Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.186.2.9
      1  1.186.2.9        ad /*	$NetBSD: kern_synch.c,v 1.186.2.9 2007/07/01 21:43:40 ad Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4      1.174        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5       1.63   thorpej  * All rights reserved.
      6       1.63   thorpej  *
      7       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.186.2.6        ad  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  1.186.2.6        ad  * Daniel Sieger.
     11       1.63   thorpej  *
     12       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13       1.63   thorpej  * modification, are permitted provided that the following conditions
     14       1.63   thorpej  * are met:
     15       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20       1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     21       1.63   thorpej  *    must display the following acknowledgement:
     22       1.63   thorpej  *	This product includes software developed by the NetBSD
     23       1.63   thorpej  *	Foundation, Inc. and its contributors.
     24       1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25       1.63   thorpej  *    contributors may be used to endorse or promote products derived
     26       1.63   thorpej  *    from this software without specific prior written permission.
     27       1.63   thorpej  *
     28       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     39       1.63   thorpej  */
     40       1.26       cgd 
     41       1.26       cgd /*-
     42       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     44       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     45       1.26       cgd  * All or some portions of this file are derived from material licensed
     46       1.26       cgd  * to the University of California by American Telephone and Telegraph
     47       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     49       1.26       cgd  *
     50       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     51       1.26       cgd  * modification, are permitted provided that the following conditions
     52       1.26       cgd  * are met:
     53       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     54       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     55       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     56       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     57       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     58      1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     59       1.26       cgd  *    may be used to endorse or promote products derived from this software
     60       1.26       cgd  *    without specific prior written permission.
     61       1.26       cgd  *
     62       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72       1.26       cgd  * SUCH DAMAGE.
     73       1.26       cgd  *
     74       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75       1.26       cgd  */
     76      1.106     lukem 
     77      1.106     lukem #include <sys/cdefs.h>
     78  1.186.2.9        ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.186.2.9 2007/07/01 21:43:40 ad Exp $");
     79       1.48       mrg 
     80      1.109      yamt #include "opt_kstack.h"
     81       1.82   thorpej #include "opt_lockdebug.h"
     82       1.83   thorpej #include "opt_multiprocessor.h"
     83      1.110    briggs #include "opt_perfctrs.h"
     84       1.26       cgd 
     85      1.174        ad #define	__MUTEX_PRIVATE
     86      1.174        ad 
     87       1.26       cgd #include <sys/param.h>
     88       1.26       cgd #include <sys/systm.h>
     89       1.26       cgd #include <sys/proc.h>
     90       1.26       cgd #include <sys/kernel.h>
     91      1.111    briggs #if defined(PERFCTRS)
     92      1.110    briggs #include <sys/pmc.h>
     93      1.111    briggs #endif
     94  1.186.2.6        ad #include <sys/cpu.h>
     95       1.26       cgd #include <sys/resourcevar.h>
     96       1.55      ross #include <sys/sched.h>
     97      1.179       dsl #include <sys/syscall_stats.h>
     98      1.174        ad #include <sys/sleepq.h>
     99      1.174        ad #include <sys/lockdebug.h>
    100  1.186.2.9        ad #include <sys/evcnt.h>
    101       1.47       mrg 
    102       1.47       mrg #include <uvm/uvm_extern.h>
    103       1.47       mrg 
    104  1.186.2.9        ad callout_t sched_pstats_ch;
    105  1.186.2.6        ad unsigned int sched_pstats_ticks;
    106       1.34  christos 
    107  1.186.2.6        ad kcondvar_t	lbolt;			/* once a second sleep address */
    108       1.26       cgd 
    109  1.186.2.6        ad static void	sched_unsleep(struct lwp *);
    110  1.186.2.6        ad static void	sched_changepri(struct lwp *, pri_t);
    111  1.186.2.6        ad static void	sched_lendpri(struct lwp *, pri_t);
    112      1.122   thorpej 
    113      1.174        ad syncobj_t sleep_syncobj = {
    114      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    115      1.174        ad 	sleepq_unsleep,
    116      1.184      yamt 	sleepq_changepri,
    117      1.184      yamt 	sleepq_lendpri,
    118      1.184      yamt 	syncobj_noowner,
    119      1.174        ad };
    120      1.174        ad 
    121      1.174        ad syncobj_t sched_syncobj = {
    122      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    123      1.174        ad 	sched_unsleep,
    124      1.184      yamt 	sched_changepri,
    125      1.184      yamt 	sched_lendpri,
    126      1.184      yamt 	syncobj_noowner,
    127      1.174        ad };
    128      1.122   thorpej 
    129       1.26       cgd /*
    130      1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    131      1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    132      1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    133      1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    134      1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    135      1.174        ad  * it can be made higher to block network software interrupts after panics.
    136       1.26       cgd  */
    137      1.174        ad int	safepri;
    138       1.26       cgd 
    139       1.26       cgd /*
    140      1.174        ad  * OBSOLETE INTERFACE
    141      1.174        ad  *
    142       1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    143       1.26       cgd  * performed on the specified identifier.  The process will then be made
    144      1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    145      1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    146       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    147       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    148       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    149       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    150       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    151       1.77   thorpej  *
    152      1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    153      1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    154      1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    155      1.174        ad  * return.
    156       1.26       cgd  */
    157       1.26       cgd int
    158      1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    159      1.174        ad 	volatile struct simplelock *interlock)
    160       1.26       cgd {
    161      1.122   thorpej 	struct lwp *l = curlwp;
    162      1.174        ad 	sleepq_t *sq;
    163  1.186.2.5        ad 	int error;
    164       1.26       cgd 
    165      1.174        ad 	if (sleepq_dontsleep(l)) {
    166      1.174        ad 		(void)sleepq_abort(NULL, 0);
    167      1.174        ad 		if ((priority & PNORELOCK) != 0)
    168       1.77   thorpej 			simple_unlock(interlock);
    169      1.174        ad 		return 0;
    170       1.26       cgd 	}
    171       1.78  sommerfe 
    172      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    173      1.174        ad 	sleepq_enter(sq, l);
    174  1.186.2.8        ad 	sleepq_enqueue(sq, sched_kpri(l), ident, wmesg, &sleep_syncobj);
    175  1.186.2.6        ad 
    176  1.186.2.6        ad 	if (interlock != NULL) {
    177  1.186.2.6        ad 		KASSERT(simple_lock_held(interlock));
    178      1.174        ad 		simple_unlock(interlock);
    179  1.186.2.6        ad 	}
    180  1.186.2.6        ad 
    181  1.186.2.5        ad 	error = sleepq_block(timo, priority & PCATCH);
    182      1.126        pk 
    183      1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    184      1.126        pk 		simple_lock(interlock);
    185      1.174        ad 
    186      1.174        ad 	return error;
    187       1.26       cgd }
    188       1.26       cgd 
    189  1.186.2.1        ad int
    190  1.186.2.1        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    191  1.186.2.1        ad 	kmutex_t *mtx)
    192  1.186.2.1        ad {
    193  1.186.2.1        ad 	struct lwp *l = curlwp;
    194  1.186.2.1        ad 	sleepq_t *sq;
    195  1.186.2.5        ad 	int error;
    196  1.186.2.1        ad 
    197  1.186.2.1        ad 	if (sleepq_dontsleep(l)) {
    198  1.186.2.1        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    199  1.186.2.1        ad 		return 0;
    200  1.186.2.1        ad 	}
    201  1.186.2.1        ad 
    202  1.186.2.1        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    203  1.186.2.1        ad 	sleepq_enter(sq, l);
    204  1.186.2.8        ad 	sleepq_enqueue(sq, sched_kpri(l), ident, wmesg, &sleep_syncobj);
    205  1.186.2.1        ad 	mutex_exit(mtx);
    206  1.186.2.5        ad 	error = sleepq_block(timo, priority & PCATCH);
    207  1.186.2.1        ad 
    208  1.186.2.1        ad 	if ((priority & PNORELOCK) == 0)
    209  1.186.2.1        ad 		mutex_enter(mtx);
    210  1.186.2.1        ad 
    211  1.186.2.1        ad 	return error;
    212  1.186.2.1        ad }
    213  1.186.2.1        ad 
    214       1.26       cgd /*
    215      1.174        ad  * General sleep call for situations where a wake-up is not expected.
    216       1.26       cgd  */
    217      1.174        ad int
    218      1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    219       1.26       cgd {
    220      1.174        ad 	struct lwp *l = curlwp;
    221      1.174        ad 	sleepq_t *sq;
    222      1.174        ad 	int error;
    223       1.26       cgd 
    224      1.174        ad 	if (sleepq_dontsleep(l))
    225      1.174        ad 		return sleepq_abort(NULL, 0);
    226       1.26       cgd 
    227      1.174        ad 	if (mtx != NULL)
    228      1.174        ad 		mutex_exit(mtx);
    229      1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    230      1.174        ad 	sleepq_enter(sq, l);
    231  1.186.2.5        ad 	sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
    232  1.186.2.5        ad 	error = sleepq_block(timo, intr);
    233      1.174        ad 	if (mtx != NULL)
    234      1.174        ad 		mutex_enter(mtx);
    235       1.83   thorpej 
    236      1.174        ad 	return error;
    237      1.139        cl }
    238      1.139        cl 
    239       1.26       cgd /*
    240      1.174        ad  * OBSOLETE INTERFACE
    241      1.174        ad  *
    242       1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    243       1.26       cgd  */
    244       1.26       cgd void
    245      1.174        ad wakeup(wchan_t ident)
    246       1.26       cgd {
    247      1.174        ad 	sleepq_t *sq;
    248       1.83   thorpej 
    249      1.174        ad 	if (cold)
    250      1.174        ad 		return;
    251       1.83   thorpej 
    252      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    253      1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    254       1.63   thorpej }
    255       1.63   thorpej 
    256       1.63   thorpej /*
    257      1.174        ad  * OBSOLETE INTERFACE
    258      1.174        ad  *
    259       1.63   thorpej  * Make the highest priority process first in line on the specified
    260       1.63   thorpej  * identifier runnable.
    261       1.63   thorpej  */
    262      1.174        ad void
    263      1.174        ad wakeup_one(wchan_t ident)
    264       1.63   thorpej {
    265      1.174        ad 	sleepq_t *sq;
    266       1.63   thorpej 
    267      1.174        ad 	if (cold)
    268      1.174        ad 		return;
    269  1.186.2.6        ad 
    270      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    271      1.174        ad 	sleepq_wake(sq, ident, 1);
    272      1.174        ad }
    273       1.63   thorpej 
    274      1.117  gmcgarry 
    275      1.117  gmcgarry /*
    276      1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    277      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    278      1.117  gmcgarry  * current process explicitly requests it (eg sched_yield(2) in compat code).
    279      1.117  gmcgarry  */
    280      1.117  gmcgarry void
    281      1.117  gmcgarry yield(void)
    282      1.117  gmcgarry {
    283      1.122   thorpej 	struct lwp *l = curlwp;
    284      1.117  gmcgarry 
    285      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    286      1.174        ad 	lwp_lock(l);
    287  1.186.2.6        ad 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    288  1.186.2.6        ad 	KASSERT(l->l_stat == LSONPROC);
    289  1.186.2.6        ad 	l->l_priority = l->l_usrpri;
    290  1.186.2.6        ad 	(void)mi_switch(l);
    291      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    292       1.69   thorpej }
    293       1.69   thorpej 
    294       1.69   thorpej /*
    295       1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    296      1.156    rpaulo  * and performs an involuntary context switch.
    297       1.69   thorpej  */
    298       1.69   thorpej void
    299      1.174        ad preempt(void)
    300       1.69   thorpej {
    301      1.122   thorpej 	struct lwp *l = curlwp;
    302       1.69   thorpej 
    303      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    304      1.174        ad 	lwp_lock(l);
    305  1.186.2.6        ad 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    306  1.186.2.6        ad 	KASSERT(l->l_stat == LSONPROC);
    307  1.186.2.6        ad 	l->l_priority = l->l_usrpri;
    308      1.174        ad 	l->l_nivcsw++;
    309  1.186.2.6        ad 	(void)mi_switch(l);
    310      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    311       1.69   thorpej }
    312       1.69   thorpej 
    313       1.69   thorpej /*
    314  1.186.2.6        ad  * Compute the amount of time during which the current lwp was running.
    315      1.130   nathanw  *
    316  1.186.2.6        ad  * - update l_rtime unless it's an idle lwp.
    317  1.186.2.6        ad  * - update spc_runtime for the next lwp.
    318  1.186.2.6        ad  */
    319  1.186.2.6        ad 
    320  1.186.2.6        ad static inline void
    321  1.186.2.6        ad updatertime(struct lwp *l, struct schedstate_percpu *spc)
    322  1.186.2.6        ad {
    323  1.186.2.6        ad 	struct timeval tv;
    324  1.186.2.6        ad 	long s, u;
    325  1.186.2.6        ad 
    326  1.186.2.6        ad 	if ((l->l_flag & LW_IDLE) != 0) {
    327  1.186.2.6        ad 		microtime(&spc->spc_runtime);
    328  1.186.2.6        ad 		return;
    329  1.186.2.6        ad 	}
    330  1.186.2.6        ad 
    331  1.186.2.6        ad 	microtime(&tv);
    332  1.186.2.6        ad 	u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    333  1.186.2.6        ad 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    334  1.186.2.6        ad 	if (u < 0) {
    335  1.186.2.6        ad 		u += 1000000;
    336  1.186.2.6        ad 		s--;
    337  1.186.2.6        ad 	} else if (u >= 1000000) {
    338  1.186.2.6        ad 		u -= 1000000;
    339  1.186.2.6        ad 		s++;
    340  1.186.2.6        ad 	}
    341  1.186.2.6        ad 	l->l_rtime.tv_usec = u;
    342  1.186.2.6        ad 	l->l_rtime.tv_sec = s;
    343  1.186.2.6        ad 
    344  1.186.2.6        ad 	spc->spc_runtime = tv;
    345  1.186.2.6        ad }
    346  1.186.2.6        ad 
    347  1.186.2.6        ad /*
    348  1.186.2.6        ad  * The machine independent parts of context switch.
    349  1.186.2.6        ad  *
    350  1.186.2.6        ad  * Returns 1 if another LWP was actually run.
    351       1.26       cgd  */
    352      1.122   thorpej int
    353  1.186.2.6        ad mi_switch(struct lwp *l)
    354       1.26       cgd {
    355       1.76   thorpej 	struct schedstate_percpu *spc;
    356  1.186.2.6        ad 	struct lwp *newl;
    357      1.174        ad 	int retval, oldspl;
    358  1.186.2.8        ad 	bool returning;
    359       1.26       cgd 
    360  1.186.2.3        ad 	KASSERT(lwp_locked(l, NULL));
    361  1.186.2.6        ad 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    362      1.174        ad 
    363      1.174        ad #ifdef KSTACK_CHECK_MAGIC
    364      1.174        ad 	kstack_check_magic(l);
    365      1.174        ad #endif
    366       1.83   thorpej 
    367       1.90  sommerfe 	/*
    368      1.174        ad 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    369      1.174        ad 	 * are after is the run time and that's guarenteed to have been last
    370      1.174        ad 	 * updated by this CPU.
    371       1.90  sommerfe 	 */
    372      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    373       1.26       cgd 
    374      1.113  gmcgarry 	/*
    375  1.186.2.6        ad 	 * Process is about to yield the CPU; clear the appropriate
    376  1.186.2.6        ad 	 * scheduling flags.
    377      1.113  gmcgarry 	 */
    378  1.186.2.6        ad 	spc = &l->l_cpu->ci_schedstate;
    379  1.186.2.8        ad 	if (l->l_pinned != NULL) {
    380  1.186.2.9        ad 		extern struct evcnt softint_block;
    381  1.186.2.9        ad 
    382  1.186.2.8        ad 		returning = true;
    383  1.186.2.8        ad 		newl = l->l_pinned;
    384  1.186.2.8        ad 		l->l_pinned = NULL;
    385  1.186.2.9        ad 		softint_block.ev_count++;
    386  1.186.2.8        ad 	} else {
    387  1.186.2.8        ad 		returning = false;
    388  1.186.2.8        ad 		newl = NULL;
    389  1.186.2.8        ad 
    390  1.186.2.8        ad 		/* Count time spent in current system call */
    391  1.186.2.8        ad 		SYSCALL_TIME_SLEEP(l);
    392  1.186.2.8        ad 
    393  1.186.2.8        ad 		/*
    394  1.186.2.8        ad 		 * XXXSMP If we are using h/w performance counters,
    395  1.186.2.8        ad 		 * save context.
    396  1.186.2.8        ad 		 */
    397  1.186.2.8        ad #if PERFCTRS
    398  1.186.2.8        ad 		if (PMC_ENABLED(l->l_proc)) {
    399  1.186.2.8        ad 			pmc_save_context(l->l_proc);
    400  1.186.2.8        ad 		}
    401  1.186.2.8        ad #endif
    402  1.186.2.8        ad 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    403  1.186.2.8        ad 		updatertime(l, spc);
    404  1.186.2.8        ad 	}
    405      1.113  gmcgarry 
    406      1.113  gmcgarry 	/*
    407      1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    408      1.113  gmcgarry 	 */
    409  1.186.2.6        ad 	mutex_spin_enter(spc->spc_mutex);
    410      1.174        ad 	KASSERT(l->l_stat != LSRUN);
    411      1.174        ad 	if (l->l_stat == LSONPROC) {
    412  1.186.2.6        ad 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    413  1.186.2.6        ad 		if ((l->l_flag & LW_IDLE) == 0) {
    414  1.186.2.6        ad 			l->l_stat = LSRUN;
    415  1.186.2.6        ad 			lwp_setlock(l, spc->spc_mutex);
    416  1.186.2.6        ad 			sched_enqueue(l, true);
    417  1.186.2.6        ad 		} else
    418  1.186.2.6        ad 			l->l_stat = LSIDL;
    419      1.174        ad 	}
    420      1.174        ad 
    421      1.174        ad 	/*
    422  1.186.2.6        ad 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    423  1.186.2.6        ad 	 * If no LWP is runnable, switch to the idle LWP.
    424      1.174        ad 	 */
    425  1.186.2.8        ad 	if (!returning) {
    426  1.186.2.8        ad 		newl = sched_nextlwp();
    427  1.186.2.8        ad 		if (newl) {
    428  1.186.2.8        ad 			sched_dequeue(newl);
    429  1.186.2.8        ad 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    430  1.186.2.8        ad 			newl->l_stat = LSONPROC;
    431  1.186.2.8        ad 			newl->l_cpu = l->l_cpu;
    432  1.186.2.8        ad 			newl->l_flag |= LW_RUNNING;
    433  1.186.2.8        ad 			lwp_setlock(newl, &spc->spc_lwplock);
    434  1.186.2.8        ad 		} else {
    435  1.186.2.8        ad 			newl = l->l_cpu->ci_data.cpu_idlelwp;
    436  1.186.2.8        ad 			newl->l_stat = LSONPROC;
    437  1.186.2.8        ad 			newl->l_flag |= LW_RUNNING;
    438  1.186.2.8        ad 		}
    439  1.186.2.8        ad 		spc->spc_curpriority = newl->l_usrpri;
    440  1.186.2.8        ad 		newl->l_priority = newl->l_usrpri;
    441  1.186.2.8        ad 		cpu_did_resched();
    442  1.186.2.6        ad 	}
    443      1.174        ad 
    444  1.186.2.6        ad 	if (l != newl) {
    445  1.186.2.6        ad 		struct lwp *prevlwp;
    446      1.174        ad 
    447  1.186.2.6        ad 		/*
    448  1.186.2.6        ad 		 * If the old LWP has been moved to a run queue above,
    449  1.186.2.6        ad 		 * drop the general purpose LWP lock: it's now locked
    450  1.186.2.6        ad 		 * by the scheduler lock.
    451  1.186.2.6        ad 		 *
    452  1.186.2.6        ad 		 * Otherwise, drop the scheduler lock.  We're done with
    453  1.186.2.6        ad 		 * the run queues for now.
    454  1.186.2.6        ad 		 */
    455  1.186.2.6        ad 		if (l->l_mutex == spc->spc_mutex) {
    456  1.186.2.6        ad 			mutex_spin_exit(&spc->spc_lwplock);
    457  1.186.2.6        ad 		} else {
    458  1.186.2.6        ad 			mutex_spin_exit(spc->spc_mutex);
    459  1.186.2.6        ad 		}
    460  1.186.2.6        ad 
    461  1.186.2.6        ad 		/* Unlocked, but for statistics only. */
    462  1.186.2.6        ad 		uvmexp.swtch++;
    463  1.186.2.6        ad 
    464  1.186.2.8        ad 		/*
    465  1.186.2.8        ad 		 * Save old VM context, unless a soft interrupt
    466  1.186.2.8        ad 		 * handler is blocking.
    467  1.186.2.8        ad 		 */
    468  1.186.2.8        ad 		if (!returning)
    469  1.186.2.8        ad 			pmap_deactivate(l);
    470  1.186.2.6        ad 
    471  1.186.2.6        ad 		/* Switch to the new LWP.. */
    472  1.186.2.6        ad 		l->l_ncsw++;
    473  1.186.2.6        ad 		l->l_flag &= ~LW_RUNNING;
    474  1.186.2.6        ad 		oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    475  1.186.2.8        ad 		prevlwp = cpu_switchto(l, newl, returning);
    476      1.174        ad 
    477  1.186.2.6        ad 		/*
    478  1.186.2.6        ad 		 * .. we have switched away and are now back so we must
    479  1.186.2.6        ad 		 * be the new curlwp.  prevlwp is who we replaced.
    480  1.186.2.6        ad 		 */
    481  1.186.2.6        ad 		curlwp = l;
    482  1.186.2.6        ad 		if (prevlwp != NULL) {
    483  1.186.2.6        ad 			curcpu()->ci_mtx_oldspl = oldspl;
    484  1.186.2.6        ad 			lwp_unlock(prevlwp);
    485  1.186.2.6        ad 		} else {
    486  1.186.2.6        ad 			splx(oldspl);
    487  1.186.2.6        ad 		}
    488  1.186.2.6        ad 
    489  1.186.2.6        ad 		/* Restore VM context. */
    490  1.186.2.6        ad 		pmap_activate(l);
    491  1.186.2.6        ad 		retval = 1;
    492  1.186.2.6        ad 	} else {
    493  1.186.2.6        ad 		/* Nothing to do - just unlock and return. */
    494  1.186.2.6        ad 		mutex_spin_exit(spc->spc_mutex);
    495  1.186.2.6        ad 		lwp_unlock(l);
    496      1.122   thorpej 		retval = 0;
    497      1.122   thorpej 	}
    498      1.110    briggs 
    499  1.186.2.6        ad 	KASSERT(l == curlwp);
    500  1.186.2.6        ad 	KASSERT(l->l_stat == LSONPROC);
    501  1.186.2.6        ad 
    502      1.110    briggs 	/*
    503      1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    504       1.26       cgd 	 */
    505      1.114  gmcgarry #if PERFCTRS
    506      1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    507      1.175  christos 		pmc_restore_context(l->l_proc);
    508      1.166  christos 	}
    509      1.114  gmcgarry #endif
    510      1.110    briggs 
    511      1.110    briggs 	/*
    512       1.76   thorpej 	 * We're running again; record our new start time.  We might
    513      1.174        ad 	 * be running on a new CPU now, so don't use the cached
    514       1.76   thorpej 	 * schedstate_percpu pointer.
    515       1.76   thorpej 	 */
    516      1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    517      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    518  1.186.2.6        ad 	LOCKDEBUG_BARRIER(NULL, 1);
    519      1.169      yamt 
    520      1.122   thorpej 	return retval;
    521       1.26       cgd }
    522       1.26       cgd 
    523       1.26       cgd /*
    524      1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    525      1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    526      1.174        ad  *
    527      1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    528       1.26       cgd  */
    529       1.26       cgd void
    530      1.122   thorpej setrunnable(struct lwp *l)
    531       1.26       cgd {
    532      1.122   thorpej 	struct proc *p = l->l_proc;
    533      1.174        ad 	sigset_t *ss;
    534       1.26       cgd 
    535  1.186.2.6        ad 	KASSERT((l->l_flag & LW_IDLE) == 0);
    536      1.183        ad 	KASSERT(mutex_owned(&p->p_smutex));
    537      1.183        ad 	KASSERT(lwp_locked(l, NULL));
    538       1.83   thorpej 
    539      1.122   thorpej 	switch (l->l_stat) {
    540      1.122   thorpej 	case LSSTOP:
    541       1.33   mycroft 		/*
    542       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    543       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    544       1.33   mycroft 		 */
    545      1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    546      1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    547      1.174        ad 				ss = &l->l_sigpend.sp_set;
    548      1.174        ad 			else
    549      1.174        ad 				ss = &p->p_sigpend.sp_set;
    550      1.174        ad 			sigaddset(ss, p->p_xstat);
    551      1.174        ad 			signotify(l);
    552       1.53   mycroft 		}
    553      1.174        ad 		p->p_nrlwps++;
    554       1.26       cgd 		break;
    555      1.174        ad 	case LSSUSPENDED:
    556      1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    557      1.174        ad 		p->p_nrlwps++;
    558      1.122   thorpej 		break;
    559      1.174        ad 	case LSSLEEP:
    560      1.174        ad 		KASSERT(l->l_wchan != NULL);
    561       1.26       cgd 		break;
    562      1.174        ad 	default:
    563      1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    564       1.26       cgd 	}
    565      1.139        cl 
    566      1.174        ad 	/*
    567      1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    568      1.174        ad 	 * again.  If not, mark it as still sleeping.
    569      1.174        ad 	 */
    570      1.174        ad 	if (l->l_wchan != NULL) {
    571      1.174        ad 		l->l_stat = LSSLEEP;
    572      1.183        ad 		/* lwp_unsleep() will release the lock. */
    573      1.183        ad 		lwp_unsleep(l);
    574      1.174        ad 		return;
    575      1.174        ad 	}
    576      1.139        cl 
    577      1.174        ad 	/*
    578      1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    579      1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    580      1.174        ad 	 */
    581  1.186.2.6        ad 	if ((l->l_flag & LW_RUNNING) != 0) {
    582      1.174        ad 		l->l_stat = LSONPROC;
    583      1.174        ad 		l->l_slptime = 0;
    584      1.174        ad 		lwp_unlock(l);
    585      1.174        ad 		return;
    586      1.174        ad 	}
    587      1.122   thorpej 
    588      1.174        ad 	/*
    589      1.174        ad 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    590      1.174        ad 	 * to bring it back in.  Otherwise, enter it into a run queue.
    591      1.174        ad 	 */
    592  1.186.2.7        ad 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    593  1.186.2.7        ad 		spc_lock(l->l_cpu);
    594  1.186.2.7        ad 		lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
    595  1.186.2.7        ad 	}
    596  1.186.2.7        ad 
    597  1.186.2.6        ad 	sched_setrunnable(l);
    598      1.174        ad 	l->l_stat = LSRUN;
    599      1.122   thorpej 	l->l_slptime = 0;
    600      1.174        ad 
    601      1.178     pavel 	if (l->l_flag & LW_INMEM) {
    602  1.186.2.6        ad 		sched_enqueue(l, false);
    603  1.186.2.6        ad 		resched_cpu(l);
    604      1.174        ad 		lwp_unlock(l);
    605      1.174        ad 	} else {
    606      1.174        ad 		lwp_unlock(l);
    607      1.177        ad 		uvm_kick_scheduler();
    608      1.174        ad 	}
    609       1.26       cgd }
    610       1.26       cgd 
    611       1.26       cgd /*
    612      1.174        ad  * suspendsched:
    613      1.174        ad  *
    614      1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    615      1.174        ad  */
    616       1.94    bouyer void
    617      1.174        ad suspendsched(void)
    618       1.94    bouyer {
    619      1.174        ad #ifdef MULTIPROCESSOR
    620      1.174        ad 	CPU_INFO_ITERATOR cii;
    621      1.174        ad 	struct cpu_info *ci;
    622      1.174        ad #endif
    623      1.122   thorpej 	struct lwp *l;
    624      1.174        ad 	struct proc *p;
    625       1.94    bouyer 
    626       1.94    bouyer 	/*
    627      1.174        ad 	 * We do this by process in order not to violate the locking rules.
    628       1.94    bouyer 	 */
    629  1.186.2.8        ad 	mutex_enter(&proclist_lock);
    630      1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    631      1.174        ad 		mutex_enter(&p->p_smutex);
    632      1.174        ad 
    633      1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    634      1.174        ad 			mutex_exit(&p->p_smutex);
    635       1.94    bouyer 			continue;
    636      1.174        ad 		}
    637      1.174        ad 
    638      1.174        ad 		p->p_stat = SSTOP;
    639      1.174        ad 
    640      1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    641      1.174        ad 			if (l == curlwp)
    642      1.174        ad 				continue;
    643      1.174        ad 
    644      1.174        ad 			lwp_lock(l);
    645      1.122   thorpej 
    646       1.97     enami 			/*
    647      1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    648      1.174        ad 			 * when it tries to return to user mode.  We want to
    649      1.174        ad 			 * try and get to get as many LWPs as possible to
    650      1.174        ad 			 * the user / kernel boundary, so that they will
    651      1.174        ad 			 * release any locks that they hold.
    652       1.97     enami 			 */
    653      1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    654      1.174        ad 
    655      1.174        ad 			if (l->l_stat == LSSLEEP &&
    656      1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    657      1.174        ad 				/* setrunnable() will release the lock. */
    658      1.174        ad 				setrunnable(l);
    659      1.174        ad 				continue;
    660      1.174        ad 			}
    661      1.174        ad 
    662      1.174        ad 			lwp_unlock(l);
    663       1.94    bouyer 		}
    664      1.174        ad 
    665      1.174        ad 		mutex_exit(&p->p_smutex);
    666       1.94    bouyer 	}
    667  1.186.2.8        ad 	mutex_exit(&proclist_lock);
    668      1.174        ad 
    669      1.174        ad 	/*
    670      1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    671      1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    672      1.174        ad 	 */
    673      1.174        ad #ifdef MULTIPROCESSOR
    674      1.174        ad 	for (CPU_INFO_FOREACH(cii, ci))
    675  1.186.2.6        ad 		cpu_need_resched(ci, 0);
    676      1.174        ad #else
    677  1.186.2.6        ad 	cpu_need_resched(curcpu(), 0);
    678      1.174        ad #endif
    679      1.174        ad }
    680      1.174        ad 
    681      1.174        ad /*
    682      1.174        ad  * sched_kpri:
    683      1.174        ad  *
    684      1.174        ad  *	Scale a priority level to a kernel priority level, usually
    685      1.174        ad  *	for an LWP that is about to sleep.
    686      1.174        ad  */
    687      1.185      yamt pri_t
    688      1.174        ad sched_kpri(struct lwp *l)
    689      1.174        ad {
    690  1.186.2.8        ad 	pri_t pri;
    691  1.186.2.8        ad 
    692      1.174        ad 	/*
    693  1.186.2.8        ad 	 * Scale user priorities (0 -> 63) up to kernel priorities
    694  1.186.2.8        ad 	 * in the range (64 -> 95).  This makes assumptions about
    695  1.186.2.8        ad 	 * the priority space and so should be kept in sync with
    696  1.186.2.8        ad 	 * param.h.
    697  1.186.2.8        ad 	 */
    698  1.186.2.8        ad 	if ((pri = l->l_usrpri) >= PRI_KERNEL)
    699  1.186.2.8        ad 		return pri;
    700      1.174        ad 
    701  1.186.2.8        ad 	return (pri >> 1) + PRI_KERNEL;
    702      1.174        ad }
    703      1.174        ad 
    704      1.174        ad /*
    705      1.174        ad  * sched_unsleep:
    706      1.174        ad  *
    707      1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    708      1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    709      1.174        ad  *	it's not a valid action for running or idle LWPs.
    710      1.174        ad  */
    711  1.186.2.6        ad static void
    712      1.174        ad sched_unsleep(struct lwp *l)
    713      1.174        ad {
    714      1.174        ad 
    715      1.174        ad 	lwp_unlock(l);
    716      1.174        ad 	panic("sched_unsleep");
    717      1.174        ad }
    718      1.174        ad 
    719  1.186.2.6        ad inline void
    720  1.186.2.6        ad resched_cpu(struct lwp *l)
    721  1.186.2.6        ad {
    722  1.186.2.6        ad 	struct cpu_info *ci;
    723  1.186.2.6        ad 	const pri_t pri = lwp_eprio(l);
    724  1.186.2.6        ad 
    725  1.186.2.6        ad 	/*
    726  1.186.2.6        ad 	 * XXXSMP
    727  1.186.2.6        ad 	 * Since l->l_cpu persists across a context switch,
    728  1.186.2.6        ad 	 * this gives us *very weak* processor affinity, in
    729  1.186.2.6        ad 	 * that we notify the CPU on which the process last
    730  1.186.2.6        ad 	 * ran that it should try to switch.
    731  1.186.2.6        ad 	 *
    732  1.186.2.6        ad 	 * This does not guarantee that the process will run on
    733  1.186.2.6        ad 	 * that processor next, because another processor might
    734  1.186.2.6        ad 	 * grab it the next time it performs a context switch.
    735  1.186.2.6        ad 	 *
    736  1.186.2.6        ad 	 * This also does not handle the case where its last
    737  1.186.2.6        ad 	 * CPU is running a higher-priority process, but every
    738  1.186.2.6        ad 	 * other CPU is running a lower-priority process.  There
    739  1.186.2.6        ad 	 * are ways to handle this situation, but they're not
    740  1.186.2.6        ad 	 * currently very pretty, and we also need to weigh the
    741  1.186.2.6        ad 	 * cost of moving a process from one CPU to another.
    742  1.186.2.6        ad 	 */
    743  1.186.2.6        ad 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    744  1.186.2.6        ad 	if (pri < ci->ci_schedstate.spc_curpriority)
    745  1.186.2.6        ad 		cpu_need_resched(ci, 0);
    746  1.186.2.6        ad }
    747  1.186.2.6        ad 
    748  1.186.2.6        ad static void
    749      1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
    750      1.174        ad {
    751      1.174        ad 
    752  1.186.2.6        ad 	KASSERT(lwp_locked(l, NULL));
    753      1.174        ad 
    754      1.174        ad 	l->l_usrpri = pri;
    755  1.186.2.8        ad 	if (l->l_priority >= PRI_KERNEL)
    756      1.174        ad 		return;
    757      1.184      yamt 
    758      1.184      yamt 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    759      1.174        ad 		l->l_priority = pri;
    760      1.174        ad 		return;
    761      1.157      yamt 	}
    762      1.174        ad 
    763  1.186.2.6        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    764  1.186.2.6        ad 
    765  1.186.2.6        ad 	sched_dequeue(l);
    766      1.174        ad 	l->l_priority = pri;
    767  1.186.2.6        ad 	sched_enqueue(l, false);
    768  1.186.2.6        ad 	resched_cpu(l);
    769      1.184      yamt }
    770      1.184      yamt 
    771  1.186.2.6        ad static void
    772      1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
    773      1.184      yamt {
    774      1.184      yamt 
    775  1.186.2.6        ad 	KASSERT(lwp_locked(l, NULL));
    776      1.184      yamt 
    777      1.184      yamt 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    778      1.184      yamt 		l->l_inheritedprio = pri;
    779      1.184      yamt 		return;
    780      1.184      yamt 	}
    781      1.184      yamt 
    782  1.186.2.6        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    783  1.186.2.6        ad 
    784  1.186.2.6        ad 	sched_dequeue(l);
    785      1.184      yamt 	l->l_inheritedprio = pri;
    786  1.186.2.6        ad 	sched_enqueue(l, false);
    787  1.186.2.6        ad 	resched_cpu(l);
    788      1.184      yamt }
    789      1.184      yamt 
    790      1.184      yamt struct lwp *
    791      1.184      yamt syncobj_noowner(wchan_t wchan)
    792      1.184      yamt {
    793      1.184      yamt 
    794      1.184      yamt 	return NULL;
    795      1.151      yamt }
    796      1.151      yamt 
    797      1.113  gmcgarry 
    798  1.186.2.6        ad /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    799  1.186.2.6        ad fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    800      1.115  nisimura 
    801      1.130   nathanw /*
    802  1.186.2.6        ad  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    803  1.186.2.6        ad  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    804  1.186.2.6        ad  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    805  1.186.2.6        ad  *
    806  1.186.2.6        ad  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    807  1.186.2.6        ad  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    808  1.186.2.6        ad  *
    809  1.186.2.6        ad  * If you dont want to bother with the faster/more-accurate formula, you
    810  1.186.2.6        ad  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    811  1.186.2.6        ad  * (more general) method of calculating the %age of CPU used by a process.
    812      1.134      matt  */
    813  1.186.2.6        ad #define	CCPU_SHIFT	(FSHIFT + 1)
    814      1.134      matt 
    815      1.134      matt /*
    816  1.186.2.6        ad  * sched_pstats:
    817  1.186.2.6        ad  *
    818  1.186.2.6        ad  * Update process statistics and check CPU resource allocation.
    819  1.186.2.6        ad  * Call scheduler-specific hook to eventually adjust process/LWP
    820  1.186.2.6        ad  * priorities.
    821      1.130   nathanw  */
    822  1.186.2.6        ad /* ARGSUSED */
    823      1.113  gmcgarry void
    824  1.186.2.6        ad sched_pstats(void *arg)
    825      1.113  gmcgarry {
    826  1.186.2.6        ad 	struct rlimit *rlim;
    827  1.186.2.6        ad 	struct lwp *l;
    828  1.186.2.6        ad 	struct proc *p;
    829  1.186.2.6        ad 	int minslp, sig, clkhz;
    830  1.186.2.6        ad 	long runtm;
    831      1.174        ad 
    832  1.186.2.6        ad 	sched_pstats_ticks++;
    833      1.113  gmcgarry 
    834  1.186.2.8        ad 	mutex_enter(&proclist_lock);
    835  1.186.2.6        ad 	PROCLIST_FOREACH(p, &allproc) {
    836  1.186.2.6        ad 		/*
    837  1.186.2.6        ad 		 * Increment time in/out of memory and sleep time (if
    838  1.186.2.6        ad 		 * sleeping).  We ignore overflow; with 16-bit int's
    839  1.186.2.6        ad 		 * (remember them?) overflow takes 45 days.
    840  1.186.2.6        ad 		 */
    841  1.186.2.6        ad 		minslp = 2;
    842  1.186.2.6        ad 		mutex_enter(&p->p_smutex);
    843  1.186.2.6        ad 		mutex_spin_enter(&p->p_stmutex);
    844  1.186.2.6        ad 		runtm = p->p_rtime.tv_sec;
    845  1.186.2.6        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    846  1.186.2.6        ad 			if ((l->l_flag & LW_IDLE) != 0)
    847  1.186.2.6        ad 				continue;
    848  1.186.2.6        ad 			lwp_lock(l);
    849  1.186.2.6        ad 			runtm += l->l_rtime.tv_sec;
    850  1.186.2.6        ad 			l->l_swtime++;
    851  1.186.2.6        ad 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    852  1.186.2.6        ad 			    l->l_stat == LSSUSPENDED) {
    853  1.186.2.6        ad 				l->l_slptime++;
    854  1.186.2.6        ad 				minslp = min(minslp, l->l_slptime);
    855  1.186.2.6        ad 			} else
    856  1.186.2.6        ad 				minslp = 0;
    857  1.186.2.6        ad 			lwp_unlock(l);
    858      1.174        ad 
    859  1.186.2.6        ad 			/*
    860  1.186.2.6        ad 			 * p_pctcpu is only for ps.
    861  1.186.2.6        ad 			 */
    862  1.186.2.6        ad 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    863  1.186.2.6        ad 			if (l->l_slptime < 1) {
    864  1.186.2.6        ad 				clkhz = stathz != 0 ? stathz : hz;
    865  1.186.2.6        ad #if	(FSHIFT >= CCPU_SHIFT)
    866  1.186.2.6        ad 				l->l_pctcpu += (clkhz == 100) ?
    867  1.186.2.6        ad 				    ((fixpt_t)l->l_cpticks) <<
    868  1.186.2.6        ad 				        (FSHIFT - CCPU_SHIFT) :
    869  1.186.2.6        ad 				    100 * (((fixpt_t) p->p_cpticks)
    870  1.186.2.6        ad 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    871  1.186.2.6        ad #else
    872  1.186.2.6        ad 				l->l_pctcpu += ((FSCALE - ccpu) *
    873  1.186.2.6        ad 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    874      1.146      matt #endif
    875  1.186.2.6        ad 				l->l_cpticks = 0;
    876  1.186.2.6        ad 			}
    877  1.186.2.6        ad 		}
    878  1.186.2.6        ad 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    879  1.186.2.6        ad 		sched_pstats_hook(p, minslp);
    880  1.186.2.6        ad 		mutex_spin_exit(&p->p_stmutex);
    881      1.174        ad 
    882  1.186.2.6        ad 		/*
    883  1.186.2.6        ad 		 * Check if the process exceeds its CPU resource allocation.
    884  1.186.2.6        ad 		 * If over max, kill it.
    885  1.186.2.6        ad 		 */
    886  1.186.2.6        ad 		rlim = &p->p_rlimit[RLIMIT_CPU];
    887  1.186.2.6        ad 		sig = 0;
    888  1.186.2.6        ad 		if (runtm >= rlim->rlim_cur) {
    889  1.186.2.6        ad 			if (runtm >= rlim->rlim_max)
    890  1.186.2.6        ad 				sig = SIGKILL;
    891  1.186.2.6        ad 			else {
    892  1.186.2.6        ad 				sig = SIGXCPU;
    893  1.186.2.6        ad 				if (rlim->rlim_cur < rlim->rlim_max)
    894  1.186.2.6        ad 					rlim->rlim_cur += 5;
    895  1.186.2.6        ad 			}
    896  1.186.2.6        ad 		}
    897  1.186.2.6        ad 		mutex_exit(&p->p_smutex);
    898  1.186.2.6        ad 		if (sig) {
    899  1.186.2.8        ad 			/* XXXAD */
    900  1.186.2.8        ad 			mutex_enter(&proclist_mutex);
    901  1.186.2.6        ad 			psignal(p, sig);
    902  1.186.2.8        ad 			mutex_enter(&proclist_mutex);
    903  1.186.2.6        ad 		}
    904      1.174        ad 	}
    905  1.186.2.8        ad 	mutex_exit(&proclist_lock);
    906  1.186.2.6        ad 	uvm_meter();
    907  1.186.2.8        ad 	cv_broadcast(&lbolt);
    908  1.186.2.6        ad 	callout_schedule(&sched_pstats_ch, hz);
    909      1.113  gmcgarry }
    910  1.186.2.9        ad 
    911  1.186.2.9        ad void
    912  1.186.2.9        ad sched_init(void)
    913  1.186.2.9        ad {
    914  1.186.2.9        ad 
    915  1.186.2.9        ad 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    916  1.186.2.9        ad 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    917  1.186.2.9        ad 	sched_setup();
    918  1.186.2.9        ad 	sched_pstats(NULL);
    919  1.186.2.9        ad }
    920