Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.187.2.1
      1  1.187.2.1       mjf /*	$NetBSD: kern_synch.c,v 1.187.2.1 2007/07/11 20:09:56 mjf Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4      1.174        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5       1.63   thorpej  * All rights reserved.
      6       1.63   thorpej  *
      7       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.187.2.1       mjf  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  1.187.2.1       mjf  * Daniel Sieger.
     11       1.63   thorpej  *
     12       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13       1.63   thorpej  * modification, are permitted provided that the following conditions
     14       1.63   thorpej  * are met:
     15       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20       1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     21       1.63   thorpej  *    must display the following acknowledgement:
     22       1.63   thorpej  *	This product includes software developed by the NetBSD
     23       1.63   thorpej  *	Foundation, Inc. and its contributors.
     24       1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25       1.63   thorpej  *    contributors may be used to endorse or promote products derived
     26       1.63   thorpej  *    from this software without specific prior written permission.
     27       1.63   thorpej  *
     28       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     39       1.63   thorpej  */
     40       1.26       cgd 
     41       1.26       cgd /*-
     42       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     44       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     45       1.26       cgd  * All or some portions of this file are derived from material licensed
     46       1.26       cgd  * to the University of California by American Telephone and Telegraph
     47       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     49       1.26       cgd  *
     50       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     51       1.26       cgd  * modification, are permitted provided that the following conditions
     52       1.26       cgd  * are met:
     53       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     54       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     55       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     56       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     57       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     58      1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     59       1.26       cgd  *    may be used to endorse or promote products derived from this software
     60       1.26       cgd  *    without specific prior written permission.
     61       1.26       cgd  *
     62       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72       1.26       cgd  * SUCH DAMAGE.
     73       1.26       cgd  *
     74       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75       1.26       cgd  */
     76      1.106     lukem 
     77      1.106     lukem #include <sys/cdefs.h>
     78  1.187.2.1       mjf __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.187.2.1 2007/07/11 20:09:56 mjf Exp $");
     79       1.48       mrg 
     80      1.109      yamt #include "opt_kstack.h"
     81       1.82   thorpej #include "opt_lockdebug.h"
     82       1.83   thorpej #include "opt_multiprocessor.h"
     83      1.110    briggs #include "opt_perfctrs.h"
     84       1.26       cgd 
     85      1.174        ad #define	__MUTEX_PRIVATE
     86      1.174        ad 
     87       1.26       cgd #include <sys/param.h>
     88       1.26       cgd #include <sys/systm.h>
     89       1.26       cgd #include <sys/proc.h>
     90       1.26       cgd #include <sys/kernel.h>
     91      1.111    briggs #if defined(PERFCTRS)
     92      1.110    briggs #include <sys/pmc.h>
     93      1.111    briggs #endif
     94  1.187.2.1       mjf #include <sys/cpu.h>
     95       1.26       cgd #include <sys/resourcevar.h>
     96       1.55      ross #include <sys/sched.h>
     97      1.179       dsl #include <sys/syscall_stats.h>
     98      1.174        ad #include <sys/sleepq.h>
     99      1.174        ad #include <sys/lockdebug.h>
    100  1.187.2.1       mjf #include <sys/evcnt.h>
    101       1.47       mrg 
    102       1.47       mrg #include <uvm/uvm_extern.h>
    103       1.47       mrg 
    104  1.187.2.1       mjf callout_t sched_pstats_ch;
    105  1.187.2.1       mjf unsigned int sched_pstats_ticks;
    106       1.34  christos 
    107  1.187.2.1       mjf kcondvar_t	lbolt;			/* once a second sleep address */
    108       1.26       cgd 
    109  1.187.2.1       mjf static void	sched_unsleep(struct lwp *);
    110  1.187.2.1       mjf static void	sched_changepri(struct lwp *, pri_t);
    111  1.187.2.1       mjf static void	sched_lendpri(struct lwp *, pri_t);
    112      1.122   thorpej 
    113      1.174        ad syncobj_t sleep_syncobj = {
    114      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    115      1.174        ad 	sleepq_unsleep,
    116      1.184      yamt 	sleepq_changepri,
    117      1.184      yamt 	sleepq_lendpri,
    118      1.184      yamt 	syncobj_noowner,
    119      1.174        ad };
    120      1.174        ad 
    121      1.174        ad syncobj_t sched_syncobj = {
    122      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    123      1.174        ad 	sched_unsleep,
    124      1.184      yamt 	sched_changepri,
    125      1.184      yamt 	sched_lendpri,
    126      1.184      yamt 	syncobj_noowner,
    127      1.174        ad };
    128      1.122   thorpej 
    129       1.26       cgd /*
    130      1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    131      1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    132      1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    133      1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    134      1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    135      1.174        ad  * it can be made higher to block network software interrupts after panics.
    136       1.26       cgd  */
    137      1.174        ad int	safepri;
    138       1.26       cgd 
    139       1.26       cgd /*
    140      1.174        ad  * OBSOLETE INTERFACE
    141      1.174        ad  *
    142       1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    143       1.26       cgd  * performed on the specified identifier.  The process will then be made
    144      1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    145      1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    146       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    147       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    148       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    149       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    150       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    151       1.77   thorpej  *
    152      1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    153      1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    154      1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    155      1.174        ad  * return.
    156       1.26       cgd  */
    157       1.26       cgd int
    158      1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    159      1.174        ad 	volatile struct simplelock *interlock)
    160       1.26       cgd {
    161      1.122   thorpej 	struct lwp *l = curlwp;
    162      1.174        ad 	sleepq_t *sq;
    163  1.187.2.1       mjf 	int error;
    164       1.26       cgd 
    165      1.174        ad 	if (sleepq_dontsleep(l)) {
    166      1.174        ad 		(void)sleepq_abort(NULL, 0);
    167      1.174        ad 		if ((priority & PNORELOCK) != 0)
    168       1.77   thorpej 			simple_unlock(interlock);
    169      1.174        ad 		return 0;
    170       1.26       cgd 	}
    171       1.78  sommerfe 
    172      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    173      1.174        ad 	sleepq_enter(sq, l);
    174  1.187.2.1       mjf 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    175       1.42       cgd 
    176      1.174        ad 	if (interlock != NULL) {
    177      1.174        ad 		LOCK_ASSERT(simple_lock_held(interlock));
    178      1.174        ad 		simple_unlock(interlock);
    179      1.150       chs 	}
    180      1.150       chs 
    181  1.187.2.1       mjf 	error = sleepq_block(timo, priority & PCATCH);
    182      1.126        pk 
    183      1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    184      1.126        pk 		simple_lock(interlock);
    185      1.174        ad 
    186      1.174        ad 	return error;
    187       1.26       cgd }
    188       1.26       cgd 
    189      1.187        ad int
    190      1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    191      1.187        ad 	kmutex_t *mtx)
    192      1.187        ad {
    193      1.187        ad 	struct lwp *l = curlwp;
    194      1.187        ad 	sleepq_t *sq;
    195  1.187.2.1       mjf 	int error;
    196      1.187        ad 
    197      1.187        ad 	if (sleepq_dontsleep(l)) {
    198      1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    199      1.187        ad 		return 0;
    200      1.187        ad 	}
    201      1.187        ad 
    202      1.187        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    203      1.187        ad 	sleepq_enter(sq, l);
    204  1.187.2.1       mjf 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    205      1.187        ad 	mutex_exit(mtx);
    206  1.187.2.1       mjf 	error = sleepq_block(timo, priority & PCATCH);
    207      1.187        ad 
    208      1.187        ad 	if ((priority & PNORELOCK) == 0)
    209      1.187        ad 		mutex_enter(mtx);
    210      1.187        ad 
    211      1.187        ad 	return error;
    212      1.187        ad }
    213      1.187        ad 
    214       1.26       cgd /*
    215      1.174        ad  * General sleep call for situations where a wake-up is not expected.
    216       1.26       cgd  */
    217      1.174        ad int
    218      1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    219       1.26       cgd {
    220      1.174        ad 	struct lwp *l = curlwp;
    221      1.174        ad 	sleepq_t *sq;
    222      1.174        ad 	int error;
    223       1.26       cgd 
    224      1.174        ad 	if (sleepq_dontsleep(l))
    225      1.174        ad 		return sleepq_abort(NULL, 0);
    226       1.26       cgd 
    227      1.174        ad 	if (mtx != NULL)
    228      1.174        ad 		mutex_exit(mtx);
    229      1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    230      1.174        ad 	sleepq_enter(sq, l);
    231  1.187.2.1       mjf 	sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
    232  1.187.2.1       mjf 	error = sleepq_block(timo, intr);
    233      1.174        ad 	if (mtx != NULL)
    234      1.174        ad 		mutex_enter(mtx);
    235       1.83   thorpej 
    236      1.174        ad 	return error;
    237      1.139        cl }
    238      1.139        cl 
    239       1.26       cgd /*
    240      1.174        ad  * OBSOLETE INTERFACE
    241      1.174        ad  *
    242       1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    243       1.26       cgd  */
    244       1.26       cgd void
    245      1.174        ad wakeup(wchan_t ident)
    246       1.26       cgd {
    247      1.174        ad 	sleepq_t *sq;
    248       1.83   thorpej 
    249      1.174        ad 	if (cold)
    250      1.174        ad 		return;
    251       1.83   thorpej 
    252      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    253      1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    254       1.63   thorpej }
    255       1.63   thorpej 
    256       1.63   thorpej /*
    257      1.174        ad  * OBSOLETE INTERFACE
    258      1.174        ad  *
    259       1.63   thorpej  * Make the highest priority process first in line on the specified
    260       1.63   thorpej  * identifier runnable.
    261       1.63   thorpej  */
    262      1.174        ad void
    263      1.174        ad wakeup_one(wchan_t ident)
    264       1.63   thorpej {
    265      1.174        ad 	sleepq_t *sq;
    266       1.63   thorpej 
    267      1.174        ad 	if (cold)
    268      1.174        ad 		return;
    269  1.187.2.1       mjf 
    270      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    271      1.174        ad 	sleepq_wake(sq, ident, 1);
    272      1.174        ad }
    273       1.63   thorpej 
    274      1.117  gmcgarry 
    275      1.117  gmcgarry /*
    276      1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    277      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    278      1.117  gmcgarry  * current process explicitly requests it (eg sched_yield(2) in compat code).
    279      1.117  gmcgarry  */
    280      1.117  gmcgarry void
    281      1.117  gmcgarry yield(void)
    282      1.117  gmcgarry {
    283      1.122   thorpej 	struct lwp *l = curlwp;
    284      1.117  gmcgarry 
    285      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    286      1.174        ad 	lwp_lock(l);
    287  1.187.2.1       mjf 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    288  1.187.2.1       mjf 	KASSERT(l->l_stat == LSONPROC);
    289  1.187.2.1       mjf 	l->l_priority = l->l_usrpri;
    290  1.187.2.1       mjf 	(void)mi_switch(l);
    291      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    292       1.69   thorpej }
    293       1.69   thorpej 
    294       1.69   thorpej /*
    295       1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    296      1.156    rpaulo  * and performs an involuntary context switch.
    297       1.69   thorpej  */
    298       1.69   thorpej void
    299      1.174        ad preempt(void)
    300       1.69   thorpej {
    301      1.122   thorpej 	struct lwp *l = curlwp;
    302       1.69   thorpej 
    303      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    304      1.174        ad 	lwp_lock(l);
    305  1.187.2.1       mjf 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    306  1.187.2.1       mjf 	KASSERT(l->l_stat == LSONPROC);
    307  1.187.2.1       mjf 	l->l_priority = l->l_usrpri;
    308      1.174        ad 	l->l_nivcsw++;
    309  1.187.2.1       mjf 	(void)mi_switch(l);
    310      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    311       1.69   thorpej }
    312       1.69   thorpej 
    313       1.69   thorpej /*
    314  1.187.2.1       mjf  * Compute the amount of time during which the current lwp was running.
    315  1.187.2.1       mjf  *
    316  1.187.2.1       mjf  * - update l_rtime unless it's an idle lwp.
    317  1.187.2.1       mjf  * - update spc_runtime for the next lwp.
    318  1.187.2.1       mjf  */
    319  1.187.2.1       mjf 
    320  1.187.2.1       mjf static inline void
    321  1.187.2.1       mjf updatertime(struct lwp *l, struct schedstate_percpu *spc)
    322  1.187.2.1       mjf {
    323  1.187.2.1       mjf 	struct timeval tv;
    324  1.187.2.1       mjf 	long s, u;
    325  1.187.2.1       mjf 
    326  1.187.2.1       mjf 	if ((l->l_flag & LW_IDLE) != 0) {
    327  1.187.2.1       mjf 		microtime(&spc->spc_runtime);
    328  1.187.2.1       mjf 		return;
    329  1.187.2.1       mjf 	}
    330  1.187.2.1       mjf 
    331  1.187.2.1       mjf 	microtime(&tv);
    332  1.187.2.1       mjf 	u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    333  1.187.2.1       mjf 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    334  1.187.2.1       mjf 	if (u < 0) {
    335  1.187.2.1       mjf 		u += 1000000;
    336  1.187.2.1       mjf 		s--;
    337  1.187.2.1       mjf 	} else if (u >= 1000000) {
    338  1.187.2.1       mjf 		u -= 1000000;
    339  1.187.2.1       mjf 		s++;
    340  1.187.2.1       mjf 	}
    341  1.187.2.1       mjf 	l->l_rtime.tv_usec = u;
    342  1.187.2.1       mjf 	l->l_rtime.tv_sec = s;
    343  1.187.2.1       mjf 
    344  1.187.2.1       mjf 	spc->spc_runtime = tv;
    345  1.187.2.1       mjf }
    346  1.187.2.1       mjf 
    347  1.187.2.1       mjf /*
    348  1.187.2.1       mjf  * The machine independent parts of context switch.
    349      1.130   nathanw  *
    350  1.187.2.1       mjf  * Returns 1 if another LWP was actually run.
    351       1.26       cgd  */
    352      1.122   thorpej int
    353  1.187.2.1       mjf mi_switch(struct lwp *l)
    354       1.26       cgd {
    355       1.76   thorpej 	struct schedstate_percpu *spc;
    356  1.187.2.1       mjf 	struct lwp *newl;
    357      1.174        ad 	int retval, oldspl;
    358       1.26       cgd 
    359  1.187.2.1       mjf 	KASSERT(lwp_locked(l, NULL));
    360  1.187.2.1       mjf 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    361      1.174        ad 
    362      1.174        ad #ifdef KSTACK_CHECK_MAGIC
    363      1.174        ad 	kstack_check_magic(l);
    364      1.174        ad #endif
    365       1.83   thorpej 
    366       1.90  sommerfe 	/*
    367      1.174        ad 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    368      1.174        ad 	 * are after is the run time and that's guarenteed to have been last
    369      1.174        ad 	 * updated by this CPU.
    370       1.90  sommerfe 	 */
    371      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    372       1.76   thorpej 
    373       1.26       cgd 	/*
    374  1.187.2.1       mjf 	 * Process is about to yield the CPU; clear the appropriate
    375  1.187.2.1       mjf 	 * scheduling flags.
    376       1.26       cgd 	 */
    377  1.187.2.1       mjf 	spc = &l->l_cpu->ci_schedstate;
    378  1.187.2.1       mjf 	newl = NULL;
    379  1.187.2.1       mjf 
    380  1.187.2.1       mjf 	if (l->l_switchto != NULL) {
    381  1.187.2.1       mjf 		newl = l->l_switchto;
    382  1.187.2.1       mjf 		l->l_switchto = NULL;
    383       1.26       cgd 	}
    384       1.26       cgd 
    385      1.180       dsl 	/* Count time spent in current system call */
    386      1.180       dsl 	SYSCALL_TIME_SLEEP(l);
    387      1.180       dsl 
    388       1.26       cgd 	/*
    389  1.187.2.1       mjf 	 * XXXSMP If we are using h/w performance counters,
    390  1.187.2.1       mjf 	 * save context.
    391       1.69   thorpej 	 */
    392      1.174        ad #if PERFCTRS
    393      1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    394      1.175  christos 		pmc_save_context(l->l_proc);
    395      1.174        ad 	}
    396      1.109      yamt #endif
    397  1.187.2.1       mjf 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    398  1.187.2.1       mjf 	updatertime(l, spc);
    399      1.113  gmcgarry 
    400      1.113  gmcgarry 	/*
    401      1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    402      1.113  gmcgarry 	 */
    403  1.187.2.1       mjf 	mutex_spin_enter(spc->spc_mutex);
    404      1.174        ad 	KASSERT(l->l_stat != LSRUN);
    405      1.174        ad 	if (l->l_stat == LSONPROC) {
    406  1.187.2.1       mjf 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    407  1.187.2.1       mjf 		if ((l->l_flag & LW_IDLE) == 0) {
    408  1.187.2.1       mjf 			l->l_stat = LSRUN;
    409  1.187.2.1       mjf 			lwp_setlock(l, spc->spc_mutex);
    410  1.187.2.1       mjf 			sched_enqueue(l, true);
    411  1.187.2.1       mjf 		} else
    412  1.187.2.1       mjf 			l->l_stat = LSIDL;
    413      1.174        ad 	}
    414      1.174        ad 
    415      1.174        ad 	/*
    416  1.187.2.1       mjf 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    417  1.187.2.1       mjf 	 * If no LWP is runnable, switch to the idle LWP.
    418      1.174        ad 	 */
    419  1.187.2.1       mjf 	if (newl == NULL) {
    420  1.187.2.1       mjf 		newl = sched_nextlwp();
    421  1.187.2.1       mjf 		if (newl != NULL) {
    422  1.187.2.1       mjf 			sched_dequeue(newl);
    423  1.187.2.1       mjf 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    424  1.187.2.1       mjf 			newl->l_stat = LSONPROC;
    425  1.187.2.1       mjf 			newl->l_cpu = l->l_cpu;
    426  1.187.2.1       mjf 			newl->l_flag |= LW_RUNNING;
    427  1.187.2.1       mjf 			lwp_setlock(newl, &spc->spc_lwplock);
    428  1.187.2.1       mjf 		} else {
    429  1.187.2.1       mjf 			newl = l->l_cpu->ci_data.cpu_idlelwp;
    430  1.187.2.1       mjf 			newl->l_stat = LSONPROC;
    431  1.187.2.1       mjf 			newl->l_flag |= LW_RUNNING;
    432  1.187.2.1       mjf 		}
    433  1.187.2.1       mjf 		spc->spc_curpriority = newl->l_usrpri;
    434  1.187.2.1       mjf 		newl->l_priority = newl->l_usrpri;
    435  1.187.2.1       mjf 		cpu_did_resched();
    436  1.187.2.1       mjf 	}
    437      1.174        ad 
    438  1.187.2.1       mjf 	if (l != newl) {
    439  1.187.2.1       mjf 		struct lwp *prevlwp;
    440      1.174        ad 
    441  1.187.2.1       mjf 		/*
    442  1.187.2.1       mjf 		 * If the old LWP has been moved to a run queue above,
    443  1.187.2.1       mjf 		 * drop the general purpose LWP lock: it's now locked
    444  1.187.2.1       mjf 		 * by the scheduler lock.
    445  1.187.2.1       mjf 		 *
    446  1.187.2.1       mjf 		 * Otherwise, drop the scheduler lock.  We're done with
    447  1.187.2.1       mjf 		 * the run queues for now.
    448  1.187.2.1       mjf 		 */
    449  1.187.2.1       mjf 		if (l->l_mutex == spc->spc_mutex) {
    450  1.187.2.1       mjf 			mutex_spin_exit(&spc->spc_lwplock);
    451  1.187.2.1       mjf 		} else {
    452  1.187.2.1       mjf 			mutex_spin_exit(spc->spc_mutex);
    453  1.187.2.1       mjf 		}
    454  1.187.2.1       mjf 
    455  1.187.2.1       mjf 		/* Unlocked, but for statistics only. */
    456  1.187.2.1       mjf 		uvmexp.swtch++;
    457  1.187.2.1       mjf 
    458  1.187.2.1       mjf 		/* Save old VM context. */
    459  1.187.2.1       mjf 		pmap_deactivate(l);
    460  1.187.2.1       mjf 
    461  1.187.2.1       mjf 		/* Switch to the new LWP.. */
    462  1.187.2.1       mjf 		l->l_ncsw++;
    463  1.187.2.1       mjf 		l->l_flag &= ~LW_RUNNING;
    464  1.187.2.1       mjf 		oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    465  1.187.2.1       mjf 		prevlwp = cpu_switchto(l, newl);
    466  1.187.2.1       mjf 
    467  1.187.2.1       mjf 		/*
    468  1.187.2.1       mjf 		 * .. we have switched away and are now back so we must
    469  1.187.2.1       mjf 		 * be the new curlwp.  prevlwp is who we replaced.
    470  1.187.2.1       mjf 		 */
    471  1.187.2.1       mjf 		curlwp = l;
    472  1.187.2.1       mjf 		if (prevlwp != NULL) {
    473  1.187.2.1       mjf 			curcpu()->ci_mtx_oldspl = oldspl;
    474  1.187.2.1       mjf 			lwp_unlock(prevlwp);
    475  1.187.2.1       mjf 		} else {
    476  1.187.2.1       mjf 			splx(oldspl);
    477  1.187.2.1       mjf 		}
    478      1.174        ad 
    479  1.187.2.1       mjf 		/* Restore VM context. */
    480  1.187.2.1       mjf 		pmap_activate(l);
    481  1.187.2.1       mjf 		retval = 1;
    482  1.187.2.1       mjf 	} else {
    483  1.187.2.1       mjf 		/* Nothing to do - just unlock and return. */
    484  1.187.2.1       mjf 		mutex_spin_exit(spc->spc_mutex);
    485  1.187.2.1       mjf 		lwp_unlock(l);
    486      1.122   thorpej 		retval = 0;
    487      1.122   thorpej 	}
    488      1.110    briggs 
    489  1.187.2.1       mjf 	KASSERT(l == curlwp);
    490  1.187.2.1       mjf 	KASSERT(l->l_stat == LSONPROC);
    491  1.187.2.1       mjf 
    492      1.110    briggs 	/*
    493      1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    494       1.26       cgd 	 */
    495      1.114  gmcgarry #if PERFCTRS
    496      1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    497      1.175  christos 		pmc_restore_context(l->l_proc);
    498      1.166  christos 	}
    499      1.114  gmcgarry #endif
    500      1.110    briggs 
    501      1.110    briggs 	/*
    502       1.76   thorpej 	 * We're running again; record our new start time.  We might
    503      1.174        ad 	 * be running on a new CPU now, so don't use the cached
    504       1.76   thorpej 	 * schedstate_percpu pointer.
    505       1.76   thorpej 	 */
    506      1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    507      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    508  1.187.2.1       mjf 	LOCKDEBUG_BARRIER(NULL, 1);
    509      1.169      yamt 
    510      1.122   thorpej 	return retval;
    511       1.26       cgd }
    512       1.26       cgd 
    513       1.26       cgd /*
    514      1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    515      1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    516      1.174        ad  *
    517      1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    518       1.26       cgd  */
    519       1.26       cgd void
    520      1.122   thorpej setrunnable(struct lwp *l)
    521       1.26       cgd {
    522      1.122   thorpej 	struct proc *p = l->l_proc;
    523      1.174        ad 	sigset_t *ss;
    524       1.26       cgd 
    525  1.187.2.1       mjf 	KASSERT((l->l_flag & LW_IDLE) == 0);
    526      1.183        ad 	KASSERT(mutex_owned(&p->p_smutex));
    527      1.183        ad 	KASSERT(lwp_locked(l, NULL));
    528       1.83   thorpej 
    529      1.122   thorpej 	switch (l->l_stat) {
    530      1.122   thorpej 	case LSSTOP:
    531       1.33   mycroft 		/*
    532       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    533       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    534       1.33   mycroft 		 */
    535      1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    536      1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    537      1.174        ad 				ss = &l->l_sigpend.sp_set;
    538      1.174        ad 			else
    539      1.174        ad 				ss = &p->p_sigpend.sp_set;
    540      1.174        ad 			sigaddset(ss, p->p_xstat);
    541      1.174        ad 			signotify(l);
    542       1.53   mycroft 		}
    543      1.174        ad 		p->p_nrlwps++;
    544       1.26       cgd 		break;
    545      1.174        ad 	case LSSUSPENDED:
    546      1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    547      1.174        ad 		p->p_nrlwps++;
    548      1.122   thorpej 		break;
    549      1.174        ad 	case LSSLEEP:
    550      1.174        ad 		KASSERT(l->l_wchan != NULL);
    551       1.26       cgd 		break;
    552      1.174        ad 	default:
    553      1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    554       1.26       cgd 	}
    555      1.139        cl 
    556      1.174        ad 	/*
    557      1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    558      1.174        ad 	 * again.  If not, mark it as still sleeping.
    559      1.174        ad 	 */
    560      1.174        ad 	if (l->l_wchan != NULL) {
    561      1.174        ad 		l->l_stat = LSSLEEP;
    562      1.183        ad 		/* lwp_unsleep() will release the lock. */
    563      1.183        ad 		lwp_unsleep(l);
    564      1.174        ad 		return;
    565      1.174        ad 	}
    566      1.139        cl 
    567      1.174        ad 	/*
    568      1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    569      1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    570      1.174        ad 	 */
    571  1.187.2.1       mjf 	if ((l->l_flag & LW_RUNNING) != 0) {
    572      1.174        ad 		l->l_stat = LSONPROC;
    573      1.174        ad 		l->l_slptime = 0;
    574      1.174        ad 		lwp_unlock(l);
    575      1.174        ad 		return;
    576      1.174        ad 	}
    577      1.122   thorpej 
    578      1.174        ad 	/*
    579      1.174        ad 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    580      1.174        ad 	 * to bring it back in.  Otherwise, enter it into a run queue.
    581      1.174        ad 	 */
    582  1.187.2.1       mjf 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    583  1.187.2.1       mjf 		spc_lock(l->l_cpu);
    584  1.187.2.1       mjf 		lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
    585  1.187.2.1       mjf 	}
    586  1.187.2.1       mjf 
    587  1.187.2.1       mjf 	sched_setrunnable(l);
    588      1.174        ad 	l->l_stat = LSRUN;
    589      1.122   thorpej 	l->l_slptime = 0;
    590      1.174        ad 
    591      1.178     pavel 	if (l->l_flag & LW_INMEM) {
    592  1.187.2.1       mjf 		sched_enqueue(l, false);
    593  1.187.2.1       mjf 		resched_cpu(l);
    594      1.174        ad 		lwp_unlock(l);
    595      1.174        ad 	} else {
    596      1.174        ad 		lwp_unlock(l);
    597      1.177        ad 		uvm_kick_scheduler();
    598      1.174        ad 	}
    599       1.26       cgd }
    600       1.26       cgd 
    601       1.26       cgd /*
    602      1.174        ad  * suspendsched:
    603      1.174        ad  *
    604      1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    605      1.174        ad  */
    606       1.94    bouyer void
    607      1.174        ad suspendsched(void)
    608       1.94    bouyer {
    609      1.174        ad #ifdef MULTIPROCESSOR
    610      1.174        ad 	CPU_INFO_ITERATOR cii;
    611      1.174        ad 	struct cpu_info *ci;
    612      1.174        ad #endif
    613      1.122   thorpej 	struct lwp *l;
    614      1.174        ad 	struct proc *p;
    615       1.94    bouyer 
    616       1.94    bouyer 	/*
    617      1.174        ad 	 * We do this by process in order not to violate the locking rules.
    618       1.94    bouyer 	 */
    619      1.174        ad 	mutex_enter(&proclist_mutex);
    620      1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    621      1.174        ad 		mutex_enter(&p->p_smutex);
    622      1.174        ad 
    623      1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    624      1.174        ad 			mutex_exit(&p->p_smutex);
    625       1.94    bouyer 			continue;
    626      1.174        ad 		}
    627      1.174        ad 
    628      1.174        ad 		p->p_stat = SSTOP;
    629      1.174        ad 
    630      1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    631      1.174        ad 			if (l == curlwp)
    632      1.174        ad 				continue;
    633      1.174        ad 
    634      1.174        ad 			lwp_lock(l);
    635      1.122   thorpej 
    636       1.97     enami 			/*
    637      1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    638      1.174        ad 			 * when it tries to return to user mode.  We want to
    639      1.174        ad 			 * try and get to get as many LWPs as possible to
    640      1.174        ad 			 * the user / kernel boundary, so that they will
    641      1.174        ad 			 * release any locks that they hold.
    642       1.97     enami 			 */
    643      1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    644      1.174        ad 
    645      1.174        ad 			if (l->l_stat == LSSLEEP &&
    646      1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    647      1.174        ad 				/* setrunnable() will release the lock. */
    648      1.174        ad 				setrunnable(l);
    649      1.174        ad 				continue;
    650      1.174        ad 			}
    651      1.174        ad 
    652      1.174        ad 			lwp_unlock(l);
    653       1.94    bouyer 		}
    654      1.174        ad 
    655      1.174        ad 		mutex_exit(&p->p_smutex);
    656       1.94    bouyer 	}
    657      1.174        ad 	mutex_exit(&proclist_mutex);
    658      1.174        ad 
    659      1.174        ad 	/*
    660      1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    661      1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    662      1.174        ad 	 */
    663      1.174        ad #ifdef MULTIPROCESSOR
    664      1.174        ad 	for (CPU_INFO_FOREACH(cii, ci))
    665  1.187.2.1       mjf 		cpu_need_resched(ci, 0);
    666      1.174        ad #else
    667  1.187.2.1       mjf 	cpu_need_resched(curcpu(), 0);
    668      1.174        ad #endif
    669      1.174        ad }
    670      1.174        ad 
    671      1.174        ad /*
    672      1.174        ad  * sched_kpri:
    673      1.174        ad  *
    674      1.174        ad  *	Scale a priority level to a kernel priority level, usually
    675      1.174        ad  *	for an LWP that is about to sleep.
    676      1.174        ad  */
    677      1.185      yamt pri_t
    678      1.174        ad sched_kpri(struct lwp *l)
    679      1.174        ad {
    680      1.174        ad 	/*
    681      1.174        ad 	 * Scale user priorities (127 -> 50) up to kernel priorities
    682      1.174        ad 	 * in the range (49 -> 8).  Reserve the top 8 kernel priorities
    683      1.174        ad 	 * for high priority kthreads.  Kernel priorities passed in
    684      1.174        ad 	 * are left "as is".  XXX This is somewhat arbitrary.
    685      1.174        ad 	 */
    686      1.174        ad 	static const uint8_t kpri_tab[] = {
    687      1.174        ad 		 0,   1,   2,   3,   4,   5,   6,   7,
    688      1.174        ad 		 8,   9,  10,  11,  12,  13,  14,  15,
    689      1.174        ad 		16,  17,  18,  19,  20,  21,  22,  23,
    690      1.174        ad 		24,  25,  26,  27,  28,  29,  30,  31,
    691      1.174        ad 		32,  33,  34,  35,  36,  37,  38,  39,
    692      1.174        ad 		40,  41,  42,  43,  44,  45,  46,  47,
    693      1.174        ad 		48,  49,   8,   8,   9,   9,  10,  10,
    694      1.174        ad 		11,  11,  12,  12,  13,  14,  14,  15,
    695      1.174        ad 		15,  16,  16,  17,  17,  18,  18,  19,
    696      1.174        ad 		20,  20,  21,  21,  22,  22,  23,  23,
    697      1.174        ad 		24,  24,  25,  26,  26,  27,  27,  28,
    698      1.174        ad 		28,  29,  29,  30,  30,  31,  32,  32,
    699      1.174        ad 		33,  33,  34,  34,  35,  35,  36,  36,
    700      1.174        ad 		37,  38,  38,  39,  39,  40,  40,  41,
    701      1.174        ad 		41,  42,  42,  43,  44,  44,  45,  45,
    702      1.174        ad 		46,  46,  47,  47,  48,  48,  49,  49,
    703      1.174        ad 	};
    704      1.174        ad 
    705      1.185      yamt 	return (pri_t)kpri_tab[l->l_usrpri];
    706      1.174        ad }
    707      1.174        ad 
    708      1.174        ad /*
    709      1.174        ad  * sched_unsleep:
    710      1.174        ad  *
    711      1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    712      1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    713      1.174        ad  *	it's not a valid action for running or idle LWPs.
    714      1.174        ad  */
    715  1.187.2.1       mjf static void
    716      1.174        ad sched_unsleep(struct lwp *l)
    717      1.174        ad {
    718      1.174        ad 
    719      1.174        ad 	lwp_unlock(l);
    720      1.174        ad 	panic("sched_unsleep");
    721      1.174        ad }
    722      1.174        ad 
    723  1.187.2.1       mjf inline void
    724  1.187.2.1       mjf resched_cpu(struct lwp *l)
    725  1.187.2.1       mjf {
    726  1.187.2.1       mjf 	struct cpu_info *ci;
    727  1.187.2.1       mjf 	const pri_t pri = lwp_eprio(l);
    728  1.187.2.1       mjf 
    729  1.187.2.1       mjf 	/*
    730  1.187.2.1       mjf 	 * XXXSMP
    731  1.187.2.1       mjf 	 * Since l->l_cpu persists across a context switch,
    732  1.187.2.1       mjf 	 * this gives us *very weak* processor affinity, in
    733  1.187.2.1       mjf 	 * that we notify the CPU on which the process last
    734  1.187.2.1       mjf 	 * ran that it should try to switch.
    735  1.187.2.1       mjf 	 *
    736  1.187.2.1       mjf 	 * This does not guarantee that the process will run on
    737  1.187.2.1       mjf 	 * that processor next, because another processor might
    738  1.187.2.1       mjf 	 * grab it the next time it performs a context switch.
    739  1.187.2.1       mjf 	 *
    740  1.187.2.1       mjf 	 * This also does not handle the case where its last
    741  1.187.2.1       mjf 	 * CPU is running a higher-priority process, but every
    742  1.187.2.1       mjf 	 * other CPU is running a lower-priority process.  There
    743  1.187.2.1       mjf 	 * are ways to handle this situation, but they're not
    744  1.187.2.1       mjf 	 * currently very pretty, and we also need to weigh the
    745  1.187.2.1       mjf 	 * cost of moving a process from one CPU to another.
    746  1.187.2.1       mjf 	 */
    747  1.187.2.1       mjf 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    748  1.187.2.1       mjf 	if (pri < ci->ci_schedstate.spc_curpriority)
    749  1.187.2.1       mjf 		cpu_need_resched(ci, 0);
    750  1.187.2.1       mjf }
    751  1.187.2.1       mjf 
    752  1.187.2.1       mjf static void
    753      1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
    754      1.174        ad {
    755      1.174        ad 
    756  1.187.2.1       mjf 	KASSERT(lwp_locked(l, NULL));
    757      1.174        ad 
    758      1.174        ad 	l->l_usrpri = pri;
    759      1.174        ad 	if (l->l_priority < PUSER)
    760      1.174        ad 		return;
    761      1.184      yamt 
    762      1.184      yamt 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    763      1.174        ad 		l->l_priority = pri;
    764      1.174        ad 		return;
    765      1.157      yamt 	}
    766      1.174        ad 
    767  1.187.2.1       mjf 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    768  1.187.2.1       mjf 
    769  1.187.2.1       mjf 	sched_dequeue(l);
    770      1.174        ad 	l->l_priority = pri;
    771  1.187.2.1       mjf 	sched_enqueue(l, false);
    772  1.187.2.1       mjf 	resched_cpu(l);
    773      1.184      yamt }
    774      1.184      yamt 
    775  1.187.2.1       mjf static void
    776      1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
    777      1.184      yamt {
    778      1.184      yamt 
    779  1.187.2.1       mjf 	KASSERT(lwp_locked(l, NULL));
    780      1.184      yamt 
    781      1.184      yamt 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    782      1.184      yamt 		l->l_inheritedprio = pri;
    783      1.184      yamt 		return;
    784      1.184      yamt 	}
    785      1.184      yamt 
    786  1.187.2.1       mjf 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    787  1.187.2.1       mjf 
    788  1.187.2.1       mjf 	sched_dequeue(l);
    789      1.184      yamt 	l->l_inheritedprio = pri;
    790  1.187.2.1       mjf 	sched_enqueue(l, false);
    791  1.187.2.1       mjf 	resched_cpu(l);
    792      1.184      yamt }
    793      1.184      yamt 
    794      1.184      yamt struct lwp *
    795      1.184      yamt syncobj_noowner(wchan_t wchan)
    796      1.184      yamt {
    797      1.184      yamt 
    798      1.184      yamt 	return NULL;
    799      1.151      yamt }
    800      1.151      yamt 
    801      1.113  gmcgarry 
    802  1.187.2.1       mjf /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    803  1.187.2.1       mjf fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    804      1.115  nisimura 
    805      1.130   nathanw /*
    806  1.187.2.1       mjf  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    807  1.187.2.1       mjf  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    808  1.187.2.1       mjf  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    809  1.187.2.1       mjf  *
    810  1.187.2.1       mjf  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    811  1.187.2.1       mjf  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    812  1.187.2.1       mjf  *
    813  1.187.2.1       mjf  * If you dont want to bother with the faster/more-accurate formula, you
    814  1.187.2.1       mjf  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    815  1.187.2.1       mjf  * (more general) method of calculating the %age of CPU used by a process.
    816      1.134      matt  */
    817  1.187.2.1       mjf #define	CCPU_SHIFT	(FSHIFT + 1)
    818      1.134      matt 
    819      1.134      matt /*
    820  1.187.2.1       mjf  * sched_pstats:
    821  1.187.2.1       mjf  *
    822  1.187.2.1       mjf  * Update process statistics and check CPU resource allocation.
    823  1.187.2.1       mjf  * Call scheduler-specific hook to eventually adjust process/LWP
    824  1.187.2.1       mjf  * priorities.
    825  1.187.2.1       mjf  *
    826  1.187.2.1       mjf  *	XXXSMP This needs to be reorganised in order to reduce the locking
    827  1.187.2.1       mjf  *	burden.
    828      1.130   nathanw  */
    829  1.187.2.1       mjf /* ARGSUSED */
    830      1.113  gmcgarry void
    831  1.187.2.1       mjf sched_pstats(void *arg)
    832      1.113  gmcgarry {
    833  1.187.2.1       mjf 	struct rlimit *rlim;
    834  1.187.2.1       mjf 	struct lwp *l;
    835  1.187.2.1       mjf 	struct proc *p;
    836  1.187.2.1       mjf 	int minslp, sig, clkhz;
    837  1.187.2.1       mjf 	long runtm;
    838      1.113  gmcgarry 
    839  1.187.2.1       mjf 	sched_pstats_ticks++;
    840      1.174        ad 
    841  1.187.2.1       mjf 	mutex_enter(&proclist_mutex);
    842  1.187.2.1       mjf 	PROCLIST_FOREACH(p, &allproc) {
    843  1.187.2.1       mjf 		/*
    844  1.187.2.1       mjf 		 * Increment time in/out of memory and sleep time (if
    845  1.187.2.1       mjf 		 * sleeping).  We ignore overflow; with 16-bit int's
    846  1.187.2.1       mjf 		 * (remember them?) overflow takes 45 days.
    847  1.187.2.1       mjf 		 */
    848  1.187.2.1       mjf 		minslp = 2;
    849  1.187.2.1       mjf 		mutex_enter(&p->p_smutex);
    850  1.187.2.1       mjf 		mutex_spin_enter(&p->p_stmutex);
    851  1.187.2.1       mjf 		runtm = p->p_rtime.tv_sec;
    852  1.187.2.1       mjf 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    853  1.187.2.1       mjf 			if ((l->l_flag & LW_IDLE) != 0)
    854  1.187.2.1       mjf 				continue;
    855  1.187.2.1       mjf 			lwp_lock(l);
    856  1.187.2.1       mjf 			runtm += l->l_rtime.tv_sec;
    857  1.187.2.1       mjf 			l->l_swtime++;
    858  1.187.2.1       mjf 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    859  1.187.2.1       mjf 			    l->l_stat == LSSUSPENDED) {
    860  1.187.2.1       mjf 				l->l_slptime++;
    861  1.187.2.1       mjf 				minslp = min(minslp, l->l_slptime);
    862  1.187.2.1       mjf 			} else
    863  1.187.2.1       mjf 				minslp = 0;
    864  1.187.2.1       mjf 			lwp_unlock(l);
    865  1.187.2.1       mjf 
    866  1.187.2.1       mjf 			/*
    867  1.187.2.1       mjf 			 * p_pctcpu is only for ps.
    868  1.187.2.1       mjf 			 */
    869  1.187.2.1       mjf 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    870  1.187.2.1       mjf 			if (l->l_slptime < 1) {
    871  1.187.2.1       mjf 				clkhz = stathz != 0 ? stathz : hz;
    872  1.187.2.1       mjf #if	(FSHIFT >= CCPU_SHIFT)
    873  1.187.2.1       mjf 				l->l_pctcpu += (clkhz == 100) ?
    874  1.187.2.1       mjf 				    ((fixpt_t)l->l_cpticks) <<
    875  1.187.2.1       mjf 				        (FSHIFT - CCPU_SHIFT) :
    876  1.187.2.1       mjf 				    100 * (((fixpt_t) p->p_cpticks)
    877  1.187.2.1       mjf 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    878  1.187.2.1       mjf #else
    879  1.187.2.1       mjf 				l->l_pctcpu += ((FSCALE - ccpu) *
    880  1.187.2.1       mjf 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    881      1.146      matt #endif
    882  1.187.2.1       mjf 				l->l_cpticks = 0;
    883  1.187.2.1       mjf 			}
    884  1.187.2.1       mjf 		}
    885  1.187.2.1       mjf 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    886  1.187.2.1       mjf 		sched_pstats_hook(p, minslp);
    887  1.187.2.1       mjf 		mutex_spin_exit(&p->p_stmutex);
    888  1.187.2.1       mjf 
    889  1.187.2.1       mjf 		/*
    890  1.187.2.1       mjf 		 * Check if the process exceeds its CPU resource allocation.
    891  1.187.2.1       mjf 		 * If over max, kill it.
    892  1.187.2.1       mjf 		 */
    893  1.187.2.1       mjf 		rlim = &p->p_rlimit[RLIMIT_CPU];
    894  1.187.2.1       mjf 		sig = 0;
    895  1.187.2.1       mjf 		if (runtm >= rlim->rlim_cur) {
    896  1.187.2.1       mjf 			if (runtm >= rlim->rlim_max)
    897  1.187.2.1       mjf 				sig = SIGKILL;
    898  1.187.2.1       mjf 			else {
    899  1.187.2.1       mjf 				sig = SIGXCPU;
    900  1.187.2.1       mjf 				if (rlim->rlim_cur < rlim->rlim_max)
    901  1.187.2.1       mjf 					rlim->rlim_cur += 5;
    902  1.187.2.1       mjf 			}
    903  1.187.2.1       mjf 		}
    904  1.187.2.1       mjf 		mutex_exit(&p->p_smutex);
    905  1.187.2.1       mjf 		if (sig) {
    906  1.187.2.1       mjf 			psignal(p, sig);
    907  1.187.2.1       mjf 		}
    908  1.187.2.1       mjf 	}
    909  1.187.2.1       mjf 	mutex_exit(&proclist_mutex);
    910  1.187.2.1       mjf 	uvm_meter();
    911  1.187.2.1       mjf 	cv_broadcast(&lbolt);
    912  1.187.2.1       mjf 	callout_schedule(&sched_pstats_ch, hz);
    913      1.113  gmcgarry }
    914      1.113  gmcgarry 
    915      1.113  gmcgarry void
    916  1.187.2.1       mjf sched_init(void)
    917      1.113  gmcgarry {
    918      1.174        ad 
    919  1.187.2.1       mjf 	cv_init(&lbolt, "lbolt");
    920  1.187.2.1       mjf 	callout_init(&sched_pstats_ch, 0);
    921  1.187.2.1       mjf 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    922  1.187.2.1       mjf 	sched_setup();
    923  1.187.2.1       mjf 	sched_pstats(NULL);
    924      1.113  gmcgarry }
    925