kern_synch.c revision 1.186.2.14 1 1.186.2.14 yamt /* $NetBSD: kern_synch.c,v 1.186.2.14 2007/08/31 15:15:16 yamt Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.174 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.186.2.6 ad * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.186.2.6 ad * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
21 1.63 thorpej * must display the following acknowledgement:
22 1.63 thorpej * This product includes software developed by the NetBSD
23 1.63 thorpej * Foundation, Inc. and its contributors.
24 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.63 thorpej * contributors may be used to endorse or promote products derived
26 1.63 thorpej * from this software without specific prior written permission.
27 1.63 thorpej *
28 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
39 1.63 thorpej */
40 1.26 cgd
41 1.26 cgd /*-
42 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.26 cgd * The Regents of the University of California. All rights reserved.
44 1.26 cgd * (c) UNIX System Laboratories, Inc.
45 1.26 cgd * All or some portions of this file are derived from material licensed
46 1.26 cgd * to the University of California by American Telephone and Telegraph
47 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.26 cgd * the permission of UNIX System Laboratories, Inc.
49 1.26 cgd *
50 1.26 cgd * Redistribution and use in source and binary forms, with or without
51 1.26 cgd * modification, are permitted provided that the following conditions
52 1.26 cgd * are met:
53 1.26 cgd * 1. Redistributions of source code must retain the above copyright
54 1.26 cgd * notice, this list of conditions and the following disclaimer.
55 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
56 1.26 cgd * notice, this list of conditions and the following disclaimer in the
57 1.26 cgd * documentation and/or other materials provided with the distribution.
58 1.136 agc * 3. Neither the name of the University nor the names of its contributors
59 1.26 cgd * may be used to endorse or promote products derived from this software
60 1.26 cgd * without specific prior written permission.
61 1.26 cgd *
62 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.26 cgd * SUCH DAMAGE.
73 1.26 cgd *
74 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.26 cgd */
76 1.106 lukem
77 1.106 lukem #include <sys/cdefs.h>
78 1.186.2.14 yamt __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.186.2.14 2007/08/31 15:15:16 yamt Exp $");
79 1.48 mrg
80 1.109 yamt #include "opt_kstack.h"
81 1.82 thorpej #include "opt_lockdebug.h"
82 1.83 thorpej #include "opt_multiprocessor.h"
83 1.110 briggs #include "opt_perfctrs.h"
84 1.26 cgd
85 1.174 ad #define __MUTEX_PRIVATE
86 1.174 ad
87 1.26 cgd #include <sys/param.h>
88 1.26 cgd #include <sys/systm.h>
89 1.26 cgd #include <sys/proc.h>
90 1.26 cgd #include <sys/kernel.h>
91 1.111 briggs #if defined(PERFCTRS)
92 1.110 briggs #include <sys/pmc.h>
93 1.111 briggs #endif
94 1.186.2.6 ad #include <sys/cpu.h>
95 1.26 cgd #include <sys/resourcevar.h>
96 1.55 ross #include <sys/sched.h>
97 1.179 dsl #include <sys/syscall_stats.h>
98 1.174 ad #include <sys/sleepq.h>
99 1.174 ad #include <sys/lockdebug.h>
100 1.186.2.9 ad #include <sys/evcnt.h>
101 1.186.2.10 ad #include <sys/intr.h>
102 1.47 mrg
103 1.47 mrg #include <uvm/uvm_extern.h>
104 1.47 mrg
105 1.186.2.9 ad callout_t sched_pstats_ch;
106 1.186.2.6 ad unsigned int sched_pstats_ticks;
107 1.34 christos
108 1.186.2.6 ad kcondvar_t lbolt; /* once a second sleep address */
109 1.26 cgd
110 1.186.2.6 ad static void sched_unsleep(struct lwp *);
111 1.186.2.6 ad static void sched_changepri(struct lwp *, pri_t);
112 1.186.2.6 ad static void sched_lendpri(struct lwp *, pri_t);
113 1.122 thorpej
114 1.174 ad syncobj_t sleep_syncobj = {
115 1.174 ad SOBJ_SLEEPQ_SORTED,
116 1.174 ad sleepq_unsleep,
117 1.184 yamt sleepq_changepri,
118 1.184 yamt sleepq_lendpri,
119 1.184 yamt syncobj_noowner,
120 1.174 ad };
121 1.174 ad
122 1.174 ad syncobj_t sched_syncobj = {
123 1.174 ad SOBJ_SLEEPQ_SORTED,
124 1.174 ad sched_unsleep,
125 1.184 yamt sched_changepri,
126 1.184 yamt sched_lendpri,
127 1.184 yamt syncobj_noowner,
128 1.174 ad };
129 1.122 thorpej
130 1.26 cgd /*
131 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
132 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
133 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
134 1.174 ad * maintained in the machine-dependent layers. This priority will typically
135 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
136 1.174 ad * it can be made higher to block network software interrupts after panics.
137 1.26 cgd */
138 1.174 ad int safepri;
139 1.26 cgd
140 1.26 cgd /*
141 1.174 ad * OBSOLETE INTERFACE
142 1.174 ad *
143 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
144 1.26 cgd * performed on the specified identifier. The process will then be made
145 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
146 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
147 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
148 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
149 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
150 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
151 1.26 cgd * call should be interrupted by the signal (return EINTR).
152 1.77 thorpej *
153 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
154 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
155 1.174 ad * is specified, in which case the interlock will always be unlocked upon
156 1.174 ad * return.
157 1.26 cgd */
158 1.26 cgd int
159 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
160 1.174 ad volatile struct simplelock *interlock)
161 1.26 cgd {
162 1.122 thorpej struct lwp *l = curlwp;
163 1.174 ad sleepq_t *sq;
164 1.186.2.5 ad int error;
165 1.26 cgd
166 1.174 ad if (sleepq_dontsleep(l)) {
167 1.174 ad (void)sleepq_abort(NULL, 0);
168 1.174 ad if ((priority & PNORELOCK) != 0)
169 1.77 thorpej simple_unlock(interlock);
170 1.174 ad return 0;
171 1.26 cgd }
172 1.78 sommerfe
173 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
174 1.174 ad sleepq_enter(sq, l);
175 1.186.2.8 ad sleepq_enqueue(sq, sched_kpri(l), ident, wmesg, &sleep_syncobj);
176 1.186.2.6 ad
177 1.186.2.6 ad if (interlock != NULL) {
178 1.186.2.6 ad KASSERT(simple_lock_held(interlock));
179 1.174 ad simple_unlock(interlock);
180 1.186.2.6 ad }
181 1.186.2.6 ad
182 1.186.2.5 ad error = sleepq_block(timo, priority & PCATCH);
183 1.126 pk
184 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
185 1.126 pk simple_lock(interlock);
186 1.174 ad
187 1.174 ad return error;
188 1.26 cgd }
189 1.26 cgd
190 1.186.2.1 ad int
191 1.186.2.1 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
192 1.186.2.1 ad kmutex_t *mtx)
193 1.186.2.1 ad {
194 1.186.2.1 ad struct lwp *l = curlwp;
195 1.186.2.1 ad sleepq_t *sq;
196 1.186.2.5 ad int error;
197 1.186.2.1 ad
198 1.186.2.1 ad if (sleepq_dontsleep(l)) {
199 1.186.2.1 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
200 1.186.2.1 ad return 0;
201 1.186.2.1 ad }
202 1.186.2.1 ad
203 1.186.2.1 ad sq = sleeptab_lookup(&sleeptab, ident);
204 1.186.2.1 ad sleepq_enter(sq, l);
205 1.186.2.8 ad sleepq_enqueue(sq, sched_kpri(l), ident, wmesg, &sleep_syncobj);
206 1.186.2.1 ad mutex_exit(mtx);
207 1.186.2.5 ad error = sleepq_block(timo, priority & PCATCH);
208 1.186.2.1 ad
209 1.186.2.1 ad if ((priority & PNORELOCK) == 0)
210 1.186.2.1 ad mutex_enter(mtx);
211 1.186.2.1 ad
212 1.186.2.1 ad return error;
213 1.186.2.1 ad }
214 1.186.2.1 ad
215 1.26 cgd /*
216 1.174 ad * General sleep call for situations where a wake-up is not expected.
217 1.26 cgd */
218 1.174 ad int
219 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
220 1.26 cgd {
221 1.174 ad struct lwp *l = curlwp;
222 1.174 ad sleepq_t *sq;
223 1.174 ad int error;
224 1.26 cgd
225 1.174 ad if (sleepq_dontsleep(l))
226 1.174 ad return sleepq_abort(NULL, 0);
227 1.26 cgd
228 1.174 ad if (mtx != NULL)
229 1.174 ad mutex_exit(mtx);
230 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
231 1.174 ad sleepq_enter(sq, l);
232 1.186.2.5 ad sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
233 1.186.2.5 ad error = sleepq_block(timo, intr);
234 1.174 ad if (mtx != NULL)
235 1.174 ad mutex_enter(mtx);
236 1.83 thorpej
237 1.174 ad return error;
238 1.139 cl }
239 1.139 cl
240 1.26 cgd /*
241 1.174 ad * OBSOLETE INTERFACE
242 1.174 ad *
243 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
244 1.26 cgd */
245 1.26 cgd void
246 1.174 ad wakeup(wchan_t ident)
247 1.26 cgd {
248 1.174 ad sleepq_t *sq;
249 1.83 thorpej
250 1.174 ad if (cold)
251 1.174 ad return;
252 1.83 thorpej
253 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
254 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
255 1.63 thorpej }
256 1.63 thorpej
257 1.63 thorpej /*
258 1.174 ad * OBSOLETE INTERFACE
259 1.174 ad *
260 1.63 thorpej * Make the highest priority process first in line on the specified
261 1.63 thorpej * identifier runnable.
262 1.63 thorpej */
263 1.174 ad void
264 1.174 ad wakeup_one(wchan_t ident)
265 1.63 thorpej {
266 1.174 ad sleepq_t *sq;
267 1.63 thorpej
268 1.174 ad if (cold)
269 1.174 ad return;
270 1.186.2.6 ad
271 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
272 1.174 ad sleepq_wake(sq, ident, 1);
273 1.174 ad }
274 1.63 thorpej
275 1.117 gmcgarry
276 1.117 gmcgarry /*
277 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
278 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
279 1.117 gmcgarry * current process explicitly requests it (eg sched_yield(2) in compat code).
280 1.117 gmcgarry */
281 1.117 gmcgarry void
282 1.117 gmcgarry yield(void)
283 1.117 gmcgarry {
284 1.122 thorpej struct lwp *l = curlwp;
285 1.117 gmcgarry
286 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
287 1.174 ad lwp_lock(l);
288 1.186.2.6 ad KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
289 1.186.2.6 ad KASSERT(l->l_stat == LSONPROC);
290 1.186.2.6 ad l->l_priority = l->l_usrpri;
291 1.186.2.6 ad (void)mi_switch(l);
292 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
293 1.69 thorpej }
294 1.69 thorpej
295 1.69 thorpej /*
296 1.69 thorpej * General preemption call. Puts the current process back on its run queue
297 1.156 rpaulo * and performs an involuntary context switch.
298 1.69 thorpej */
299 1.69 thorpej void
300 1.174 ad preempt(void)
301 1.69 thorpej {
302 1.122 thorpej struct lwp *l = curlwp;
303 1.69 thorpej
304 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
305 1.174 ad lwp_lock(l);
306 1.186.2.6 ad KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
307 1.186.2.6 ad KASSERT(l->l_stat == LSONPROC);
308 1.186.2.6 ad l->l_priority = l->l_usrpri;
309 1.174 ad l->l_nivcsw++;
310 1.186.2.6 ad (void)mi_switch(l);
311 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
312 1.69 thorpej }
313 1.69 thorpej
314 1.69 thorpej /*
315 1.186.2.6 ad * Compute the amount of time during which the current lwp was running.
316 1.130 nathanw *
317 1.186.2.6 ad * - update l_rtime unless it's an idle lwp.
318 1.186.2.11 ad * - update l_runtime for the next lwp.
319 1.186.2.6 ad */
320 1.186.2.6 ad
321 1.186.2.11 ad void
322 1.186.2.14 yamt updatertime(lwp_t *l, const struct timeval *tv)
323 1.186.2.6 ad {
324 1.186.2.6 ad long s, u;
325 1.186.2.6 ad
326 1.186.2.11 ad if ((l->l_flag & LW_IDLE) != 0)
327 1.186.2.6 ad return;
328 1.186.2.6 ad
329 1.186.2.11 ad u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
330 1.186.2.11 ad s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
331 1.186.2.6 ad if (u < 0) {
332 1.186.2.6 ad u += 1000000;
333 1.186.2.6 ad s--;
334 1.186.2.6 ad } else if (u >= 1000000) {
335 1.186.2.6 ad u -= 1000000;
336 1.186.2.6 ad s++;
337 1.186.2.6 ad }
338 1.186.2.6 ad l->l_rtime.tv_usec = u;
339 1.186.2.6 ad l->l_rtime.tv_sec = s;
340 1.186.2.6 ad }
341 1.186.2.6 ad
342 1.186.2.6 ad /*
343 1.186.2.6 ad * The machine independent parts of context switch.
344 1.186.2.6 ad *
345 1.186.2.6 ad * Returns 1 if another LWP was actually run.
346 1.26 cgd */
347 1.122 thorpej int
348 1.186.2.11 ad mi_switch(lwp_t *l)
349 1.26 cgd {
350 1.76 thorpej struct schedstate_percpu *spc;
351 1.186.2.6 ad struct lwp *newl;
352 1.174 ad int retval, oldspl;
353 1.186.2.11 ad struct timeval tv;
354 1.186.2.8 ad bool returning;
355 1.26 cgd
356 1.186.2.3 ad KASSERT(lwp_locked(l, NULL));
357 1.186.2.6 ad LOCKDEBUG_BARRIER(l->l_mutex, 1);
358 1.174 ad
359 1.174 ad #ifdef KSTACK_CHECK_MAGIC
360 1.174 ad kstack_check_magic(l);
361 1.174 ad #endif
362 1.83 thorpej
363 1.186.2.11 ad microtime(&tv);
364 1.186.2.11 ad
365 1.90 sommerfe /*
366 1.174 ad * It's safe to read the per CPU schedstate unlocked here, as all we
367 1.174 ad * are after is the run time and that's guarenteed to have been last
368 1.174 ad * updated by this CPU.
369 1.90 sommerfe */
370 1.122 thorpej KDASSERT(l->l_cpu == curcpu());
371 1.26 cgd
372 1.113 gmcgarry /*
373 1.186.2.6 ad * Process is about to yield the CPU; clear the appropriate
374 1.186.2.6 ad * scheduling flags.
375 1.113 gmcgarry */
376 1.186.2.6 ad spc = &l->l_cpu->ci_schedstate;
377 1.186.2.10 ad returning = false;
378 1.186.2.10 ad newl = NULL;
379 1.186.2.9 ad
380 1.186.2.11 ad /*
381 1.186.2.11 ad * If we have been asked to switch to a specific LWP, then there
382 1.186.2.11 ad * is no need to inspect the run queues. If a soft interrupt is
383 1.186.2.11 ad * blocking, then return to the interrupted thread without adjusting
384 1.186.2.11 ad * VM context or its start time: neither have been changed in order
385 1.186.2.11 ad * to take the interrupt.
386 1.186.2.11 ad */
387 1.186.2.10 ad if (l->l_switchto != NULL) {
388 1.186.2.10 ad if ((l->l_flag & LW_INTR) != 0) {
389 1.186.2.10 ad returning = true;
390 1.186.2.10 ad softint_block.ev_count++;
391 1.186.2.11 ad if ((l->l_flag & LW_TIMEINTR) != 0)
392 1.186.2.11 ad updatertime(l, &tv);
393 1.186.2.10 ad }
394 1.186.2.10 ad newl = l->l_switchto;
395 1.186.2.10 ad l->l_switchto = NULL;
396 1.186.2.10 ad }
397 1.186.2.8 ad
398 1.186.2.10 ad if (!returning) {
399 1.186.2.8 ad /* Count time spent in current system call */
400 1.186.2.8 ad SYSCALL_TIME_SLEEP(l);
401 1.186.2.8 ad
402 1.186.2.8 ad /*
403 1.186.2.8 ad * XXXSMP If we are using h/w performance counters,
404 1.186.2.8 ad * save context.
405 1.186.2.8 ad */
406 1.186.2.8 ad #if PERFCTRS
407 1.186.2.8 ad if (PMC_ENABLED(l->l_proc)) {
408 1.186.2.8 ad pmc_save_context(l->l_proc);
409 1.186.2.8 ad }
410 1.186.2.8 ad #endif
411 1.186.2.11 ad updatertime(l, &tv);
412 1.186.2.8 ad }
413 1.113 gmcgarry
414 1.113 gmcgarry /*
415 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
416 1.113 gmcgarry */
417 1.186.2.6 ad mutex_spin_enter(spc->spc_mutex);
418 1.174 ad KASSERT(l->l_stat != LSRUN);
419 1.174 ad if (l->l_stat == LSONPROC) {
420 1.186.2.6 ad KASSERT(lwp_locked(l, &spc->spc_lwplock));
421 1.186.2.6 ad if ((l->l_flag & LW_IDLE) == 0) {
422 1.186.2.6 ad l->l_stat = LSRUN;
423 1.186.2.6 ad lwp_setlock(l, spc->spc_mutex);
424 1.186.2.6 ad sched_enqueue(l, true);
425 1.186.2.6 ad } else
426 1.186.2.6 ad l->l_stat = LSIDL;
427 1.174 ad }
428 1.174 ad
429 1.174 ad /*
430 1.186.2.6 ad * Let sched_nextlwp() select the LWP to run the CPU next.
431 1.186.2.6 ad * If no LWP is runnable, switch to the idle LWP.
432 1.174 ad */
433 1.186.2.10 ad if (newl == NULL) {
434 1.186.2.8 ad newl = sched_nextlwp();
435 1.186.2.10 ad if (newl != NULL) {
436 1.186.2.8 ad sched_dequeue(newl);
437 1.186.2.8 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
438 1.186.2.8 ad newl->l_stat = LSONPROC;
439 1.186.2.8 ad newl->l_cpu = l->l_cpu;
440 1.186.2.8 ad newl->l_flag |= LW_RUNNING;
441 1.186.2.8 ad lwp_setlock(newl, &spc->spc_lwplock);
442 1.186.2.8 ad } else {
443 1.186.2.8 ad newl = l->l_cpu->ci_data.cpu_idlelwp;
444 1.186.2.8 ad newl->l_stat = LSONPROC;
445 1.186.2.8 ad newl->l_flag |= LW_RUNNING;
446 1.186.2.8 ad }
447 1.186.2.8 ad spc->spc_curpriority = newl->l_usrpri;
448 1.186.2.8 ad newl->l_priority = newl->l_usrpri;
449 1.186.2.8 ad cpu_did_resched();
450 1.186.2.12 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
451 1.186.2.6 ad }
452 1.174 ad
453 1.186.2.11 ad /* Update the new LWP's start time while it is still locked. */
454 1.186.2.11 ad if (!returning)
455 1.186.2.11 ad newl->l_stime = tv;
456 1.186.2.11 ad
457 1.186.2.6 ad if (l != newl) {
458 1.186.2.6 ad struct lwp *prevlwp;
459 1.174 ad
460 1.186.2.6 ad /*
461 1.186.2.6 ad * If the old LWP has been moved to a run queue above,
462 1.186.2.6 ad * drop the general purpose LWP lock: it's now locked
463 1.186.2.6 ad * by the scheduler lock.
464 1.186.2.6 ad *
465 1.186.2.6 ad * Otherwise, drop the scheduler lock. We're done with
466 1.186.2.6 ad * the run queues for now.
467 1.186.2.6 ad */
468 1.186.2.6 ad if (l->l_mutex == spc->spc_mutex) {
469 1.186.2.6 ad mutex_spin_exit(&spc->spc_lwplock);
470 1.186.2.6 ad } else {
471 1.186.2.6 ad mutex_spin_exit(spc->spc_mutex);
472 1.186.2.6 ad }
473 1.186.2.6 ad
474 1.186.2.6 ad /* Unlocked, but for statistics only. */
475 1.186.2.6 ad uvmexp.swtch++;
476 1.186.2.6 ad
477 1.186.2.8 ad /*
478 1.186.2.8 ad * Save old VM context, unless a soft interrupt
479 1.186.2.8 ad * handler is blocking.
480 1.186.2.8 ad */
481 1.186.2.8 ad if (!returning)
482 1.186.2.8 ad pmap_deactivate(l);
483 1.186.2.6 ad
484 1.186.2.6 ad /* Switch to the new LWP.. */
485 1.186.2.6 ad l->l_ncsw++;
486 1.186.2.6 ad l->l_flag &= ~LW_RUNNING;
487 1.186.2.6 ad oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
488 1.186.2.8 ad prevlwp = cpu_switchto(l, newl, returning);
489 1.174 ad
490 1.186.2.6 ad /*
491 1.186.2.6 ad * .. we have switched away and are now back so we must
492 1.186.2.6 ad * be the new curlwp. prevlwp is who we replaced.
493 1.186.2.6 ad */
494 1.186.2.6 ad curlwp = l;
495 1.186.2.6 ad if (prevlwp != NULL) {
496 1.186.2.6 ad curcpu()->ci_mtx_oldspl = oldspl;
497 1.186.2.6 ad lwp_unlock(prevlwp);
498 1.186.2.6 ad } else {
499 1.186.2.6 ad splx(oldspl);
500 1.186.2.6 ad }
501 1.186.2.6 ad
502 1.186.2.6 ad /* Restore VM context. */
503 1.186.2.6 ad pmap_activate(l);
504 1.186.2.6 ad retval = 1;
505 1.186.2.6 ad } else {
506 1.186.2.6 ad /* Nothing to do - just unlock and return. */
507 1.186.2.6 ad mutex_spin_exit(spc->spc_mutex);
508 1.186.2.6 ad lwp_unlock(l);
509 1.122 thorpej retval = 0;
510 1.122 thorpej }
511 1.110 briggs
512 1.186.2.6 ad KASSERT(l == curlwp);
513 1.186.2.6 ad KASSERT(l->l_stat == LSONPROC);
514 1.186.2.11 ad KASSERT(l->l_cpu == curcpu());
515 1.186.2.6 ad
516 1.110 briggs /*
517 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
518 1.26 cgd */
519 1.114 gmcgarry #if PERFCTRS
520 1.175 christos if (PMC_ENABLED(l->l_proc)) {
521 1.175 christos pmc_restore_context(l->l_proc);
522 1.166 christos }
523 1.114 gmcgarry #endif
524 1.110 briggs
525 1.180 dsl SYSCALL_TIME_WAKEUP(l);
526 1.186.2.6 ad LOCKDEBUG_BARRIER(NULL, 1);
527 1.169 yamt
528 1.122 thorpej return retval;
529 1.26 cgd }
530 1.26 cgd
531 1.26 cgd /*
532 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
533 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
534 1.174 ad *
535 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
536 1.26 cgd */
537 1.26 cgd void
538 1.122 thorpej setrunnable(struct lwp *l)
539 1.26 cgd {
540 1.122 thorpej struct proc *p = l->l_proc;
541 1.174 ad sigset_t *ss;
542 1.26 cgd
543 1.186.2.6 ad KASSERT((l->l_flag & LW_IDLE) == 0);
544 1.183 ad KASSERT(mutex_owned(&p->p_smutex));
545 1.183 ad KASSERT(lwp_locked(l, NULL));
546 1.83 thorpej
547 1.122 thorpej switch (l->l_stat) {
548 1.122 thorpej case LSSTOP:
549 1.33 mycroft /*
550 1.33 mycroft * If we're being traced (possibly because someone attached us
551 1.33 mycroft * while we were stopped), check for a signal from the debugger.
552 1.33 mycroft */
553 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
554 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
555 1.174 ad ss = &l->l_sigpend.sp_set;
556 1.174 ad else
557 1.174 ad ss = &p->p_sigpend.sp_set;
558 1.174 ad sigaddset(ss, p->p_xstat);
559 1.174 ad signotify(l);
560 1.53 mycroft }
561 1.174 ad p->p_nrlwps++;
562 1.26 cgd break;
563 1.174 ad case LSSUSPENDED:
564 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
565 1.174 ad p->p_nrlwps++;
566 1.186.2.12 ad cv_broadcast(&p->p_lwpcv);
567 1.122 thorpej break;
568 1.174 ad case LSSLEEP:
569 1.174 ad KASSERT(l->l_wchan != NULL);
570 1.26 cgd break;
571 1.174 ad default:
572 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
573 1.26 cgd }
574 1.139 cl
575 1.174 ad /*
576 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
577 1.174 ad * again. If not, mark it as still sleeping.
578 1.174 ad */
579 1.174 ad if (l->l_wchan != NULL) {
580 1.174 ad l->l_stat = LSSLEEP;
581 1.183 ad /* lwp_unsleep() will release the lock. */
582 1.183 ad lwp_unsleep(l);
583 1.174 ad return;
584 1.174 ad }
585 1.139 cl
586 1.174 ad /*
587 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
588 1.174 ad * about to call mi_switch(), in which case it will yield.
589 1.174 ad */
590 1.186.2.6 ad if ((l->l_flag & LW_RUNNING) != 0) {
591 1.174 ad l->l_stat = LSONPROC;
592 1.174 ad l->l_slptime = 0;
593 1.174 ad lwp_unlock(l);
594 1.174 ad return;
595 1.174 ad }
596 1.122 thorpej
597 1.174 ad /*
598 1.174 ad * Set the LWP runnable. If it's swapped out, we need to wake the swapper
599 1.174 ad * to bring it back in. Otherwise, enter it into a run queue.
600 1.174 ad */
601 1.186.2.7 ad if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
602 1.186.2.7 ad spc_lock(l->l_cpu);
603 1.186.2.7 ad lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
604 1.186.2.7 ad }
605 1.186.2.7 ad
606 1.186.2.6 ad sched_setrunnable(l);
607 1.174 ad l->l_stat = LSRUN;
608 1.122 thorpej l->l_slptime = 0;
609 1.174 ad
610 1.178 pavel if (l->l_flag & LW_INMEM) {
611 1.186.2.6 ad sched_enqueue(l, false);
612 1.186.2.6 ad resched_cpu(l);
613 1.174 ad lwp_unlock(l);
614 1.174 ad } else {
615 1.174 ad lwp_unlock(l);
616 1.177 ad uvm_kick_scheduler();
617 1.174 ad }
618 1.26 cgd }
619 1.26 cgd
620 1.26 cgd /*
621 1.174 ad * suspendsched:
622 1.174 ad *
623 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
624 1.174 ad */
625 1.94 bouyer void
626 1.174 ad suspendsched(void)
627 1.94 bouyer {
628 1.174 ad CPU_INFO_ITERATOR cii;
629 1.174 ad struct cpu_info *ci;
630 1.122 thorpej struct lwp *l;
631 1.174 ad struct proc *p;
632 1.94 bouyer
633 1.94 bouyer /*
634 1.174 ad * We do this by process in order not to violate the locking rules.
635 1.94 bouyer */
636 1.186.2.8 ad mutex_enter(&proclist_lock);
637 1.174 ad PROCLIST_FOREACH(p, &allproc) {
638 1.174 ad mutex_enter(&p->p_smutex);
639 1.174 ad
640 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
641 1.174 ad mutex_exit(&p->p_smutex);
642 1.94 bouyer continue;
643 1.174 ad }
644 1.174 ad
645 1.174 ad p->p_stat = SSTOP;
646 1.174 ad
647 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
648 1.174 ad if (l == curlwp)
649 1.174 ad continue;
650 1.174 ad
651 1.174 ad lwp_lock(l);
652 1.122 thorpej
653 1.97 enami /*
654 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
655 1.174 ad * when it tries to return to user mode. We want to
656 1.174 ad * try and get to get as many LWPs as possible to
657 1.174 ad * the user / kernel boundary, so that they will
658 1.174 ad * release any locks that they hold.
659 1.97 enami */
660 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
661 1.174 ad
662 1.174 ad if (l->l_stat == LSSLEEP &&
663 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
664 1.174 ad /* setrunnable() will release the lock. */
665 1.174 ad setrunnable(l);
666 1.174 ad continue;
667 1.174 ad }
668 1.174 ad
669 1.174 ad lwp_unlock(l);
670 1.94 bouyer }
671 1.174 ad
672 1.174 ad mutex_exit(&p->p_smutex);
673 1.94 bouyer }
674 1.186.2.8 ad mutex_exit(&proclist_lock);
675 1.174 ad
676 1.174 ad /*
677 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
678 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
679 1.174 ad */
680 1.186.2.13 ad for (CPU_INFO_FOREACH(cii, ci)) {
681 1.186.2.13 ad spc_lock(ci);
682 1.186.2.13 ad cpu_need_resched(ci, RESCHED_IMMED);
683 1.186.2.13 ad spc_unlock(ci);
684 1.186.2.13 ad }
685 1.174 ad }
686 1.174 ad
687 1.174 ad /*
688 1.174 ad * sched_kpri:
689 1.174 ad *
690 1.174 ad * Scale a priority level to a kernel priority level, usually
691 1.174 ad * for an LWP that is about to sleep.
692 1.174 ad */
693 1.185 yamt pri_t
694 1.174 ad sched_kpri(struct lwp *l)
695 1.174 ad {
696 1.186.2.8 ad pri_t pri;
697 1.186.2.8 ad
698 1.174 ad /*
699 1.186.2.8 ad * Scale user priorities (0 -> 63) up to kernel priorities
700 1.186.2.8 ad * in the range (64 -> 95). This makes assumptions about
701 1.186.2.8 ad * the priority space and so should be kept in sync with
702 1.186.2.8 ad * param.h.
703 1.186.2.8 ad */
704 1.186.2.8 ad if ((pri = l->l_usrpri) >= PRI_KERNEL)
705 1.186.2.8 ad return pri;
706 1.174 ad
707 1.186.2.8 ad return (pri >> 1) + PRI_KERNEL;
708 1.174 ad }
709 1.174 ad
710 1.174 ad /*
711 1.174 ad * sched_unsleep:
712 1.174 ad *
713 1.174 ad * The is called when the LWP has not been awoken normally but instead
714 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
715 1.174 ad * it's not a valid action for running or idle LWPs.
716 1.174 ad */
717 1.186.2.6 ad static void
718 1.174 ad sched_unsleep(struct lwp *l)
719 1.174 ad {
720 1.174 ad
721 1.174 ad lwp_unlock(l);
722 1.174 ad panic("sched_unsleep");
723 1.174 ad }
724 1.174 ad
725 1.186.2.6 ad inline void
726 1.186.2.6 ad resched_cpu(struct lwp *l)
727 1.186.2.6 ad {
728 1.186.2.6 ad struct cpu_info *ci;
729 1.186.2.6 ad const pri_t pri = lwp_eprio(l);
730 1.186.2.6 ad
731 1.186.2.6 ad /*
732 1.186.2.6 ad * XXXSMP
733 1.186.2.6 ad * Since l->l_cpu persists across a context switch,
734 1.186.2.6 ad * this gives us *very weak* processor affinity, in
735 1.186.2.6 ad * that we notify the CPU on which the process last
736 1.186.2.6 ad * ran that it should try to switch.
737 1.186.2.6 ad *
738 1.186.2.6 ad * This does not guarantee that the process will run on
739 1.186.2.6 ad * that processor next, because another processor might
740 1.186.2.6 ad * grab it the next time it performs a context switch.
741 1.186.2.6 ad *
742 1.186.2.6 ad * This also does not handle the case where its last
743 1.186.2.6 ad * CPU is running a higher-priority process, but every
744 1.186.2.6 ad * other CPU is running a lower-priority process. There
745 1.186.2.6 ad * are ways to handle this situation, but they're not
746 1.186.2.6 ad * currently very pretty, and we also need to weigh the
747 1.186.2.6 ad * cost of moving a process from one CPU to another.
748 1.186.2.6 ad */
749 1.186.2.13 ad ci = l->l_cpu;
750 1.186.2.13 ad if (pri > ci->ci_schedstate.spc_curpriority)
751 1.186.2.6 ad cpu_need_resched(ci, 0);
752 1.186.2.6 ad }
753 1.186.2.6 ad
754 1.186.2.6 ad static void
755 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
756 1.174 ad {
757 1.174 ad
758 1.186.2.6 ad KASSERT(lwp_locked(l, NULL));
759 1.174 ad
760 1.174 ad l->l_usrpri = pri;
761 1.186.2.8 ad if (l->l_priority >= PRI_KERNEL)
762 1.174 ad return;
763 1.184 yamt
764 1.184 yamt if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
765 1.174 ad l->l_priority = pri;
766 1.174 ad return;
767 1.157 yamt }
768 1.174 ad
769 1.186.2.6 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
770 1.186.2.6 ad
771 1.186.2.6 ad sched_dequeue(l);
772 1.174 ad l->l_priority = pri;
773 1.186.2.6 ad sched_enqueue(l, false);
774 1.186.2.6 ad resched_cpu(l);
775 1.184 yamt }
776 1.184 yamt
777 1.186.2.6 ad static void
778 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
779 1.184 yamt {
780 1.184 yamt
781 1.186.2.6 ad KASSERT(lwp_locked(l, NULL));
782 1.184 yamt
783 1.184 yamt if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
784 1.184 yamt l->l_inheritedprio = pri;
785 1.184 yamt return;
786 1.184 yamt }
787 1.184 yamt
788 1.186.2.6 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
789 1.186.2.6 ad
790 1.186.2.6 ad sched_dequeue(l);
791 1.184 yamt l->l_inheritedprio = pri;
792 1.186.2.6 ad sched_enqueue(l, false);
793 1.186.2.6 ad resched_cpu(l);
794 1.184 yamt }
795 1.184 yamt
796 1.184 yamt struct lwp *
797 1.184 yamt syncobj_noowner(wchan_t wchan)
798 1.184 yamt {
799 1.184 yamt
800 1.184 yamt return NULL;
801 1.151 yamt }
802 1.151 yamt
803 1.113 gmcgarry
804 1.186.2.6 ad /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
805 1.186.2.6 ad fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
806 1.115 nisimura
807 1.130 nathanw /*
808 1.186.2.6 ad * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
809 1.186.2.6 ad * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
810 1.186.2.6 ad * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
811 1.186.2.6 ad *
812 1.186.2.6 ad * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
813 1.186.2.6 ad * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
814 1.186.2.6 ad *
815 1.186.2.6 ad * If you dont want to bother with the faster/more-accurate formula, you
816 1.186.2.6 ad * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
817 1.186.2.6 ad * (more general) method of calculating the %age of CPU used by a process.
818 1.134 matt */
819 1.186.2.6 ad #define CCPU_SHIFT (FSHIFT + 1)
820 1.134 matt
821 1.134 matt /*
822 1.186.2.6 ad * sched_pstats:
823 1.186.2.6 ad *
824 1.186.2.6 ad * Update process statistics and check CPU resource allocation.
825 1.186.2.6 ad * Call scheduler-specific hook to eventually adjust process/LWP
826 1.186.2.6 ad * priorities.
827 1.130 nathanw */
828 1.186.2.6 ad /* ARGSUSED */
829 1.113 gmcgarry void
830 1.186.2.6 ad sched_pstats(void *arg)
831 1.113 gmcgarry {
832 1.186.2.6 ad struct rlimit *rlim;
833 1.186.2.6 ad struct lwp *l;
834 1.186.2.6 ad struct proc *p;
835 1.186.2.6 ad int minslp, sig, clkhz;
836 1.186.2.6 ad long runtm;
837 1.174 ad
838 1.186.2.6 ad sched_pstats_ticks++;
839 1.113 gmcgarry
840 1.186.2.8 ad mutex_enter(&proclist_lock);
841 1.186.2.6 ad PROCLIST_FOREACH(p, &allproc) {
842 1.186.2.6 ad /*
843 1.186.2.6 ad * Increment time in/out of memory and sleep time (if
844 1.186.2.6 ad * sleeping). We ignore overflow; with 16-bit int's
845 1.186.2.6 ad * (remember them?) overflow takes 45 days.
846 1.186.2.6 ad */
847 1.186.2.6 ad minslp = 2;
848 1.186.2.6 ad mutex_enter(&p->p_smutex);
849 1.186.2.6 ad mutex_spin_enter(&p->p_stmutex);
850 1.186.2.6 ad runtm = p->p_rtime.tv_sec;
851 1.186.2.6 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
852 1.186.2.6 ad if ((l->l_flag & LW_IDLE) != 0)
853 1.186.2.6 ad continue;
854 1.186.2.6 ad lwp_lock(l);
855 1.186.2.6 ad runtm += l->l_rtime.tv_sec;
856 1.186.2.6 ad l->l_swtime++;
857 1.186.2.6 ad if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
858 1.186.2.6 ad l->l_stat == LSSUSPENDED) {
859 1.186.2.6 ad l->l_slptime++;
860 1.186.2.6 ad minslp = min(minslp, l->l_slptime);
861 1.186.2.6 ad } else
862 1.186.2.6 ad minslp = 0;
863 1.186.2.6 ad lwp_unlock(l);
864 1.174 ad
865 1.186.2.6 ad /*
866 1.186.2.6 ad * p_pctcpu is only for ps.
867 1.186.2.6 ad */
868 1.186.2.6 ad l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
869 1.186.2.6 ad if (l->l_slptime < 1) {
870 1.186.2.6 ad clkhz = stathz != 0 ? stathz : hz;
871 1.186.2.6 ad #if (FSHIFT >= CCPU_SHIFT)
872 1.186.2.6 ad l->l_pctcpu += (clkhz == 100) ?
873 1.186.2.6 ad ((fixpt_t)l->l_cpticks) <<
874 1.186.2.6 ad (FSHIFT - CCPU_SHIFT) :
875 1.186.2.6 ad 100 * (((fixpt_t) p->p_cpticks)
876 1.186.2.6 ad << (FSHIFT - CCPU_SHIFT)) / clkhz;
877 1.186.2.6 ad #else
878 1.186.2.6 ad l->l_pctcpu += ((FSCALE - ccpu) *
879 1.186.2.6 ad (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
880 1.146 matt #endif
881 1.186.2.6 ad l->l_cpticks = 0;
882 1.186.2.6 ad }
883 1.186.2.6 ad }
884 1.186.2.6 ad p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
885 1.186.2.6 ad sched_pstats_hook(p, minslp);
886 1.186.2.6 ad mutex_spin_exit(&p->p_stmutex);
887 1.174 ad
888 1.186.2.6 ad /*
889 1.186.2.6 ad * Check if the process exceeds its CPU resource allocation.
890 1.186.2.6 ad * If over max, kill it.
891 1.186.2.6 ad */
892 1.186.2.6 ad rlim = &p->p_rlimit[RLIMIT_CPU];
893 1.186.2.6 ad sig = 0;
894 1.186.2.6 ad if (runtm >= rlim->rlim_cur) {
895 1.186.2.6 ad if (runtm >= rlim->rlim_max)
896 1.186.2.6 ad sig = SIGKILL;
897 1.186.2.6 ad else {
898 1.186.2.6 ad sig = SIGXCPU;
899 1.186.2.6 ad if (rlim->rlim_cur < rlim->rlim_max)
900 1.186.2.6 ad rlim->rlim_cur += 5;
901 1.186.2.6 ad }
902 1.186.2.6 ad }
903 1.186.2.6 ad mutex_exit(&p->p_smutex);
904 1.186.2.6 ad if (sig) {
905 1.186.2.8 ad /* XXXAD */
906 1.186.2.8 ad mutex_enter(&proclist_mutex);
907 1.186.2.6 ad psignal(p, sig);
908 1.186.2.8 ad mutex_enter(&proclist_mutex);
909 1.186.2.6 ad }
910 1.174 ad }
911 1.186.2.8 ad mutex_exit(&proclist_lock);
912 1.186.2.6 ad uvm_meter();
913 1.186.2.12 ad cv_wakeup(&lbolt);
914 1.186.2.6 ad callout_schedule(&sched_pstats_ch, hz);
915 1.113 gmcgarry }
916 1.186.2.9 ad
917 1.186.2.9 ad void
918 1.186.2.9 ad sched_init(void)
919 1.186.2.9 ad {
920 1.186.2.9 ad
921 1.186.2.9 ad callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
922 1.186.2.9 ad callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
923 1.186.2.9 ad sched_setup();
924 1.186.2.9 ad sched_pstats(NULL);
925 1.186.2.9 ad }
926