Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.186.2.6
      1  1.186.2.6        ad /*	$NetBSD: kern_synch.c,v 1.186.2.6 2007/06/08 14:17:22 ad Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4      1.174        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5       1.63   thorpej  * All rights reserved.
      6       1.63   thorpej  *
      7       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.186.2.6        ad  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  1.186.2.6        ad  * Daniel Sieger.
     11       1.63   thorpej  *
     12       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13       1.63   thorpej  * modification, are permitted provided that the following conditions
     14       1.63   thorpej  * are met:
     15       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20       1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     21       1.63   thorpej  *    must display the following acknowledgement:
     22       1.63   thorpej  *	This product includes software developed by the NetBSD
     23       1.63   thorpej  *	Foundation, Inc. and its contributors.
     24       1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25       1.63   thorpej  *    contributors may be used to endorse or promote products derived
     26       1.63   thorpej  *    from this software without specific prior written permission.
     27       1.63   thorpej  *
     28       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     39       1.63   thorpej  */
     40       1.26       cgd 
     41       1.26       cgd /*-
     42       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     44       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     45       1.26       cgd  * All or some portions of this file are derived from material licensed
     46       1.26       cgd  * to the University of California by American Telephone and Telegraph
     47       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     49       1.26       cgd  *
     50       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     51       1.26       cgd  * modification, are permitted provided that the following conditions
     52       1.26       cgd  * are met:
     53       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     54       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     55       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     56       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     57       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     58      1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     59       1.26       cgd  *    may be used to endorse or promote products derived from this software
     60       1.26       cgd  *    without specific prior written permission.
     61       1.26       cgd  *
     62       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72       1.26       cgd  * SUCH DAMAGE.
     73       1.26       cgd  *
     74       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75       1.26       cgd  */
     76      1.106     lukem 
     77      1.106     lukem #include <sys/cdefs.h>
     78  1.186.2.6        ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.186.2.6 2007/06/08 14:17:22 ad Exp $");
     79       1.48       mrg 
     80      1.109      yamt #include "opt_kstack.h"
     81       1.82   thorpej #include "opt_lockdebug.h"
     82       1.83   thorpej #include "opt_multiprocessor.h"
     83      1.110    briggs #include "opt_perfctrs.h"
     84       1.26       cgd 
     85      1.174        ad #define	__MUTEX_PRIVATE
     86      1.174        ad 
     87       1.26       cgd #include <sys/param.h>
     88       1.26       cgd #include <sys/systm.h>
     89       1.26       cgd #include <sys/proc.h>
     90       1.26       cgd #include <sys/kernel.h>
     91      1.111    briggs #if defined(PERFCTRS)
     92      1.110    briggs #include <sys/pmc.h>
     93      1.111    briggs #endif
     94  1.186.2.6        ad #include <sys/cpu.h>
     95       1.26       cgd #include <sys/resourcevar.h>
     96       1.55      ross #include <sys/sched.h>
     97      1.179       dsl #include <sys/syscall_stats.h>
     98      1.174        ad #include <sys/sleepq.h>
     99      1.174        ad #include <sys/lockdebug.h>
    100       1.47       mrg 
    101       1.47       mrg #include <uvm/uvm_extern.h>
    102       1.47       mrg 
    103  1.186.2.6        ad struct callout sched_pstats_ch = CALLOUT_INITIALIZER_SETFUNC(sched_pstats, NULL);
    104  1.186.2.6        ad unsigned int sched_pstats_ticks;
    105       1.34  christos 
    106  1.186.2.6        ad kcondvar_t	lbolt;			/* once a second sleep address */
    107       1.26       cgd 
    108  1.186.2.6        ad static void	sched_unsleep(struct lwp *);
    109  1.186.2.6        ad static void	sched_changepri(struct lwp *, pri_t);
    110  1.186.2.6        ad static void	sched_lendpri(struct lwp *, pri_t);
    111      1.122   thorpej 
    112      1.174        ad syncobj_t sleep_syncobj = {
    113      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    114      1.174        ad 	sleepq_unsleep,
    115      1.184      yamt 	sleepq_changepri,
    116      1.184      yamt 	sleepq_lendpri,
    117      1.184      yamt 	syncobj_noowner,
    118      1.174        ad };
    119      1.174        ad 
    120      1.174        ad syncobj_t sched_syncobj = {
    121      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    122      1.174        ad 	sched_unsleep,
    123      1.184      yamt 	sched_changepri,
    124      1.184      yamt 	sched_lendpri,
    125      1.184      yamt 	syncobj_noowner,
    126      1.174        ad };
    127      1.122   thorpej 
    128       1.26       cgd /*
    129      1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    130      1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    131      1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    132      1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    133      1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    134      1.174        ad  * it can be made higher to block network software interrupts after panics.
    135       1.26       cgd  */
    136      1.174        ad int	safepri;
    137       1.26       cgd 
    138       1.26       cgd /*
    139      1.174        ad  * OBSOLETE INTERFACE
    140      1.174        ad  *
    141       1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    142       1.26       cgd  * performed on the specified identifier.  The process will then be made
    143      1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    144      1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    145       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    146       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    147       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    148       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    149       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    150       1.77   thorpej  *
    151      1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    152      1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    153      1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    154      1.174        ad  * return.
    155       1.26       cgd  */
    156       1.26       cgd int
    157      1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    158      1.174        ad 	volatile struct simplelock *interlock)
    159       1.26       cgd {
    160      1.122   thorpej 	struct lwp *l = curlwp;
    161      1.174        ad 	sleepq_t *sq;
    162  1.186.2.5        ad 	int error;
    163       1.26       cgd 
    164      1.174        ad 	if (sleepq_dontsleep(l)) {
    165      1.174        ad 		(void)sleepq_abort(NULL, 0);
    166      1.174        ad 		if ((priority & PNORELOCK) != 0)
    167       1.77   thorpej 			simple_unlock(interlock);
    168      1.174        ad 		return 0;
    169       1.26       cgd 	}
    170       1.78  sommerfe 
    171      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    172      1.174        ad 	sleepq_enter(sq, l);
    173  1.186.2.5        ad 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    174  1.186.2.6        ad 
    175  1.186.2.6        ad 	if (interlock != NULL) {
    176  1.186.2.6        ad 		KASSERT(simple_lock_held(interlock));
    177      1.174        ad 		simple_unlock(interlock);
    178  1.186.2.6        ad 	}
    179  1.186.2.6        ad 
    180  1.186.2.5        ad 	error = sleepq_block(timo, priority & PCATCH);
    181      1.126        pk 
    182      1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    183      1.126        pk 		simple_lock(interlock);
    184      1.174        ad 
    185      1.174        ad 	return error;
    186       1.26       cgd }
    187       1.26       cgd 
    188  1.186.2.1        ad int
    189  1.186.2.1        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    190  1.186.2.1        ad 	kmutex_t *mtx)
    191  1.186.2.1        ad {
    192  1.186.2.1        ad 	struct lwp *l = curlwp;
    193  1.186.2.1        ad 	sleepq_t *sq;
    194  1.186.2.5        ad 	int error;
    195  1.186.2.1        ad 
    196  1.186.2.1        ad 	if (sleepq_dontsleep(l)) {
    197  1.186.2.1        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    198  1.186.2.1        ad 		return 0;
    199  1.186.2.1        ad 	}
    200  1.186.2.1        ad 
    201  1.186.2.1        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    202  1.186.2.1        ad 	sleepq_enter(sq, l);
    203  1.186.2.5        ad 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    204  1.186.2.1        ad 	mutex_exit(mtx);
    205  1.186.2.5        ad 	error = sleepq_block(timo, priority & PCATCH);
    206  1.186.2.1        ad 
    207  1.186.2.1        ad 	if ((priority & PNORELOCK) == 0)
    208  1.186.2.1        ad 		mutex_enter(mtx);
    209  1.186.2.1        ad 
    210  1.186.2.1        ad 	return error;
    211  1.186.2.1        ad }
    212  1.186.2.1        ad 
    213       1.26       cgd /*
    214      1.174        ad  * General sleep call for situations where a wake-up is not expected.
    215       1.26       cgd  */
    216      1.174        ad int
    217      1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    218       1.26       cgd {
    219      1.174        ad 	struct lwp *l = curlwp;
    220      1.174        ad 	sleepq_t *sq;
    221      1.174        ad 	int error;
    222       1.26       cgd 
    223      1.174        ad 	if (sleepq_dontsleep(l))
    224      1.174        ad 		return sleepq_abort(NULL, 0);
    225       1.26       cgd 
    226      1.174        ad 	if (mtx != NULL)
    227      1.174        ad 		mutex_exit(mtx);
    228      1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    229      1.174        ad 	sleepq_enter(sq, l);
    230  1.186.2.5        ad 	sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
    231  1.186.2.5        ad 	error = sleepq_block(timo, intr);
    232      1.174        ad 	if (mtx != NULL)
    233      1.174        ad 		mutex_enter(mtx);
    234       1.83   thorpej 
    235      1.174        ad 	return error;
    236      1.139        cl }
    237      1.139        cl 
    238       1.26       cgd /*
    239      1.174        ad  * OBSOLETE INTERFACE
    240      1.174        ad  *
    241       1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    242       1.26       cgd  */
    243       1.26       cgd void
    244      1.174        ad wakeup(wchan_t ident)
    245       1.26       cgd {
    246      1.174        ad 	sleepq_t *sq;
    247       1.83   thorpej 
    248      1.174        ad 	if (cold)
    249      1.174        ad 		return;
    250       1.83   thorpej 
    251      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    252      1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    253       1.63   thorpej }
    254       1.63   thorpej 
    255       1.63   thorpej /*
    256      1.174        ad  * OBSOLETE INTERFACE
    257      1.174        ad  *
    258       1.63   thorpej  * Make the highest priority process first in line on the specified
    259       1.63   thorpej  * identifier runnable.
    260       1.63   thorpej  */
    261      1.174        ad void
    262      1.174        ad wakeup_one(wchan_t ident)
    263       1.63   thorpej {
    264      1.174        ad 	sleepq_t *sq;
    265       1.63   thorpej 
    266      1.174        ad 	if (cold)
    267      1.174        ad 		return;
    268  1.186.2.6        ad 
    269      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    270      1.174        ad 	sleepq_wake(sq, ident, 1);
    271      1.174        ad }
    272       1.63   thorpej 
    273      1.117  gmcgarry 
    274      1.117  gmcgarry /*
    275      1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    276      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    277      1.117  gmcgarry  * current process explicitly requests it (eg sched_yield(2) in compat code).
    278      1.117  gmcgarry  */
    279      1.117  gmcgarry void
    280      1.117  gmcgarry yield(void)
    281      1.117  gmcgarry {
    282      1.122   thorpej 	struct lwp *l = curlwp;
    283      1.117  gmcgarry 
    284      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    285      1.174        ad 	lwp_lock(l);
    286  1.186.2.6        ad 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    287  1.186.2.6        ad 	KASSERT(l->l_stat == LSONPROC);
    288  1.186.2.6        ad 	l->l_priority = l->l_usrpri;
    289  1.186.2.6        ad 	(void)mi_switch(l);
    290      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    291       1.69   thorpej }
    292       1.69   thorpej 
    293       1.69   thorpej /*
    294       1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    295      1.156    rpaulo  * and performs an involuntary context switch.
    296       1.69   thorpej  */
    297       1.69   thorpej void
    298      1.174        ad preempt(void)
    299       1.69   thorpej {
    300      1.122   thorpej 	struct lwp *l = curlwp;
    301       1.69   thorpej 
    302      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    303      1.174        ad 	lwp_lock(l);
    304  1.186.2.6        ad 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    305  1.186.2.6        ad 	KASSERT(l->l_stat == LSONPROC);
    306  1.186.2.6        ad 	l->l_priority = l->l_usrpri;
    307      1.174        ad 	l->l_nivcsw++;
    308  1.186.2.6        ad 	(void)mi_switch(l);
    309      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    310       1.69   thorpej }
    311       1.69   thorpej 
    312       1.69   thorpej /*
    313  1.186.2.6        ad  * Compute the amount of time during which the current lwp was running.
    314      1.130   nathanw  *
    315  1.186.2.6        ad  * - update l_rtime unless it's an idle lwp.
    316  1.186.2.6        ad  * - update spc_runtime for the next lwp.
    317  1.186.2.6        ad  */
    318  1.186.2.6        ad 
    319  1.186.2.6        ad static inline void
    320  1.186.2.6        ad updatertime(struct lwp *l, struct schedstate_percpu *spc)
    321  1.186.2.6        ad {
    322  1.186.2.6        ad 	struct timeval tv;
    323  1.186.2.6        ad 	long s, u;
    324  1.186.2.6        ad 
    325  1.186.2.6        ad 	if ((l->l_flag & LW_IDLE) != 0) {
    326  1.186.2.6        ad 		microtime(&spc->spc_runtime);
    327  1.186.2.6        ad 		return;
    328  1.186.2.6        ad 	}
    329  1.186.2.6        ad 
    330  1.186.2.6        ad 	microtime(&tv);
    331  1.186.2.6        ad 	u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    332  1.186.2.6        ad 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    333  1.186.2.6        ad 	if (u < 0) {
    334  1.186.2.6        ad 		u += 1000000;
    335  1.186.2.6        ad 		s--;
    336  1.186.2.6        ad 	} else if (u >= 1000000) {
    337  1.186.2.6        ad 		u -= 1000000;
    338  1.186.2.6        ad 		s++;
    339  1.186.2.6        ad 	}
    340  1.186.2.6        ad 	l->l_rtime.tv_usec = u;
    341  1.186.2.6        ad 	l->l_rtime.tv_sec = s;
    342  1.186.2.6        ad 
    343  1.186.2.6        ad 	spc->spc_runtime = tv;
    344  1.186.2.6        ad }
    345  1.186.2.6        ad 
    346  1.186.2.6        ad /*
    347  1.186.2.6        ad  * The machine independent parts of context switch.
    348  1.186.2.6        ad  *
    349  1.186.2.6        ad  * Returns 1 if another LWP was actually run.
    350       1.26       cgd  */
    351      1.122   thorpej int
    352  1.186.2.6        ad mi_switch(struct lwp *l)
    353       1.26       cgd {
    354       1.76   thorpej 	struct schedstate_percpu *spc;
    355  1.186.2.6        ad 	struct lwp *newl;
    356      1.174        ad 	int retval, oldspl;
    357       1.26       cgd 
    358  1.186.2.3        ad 	KASSERT(lwp_locked(l, NULL));
    359  1.186.2.6        ad 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    360      1.174        ad 
    361      1.174        ad #ifdef KSTACK_CHECK_MAGIC
    362      1.174        ad 	kstack_check_magic(l);
    363      1.174        ad #endif
    364       1.83   thorpej 
    365       1.90  sommerfe 	/*
    366      1.174        ad 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    367      1.174        ad 	 * are after is the run time and that's guarenteed to have been last
    368      1.174        ad 	 * updated by this CPU.
    369       1.90  sommerfe 	 */
    370      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    371       1.26       cgd 
    372      1.180       dsl 	/* Count time spent in current system call */
    373      1.180       dsl 	SYSCALL_TIME_SLEEP(l);
    374      1.180       dsl 
    375       1.26       cgd 	/*
    376      1.174        ad 	 * XXXSMP If we are using h/w performance counters, save context.
    377       1.69   thorpej 	 */
    378      1.174        ad #if PERFCTRS
    379      1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    380      1.175  christos 		pmc_save_context(l->l_proc);
    381      1.174        ad 	}
    382      1.109      yamt #endif
    383      1.113  gmcgarry 	/*
    384  1.186.2.6        ad 	 * Process is about to yield the CPU; clear the appropriate
    385  1.186.2.6        ad 	 * scheduling flags.
    386      1.113  gmcgarry 	 */
    387  1.186.2.6        ad 	spc = &l->l_cpu->ci_schedstate;
    388  1.186.2.6        ad 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    389  1.186.2.6        ad 	updatertime(l, spc);
    390      1.113  gmcgarry 
    391      1.113  gmcgarry 	/*
    392      1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    393      1.113  gmcgarry 	 */
    394  1.186.2.6        ad 	mutex_spin_enter(spc->spc_mutex);
    395      1.174        ad 	KASSERT(l->l_stat != LSRUN);
    396      1.174        ad 	if (l->l_stat == LSONPROC) {
    397  1.186.2.6        ad 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    398  1.186.2.6        ad 		if ((l->l_flag & LW_IDLE) == 0) {
    399  1.186.2.6        ad 			l->l_stat = LSRUN;
    400  1.186.2.6        ad 			lwp_setlock(l, spc->spc_mutex);
    401  1.186.2.6        ad 			sched_enqueue(l, true);
    402  1.186.2.6        ad 		} else
    403  1.186.2.6        ad 			l->l_stat = LSIDL;
    404      1.174        ad 	}
    405      1.174        ad 
    406      1.174        ad 	/*
    407  1.186.2.6        ad 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    408  1.186.2.6        ad 	 * If no LWP is runnable, switch to the idle LWP.
    409      1.174        ad 	 */
    410  1.186.2.6        ad 	newl = sched_nextlwp();
    411  1.186.2.6        ad 	if (newl) {
    412  1.186.2.6        ad 		sched_dequeue(newl);
    413  1.186.2.6        ad 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    414  1.186.2.6        ad 		newl->l_stat = LSONPROC;
    415  1.186.2.6        ad 		newl->l_cpu = l->l_cpu;
    416  1.186.2.6        ad 		newl->l_flag |= LW_RUNNING;
    417  1.186.2.6        ad 		lwp_setlock(newl, &spc->spc_lwplock);
    418  1.186.2.6        ad 	} else {
    419  1.186.2.6        ad 		newl = l->l_cpu->ci_data.cpu_idlelwp;
    420  1.186.2.6        ad 		newl->l_stat = LSONPROC;
    421  1.186.2.6        ad 		newl->l_flag |= LW_RUNNING;
    422  1.186.2.6        ad 	}
    423  1.186.2.6        ad 	spc->spc_curpriority = newl->l_usrpri;
    424  1.186.2.6        ad 	cpu_did_resched();
    425      1.174        ad 
    426  1.186.2.6        ad 	if (l != newl) {
    427  1.186.2.6        ad 		struct lwp *prevlwp;
    428      1.174        ad 
    429  1.186.2.6        ad 		/*
    430  1.186.2.6        ad 		 * If the old LWP has been moved to a run queue above,
    431  1.186.2.6        ad 		 * drop the general purpose LWP lock: it's now locked
    432  1.186.2.6        ad 		 * by the scheduler lock.
    433  1.186.2.6        ad 		 *
    434  1.186.2.6        ad 		 * Otherwise, drop the scheduler lock.  We're done with
    435  1.186.2.6        ad 		 * the run queues for now.
    436  1.186.2.6        ad 		 */
    437  1.186.2.6        ad 		if (l->l_mutex == spc->spc_mutex) {
    438  1.186.2.6        ad 			mutex_spin_exit(&spc->spc_lwplock);
    439  1.186.2.6        ad 		} else {
    440  1.186.2.6        ad 			mutex_spin_exit(spc->spc_mutex);
    441  1.186.2.6        ad 		}
    442  1.186.2.6        ad 
    443  1.186.2.6        ad 		/* Unlocked, but for statistics only. */
    444  1.186.2.6        ad 		uvmexp.swtch++;
    445  1.186.2.6        ad 
    446  1.186.2.6        ad 		/* Save old VM context. */
    447  1.186.2.6        ad 		pmap_deactivate(l);
    448  1.186.2.6        ad 
    449  1.186.2.6        ad 		/* Switch to the new LWP.. */
    450  1.186.2.6        ad 		l->l_ncsw++;
    451  1.186.2.6        ad 		l->l_flag &= ~LW_RUNNING;
    452  1.186.2.6        ad 		oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    453  1.186.2.6        ad 		prevlwp = cpu_switchto(l, newl);
    454      1.174        ad 
    455  1.186.2.6        ad 		/*
    456  1.186.2.6        ad 		 * .. we have switched away and are now back so we must
    457  1.186.2.6        ad 		 * be the new curlwp.  prevlwp is who we replaced.
    458  1.186.2.6        ad 		 */
    459  1.186.2.6        ad 		curlwp = l;
    460  1.186.2.6        ad 		if (prevlwp != NULL) {
    461  1.186.2.6        ad 			curcpu()->ci_mtx_oldspl = oldspl;
    462  1.186.2.6        ad 			lwp_unlock(prevlwp);
    463  1.186.2.6        ad 		} else {
    464  1.186.2.6        ad 			splx(oldspl);
    465  1.186.2.6        ad 		}
    466  1.186.2.6        ad 
    467  1.186.2.6        ad 		/* Restore VM context. */
    468  1.186.2.6        ad 		pmap_activate(l);
    469  1.186.2.6        ad 		retval = 1;
    470  1.186.2.6        ad 	} else {
    471  1.186.2.6        ad 		/* Nothing to do - just unlock and return. */
    472  1.186.2.6        ad 		mutex_spin_exit(spc->spc_mutex);
    473  1.186.2.6        ad 		lwp_unlock(l);
    474      1.122   thorpej 		retval = 0;
    475      1.122   thorpej 	}
    476      1.110    briggs 
    477  1.186.2.6        ad 	KASSERT(l == curlwp);
    478  1.186.2.6        ad 	KASSERT(l->l_stat == LSONPROC);
    479  1.186.2.6        ad 
    480      1.110    briggs 	/*
    481      1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    482       1.26       cgd 	 */
    483      1.114  gmcgarry #if PERFCTRS
    484      1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    485      1.175  christos 		pmc_restore_context(l->l_proc);
    486      1.166  christos 	}
    487      1.114  gmcgarry #endif
    488      1.110    briggs 
    489      1.110    briggs 	/*
    490       1.76   thorpej 	 * We're running again; record our new start time.  We might
    491      1.174        ad 	 * be running on a new CPU now, so don't use the cached
    492       1.76   thorpej 	 * schedstate_percpu pointer.
    493       1.76   thorpej 	 */
    494      1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    495      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    496  1.186.2.6        ad 	LOCKDEBUG_BARRIER(NULL, 1);
    497      1.169      yamt 
    498      1.122   thorpej 	return retval;
    499       1.26       cgd }
    500       1.26       cgd 
    501       1.26       cgd /*
    502      1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    503      1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    504      1.174        ad  *
    505      1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    506       1.26       cgd  */
    507       1.26       cgd void
    508      1.122   thorpej setrunnable(struct lwp *l)
    509       1.26       cgd {
    510      1.122   thorpej 	struct proc *p = l->l_proc;
    511      1.174        ad 	sigset_t *ss;
    512       1.26       cgd 
    513  1.186.2.6        ad 	KASSERT((l->l_flag & LW_IDLE) == 0);
    514      1.183        ad 	KASSERT(mutex_owned(&p->p_smutex));
    515      1.183        ad 	KASSERT(lwp_locked(l, NULL));
    516       1.83   thorpej 
    517      1.122   thorpej 	switch (l->l_stat) {
    518      1.122   thorpej 	case LSSTOP:
    519       1.33   mycroft 		/*
    520       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    521       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    522       1.33   mycroft 		 */
    523      1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    524      1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    525      1.174        ad 				ss = &l->l_sigpend.sp_set;
    526      1.174        ad 			else
    527      1.174        ad 				ss = &p->p_sigpend.sp_set;
    528      1.174        ad 			sigaddset(ss, p->p_xstat);
    529      1.174        ad 			signotify(l);
    530       1.53   mycroft 		}
    531      1.174        ad 		p->p_nrlwps++;
    532       1.26       cgd 		break;
    533      1.174        ad 	case LSSUSPENDED:
    534      1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    535      1.174        ad 		p->p_nrlwps++;
    536      1.122   thorpej 		break;
    537      1.174        ad 	case LSSLEEP:
    538      1.174        ad 		KASSERT(l->l_wchan != NULL);
    539       1.26       cgd 		break;
    540      1.174        ad 	default:
    541      1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    542       1.26       cgd 	}
    543      1.139        cl 
    544      1.174        ad 	/*
    545      1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    546      1.174        ad 	 * again.  If not, mark it as still sleeping.
    547      1.174        ad 	 */
    548      1.174        ad 	if (l->l_wchan != NULL) {
    549      1.174        ad 		l->l_stat = LSSLEEP;
    550      1.183        ad 		/* lwp_unsleep() will release the lock. */
    551      1.183        ad 		lwp_unsleep(l);
    552      1.174        ad 		return;
    553      1.174        ad 	}
    554      1.139        cl 
    555  1.186.2.6        ad 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    556      1.122   thorpej 
    557      1.174        ad 	/*
    558      1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    559      1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    560      1.174        ad 	 */
    561  1.186.2.6        ad 	if ((l->l_flag & LW_RUNNING) != 0) {
    562      1.174        ad 		l->l_stat = LSONPROC;
    563      1.174        ad 		l->l_slptime = 0;
    564      1.174        ad 		lwp_unlock(l);
    565      1.174        ad 		return;
    566      1.174        ad 	}
    567      1.122   thorpej 
    568      1.174        ad 	/*
    569      1.174        ad 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    570      1.174        ad 	 * to bring it back in.  Otherwise, enter it into a run queue.
    571      1.174        ad 	 */
    572  1.186.2.6        ad 	spc_lock(l->l_cpu);
    573  1.186.2.6        ad 	lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
    574  1.186.2.6        ad 	sched_setrunnable(l);
    575      1.174        ad 	l->l_stat = LSRUN;
    576      1.122   thorpej 	l->l_slptime = 0;
    577      1.174        ad 
    578      1.178     pavel 	if (l->l_flag & LW_INMEM) {
    579  1.186.2.6        ad 		sched_enqueue(l, false);
    580  1.186.2.6        ad 		resched_cpu(l);
    581      1.174        ad 		lwp_unlock(l);
    582      1.174        ad 	} else {
    583      1.174        ad 		lwp_unlock(l);
    584      1.177        ad 		uvm_kick_scheduler();
    585      1.174        ad 	}
    586       1.26       cgd }
    587       1.26       cgd 
    588       1.26       cgd /*
    589      1.174        ad  * suspendsched:
    590      1.174        ad  *
    591      1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    592      1.174        ad  */
    593       1.94    bouyer void
    594      1.174        ad suspendsched(void)
    595       1.94    bouyer {
    596      1.174        ad #ifdef MULTIPROCESSOR
    597      1.174        ad 	CPU_INFO_ITERATOR cii;
    598      1.174        ad 	struct cpu_info *ci;
    599      1.174        ad #endif
    600      1.122   thorpej 	struct lwp *l;
    601      1.174        ad 	struct proc *p;
    602       1.94    bouyer 
    603       1.94    bouyer 	/*
    604      1.174        ad 	 * We do this by process in order not to violate the locking rules.
    605       1.94    bouyer 	 */
    606      1.174        ad 	mutex_enter(&proclist_mutex);
    607      1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    608      1.174        ad 		mutex_enter(&p->p_smutex);
    609      1.174        ad 
    610      1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    611      1.174        ad 			mutex_exit(&p->p_smutex);
    612       1.94    bouyer 			continue;
    613      1.174        ad 		}
    614      1.174        ad 
    615      1.174        ad 		p->p_stat = SSTOP;
    616      1.174        ad 
    617      1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    618      1.174        ad 			if (l == curlwp)
    619      1.174        ad 				continue;
    620      1.174        ad 
    621      1.174        ad 			lwp_lock(l);
    622      1.122   thorpej 
    623       1.97     enami 			/*
    624      1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    625      1.174        ad 			 * when it tries to return to user mode.  We want to
    626      1.174        ad 			 * try and get to get as many LWPs as possible to
    627      1.174        ad 			 * the user / kernel boundary, so that they will
    628      1.174        ad 			 * release any locks that they hold.
    629       1.97     enami 			 */
    630      1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    631      1.174        ad 
    632      1.174        ad 			if (l->l_stat == LSSLEEP &&
    633      1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    634      1.174        ad 				/* setrunnable() will release the lock. */
    635      1.174        ad 				setrunnable(l);
    636      1.174        ad 				continue;
    637      1.174        ad 			}
    638      1.174        ad 
    639      1.174        ad 			lwp_unlock(l);
    640       1.94    bouyer 		}
    641      1.174        ad 
    642      1.174        ad 		mutex_exit(&p->p_smutex);
    643       1.94    bouyer 	}
    644      1.174        ad 	mutex_exit(&proclist_mutex);
    645      1.174        ad 
    646      1.174        ad 	/*
    647      1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    648      1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    649      1.174        ad 	 */
    650      1.174        ad #ifdef MULTIPROCESSOR
    651      1.174        ad 	for (CPU_INFO_FOREACH(cii, ci))
    652  1.186.2.6        ad 		cpu_need_resched(ci, 0);
    653      1.174        ad #else
    654  1.186.2.6        ad 	cpu_need_resched(curcpu(), 0);
    655      1.174        ad #endif
    656      1.174        ad }
    657      1.174        ad 
    658      1.174        ad /*
    659      1.174        ad  * sched_kpri:
    660      1.174        ad  *
    661      1.174        ad  *	Scale a priority level to a kernel priority level, usually
    662      1.174        ad  *	for an LWP that is about to sleep.
    663      1.174        ad  */
    664      1.185      yamt pri_t
    665      1.174        ad sched_kpri(struct lwp *l)
    666      1.174        ad {
    667      1.174        ad 	/*
    668      1.174        ad 	 * Scale user priorities (127 -> 50) up to kernel priorities
    669      1.174        ad 	 * in the range (49 -> 8).  Reserve the top 8 kernel priorities
    670      1.174        ad 	 * for high priority kthreads.  Kernel priorities passed in
    671      1.174        ad 	 * are left "as is".  XXX This is somewhat arbitrary.
    672      1.174        ad 	 */
    673      1.174        ad 	static const uint8_t kpri_tab[] = {
    674      1.174        ad 		 0,   1,   2,   3,   4,   5,   6,   7,
    675      1.174        ad 		 8,   9,  10,  11,  12,  13,  14,  15,
    676      1.174        ad 		16,  17,  18,  19,  20,  21,  22,  23,
    677      1.174        ad 		24,  25,  26,  27,  28,  29,  30,  31,
    678      1.174        ad 		32,  33,  34,  35,  36,  37,  38,  39,
    679      1.174        ad 		40,  41,  42,  43,  44,  45,  46,  47,
    680      1.174        ad 		48,  49,   8,   8,   9,   9,  10,  10,
    681      1.174        ad 		11,  11,  12,  12,  13,  14,  14,  15,
    682      1.174        ad 		15,  16,  16,  17,  17,  18,  18,  19,
    683      1.174        ad 		20,  20,  21,  21,  22,  22,  23,  23,
    684      1.174        ad 		24,  24,  25,  26,  26,  27,  27,  28,
    685      1.174        ad 		28,  29,  29,  30,  30,  31,  32,  32,
    686      1.174        ad 		33,  33,  34,  34,  35,  35,  36,  36,
    687      1.174        ad 		37,  38,  38,  39,  39,  40,  40,  41,
    688      1.174        ad 		41,  42,  42,  43,  44,  44,  45,  45,
    689      1.174        ad 		46,  46,  47,  47,  48,  48,  49,  49,
    690      1.174        ad 	};
    691      1.174        ad 
    692      1.185      yamt 	return (pri_t)kpri_tab[l->l_usrpri];
    693      1.174        ad }
    694      1.174        ad 
    695      1.174        ad /*
    696      1.174        ad  * sched_unsleep:
    697      1.174        ad  *
    698      1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    699      1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    700      1.174        ad  *	it's not a valid action for running or idle LWPs.
    701      1.174        ad  */
    702  1.186.2.6        ad static void
    703      1.174        ad sched_unsleep(struct lwp *l)
    704      1.174        ad {
    705      1.174        ad 
    706      1.174        ad 	lwp_unlock(l);
    707      1.174        ad 	panic("sched_unsleep");
    708      1.174        ad }
    709      1.174        ad 
    710  1.186.2.6        ad inline void
    711  1.186.2.6        ad resched_cpu(struct lwp *l)
    712  1.186.2.6        ad {
    713  1.186.2.6        ad 	struct cpu_info *ci;
    714  1.186.2.6        ad 	const pri_t pri = lwp_eprio(l);
    715  1.186.2.6        ad 
    716  1.186.2.6        ad 	/*
    717  1.186.2.6        ad 	 * XXXSMP
    718  1.186.2.6        ad 	 * Since l->l_cpu persists across a context switch,
    719  1.186.2.6        ad 	 * this gives us *very weak* processor affinity, in
    720  1.186.2.6        ad 	 * that we notify the CPU on which the process last
    721  1.186.2.6        ad 	 * ran that it should try to switch.
    722  1.186.2.6        ad 	 *
    723  1.186.2.6        ad 	 * This does not guarantee that the process will run on
    724  1.186.2.6        ad 	 * that processor next, because another processor might
    725  1.186.2.6        ad 	 * grab it the next time it performs a context switch.
    726  1.186.2.6        ad 	 *
    727  1.186.2.6        ad 	 * This also does not handle the case where its last
    728  1.186.2.6        ad 	 * CPU is running a higher-priority process, but every
    729  1.186.2.6        ad 	 * other CPU is running a lower-priority process.  There
    730  1.186.2.6        ad 	 * are ways to handle this situation, but they're not
    731  1.186.2.6        ad 	 * currently very pretty, and we also need to weigh the
    732  1.186.2.6        ad 	 * cost of moving a process from one CPU to another.
    733  1.186.2.6        ad 	 */
    734  1.186.2.6        ad 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    735  1.186.2.6        ad 	if (pri < ci->ci_schedstate.spc_curpriority)
    736  1.186.2.6        ad 		cpu_need_resched(ci, 0);
    737  1.186.2.6        ad }
    738  1.186.2.6        ad 
    739  1.186.2.6        ad static void
    740      1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
    741      1.174        ad {
    742      1.174        ad 
    743  1.186.2.6        ad 	KASSERT(lwp_locked(l, NULL));
    744      1.174        ad 
    745      1.174        ad 	l->l_usrpri = pri;
    746      1.174        ad 	if (l->l_priority < PUSER)
    747      1.174        ad 		return;
    748      1.184      yamt 
    749      1.184      yamt 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    750      1.174        ad 		l->l_priority = pri;
    751      1.174        ad 		return;
    752      1.157      yamt 	}
    753      1.174        ad 
    754  1.186.2.6        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    755  1.186.2.6        ad 
    756  1.186.2.6        ad 	sched_dequeue(l);
    757      1.174        ad 	l->l_priority = pri;
    758  1.186.2.6        ad 	sched_enqueue(l, false);
    759  1.186.2.6        ad 	resched_cpu(l);
    760      1.184      yamt }
    761      1.184      yamt 
    762  1.186.2.6        ad static void
    763      1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
    764      1.184      yamt {
    765      1.184      yamt 
    766  1.186.2.6        ad 	KASSERT(lwp_locked(l, NULL));
    767      1.184      yamt 
    768      1.184      yamt 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    769      1.184      yamt 		l->l_inheritedprio = pri;
    770      1.184      yamt 		return;
    771      1.184      yamt 	}
    772      1.184      yamt 
    773  1.186.2.6        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    774  1.186.2.6        ad 
    775  1.186.2.6        ad 	sched_dequeue(l);
    776      1.184      yamt 	l->l_inheritedprio = pri;
    777  1.186.2.6        ad 	sched_enqueue(l, false);
    778  1.186.2.6        ad 	resched_cpu(l);
    779      1.184      yamt }
    780      1.184      yamt 
    781      1.184      yamt struct lwp *
    782      1.184      yamt syncobj_noowner(wchan_t wchan)
    783      1.184      yamt {
    784      1.184      yamt 
    785      1.184      yamt 	return NULL;
    786      1.151      yamt }
    787      1.151      yamt 
    788      1.113  gmcgarry 
    789  1.186.2.6        ad /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    790  1.186.2.6        ad fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    791      1.115  nisimura 
    792      1.130   nathanw /*
    793  1.186.2.6        ad  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    794  1.186.2.6        ad  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    795  1.186.2.6        ad  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    796  1.186.2.6        ad  *
    797  1.186.2.6        ad  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    798  1.186.2.6        ad  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    799  1.186.2.6        ad  *
    800  1.186.2.6        ad  * If you dont want to bother with the faster/more-accurate formula, you
    801  1.186.2.6        ad  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    802  1.186.2.6        ad  * (more general) method of calculating the %age of CPU used by a process.
    803      1.134      matt  */
    804  1.186.2.6        ad #define	CCPU_SHIFT	(FSHIFT + 1)
    805      1.134      matt 
    806      1.134      matt /*
    807  1.186.2.6        ad  * sched_pstats:
    808  1.186.2.6        ad  *
    809  1.186.2.6        ad  * Update process statistics and check CPU resource allocation.
    810  1.186.2.6        ad  * Call scheduler-specific hook to eventually adjust process/LWP
    811  1.186.2.6        ad  * priorities.
    812  1.186.2.6        ad  *
    813  1.186.2.6        ad  *	XXXSMP This needs to be reorganised in order to reduce the locking
    814  1.186.2.6        ad  *	burden.
    815      1.130   nathanw  */
    816  1.186.2.6        ad /* ARGSUSED */
    817      1.113  gmcgarry void
    818  1.186.2.6        ad sched_pstats(void *arg)
    819      1.113  gmcgarry {
    820  1.186.2.6        ad 	struct rlimit *rlim;
    821  1.186.2.6        ad 	struct lwp *l;
    822  1.186.2.6        ad 	struct proc *p;
    823  1.186.2.6        ad 	int minslp, sig, clkhz;
    824  1.186.2.6        ad 	long runtm;
    825      1.174        ad 
    826  1.186.2.6        ad 	sched_pstats_ticks++;
    827      1.113  gmcgarry 
    828  1.186.2.6        ad 	mutex_enter(&proclist_mutex);
    829  1.186.2.6        ad 	PROCLIST_FOREACH(p, &allproc) {
    830  1.186.2.6        ad 		/*
    831  1.186.2.6        ad 		 * Increment time in/out of memory and sleep time (if
    832  1.186.2.6        ad 		 * sleeping).  We ignore overflow; with 16-bit int's
    833  1.186.2.6        ad 		 * (remember them?) overflow takes 45 days.
    834  1.186.2.6        ad 		 */
    835  1.186.2.6        ad 		minslp = 2;
    836  1.186.2.6        ad 		mutex_enter(&p->p_smutex);
    837  1.186.2.6        ad 		mutex_spin_enter(&p->p_stmutex);
    838  1.186.2.6        ad 		runtm = p->p_rtime.tv_sec;
    839  1.186.2.6        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    840  1.186.2.6        ad 			if ((l->l_flag & LW_IDLE) != 0)
    841  1.186.2.6        ad 				continue;
    842  1.186.2.6        ad 			lwp_lock(l);
    843  1.186.2.6        ad 			runtm += l->l_rtime.tv_sec;
    844  1.186.2.6        ad 			l->l_swtime++;
    845  1.186.2.6        ad 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    846  1.186.2.6        ad 			    l->l_stat == LSSUSPENDED) {
    847  1.186.2.6        ad 				l->l_slptime++;
    848  1.186.2.6        ad 				minslp = min(minslp, l->l_slptime);
    849  1.186.2.6        ad 			} else
    850  1.186.2.6        ad 				minslp = 0;
    851  1.186.2.6        ad 			lwp_unlock(l);
    852      1.174        ad 
    853  1.186.2.6        ad 			/*
    854  1.186.2.6        ad 			 * p_pctcpu is only for ps.
    855  1.186.2.6        ad 			 */
    856  1.186.2.6        ad 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    857  1.186.2.6        ad 			if (l->l_slptime < 1) {
    858  1.186.2.6        ad 				clkhz = stathz != 0 ? stathz : hz;
    859  1.186.2.6        ad #if	(FSHIFT >= CCPU_SHIFT)
    860  1.186.2.6        ad 				l->l_pctcpu += (clkhz == 100) ?
    861  1.186.2.6        ad 				    ((fixpt_t)l->l_cpticks) <<
    862  1.186.2.6        ad 				        (FSHIFT - CCPU_SHIFT) :
    863  1.186.2.6        ad 				    100 * (((fixpt_t) p->p_cpticks)
    864  1.186.2.6        ad 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    865  1.186.2.6        ad #else
    866  1.186.2.6        ad 				l->l_pctcpu += ((FSCALE - ccpu) *
    867  1.186.2.6        ad 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    868      1.146      matt #endif
    869  1.186.2.6        ad 				l->l_cpticks = 0;
    870  1.186.2.6        ad 			}
    871  1.186.2.6        ad 		}
    872  1.186.2.6        ad 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    873  1.186.2.6        ad 		sched_pstats_hook(p, minslp);
    874  1.186.2.6        ad 		mutex_spin_exit(&p->p_stmutex);
    875      1.174        ad 
    876  1.186.2.6        ad 		/*
    877  1.186.2.6        ad 		 * Check if the process exceeds its CPU resource allocation.
    878  1.186.2.6        ad 		 * If over max, kill it.
    879  1.186.2.6        ad 		 */
    880  1.186.2.6        ad 		rlim = &p->p_rlimit[RLIMIT_CPU];
    881  1.186.2.6        ad 		sig = 0;
    882  1.186.2.6        ad 		if (runtm >= rlim->rlim_cur) {
    883  1.186.2.6        ad 			if (runtm >= rlim->rlim_max)
    884  1.186.2.6        ad 				sig = SIGKILL;
    885  1.186.2.6        ad 			else {
    886  1.186.2.6        ad 				sig = SIGXCPU;
    887  1.186.2.6        ad 				if (rlim->rlim_cur < rlim->rlim_max)
    888  1.186.2.6        ad 					rlim->rlim_cur += 5;
    889  1.186.2.6        ad 			}
    890  1.186.2.6        ad 		}
    891  1.186.2.6        ad 		mutex_exit(&p->p_smutex);
    892  1.186.2.6        ad 		if (sig) {
    893  1.186.2.6        ad 			psignal(p, sig);
    894  1.186.2.6        ad 		}
    895      1.174        ad 	}
    896  1.186.2.6        ad 	mutex_exit(&proclist_mutex);
    897  1.186.2.6        ad 	uvm_meter();
    898  1.186.2.6        ad 	wakeup(&lbolt);
    899  1.186.2.6        ad 	callout_schedule(&sched_pstats_ch, hz);
    900      1.113  gmcgarry }
    901