Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.186.2.8
      1  1.186.2.8        ad /*	$NetBSD: kern_synch.c,v 1.186.2.8 2007/06/17 21:31:28 ad Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4      1.174        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5       1.63   thorpej  * All rights reserved.
      6       1.63   thorpej  *
      7       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.186.2.6        ad  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  1.186.2.6        ad  * Daniel Sieger.
     11       1.63   thorpej  *
     12       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13       1.63   thorpej  * modification, are permitted provided that the following conditions
     14       1.63   thorpej  * are met:
     15       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20       1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     21       1.63   thorpej  *    must display the following acknowledgement:
     22       1.63   thorpej  *	This product includes software developed by the NetBSD
     23       1.63   thorpej  *	Foundation, Inc. and its contributors.
     24       1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25       1.63   thorpej  *    contributors may be used to endorse or promote products derived
     26       1.63   thorpej  *    from this software without specific prior written permission.
     27       1.63   thorpej  *
     28       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     39       1.63   thorpej  */
     40       1.26       cgd 
     41       1.26       cgd /*-
     42       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     44       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     45       1.26       cgd  * All or some portions of this file are derived from material licensed
     46       1.26       cgd  * to the University of California by American Telephone and Telegraph
     47       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     49       1.26       cgd  *
     50       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     51       1.26       cgd  * modification, are permitted provided that the following conditions
     52       1.26       cgd  * are met:
     53       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     54       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     55       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     56       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     57       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     58      1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     59       1.26       cgd  *    may be used to endorse or promote products derived from this software
     60       1.26       cgd  *    without specific prior written permission.
     61       1.26       cgd  *
     62       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72       1.26       cgd  * SUCH DAMAGE.
     73       1.26       cgd  *
     74       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75       1.26       cgd  */
     76      1.106     lukem 
     77      1.106     lukem #include <sys/cdefs.h>
     78  1.186.2.8        ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.186.2.8 2007/06/17 21:31:28 ad Exp $");
     79       1.48       mrg 
     80      1.109      yamt #include "opt_kstack.h"
     81       1.82   thorpej #include "opt_lockdebug.h"
     82       1.83   thorpej #include "opt_multiprocessor.h"
     83      1.110    briggs #include "opt_perfctrs.h"
     84       1.26       cgd 
     85      1.174        ad #define	__MUTEX_PRIVATE
     86      1.174        ad 
     87       1.26       cgd #include <sys/param.h>
     88       1.26       cgd #include <sys/systm.h>
     89       1.26       cgd #include <sys/proc.h>
     90       1.26       cgd #include <sys/kernel.h>
     91      1.111    briggs #if defined(PERFCTRS)
     92      1.110    briggs #include <sys/pmc.h>
     93      1.111    briggs #endif
     94  1.186.2.6        ad #include <sys/cpu.h>
     95       1.26       cgd #include <sys/resourcevar.h>
     96       1.55      ross #include <sys/sched.h>
     97      1.179       dsl #include <sys/syscall_stats.h>
     98      1.174        ad #include <sys/sleepq.h>
     99      1.174        ad #include <sys/lockdebug.h>
    100       1.47       mrg 
    101       1.47       mrg #include <uvm/uvm_extern.h>
    102       1.47       mrg 
    103  1.186.2.6        ad struct callout sched_pstats_ch = CALLOUT_INITIALIZER_SETFUNC(sched_pstats, NULL);
    104  1.186.2.6        ad unsigned int sched_pstats_ticks;
    105       1.34  christos 
    106  1.186.2.6        ad kcondvar_t	lbolt;			/* once a second sleep address */
    107       1.26       cgd 
    108  1.186.2.6        ad static void	sched_unsleep(struct lwp *);
    109  1.186.2.6        ad static void	sched_changepri(struct lwp *, pri_t);
    110  1.186.2.6        ad static void	sched_lendpri(struct lwp *, pri_t);
    111      1.122   thorpej 
    112      1.174        ad syncobj_t sleep_syncobj = {
    113      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    114      1.174        ad 	sleepq_unsleep,
    115      1.184      yamt 	sleepq_changepri,
    116      1.184      yamt 	sleepq_lendpri,
    117      1.184      yamt 	syncobj_noowner,
    118      1.174        ad };
    119      1.174        ad 
    120      1.174        ad syncobj_t sched_syncobj = {
    121      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    122      1.174        ad 	sched_unsleep,
    123      1.184      yamt 	sched_changepri,
    124      1.184      yamt 	sched_lendpri,
    125      1.184      yamt 	syncobj_noowner,
    126      1.174        ad };
    127      1.122   thorpej 
    128       1.26       cgd /*
    129      1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    130      1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    131      1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    132      1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    133      1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    134      1.174        ad  * it can be made higher to block network software interrupts after panics.
    135       1.26       cgd  */
    136      1.174        ad int	safepri;
    137       1.26       cgd 
    138       1.26       cgd /*
    139      1.174        ad  * OBSOLETE INTERFACE
    140      1.174        ad  *
    141       1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    142       1.26       cgd  * performed on the specified identifier.  The process will then be made
    143      1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    144      1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    145       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    146       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    147       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    148       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    149       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    150       1.77   thorpej  *
    151      1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    152      1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    153      1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    154      1.174        ad  * return.
    155       1.26       cgd  */
    156       1.26       cgd int
    157      1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    158      1.174        ad 	volatile struct simplelock *interlock)
    159       1.26       cgd {
    160      1.122   thorpej 	struct lwp *l = curlwp;
    161      1.174        ad 	sleepq_t *sq;
    162  1.186.2.5        ad 	int error;
    163       1.26       cgd 
    164      1.174        ad 	if (sleepq_dontsleep(l)) {
    165      1.174        ad 		(void)sleepq_abort(NULL, 0);
    166      1.174        ad 		if ((priority & PNORELOCK) != 0)
    167       1.77   thorpej 			simple_unlock(interlock);
    168      1.174        ad 		return 0;
    169       1.26       cgd 	}
    170       1.78  sommerfe 
    171      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    172      1.174        ad 	sleepq_enter(sq, l);
    173  1.186.2.8        ad 	sleepq_enqueue(sq, sched_kpri(l), ident, wmesg, &sleep_syncobj);
    174  1.186.2.6        ad 
    175  1.186.2.6        ad 	if (interlock != NULL) {
    176  1.186.2.6        ad 		KASSERT(simple_lock_held(interlock));
    177      1.174        ad 		simple_unlock(interlock);
    178  1.186.2.6        ad 	}
    179  1.186.2.6        ad 
    180  1.186.2.5        ad 	error = sleepq_block(timo, priority & PCATCH);
    181      1.126        pk 
    182      1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    183      1.126        pk 		simple_lock(interlock);
    184      1.174        ad 
    185      1.174        ad 	return error;
    186       1.26       cgd }
    187       1.26       cgd 
    188  1.186.2.1        ad int
    189  1.186.2.1        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    190  1.186.2.1        ad 	kmutex_t *mtx)
    191  1.186.2.1        ad {
    192  1.186.2.1        ad 	struct lwp *l = curlwp;
    193  1.186.2.1        ad 	sleepq_t *sq;
    194  1.186.2.5        ad 	int error;
    195  1.186.2.1        ad 
    196  1.186.2.1        ad 	if (sleepq_dontsleep(l)) {
    197  1.186.2.1        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    198  1.186.2.1        ad 		return 0;
    199  1.186.2.1        ad 	}
    200  1.186.2.1        ad 
    201  1.186.2.1        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    202  1.186.2.1        ad 	sleepq_enter(sq, l);
    203  1.186.2.8        ad 	sleepq_enqueue(sq, sched_kpri(l), ident, wmesg, &sleep_syncobj);
    204  1.186.2.1        ad 	mutex_exit(mtx);
    205  1.186.2.5        ad 	error = sleepq_block(timo, priority & PCATCH);
    206  1.186.2.1        ad 
    207  1.186.2.1        ad 	if ((priority & PNORELOCK) == 0)
    208  1.186.2.1        ad 		mutex_enter(mtx);
    209  1.186.2.1        ad 
    210  1.186.2.1        ad 	return error;
    211  1.186.2.1        ad }
    212  1.186.2.1        ad 
    213       1.26       cgd /*
    214      1.174        ad  * General sleep call for situations where a wake-up is not expected.
    215       1.26       cgd  */
    216      1.174        ad int
    217      1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    218       1.26       cgd {
    219      1.174        ad 	struct lwp *l = curlwp;
    220      1.174        ad 	sleepq_t *sq;
    221      1.174        ad 	int error;
    222       1.26       cgd 
    223      1.174        ad 	if (sleepq_dontsleep(l))
    224      1.174        ad 		return sleepq_abort(NULL, 0);
    225       1.26       cgd 
    226      1.174        ad 	if (mtx != NULL)
    227      1.174        ad 		mutex_exit(mtx);
    228      1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    229      1.174        ad 	sleepq_enter(sq, l);
    230  1.186.2.5        ad 	sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
    231  1.186.2.5        ad 	error = sleepq_block(timo, intr);
    232      1.174        ad 	if (mtx != NULL)
    233      1.174        ad 		mutex_enter(mtx);
    234       1.83   thorpej 
    235      1.174        ad 	return error;
    236      1.139        cl }
    237      1.139        cl 
    238       1.26       cgd /*
    239      1.174        ad  * OBSOLETE INTERFACE
    240      1.174        ad  *
    241       1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    242       1.26       cgd  */
    243       1.26       cgd void
    244      1.174        ad wakeup(wchan_t ident)
    245       1.26       cgd {
    246      1.174        ad 	sleepq_t *sq;
    247       1.83   thorpej 
    248      1.174        ad 	if (cold)
    249      1.174        ad 		return;
    250       1.83   thorpej 
    251      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    252      1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    253       1.63   thorpej }
    254       1.63   thorpej 
    255       1.63   thorpej /*
    256      1.174        ad  * OBSOLETE INTERFACE
    257      1.174        ad  *
    258       1.63   thorpej  * Make the highest priority process first in line on the specified
    259       1.63   thorpej  * identifier runnable.
    260       1.63   thorpej  */
    261      1.174        ad void
    262      1.174        ad wakeup_one(wchan_t ident)
    263       1.63   thorpej {
    264      1.174        ad 	sleepq_t *sq;
    265       1.63   thorpej 
    266      1.174        ad 	if (cold)
    267      1.174        ad 		return;
    268  1.186.2.6        ad 
    269      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    270      1.174        ad 	sleepq_wake(sq, ident, 1);
    271      1.174        ad }
    272       1.63   thorpej 
    273      1.117  gmcgarry 
    274      1.117  gmcgarry /*
    275      1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    276      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    277      1.117  gmcgarry  * current process explicitly requests it (eg sched_yield(2) in compat code).
    278      1.117  gmcgarry  */
    279      1.117  gmcgarry void
    280      1.117  gmcgarry yield(void)
    281      1.117  gmcgarry {
    282      1.122   thorpej 	struct lwp *l = curlwp;
    283      1.117  gmcgarry 
    284      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    285      1.174        ad 	lwp_lock(l);
    286  1.186.2.6        ad 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    287  1.186.2.6        ad 	KASSERT(l->l_stat == LSONPROC);
    288  1.186.2.6        ad 	l->l_priority = l->l_usrpri;
    289  1.186.2.6        ad 	(void)mi_switch(l);
    290      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    291       1.69   thorpej }
    292       1.69   thorpej 
    293       1.69   thorpej /*
    294       1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    295      1.156    rpaulo  * and performs an involuntary context switch.
    296       1.69   thorpej  */
    297       1.69   thorpej void
    298      1.174        ad preempt(void)
    299       1.69   thorpej {
    300      1.122   thorpej 	struct lwp *l = curlwp;
    301       1.69   thorpej 
    302      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    303      1.174        ad 	lwp_lock(l);
    304  1.186.2.6        ad 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    305  1.186.2.6        ad 	KASSERT(l->l_stat == LSONPROC);
    306  1.186.2.6        ad 	l->l_priority = l->l_usrpri;
    307      1.174        ad 	l->l_nivcsw++;
    308  1.186.2.6        ad 	(void)mi_switch(l);
    309      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    310       1.69   thorpej }
    311       1.69   thorpej 
    312       1.69   thorpej /*
    313  1.186.2.6        ad  * Compute the amount of time during which the current lwp was running.
    314      1.130   nathanw  *
    315  1.186.2.6        ad  * - update l_rtime unless it's an idle lwp.
    316  1.186.2.6        ad  * - update spc_runtime for the next lwp.
    317  1.186.2.6        ad  */
    318  1.186.2.6        ad 
    319  1.186.2.6        ad static inline void
    320  1.186.2.6        ad updatertime(struct lwp *l, struct schedstate_percpu *spc)
    321  1.186.2.6        ad {
    322  1.186.2.6        ad 	struct timeval tv;
    323  1.186.2.6        ad 	long s, u;
    324  1.186.2.6        ad 
    325  1.186.2.6        ad 	if ((l->l_flag & LW_IDLE) != 0) {
    326  1.186.2.6        ad 		microtime(&spc->spc_runtime);
    327  1.186.2.6        ad 		return;
    328  1.186.2.6        ad 	}
    329  1.186.2.6        ad 
    330  1.186.2.6        ad 	microtime(&tv);
    331  1.186.2.6        ad 	u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    332  1.186.2.6        ad 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    333  1.186.2.6        ad 	if (u < 0) {
    334  1.186.2.6        ad 		u += 1000000;
    335  1.186.2.6        ad 		s--;
    336  1.186.2.6        ad 	} else if (u >= 1000000) {
    337  1.186.2.6        ad 		u -= 1000000;
    338  1.186.2.6        ad 		s++;
    339  1.186.2.6        ad 	}
    340  1.186.2.6        ad 	l->l_rtime.tv_usec = u;
    341  1.186.2.6        ad 	l->l_rtime.tv_sec = s;
    342  1.186.2.6        ad 
    343  1.186.2.6        ad 	spc->spc_runtime = tv;
    344  1.186.2.6        ad }
    345  1.186.2.6        ad 
    346  1.186.2.6        ad /*
    347  1.186.2.6        ad  * The machine independent parts of context switch.
    348  1.186.2.6        ad  *
    349  1.186.2.6        ad  * Returns 1 if another LWP was actually run.
    350       1.26       cgd  */
    351      1.122   thorpej int
    352  1.186.2.6        ad mi_switch(struct lwp *l)
    353       1.26       cgd {
    354       1.76   thorpej 	struct schedstate_percpu *spc;
    355  1.186.2.6        ad 	struct lwp *newl;
    356      1.174        ad 	int retval, oldspl;
    357  1.186.2.8        ad 	bool returning;
    358       1.26       cgd 
    359  1.186.2.3        ad 	KASSERT(lwp_locked(l, NULL));
    360  1.186.2.6        ad 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    361      1.174        ad 
    362      1.174        ad #ifdef KSTACK_CHECK_MAGIC
    363      1.174        ad 	kstack_check_magic(l);
    364      1.174        ad #endif
    365       1.83   thorpej 
    366       1.90  sommerfe 	/*
    367      1.174        ad 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    368      1.174        ad 	 * are after is the run time and that's guarenteed to have been last
    369      1.174        ad 	 * updated by this CPU.
    370       1.90  sommerfe 	 */
    371      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    372       1.26       cgd 
    373      1.113  gmcgarry 	/*
    374  1.186.2.6        ad 	 * Process is about to yield the CPU; clear the appropriate
    375  1.186.2.6        ad 	 * scheduling flags.
    376      1.113  gmcgarry 	 */
    377  1.186.2.6        ad 	spc = &l->l_cpu->ci_schedstate;
    378  1.186.2.8        ad 	if (l->l_pinned != NULL) {
    379  1.186.2.8        ad 		returning = true;
    380  1.186.2.8        ad 		newl = l->l_pinned;
    381  1.186.2.8        ad 		l->l_pinned = NULL;
    382  1.186.2.8        ad 	} else {
    383  1.186.2.8        ad 		returning = false;
    384  1.186.2.8        ad 		newl = NULL;
    385  1.186.2.8        ad 
    386  1.186.2.8        ad 		/* Count time spent in current system call */
    387  1.186.2.8        ad 		SYSCALL_TIME_SLEEP(l);
    388  1.186.2.8        ad 
    389  1.186.2.8        ad 		/*
    390  1.186.2.8        ad 		 * XXXSMP If we are using h/w performance counters,
    391  1.186.2.8        ad 		 * save context.
    392  1.186.2.8        ad 		 */
    393  1.186.2.8        ad #if PERFCTRS
    394  1.186.2.8        ad 		if (PMC_ENABLED(l->l_proc)) {
    395  1.186.2.8        ad 			pmc_save_context(l->l_proc);
    396  1.186.2.8        ad 		}
    397  1.186.2.8        ad #endif
    398  1.186.2.8        ad 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    399  1.186.2.8        ad 		updatertime(l, spc);
    400  1.186.2.8        ad 	}
    401      1.113  gmcgarry 
    402      1.113  gmcgarry 	/*
    403      1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    404      1.113  gmcgarry 	 */
    405  1.186.2.6        ad 	mutex_spin_enter(spc->spc_mutex);
    406      1.174        ad 	KASSERT(l->l_stat != LSRUN);
    407      1.174        ad 	if (l->l_stat == LSONPROC) {
    408  1.186.2.6        ad 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    409  1.186.2.6        ad 		if ((l->l_flag & LW_IDLE) == 0) {
    410  1.186.2.6        ad 			l->l_stat = LSRUN;
    411  1.186.2.6        ad 			lwp_setlock(l, spc->spc_mutex);
    412  1.186.2.6        ad 			sched_enqueue(l, true);
    413  1.186.2.6        ad 		} else
    414  1.186.2.6        ad 			l->l_stat = LSIDL;
    415      1.174        ad 	}
    416      1.174        ad 
    417      1.174        ad 	/*
    418  1.186.2.6        ad 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    419  1.186.2.6        ad 	 * If no LWP is runnable, switch to the idle LWP.
    420      1.174        ad 	 */
    421  1.186.2.8        ad 	if (!returning) {
    422  1.186.2.8        ad 		newl = sched_nextlwp();
    423  1.186.2.8        ad 		if (newl) {
    424  1.186.2.8        ad 			sched_dequeue(newl);
    425  1.186.2.8        ad 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    426  1.186.2.8        ad 			newl->l_stat = LSONPROC;
    427  1.186.2.8        ad 			newl->l_cpu = l->l_cpu;
    428  1.186.2.8        ad 			newl->l_flag |= LW_RUNNING;
    429  1.186.2.8        ad 			lwp_setlock(newl, &spc->spc_lwplock);
    430  1.186.2.8        ad 		} else {
    431  1.186.2.8        ad 			newl = l->l_cpu->ci_data.cpu_idlelwp;
    432  1.186.2.8        ad 			newl->l_stat = LSONPROC;
    433  1.186.2.8        ad 			newl->l_flag |= LW_RUNNING;
    434  1.186.2.8        ad 		}
    435  1.186.2.8        ad 		spc->spc_curpriority = newl->l_usrpri;
    436  1.186.2.8        ad 		newl->l_priority = newl->l_usrpri;
    437  1.186.2.8        ad 		cpu_did_resched();
    438  1.186.2.6        ad 	}
    439      1.174        ad 
    440  1.186.2.6        ad 	if (l != newl) {
    441  1.186.2.6        ad 		struct lwp *prevlwp;
    442      1.174        ad 
    443  1.186.2.6        ad 		/*
    444  1.186.2.6        ad 		 * If the old LWP has been moved to a run queue above,
    445  1.186.2.6        ad 		 * drop the general purpose LWP lock: it's now locked
    446  1.186.2.6        ad 		 * by the scheduler lock.
    447  1.186.2.6        ad 		 *
    448  1.186.2.6        ad 		 * Otherwise, drop the scheduler lock.  We're done with
    449  1.186.2.6        ad 		 * the run queues for now.
    450  1.186.2.6        ad 		 */
    451  1.186.2.6        ad 		if (l->l_mutex == spc->spc_mutex) {
    452  1.186.2.6        ad 			mutex_spin_exit(&spc->spc_lwplock);
    453  1.186.2.6        ad 		} else {
    454  1.186.2.6        ad 			mutex_spin_exit(spc->spc_mutex);
    455  1.186.2.6        ad 		}
    456  1.186.2.6        ad 
    457  1.186.2.6        ad 		/* Unlocked, but for statistics only. */
    458  1.186.2.6        ad 		uvmexp.swtch++;
    459  1.186.2.6        ad 
    460  1.186.2.8        ad 		/*
    461  1.186.2.8        ad 		 * Save old VM context, unless a soft interrupt
    462  1.186.2.8        ad 		 * handler is blocking.
    463  1.186.2.8        ad 		 */
    464  1.186.2.8        ad 		if (!returning)
    465  1.186.2.8        ad 			pmap_deactivate(l);
    466  1.186.2.6        ad 
    467  1.186.2.6        ad 		/* Switch to the new LWP.. */
    468  1.186.2.6        ad 		l->l_ncsw++;
    469  1.186.2.6        ad 		l->l_flag &= ~LW_RUNNING;
    470  1.186.2.6        ad 		oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    471  1.186.2.8        ad 		prevlwp = cpu_switchto(l, newl, returning);
    472      1.174        ad 
    473  1.186.2.6        ad 		/*
    474  1.186.2.6        ad 		 * .. we have switched away and are now back so we must
    475  1.186.2.6        ad 		 * be the new curlwp.  prevlwp is who we replaced.
    476  1.186.2.6        ad 		 */
    477  1.186.2.6        ad 		curlwp = l;
    478  1.186.2.6        ad 		if (prevlwp != NULL) {
    479  1.186.2.6        ad 			curcpu()->ci_mtx_oldspl = oldspl;
    480  1.186.2.6        ad 			lwp_unlock(prevlwp);
    481  1.186.2.6        ad 		} else {
    482  1.186.2.6        ad 			splx(oldspl);
    483  1.186.2.6        ad 		}
    484  1.186.2.6        ad 
    485  1.186.2.6        ad 		/* Restore VM context. */
    486  1.186.2.6        ad 		pmap_activate(l);
    487  1.186.2.6        ad 		retval = 1;
    488  1.186.2.6        ad 	} else {
    489  1.186.2.6        ad 		/* Nothing to do - just unlock and return. */
    490  1.186.2.6        ad 		mutex_spin_exit(spc->spc_mutex);
    491  1.186.2.6        ad 		lwp_unlock(l);
    492      1.122   thorpej 		retval = 0;
    493      1.122   thorpej 	}
    494      1.110    briggs 
    495  1.186.2.6        ad 	KASSERT(l == curlwp);
    496  1.186.2.6        ad 	KASSERT(l->l_stat == LSONPROC);
    497  1.186.2.6        ad 
    498      1.110    briggs 	/*
    499      1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    500       1.26       cgd 	 */
    501      1.114  gmcgarry #if PERFCTRS
    502      1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    503      1.175  christos 		pmc_restore_context(l->l_proc);
    504      1.166  christos 	}
    505      1.114  gmcgarry #endif
    506      1.110    briggs 
    507      1.110    briggs 	/*
    508       1.76   thorpej 	 * We're running again; record our new start time.  We might
    509      1.174        ad 	 * be running on a new CPU now, so don't use the cached
    510       1.76   thorpej 	 * schedstate_percpu pointer.
    511       1.76   thorpej 	 */
    512      1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    513      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    514  1.186.2.6        ad 	LOCKDEBUG_BARRIER(NULL, 1);
    515      1.169      yamt 
    516      1.122   thorpej 	return retval;
    517       1.26       cgd }
    518       1.26       cgd 
    519       1.26       cgd /*
    520      1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    521      1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    522      1.174        ad  *
    523      1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    524       1.26       cgd  */
    525       1.26       cgd void
    526      1.122   thorpej setrunnable(struct lwp *l)
    527       1.26       cgd {
    528      1.122   thorpej 	struct proc *p = l->l_proc;
    529      1.174        ad 	sigset_t *ss;
    530       1.26       cgd 
    531  1.186.2.6        ad 	KASSERT((l->l_flag & LW_IDLE) == 0);
    532      1.183        ad 	KASSERT(mutex_owned(&p->p_smutex));
    533      1.183        ad 	KASSERT(lwp_locked(l, NULL));
    534       1.83   thorpej 
    535      1.122   thorpej 	switch (l->l_stat) {
    536      1.122   thorpej 	case LSSTOP:
    537       1.33   mycroft 		/*
    538       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    539       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    540       1.33   mycroft 		 */
    541      1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    542      1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    543      1.174        ad 				ss = &l->l_sigpend.sp_set;
    544      1.174        ad 			else
    545      1.174        ad 				ss = &p->p_sigpend.sp_set;
    546      1.174        ad 			sigaddset(ss, p->p_xstat);
    547      1.174        ad 			signotify(l);
    548       1.53   mycroft 		}
    549      1.174        ad 		p->p_nrlwps++;
    550       1.26       cgd 		break;
    551      1.174        ad 	case LSSUSPENDED:
    552      1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    553      1.174        ad 		p->p_nrlwps++;
    554      1.122   thorpej 		break;
    555      1.174        ad 	case LSSLEEP:
    556      1.174        ad 		KASSERT(l->l_wchan != NULL);
    557       1.26       cgd 		break;
    558      1.174        ad 	default:
    559      1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    560       1.26       cgd 	}
    561      1.139        cl 
    562      1.174        ad 	/*
    563      1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    564      1.174        ad 	 * again.  If not, mark it as still sleeping.
    565      1.174        ad 	 */
    566      1.174        ad 	if (l->l_wchan != NULL) {
    567      1.174        ad 		l->l_stat = LSSLEEP;
    568      1.183        ad 		/* lwp_unsleep() will release the lock. */
    569      1.183        ad 		lwp_unsleep(l);
    570      1.174        ad 		return;
    571      1.174        ad 	}
    572      1.139        cl 
    573      1.174        ad 	/*
    574      1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    575      1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    576      1.174        ad 	 */
    577  1.186.2.6        ad 	if ((l->l_flag & LW_RUNNING) != 0) {
    578      1.174        ad 		l->l_stat = LSONPROC;
    579      1.174        ad 		l->l_slptime = 0;
    580      1.174        ad 		lwp_unlock(l);
    581      1.174        ad 		return;
    582      1.174        ad 	}
    583      1.122   thorpej 
    584      1.174        ad 	/*
    585      1.174        ad 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    586      1.174        ad 	 * to bring it back in.  Otherwise, enter it into a run queue.
    587      1.174        ad 	 */
    588  1.186.2.7        ad 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    589  1.186.2.7        ad 		spc_lock(l->l_cpu);
    590  1.186.2.7        ad 		lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
    591  1.186.2.7        ad 	}
    592  1.186.2.7        ad 
    593  1.186.2.6        ad 	sched_setrunnable(l);
    594      1.174        ad 	l->l_stat = LSRUN;
    595      1.122   thorpej 	l->l_slptime = 0;
    596      1.174        ad 
    597      1.178     pavel 	if (l->l_flag & LW_INMEM) {
    598  1.186.2.6        ad 		sched_enqueue(l, false);
    599  1.186.2.6        ad 		resched_cpu(l);
    600      1.174        ad 		lwp_unlock(l);
    601      1.174        ad 	} else {
    602      1.174        ad 		lwp_unlock(l);
    603      1.177        ad 		uvm_kick_scheduler();
    604      1.174        ad 	}
    605       1.26       cgd }
    606       1.26       cgd 
    607       1.26       cgd /*
    608      1.174        ad  * suspendsched:
    609      1.174        ad  *
    610      1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    611      1.174        ad  */
    612       1.94    bouyer void
    613      1.174        ad suspendsched(void)
    614       1.94    bouyer {
    615      1.174        ad #ifdef MULTIPROCESSOR
    616      1.174        ad 	CPU_INFO_ITERATOR cii;
    617      1.174        ad 	struct cpu_info *ci;
    618      1.174        ad #endif
    619      1.122   thorpej 	struct lwp *l;
    620      1.174        ad 	struct proc *p;
    621       1.94    bouyer 
    622       1.94    bouyer 	/*
    623      1.174        ad 	 * We do this by process in order not to violate the locking rules.
    624       1.94    bouyer 	 */
    625  1.186.2.8        ad 	mutex_enter(&proclist_lock);
    626      1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    627      1.174        ad 		mutex_enter(&p->p_smutex);
    628      1.174        ad 
    629      1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    630      1.174        ad 			mutex_exit(&p->p_smutex);
    631       1.94    bouyer 			continue;
    632      1.174        ad 		}
    633      1.174        ad 
    634      1.174        ad 		p->p_stat = SSTOP;
    635      1.174        ad 
    636      1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    637      1.174        ad 			if (l == curlwp)
    638      1.174        ad 				continue;
    639      1.174        ad 
    640      1.174        ad 			lwp_lock(l);
    641      1.122   thorpej 
    642       1.97     enami 			/*
    643      1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    644      1.174        ad 			 * when it tries to return to user mode.  We want to
    645      1.174        ad 			 * try and get to get as many LWPs as possible to
    646      1.174        ad 			 * the user / kernel boundary, so that they will
    647      1.174        ad 			 * release any locks that they hold.
    648       1.97     enami 			 */
    649      1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    650      1.174        ad 
    651      1.174        ad 			if (l->l_stat == LSSLEEP &&
    652      1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    653      1.174        ad 				/* setrunnable() will release the lock. */
    654      1.174        ad 				setrunnable(l);
    655      1.174        ad 				continue;
    656      1.174        ad 			}
    657      1.174        ad 
    658      1.174        ad 			lwp_unlock(l);
    659       1.94    bouyer 		}
    660      1.174        ad 
    661      1.174        ad 		mutex_exit(&p->p_smutex);
    662       1.94    bouyer 	}
    663  1.186.2.8        ad 	mutex_exit(&proclist_lock);
    664      1.174        ad 
    665      1.174        ad 	/*
    666      1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    667      1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    668      1.174        ad 	 */
    669      1.174        ad #ifdef MULTIPROCESSOR
    670      1.174        ad 	for (CPU_INFO_FOREACH(cii, ci))
    671  1.186.2.6        ad 		cpu_need_resched(ci, 0);
    672      1.174        ad #else
    673  1.186.2.6        ad 	cpu_need_resched(curcpu(), 0);
    674      1.174        ad #endif
    675      1.174        ad }
    676      1.174        ad 
    677      1.174        ad /*
    678      1.174        ad  * sched_kpri:
    679      1.174        ad  *
    680      1.174        ad  *	Scale a priority level to a kernel priority level, usually
    681      1.174        ad  *	for an LWP that is about to sleep.
    682      1.174        ad  */
    683      1.185      yamt pri_t
    684      1.174        ad sched_kpri(struct lwp *l)
    685      1.174        ad {
    686  1.186.2.8        ad 	pri_t pri;
    687  1.186.2.8        ad 
    688      1.174        ad 	/*
    689  1.186.2.8        ad 	 * Scale user priorities (0 -> 63) up to kernel priorities
    690  1.186.2.8        ad 	 * in the range (64 -> 95).  This makes assumptions about
    691  1.186.2.8        ad 	 * the priority space and so should be kept in sync with
    692  1.186.2.8        ad 	 * param.h.
    693  1.186.2.8        ad 	 */
    694  1.186.2.8        ad 	if ((pri = l->l_usrpri) >= PRI_KERNEL)
    695  1.186.2.8        ad 		return pri;
    696      1.174        ad 
    697  1.186.2.8        ad 	return (pri >> 1) + PRI_KERNEL;
    698      1.174        ad }
    699      1.174        ad 
    700      1.174        ad /*
    701      1.174        ad  * sched_unsleep:
    702      1.174        ad  *
    703      1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    704      1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    705      1.174        ad  *	it's not a valid action for running or idle LWPs.
    706      1.174        ad  */
    707  1.186.2.6        ad static void
    708      1.174        ad sched_unsleep(struct lwp *l)
    709      1.174        ad {
    710      1.174        ad 
    711      1.174        ad 	lwp_unlock(l);
    712      1.174        ad 	panic("sched_unsleep");
    713      1.174        ad }
    714      1.174        ad 
    715  1.186.2.6        ad inline void
    716  1.186.2.6        ad resched_cpu(struct lwp *l)
    717  1.186.2.6        ad {
    718  1.186.2.6        ad 	struct cpu_info *ci;
    719  1.186.2.6        ad 	const pri_t pri = lwp_eprio(l);
    720  1.186.2.6        ad 
    721  1.186.2.6        ad 	/*
    722  1.186.2.6        ad 	 * XXXSMP
    723  1.186.2.6        ad 	 * Since l->l_cpu persists across a context switch,
    724  1.186.2.6        ad 	 * this gives us *very weak* processor affinity, in
    725  1.186.2.6        ad 	 * that we notify the CPU on which the process last
    726  1.186.2.6        ad 	 * ran that it should try to switch.
    727  1.186.2.6        ad 	 *
    728  1.186.2.6        ad 	 * This does not guarantee that the process will run on
    729  1.186.2.6        ad 	 * that processor next, because another processor might
    730  1.186.2.6        ad 	 * grab it the next time it performs a context switch.
    731  1.186.2.6        ad 	 *
    732  1.186.2.6        ad 	 * This also does not handle the case where its last
    733  1.186.2.6        ad 	 * CPU is running a higher-priority process, but every
    734  1.186.2.6        ad 	 * other CPU is running a lower-priority process.  There
    735  1.186.2.6        ad 	 * are ways to handle this situation, but they're not
    736  1.186.2.6        ad 	 * currently very pretty, and we also need to weigh the
    737  1.186.2.6        ad 	 * cost of moving a process from one CPU to another.
    738  1.186.2.6        ad 	 */
    739  1.186.2.6        ad 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    740  1.186.2.6        ad 	if (pri < ci->ci_schedstate.spc_curpriority)
    741  1.186.2.6        ad 		cpu_need_resched(ci, 0);
    742  1.186.2.6        ad }
    743  1.186.2.6        ad 
    744  1.186.2.6        ad static void
    745      1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
    746      1.174        ad {
    747      1.174        ad 
    748  1.186.2.6        ad 	KASSERT(lwp_locked(l, NULL));
    749      1.174        ad 
    750      1.174        ad 	l->l_usrpri = pri;
    751  1.186.2.8        ad 	if (l->l_priority >= PRI_KERNEL)
    752      1.174        ad 		return;
    753      1.184      yamt 
    754      1.184      yamt 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    755      1.174        ad 		l->l_priority = pri;
    756      1.174        ad 		return;
    757      1.157      yamt 	}
    758      1.174        ad 
    759  1.186.2.6        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    760  1.186.2.6        ad 
    761  1.186.2.6        ad 	sched_dequeue(l);
    762      1.174        ad 	l->l_priority = pri;
    763  1.186.2.6        ad 	sched_enqueue(l, false);
    764  1.186.2.6        ad 	resched_cpu(l);
    765      1.184      yamt }
    766      1.184      yamt 
    767  1.186.2.6        ad static void
    768      1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
    769      1.184      yamt {
    770      1.184      yamt 
    771  1.186.2.6        ad 	KASSERT(lwp_locked(l, NULL));
    772      1.184      yamt 
    773      1.184      yamt 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    774      1.184      yamt 		l->l_inheritedprio = pri;
    775      1.184      yamt 		return;
    776      1.184      yamt 	}
    777      1.184      yamt 
    778  1.186.2.6        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    779  1.186.2.6        ad 
    780  1.186.2.6        ad 	sched_dequeue(l);
    781      1.184      yamt 	l->l_inheritedprio = pri;
    782  1.186.2.6        ad 	sched_enqueue(l, false);
    783  1.186.2.6        ad 	resched_cpu(l);
    784      1.184      yamt }
    785      1.184      yamt 
    786      1.184      yamt struct lwp *
    787      1.184      yamt syncobj_noowner(wchan_t wchan)
    788      1.184      yamt {
    789      1.184      yamt 
    790      1.184      yamt 	return NULL;
    791      1.151      yamt }
    792      1.151      yamt 
    793      1.113  gmcgarry 
    794  1.186.2.6        ad /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    795  1.186.2.6        ad fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    796      1.115  nisimura 
    797      1.130   nathanw /*
    798  1.186.2.6        ad  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    799  1.186.2.6        ad  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    800  1.186.2.6        ad  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    801  1.186.2.6        ad  *
    802  1.186.2.6        ad  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    803  1.186.2.6        ad  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    804  1.186.2.6        ad  *
    805  1.186.2.6        ad  * If you dont want to bother with the faster/more-accurate formula, you
    806  1.186.2.6        ad  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    807  1.186.2.6        ad  * (more general) method of calculating the %age of CPU used by a process.
    808      1.134      matt  */
    809  1.186.2.6        ad #define	CCPU_SHIFT	(FSHIFT + 1)
    810      1.134      matt 
    811      1.134      matt /*
    812  1.186.2.6        ad  * sched_pstats:
    813  1.186.2.6        ad  *
    814  1.186.2.6        ad  * Update process statistics and check CPU resource allocation.
    815  1.186.2.6        ad  * Call scheduler-specific hook to eventually adjust process/LWP
    816  1.186.2.6        ad  * priorities.
    817  1.186.2.6        ad  *
    818  1.186.2.6        ad  *	XXXSMP This needs to be reorganised in order to reduce the locking
    819  1.186.2.6        ad  *	burden.
    820      1.130   nathanw  */
    821  1.186.2.6        ad /* ARGSUSED */
    822      1.113  gmcgarry void
    823  1.186.2.6        ad sched_pstats(void *arg)
    824      1.113  gmcgarry {
    825  1.186.2.6        ad 	struct rlimit *rlim;
    826  1.186.2.6        ad 	struct lwp *l;
    827  1.186.2.6        ad 	struct proc *p;
    828  1.186.2.6        ad 	int minslp, sig, clkhz;
    829  1.186.2.6        ad 	long runtm;
    830      1.174        ad 
    831  1.186.2.6        ad 	sched_pstats_ticks++;
    832      1.113  gmcgarry 
    833  1.186.2.8        ad 	mutex_enter(&proclist_lock);
    834  1.186.2.6        ad 	PROCLIST_FOREACH(p, &allproc) {
    835  1.186.2.6        ad 		/*
    836  1.186.2.6        ad 		 * Increment time in/out of memory and sleep time (if
    837  1.186.2.6        ad 		 * sleeping).  We ignore overflow; with 16-bit int's
    838  1.186.2.6        ad 		 * (remember them?) overflow takes 45 days.
    839  1.186.2.6        ad 		 */
    840  1.186.2.6        ad 		minslp = 2;
    841  1.186.2.6        ad 		mutex_enter(&p->p_smutex);
    842  1.186.2.6        ad 		mutex_spin_enter(&p->p_stmutex);
    843  1.186.2.6        ad 		runtm = p->p_rtime.tv_sec;
    844  1.186.2.6        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    845  1.186.2.6        ad 			if ((l->l_flag & LW_IDLE) != 0)
    846  1.186.2.6        ad 				continue;
    847  1.186.2.6        ad 			lwp_lock(l);
    848  1.186.2.6        ad 			runtm += l->l_rtime.tv_sec;
    849  1.186.2.6        ad 			l->l_swtime++;
    850  1.186.2.6        ad 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    851  1.186.2.6        ad 			    l->l_stat == LSSUSPENDED) {
    852  1.186.2.6        ad 				l->l_slptime++;
    853  1.186.2.6        ad 				minslp = min(minslp, l->l_slptime);
    854  1.186.2.6        ad 			} else
    855  1.186.2.6        ad 				minslp = 0;
    856  1.186.2.6        ad 			lwp_unlock(l);
    857      1.174        ad 
    858  1.186.2.6        ad 			/*
    859  1.186.2.6        ad 			 * p_pctcpu is only for ps.
    860  1.186.2.6        ad 			 */
    861  1.186.2.6        ad 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    862  1.186.2.6        ad 			if (l->l_slptime < 1) {
    863  1.186.2.6        ad 				clkhz = stathz != 0 ? stathz : hz;
    864  1.186.2.6        ad #if	(FSHIFT >= CCPU_SHIFT)
    865  1.186.2.6        ad 				l->l_pctcpu += (clkhz == 100) ?
    866  1.186.2.6        ad 				    ((fixpt_t)l->l_cpticks) <<
    867  1.186.2.6        ad 				        (FSHIFT - CCPU_SHIFT) :
    868  1.186.2.6        ad 				    100 * (((fixpt_t) p->p_cpticks)
    869  1.186.2.6        ad 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    870  1.186.2.6        ad #else
    871  1.186.2.6        ad 				l->l_pctcpu += ((FSCALE - ccpu) *
    872  1.186.2.6        ad 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    873      1.146      matt #endif
    874  1.186.2.6        ad 				l->l_cpticks = 0;
    875  1.186.2.6        ad 			}
    876  1.186.2.6        ad 		}
    877  1.186.2.6        ad 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    878  1.186.2.6        ad 		sched_pstats_hook(p, minslp);
    879  1.186.2.6        ad 		mutex_spin_exit(&p->p_stmutex);
    880      1.174        ad 
    881  1.186.2.6        ad 		/*
    882  1.186.2.6        ad 		 * Check if the process exceeds its CPU resource allocation.
    883  1.186.2.6        ad 		 * If over max, kill it.
    884  1.186.2.6        ad 		 */
    885  1.186.2.6        ad 		rlim = &p->p_rlimit[RLIMIT_CPU];
    886  1.186.2.6        ad 		sig = 0;
    887  1.186.2.6        ad 		if (runtm >= rlim->rlim_cur) {
    888  1.186.2.6        ad 			if (runtm >= rlim->rlim_max)
    889  1.186.2.6        ad 				sig = SIGKILL;
    890  1.186.2.6        ad 			else {
    891  1.186.2.6        ad 				sig = SIGXCPU;
    892  1.186.2.6        ad 				if (rlim->rlim_cur < rlim->rlim_max)
    893  1.186.2.6        ad 					rlim->rlim_cur += 5;
    894  1.186.2.6        ad 			}
    895  1.186.2.6        ad 		}
    896  1.186.2.6        ad 		mutex_exit(&p->p_smutex);
    897  1.186.2.6        ad 		if (sig) {
    898  1.186.2.8        ad 			/* XXXAD */
    899  1.186.2.8        ad 			mutex_enter(&proclist_mutex);
    900  1.186.2.6        ad 			psignal(p, sig);
    901  1.186.2.8        ad 			mutex_enter(&proclist_mutex);
    902  1.186.2.6        ad 		}
    903      1.174        ad 	}
    904  1.186.2.8        ad 	mutex_exit(&proclist_lock);
    905  1.186.2.6        ad 	uvm_meter();
    906  1.186.2.8        ad 	cv_broadcast(&lbolt);
    907  1.186.2.6        ad 	callout_schedule(&sched_pstats_ch, hz);
    908      1.113  gmcgarry }
    909