross * cause a switch, but unless the priority crosses a PPQ boundary the actual
920 1.141 wiz * queue will not change. The CPU usage estimator ramps up quite quickly
921 1.56 ross * when the process is running (linearly), and decays away exponentially, at
922 1.56 ross * a rate which is proportionally slower when the system is busy. The basic
923 1.80 nathanw * principle is that the system will 90% forget that the process used a lot
924 1.56 ross * of CPU time in 5 * loadav seconds. This causes the system to favor
925 1.56 ross * processes which haven't run much recently, and to round-robin among other
926 1.56 ross * processes.
927 1.55 ross */
928 1.55 ross
929 1.55 ross void
930 1.122 thorpej schedclock(struct lwp *l)
931 1.55 ross {
932 1.122 thorpej struct proc *p = l->l_proc;
933 1.77 thorpej
934 1.174 ad mutex_spin_enter(&p->p_stmutex);
935 1.153 yamt p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
936 1.174 ad lwp_lock(l);
937 1.122 thorpej resetpriority(l);
938 1.174 ad mutex_spin_exit(&p->p_stmutex);
939 1.178 pavel if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority >= PUSER)
940 1.122 thorpej l->l_priority = l->l_usrpri;
941 1.174 ad lwp_unlock(l);
942 1.26 cgd }
943 1.94 bouyer
944 1.174 ad /*
945 1.174 ad * suspendsched:
946 1.174 ad *
947 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
948 1.174 ad */
949 1.94 bouyer void
950 1.174 ad suspendsched(void)
951 1.94 bouyer {
952 1.174 ad #ifdef MULTIPROCESSOR
953 1.174 ad CPU_INFO_ITERATOR cii;
954 1.174 ad struct cpu_info *ci;
955 1.174 ad #endif
956 1.122 thorpej struct lwp *l;
957 1.174 ad struct proc *p;
958 1.94 bouyer
959 1.94 bouyer /*
960 1.174 ad * We do this by process in order not to violate the locking rules.
961 1.94 bouyer */
962 1.174 ad mutex_enter(&proclist_mutex);
963 1.174 ad PROCLIST_FOREACH(p, &allproc) {
964 1.174 ad mutex_enter(&p->p_smutex);
965 1.174 ad
966 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
967 1.174 ad mutex_exit(&p->p_smutex);
968 1.94 bouyer continue;
969 1.174 ad }
970 1.174 ad
971 1.174 ad p->p_stat = SSTOP;
972 1.174 ad
973 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
974 1.174 ad if (l == curlwp)
975 1.174 ad continue;
976 1.174 ad
977 1.174 ad lwp_lock(l);
978 1.122 thorpej
979 1.97 enami /*
980 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
981 1.174 ad * when it tries to return to user mode. We want to
982 1.174 ad * try and get to get as many LWPs as possible to
983 1.174 ad * the user / kernel boundary, so that they will
984 1.174 ad * release any locks that they hold.
985 1.97 enami */
986 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
987 1.174 ad
988 1.174 ad if (l->l_stat == LSSLEEP &&
989 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
990 1.174 ad /* setrunnable() will release the lock. */
991 1.174 ad setrunnable(l);
992 1.174 ad continue;
993 1.174 ad }
994 1.174 ad
995 1.174 ad lwp_unlock(l);
996 1.94 bouyer }
997 1.174 ad
998 1.174 ad mutex_exit(&p->p_smutex);
999 1.94 bouyer }
1000 1.174 ad mutex_exit(&proclist_mutex);
1001 1.174 ad
1002 1.174 ad /*
1003 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1004 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
1005 1.174 ad */
1006 1.174 ad sched_lock(0);
1007 1.174 ad #ifdef MULTIPROCESSOR
1008 1.174 ad for (CPU_INFO_FOREACH(cii, ci))
1009 1.174 ad cpu_need_resched(ci);
1010 1.174 ad #else
1011 1.174 ad cpu_need_resched(curcpu());
1012 1.174 ad #endif
1013 1.174 ad sched_unlock(0);
1014 1.94 bouyer }
1015 1.113 gmcgarry
1016 1.113 gmcgarry /*
1017 1.151 yamt * scheduler_fork_hook:
1018 1.151 yamt *
1019 1.151 yamt * Inherit the parent's scheduler history.
1020 1.151 yamt */
1021 1.151 yamt void
1022 1.151 yamt scheduler_fork_hook(struct proc *parent, struct proc *child)
1023 1.151 yamt {
1024 1.151 yamt
1025 1.174 ad LOCK_ASSERT(mutex_owned(&parent->p_smutex));
1026 1.174 ad
1027 1.157 yamt child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
1028 1.157 yamt child->p_forktime = schedcpu_ticks;
1029 1.151 yamt }
1030 1.151 yamt
1031 1.151 yamt /*
1032 1.151 yamt * scheduler_wait_hook:
1033 1.151 yamt *
1034 1.151 yamt * Chargeback parents for the sins of their children.
1035 1.151 yamt */
1036 1.151 yamt void
1037 1.151 yamt scheduler_wait_hook(struct proc *parent, struct proc *child)
1038 1.151 yamt {
1039 1.157 yamt fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1040 1.157 yamt fixpt_t estcpu;
1041 1.151 yamt
1042 1.151 yamt /* XXX Only if parent != init?? */
1043 1.157 yamt
1044 1.174 ad mutex_spin_enter(&parent->p_stmutex);
1045 1.157 yamt estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
1046 1.157 yamt schedcpu_ticks - child->p_forktime);
1047 1.174 ad if (child->p_estcpu > estcpu)
1048 1.157 yamt parent->p_estcpu =
1049 1.157 yamt ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
1050 1.174 ad mutex_spin_exit(&parent->p_stmutex);
1051 1.174 ad }
1052 1.174 ad
1053 1.174 ad /*
1054 1.174 ad * sched_kpri:
1055 1.174 ad *
1056 1.174 ad * Scale a priority level to a kernel priority level, usually
1057 1.174 ad * for an LWP that is about to sleep.
1058 1.174 ad */
1059 1.185 yamt pri_t
1060 1.174 ad sched_kpri(struct lwp *l)
1061 1.174 ad {
1062 1.174 ad /*
1063 1.174 ad * Scale user priorities (127 -> 50) up to kernel priorities
1064 1.174 ad * in the range (49 -> 8). Reserve the top 8 kernel priorities
1065 1.174 ad * for high priority kthreads. Kernel priorities passed in
1066 1.174 ad * are left "as is". XXX This is somewhat arbitrary.
1067 1.174 ad */
1068 1.174 ad static const uint8_t kpri_tab[] = {
1069 1.174 ad 0, 1, 2, 3, 4, 5, 6, 7,
1070 1.174 ad 8, 9, 10, 11, 12, 13, 14, 15,
1071 1.174 ad 16, 17, 18, 19, 20, 21, 22, 23,
1072 1.174 ad 24, 25, 26, 27, 28, 29, 30, 31,
1073 1.174 ad 32, 33, 34, 35, 36, 37, 38, 39,
1074 1.174 ad 40, 41, 42, 43, 44, 45, 46, 47,
1075 1.174 ad 48, 49, 8, 8, 9, 9, 10, 10,
1076 1.174 ad 11, 11, 12, 12, 13, 14, 14, 15,
1077 1.174 ad 15, 16, 16, 17, 17, 18, 18, 19,
1078 1.174 ad 20, 20, 21, 21, 22, 22, 23, 23,
1079 1.174 ad 24, 24, 25, 26, 26, 27, 27, 28,
1080 1.174 ad 28, 29, 29, 30, 30, 31, 32, 32,
1081 1.174 ad 33, 33, 34, 34, 35, 35, 36, 36,
1082 1.174 ad 37, 38, 38, 39, 39, 40, 40, 41,
1083 1.174 ad 41, 42, 42, 43, 44, 44, 45, 45,
1084 1.174 ad 46, 46, 47, 47, 48, 48, 49, 49,
1085 1.174 ad };
1086 1.174 ad
1087 1.185 yamt return (pri_t)kpri_tab[l->l_usrpri];
1088 1.174 ad }
1089 1.174 ad
1090 1.174 ad /*
1091 1.174 ad * sched_unsleep:
1092 1.174 ad *
1093 1.174 ad * The is called when the LWP has not been awoken normally but instead
1094 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1095 1.174 ad * it's not a valid action for running or idle LWPs.
1096 1.174 ad */
1097 1.174 ad void
1098 1.174 ad sched_unsleep(struct lwp *l)
1099 1.174 ad {
1100 1.174 ad
1101 1.174 ad lwp_unlock(l);
1102 1.174 ad panic("sched_unsleep");
1103 1.174 ad }
1104 1.174 ad
1105 1.174 ad /*
1106 1.174 ad * sched_changepri:
1107 1.174 ad *
1108 1.174 ad * Adjust the priority of an LWP.
1109 1.174 ad */
1110 1.174 ad void
1111 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1112 1.174 ad {
1113 1.174 ad
1114 1.174 ad LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1115 1.174 ad
1116 1.174 ad l->l_usrpri = pri;
1117 1.174 ad if (l->l_priority < PUSER)
1118 1.174 ad return;
1119 1.184 yamt
1120 1.184 yamt if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
1121 1.174 ad l->l_priority = pri;
1122 1.174 ad return;
1123 1.157 yamt }
1124 1.174 ad
1125 1.174 ad remrunqueue(l);
1126 1.174 ad l->l_priority = pri;
1127 1.174 ad setrunqueue(l);
1128 1.184 yamt resched_lwp(l);
1129 1.184 yamt }
1130 1.184 yamt
1131 1.184 yamt void
1132 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1133 1.184 yamt {
1134 1.184 yamt
1135 1.184 yamt LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1136 1.184 yamt
1137 1.184 yamt if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
1138 1.184 yamt l->l_inheritedprio = pri;
1139 1.184 yamt return;
1140 1.184 yamt }
1141 1.184 yamt
1142 1.184 yamt remrunqueue(l);
1143 1.184 yamt l->l_inheritedprio = pri;
1144 1.184 yamt setrunqueue(l);
1145 1.184 yamt resched_lwp(l);
1146 1.184 yamt }
1147 1.184 yamt
1148 1.184 yamt struct lwp *
1149 1.184 yamt syncobj_noowner(wchan_t wchan)
1150 1.184 yamt {
1151 1.184 yamt
1152 1.184 yamt return NULL;
1153 1.151 yamt }
1154 1.151 yamt
1155 1.151 yamt /*
1156 1.113 gmcgarry * Low-level routines to access the run queue. Optimised assembler
1157 1.113 gmcgarry * routines can override these.
1158 1.113 gmcgarry */
1159 1.113 gmcgarry
1160 1.113 gmcgarry #ifndef __HAVE_MD_RUNQUEUE
1161 1.115 nisimura
1162 1.130 nathanw /*
1163 1.134 matt * On some architectures, it's faster to use a MSB ordering for the priorites
1164 1.134 matt * than the traditional LSB ordering.
1165 1.134 matt */
1166 1.134 matt #ifdef __HAVE_BIGENDIAN_BITOPS
1167 1.134 matt #define RQMASK(n) (0x80000000 >> (n))
1168 1.134 matt #else
1169 1.134 matt #define RQMASK(n) (0x00000001 << (n))
1170 1.134 matt #endif
1171 1.134 matt
1172 1.134 matt /*
1173 1.115 nisimura * The primitives that manipulate the run queues. whichqs tells which
1174 1.115 nisimura * of the 32 queues qs have processes in them. Setrunqueue puts processes
1175 1.115 nisimura * into queues, remrunqueue removes them from queues. The running process is
1176 1.115 nisimura * on no queue, other processes are on a queue related to p->p_priority,
1177 1.115 nisimura * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1178 1.115 nisimura * available queues.
1179 1.130 nathanw */
1180 1.146 matt #ifdef RQDEBUG
1181 1.146 matt static void
1182 1.146 matt checkrunqueue(int whichq, struct lwp *l)
1183 1.146 matt {
1184 1.146 matt const struct prochd * const rq = &sched_qs[whichq];
1185 1.146 matt struct lwp *l2;
1186 1.146 matt int found = 0;
1187 1.146 matt int die = 0;
1188 1.146 matt int empty = 1;
1189 1.164 christos for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
1190 1.146 matt if (l2->l_stat != LSRUN) {
1191 1.146 matt printf("checkrunqueue[%d]: lwp %p state (%d) "
1192 1.146 matt " != LSRUN\n", whichq, l2, l2->l_stat);
1193 1.146 matt }
1194 1.146 matt if (l2->l_back->l_forw != l2) {
1195 1.146 matt printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1196 1.146 matt "corrupt %p\n", whichq, l2, l2->l_back,
1197 1.146 matt l2->l_back->l_forw);
1198 1.146 matt die = 1;
1199 1.146 matt }
1200 1.146 matt if (l2->l_forw->l_back != l2) {
1201 1.146 matt printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1202 1.146 matt "corrupt %p\n", whichq, l2, l2->l_forw,
1203 1.146 matt l2->l_forw->l_back);
1204 1.146 matt die = 1;
1205 1.146 matt }
1206 1.146 matt if (l2 == l)
1207 1.146 matt found = 1;
1208 1.146 matt empty = 0;
1209 1.146 matt }
1210 1.146 matt if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1211 1.146 matt printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1212 1.146 matt whichq, rq);
1213 1.146 matt die = 1;
1214 1.146 matt } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1215 1.146 matt printf("checkrunqueue[%d]: bit clear for non-empty "
1216 1.146 matt "run-queue %p\n", whichq, rq);
1217 1.146 matt die = 1;
1218 1.146 matt }
1219 1.146 matt if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1220 1.146 matt printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1221 1.146 matt whichq, l);
1222 1.146 matt die = 1;
1223 1.146 matt }
1224 1.146 matt if (l != NULL && empty) {
1225 1.146 matt printf("checkrunqueue[%d]: empty run-queue %p with "
1226 1.146 matt "active lwp %p\n", whichq, rq, l);
1227 1.146 matt die = 1;
1228 1.146 matt }
1229 1.146 matt if (l != NULL && !found) {
1230 1.146 matt printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1231 1.146 matt whichq, l, rq);
1232 1.146 matt die = 1;
1233 1.146 matt }
1234 1.146 matt if (die)
1235 1.146 matt panic("checkrunqueue: inconsistency found");
1236 1.146 matt }
1237 1.146 matt #endif /* RQDEBUG */
1238 1.146 matt
1239 1.113 gmcgarry void
1240 1.122 thorpej setrunqueue(struct lwp *l)
1241 1.113 gmcgarry {
1242 1.113 gmcgarry struct prochd *rq;
1243 1.122 thorpej struct lwp *prev;
1244 1.184 yamt const int whichq = lwp_eprio(l) / PPQ;
1245 1.113 gmcgarry
1246 1.174 ad LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1247 1.174 ad
1248 1.146 matt #ifdef RQDEBUG
1249 1.146 matt checkrunqueue(whichq, NULL);
1250 1.146 matt #endif
1251 1.113 gmcgarry #ifdef DIAGNOSTIC
1252 1.174 ad if (l->l_back != NULL || l->l_stat != LSRUN)
1253 1.113 gmcgarry panic("setrunqueue");
1254 1.113 gmcgarry #endif
1255 1.134 matt sched_whichqs |= RQMASK(whichq);
1256 1.113 gmcgarry rq = &sched_qs[whichq];
1257 1.113 gmcgarry prev = rq->ph_rlink;
1258 1.122 thorpej l->l_forw = (struct lwp *)rq;
1259 1.122 thorpej rq->ph_rlink = l;
1260 1.122 thorpej prev->l_forw = l;
1261 1.122 thorpej l->l_back = prev;
1262 1.146 matt #ifdef RQDEBUG
1263 1.146 matt checkrunqueue(whichq, l);
1264 1.146 matt #endif
1265 1.113 gmcgarry }
1266 1.113 gmcgarry
1267 1.174 ad /*
1268 1.174 ad * XXXSMP When LWP dispatch (cpu_switch()) is changed to use remrunqueue(),
1269 1.174 ad * drop of the effective priority level from kernel to user needs to be
1270 1.174 ad * moved here from userret(). The assignment in userret() is currently
1271 1.174 ad * done unlocked.
1272 1.174 ad */
1273 1.113 gmcgarry void
1274 1.122 thorpej remrunqueue(struct lwp *l)
1275 1.113 gmcgarry {
1276 1.122 thorpej struct lwp *prev, *next;
1277 1.184 yamt const int whichq = lwp_eprio(l) / PPQ;
1278 1.174 ad
1279 1.174 ad LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1280 1.174 ad
1281 1.146 matt #ifdef RQDEBUG
1282 1.146 matt checkrunqueue(whichq, l);
1283 1.146 matt #endif
1284 1.174 ad
1285 1.174 ad #if defined(DIAGNOSTIC)
1286 1.174 ad if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
1287 1.174 ad /* Shouldn't happen - interrupts disabled. */
1288 1.146 matt panic("remrunqueue: bit %d not set", whichq);
1289 1.174 ad }
1290 1.113 gmcgarry #endif
1291 1.122 thorpej prev = l->l_back;
1292 1.122 thorpej l->l_back = NULL;
1293 1.122 thorpej next = l->l_forw;
1294 1.122 thorpej prev->l_forw = next;
1295 1.122 thorpej next->l_back = prev;
1296 1.113 gmcgarry if (prev == next)
1297 1.134 matt sched_whichqs &= ~RQMASK(whichq);
1298 1.146 matt #ifdef RQDEBUG
1299 1.146 matt checkrunqueue(whichq, NULL);
1300 1.146 matt #endif
1301 1.113 gmcgarry }
1302 1.113 gmcgarry
1303 1.134 matt #undef RQMASK
1304 1.134 matt #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1305