Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.189
      1  1.189        ad /*	$NetBSD: kern_synch.c,v 1.189 2007/05/31 22:06:09 ad Exp $	*/
      2   1.63   thorpej 
      3   1.63   thorpej /*-
      4  1.174        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5   1.63   thorpej  * All rights reserved.
      6   1.63   thorpej  *
      7   1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  1.188      yamt  * Daniel Sieger.
     11   1.63   thorpej  *
     12   1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13   1.63   thorpej  * modification, are permitted provided that the following conditions
     14   1.63   thorpej  * are met:
     15   1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16   1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17   1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19   1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20   1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     21   1.63   thorpej  *    must display the following acknowledgement:
     22   1.63   thorpej  *	This product includes software developed by the NetBSD
     23   1.63   thorpej  *	Foundation, Inc. and its contributors.
     24   1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25   1.63   thorpej  *    contributors may be used to endorse or promote products derived
     26   1.63   thorpej  *    from this software without specific prior written permission.
     27   1.63   thorpej  *
     28   1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29   1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30   1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31   1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32   1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33   1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34   1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35   1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36   1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37   1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38   1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     39   1.63   thorpej  */
     40   1.26       cgd 
     41   1.26       cgd /*-
     42   1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43   1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     44   1.26       cgd  * (c) UNIX System Laboratories, Inc.
     45   1.26       cgd  * All or some portions of this file are derived from material licensed
     46   1.26       cgd  * to the University of California by American Telephone and Telegraph
     47   1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48   1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     49   1.26       cgd  *
     50   1.26       cgd  * Redistribution and use in source and binary forms, with or without
     51   1.26       cgd  * modification, are permitted provided that the following conditions
     52   1.26       cgd  * are met:
     53   1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     54   1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     55   1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     56   1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     57   1.26       cgd  *    documentation and/or other materials provided with the distribution.
     58  1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     59   1.26       cgd  *    may be used to endorse or promote products derived from this software
     60   1.26       cgd  *    without specific prior written permission.
     61   1.26       cgd  *
     62   1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63   1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64   1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65   1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66   1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67   1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68   1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69   1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70   1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71   1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72   1.26       cgd  * SUCH DAMAGE.
     73   1.26       cgd  *
     74   1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75   1.26       cgd  */
     76  1.106     lukem 
     77  1.106     lukem #include <sys/cdefs.h>
     78  1.189        ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.189 2007/05/31 22:06:09 ad Exp $");
     79   1.48       mrg 
     80  1.109      yamt #include "opt_kstack.h"
     81   1.82   thorpej #include "opt_lockdebug.h"
     82   1.83   thorpej #include "opt_multiprocessor.h"
     83  1.110    briggs #include "opt_perfctrs.h"
     84   1.26       cgd 
     85  1.174        ad #define	__MUTEX_PRIVATE
     86  1.174        ad 
     87   1.26       cgd #include <sys/param.h>
     88   1.26       cgd #include <sys/systm.h>
     89   1.26       cgd #include <sys/proc.h>
     90   1.26       cgd #include <sys/kernel.h>
     91  1.111    briggs #if defined(PERFCTRS)
     92  1.110    briggs #include <sys/pmc.h>
     93  1.111    briggs #endif
     94  1.188      yamt #include <sys/cpu.h>
     95   1.26       cgd #include <sys/resourcevar.h>
     96   1.55      ross #include <sys/sched.h>
     97  1.179       dsl #include <sys/syscall_stats.h>
     98  1.174        ad #include <sys/sleepq.h>
     99  1.174        ad #include <sys/lockdebug.h>
    100   1.47       mrg 
    101   1.47       mrg #include <uvm/uvm_extern.h>
    102   1.47       mrg 
    103  1.188      yamt struct callout sched_pstats_ch = CALLOUT_INITIALIZER_SETFUNC(sched_pstats, NULL);
    104  1.188      yamt unsigned int sched_pstats_ticks;
    105   1.34  christos 
    106   1.26       cgd int	lbolt;			/* once a second sleep address */
    107   1.26       cgd 
    108  1.188      yamt static void	sched_unsleep(struct lwp *);
    109  1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    110  1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    111  1.122   thorpej 
    112  1.174        ad syncobj_t sleep_syncobj = {
    113  1.174        ad 	SOBJ_SLEEPQ_SORTED,
    114  1.174        ad 	sleepq_unsleep,
    115  1.184      yamt 	sleepq_changepri,
    116  1.184      yamt 	sleepq_lendpri,
    117  1.184      yamt 	syncobj_noowner,
    118  1.174        ad };
    119  1.174        ad 
    120  1.174        ad syncobj_t sched_syncobj = {
    121  1.174        ad 	SOBJ_SLEEPQ_SORTED,
    122  1.174        ad 	sched_unsleep,
    123  1.184      yamt 	sched_changepri,
    124  1.184      yamt 	sched_lendpri,
    125  1.184      yamt 	syncobj_noowner,
    126  1.174        ad };
    127  1.122   thorpej 
    128   1.26       cgd /*
    129  1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    130  1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    131  1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    132  1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    133  1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    134  1.174        ad  * it can be made higher to block network software interrupts after panics.
    135   1.26       cgd  */
    136  1.174        ad int	safepri;
    137   1.26       cgd 
    138   1.26       cgd /*
    139  1.174        ad  * OBSOLETE INTERFACE
    140  1.174        ad  *
    141   1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    142   1.26       cgd  * performed on the specified identifier.  The process will then be made
    143  1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    144  1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    145   1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    146   1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    147   1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    148   1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    149   1.26       cgd  * call should be interrupted by the signal (return EINTR).
    150   1.77   thorpej  *
    151  1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    152  1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    153  1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    154  1.174        ad  * return.
    155   1.26       cgd  */
    156   1.26       cgd int
    157  1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    158  1.174        ad 	volatile struct simplelock *interlock)
    159   1.26       cgd {
    160  1.122   thorpej 	struct lwp *l = curlwp;
    161  1.174        ad 	sleepq_t *sq;
    162  1.188      yamt 	int error;
    163   1.26       cgd 
    164  1.174        ad 	if (sleepq_dontsleep(l)) {
    165  1.174        ad 		(void)sleepq_abort(NULL, 0);
    166  1.174        ad 		if ((priority & PNORELOCK) != 0)
    167   1.77   thorpej 			simple_unlock(interlock);
    168  1.174        ad 		return 0;
    169   1.26       cgd 	}
    170   1.78  sommerfe 
    171  1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    172  1.174        ad 	sleepq_enter(sq, l);
    173  1.188      yamt 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    174   1.42       cgd 
    175  1.174        ad 	if (interlock != NULL) {
    176  1.174        ad 		LOCK_ASSERT(simple_lock_held(interlock));
    177  1.174        ad 		simple_unlock(interlock);
    178  1.150       chs 	}
    179  1.150       chs 
    180  1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    181  1.126        pk 
    182  1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    183  1.126        pk 		simple_lock(interlock);
    184  1.174        ad 
    185  1.174        ad 	return error;
    186   1.26       cgd }
    187   1.26       cgd 
    188  1.187        ad int
    189  1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    190  1.187        ad 	kmutex_t *mtx)
    191  1.187        ad {
    192  1.187        ad 	struct lwp *l = curlwp;
    193  1.187        ad 	sleepq_t *sq;
    194  1.188      yamt 	int error;
    195  1.187        ad 
    196  1.187        ad 	if (sleepq_dontsleep(l)) {
    197  1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    198  1.187        ad 		return 0;
    199  1.187        ad 	}
    200  1.187        ad 
    201  1.187        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    202  1.187        ad 	sleepq_enter(sq, l);
    203  1.188      yamt 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    204  1.187        ad 	mutex_exit(mtx);
    205  1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    206  1.187        ad 
    207  1.187        ad 	if ((priority & PNORELOCK) == 0)
    208  1.187        ad 		mutex_enter(mtx);
    209  1.187        ad 
    210  1.187        ad 	return error;
    211  1.187        ad }
    212  1.187        ad 
    213   1.26       cgd /*
    214  1.174        ad  * General sleep call for situations where a wake-up is not expected.
    215   1.26       cgd  */
    216  1.174        ad int
    217  1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    218   1.26       cgd {
    219  1.174        ad 	struct lwp *l = curlwp;
    220  1.174        ad 	sleepq_t *sq;
    221  1.174        ad 	int error;
    222   1.26       cgd 
    223  1.174        ad 	if (sleepq_dontsleep(l))
    224  1.174        ad 		return sleepq_abort(NULL, 0);
    225   1.26       cgd 
    226  1.174        ad 	if (mtx != NULL)
    227  1.174        ad 		mutex_exit(mtx);
    228  1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    229  1.174        ad 	sleepq_enter(sq, l);
    230  1.188      yamt 	sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
    231  1.188      yamt 	error = sleepq_block(timo, intr);
    232  1.174        ad 	if (mtx != NULL)
    233  1.174        ad 		mutex_enter(mtx);
    234   1.83   thorpej 
    235  1.174        ad 	return error;
    236  1.139        cl }
    237  1.139        cl 
    238   1.26       cgd /*
    239  1.174        ad  * OBSOLETE INTERFACE
    240  1.174        ad  *
    241   1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    242   1.26       cgd  */
    243   1.26       cgd void
    244  1.174        ad wakeup(wchan_t ident)
    245   1.26       cgd {
    246  1.174        ad 	sleepq_t *sq;
    247   1.83   thorpej 
    248  1.174        ad 	if (cold)
    249  1.174        ad 		return;
    250   1.83   thorpej 
    251  1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    252  1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    253   1.63   thorpej }
    254   1.63   thorpej 
    255   1.63   thorpej /*
    256  1.174        ad  * OBSOLETE INTERFACE
    257  1.174        ad  *
    258   1.63   thorpej  * Make the highest priority process first in line on the specified
    259   1.63   thorpej  * identifier runnable.
    260   1.63   thorpej  */
    261  1.174        ad void
    262  1.174        ad wakeup_one(wchan_t ident)
    263   1.63   thorpej {
    264  1.174        ad 	sleepq_t *sq;
    265   1.63   thorpej 
    266  1.174        ad 	if (cold)
    267  1.174        ad 		return;
    268  1.188      yamt 
    269  1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    270  1.174        ad 	sleepq_wake(sq, ident, 1);
    271  1.174        ad }
    272   1.63   thorpej 
    273  1.117  gmcgarry 
    274  1.117  gmcgarry /*
    275  1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    276  1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    277  1.117  gmcgarry  * current process explicitly requests it (eg sched_yield(2) in compat code).
    278  1.117  gmcgarry  */
    279  1.117  gmcgarry void
    280  1.117  gmcgarry yield(void)
    281  1.117  gmcgarry {
    282  1.122   thorpej 	struct lwp *l = curlwp;
    283  1.117  gmcgarry 
    284  1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    285  1.174        ad 	lwp_lock(l);
    286  1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    287  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    288  1.188      yamt 	l->l_priority = l->l_usrpri;
    289  1.188      yamt 	(void)mi_switch(l);
    290  1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    291   1.69   thorpej }
    292   1.69   thorpej 
    293   1.69   thorpej /*
    294   1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    295  1.156    rpaulo  * and performs an involuntary context switch.
    296   1.69   thorpej  */
    297   1.69   thorpej void
    298  1.174        ad preempt(void)
    299   1.69   thorpej {
    300  1.122   thorpej 	struct lwp *l = curlwp;
    301   1.69   thorpej 
    302  1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    303  1.174        ad 	lwp_lock(l);
    304  1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    305  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    306  1.188      yamt 	l->l_priority = l->l_usrpri;
    307  1.174        ad 	l->l_nivcsw++;
    308  1.188      yamt 	(void)mi_switch(l);
    309  1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    310   1.69   thorpej }
    311   1.69   thorpej 
    312   1.69   thorpej /*
    313  1.188      yamt  * Compute the amount of time during which the current lwp was running.
    314  1.130   nathanw  *
    315  1.188      yamt  * - update l_rtime unless it's an idle lwp.
    316  1.188      yamt  * - update spc_runtime for the next lwp.
    317  1.188      yamt  */
    318  1.188      yamt 
    319  1.188      yamt static inline void
    320  1.188      yamt updatertime(struct lwp *l, struct schedstate_percpu *spc)
    321  1.188      yamt {
    322  1.188      yamt 	struct timeval tv;
    323  1.188      yamt 	long s, u;
    324  1.188      yamt 
    325  1.188      yamt 	if ((l->l_flag & LW_IDLE) != 0) {
    326  1.188      yamt 		microtime(&spc->spc_runtime);
    327  1.188      yamt 		return;
    328  1.188      yamt 	}
    329  1.188      yamt 
    330  1.188      yamt 	microtime(&tv);
    331  1.188      yamt 	u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    332  1.188      yamt 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    333  1.188      yamt 	if (u < 0) {
    334  1.188      yamt 		u += 1000000;
    335  1.188      yamt 		s--;
    336  1.188      yamt 	} else if (u >= 1000000) {
    337  1.188      yamt 		u -= 1000000;
    338  1.188      yamt 		s++;
    339  1.188      yamt 	}
    340  1.188      yamt 	l->l_rtime.tv_usec = u;
    341  1.188      yamt 	l->l_rtime.tv_sec = s;
    342  1.188      yamt 
    343  1.188      yamt 	spc->spc_runtime = tv;
    344  1.188      yamt }
    345  1.188      yamt 
    346  1.188      yamt /*
    347  1.188      yamt  * The machine independent parts of context switch.
    348  1.188      yamt  *
    349  1.188      yamt  * Returns 1 if another LWP was actually run.
    350   1.26       cgd  */
    351  1.122   thorpej int
    352  1.188      yamt mi_switch(struct lwp *l)
    353   1.26       cgd {
    354   1.76   thorpej 	struct schedstate_percpu *spc;
    355  1.188      yamt 	struct lwp *newl;
    356  1.174        ad 	int retval, oldspl;
    357   1.26       cgd 
    358  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    359  1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    360  1.174        ad 
    361  1.174        ad #ifdef LOCKDEBUG
    362  1.174        ad 	spinlock_switchcheck();
    363  1.174        ad 	simple_lock_switchcheck();
    364  1.174        ad #endif
    365  1.174        ad #ifdef KSTACK_CHECK_MAGIC
    366  1.174        ad 	kstack_check_magic(l);
    367  1.174        ad #endif
    368   1.83   thorpej 
    369   1.90  sommerfe 	/*
    370  1.174        ad 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    371  1.174        ad 	 * are after is the run time and that's guarenteed to have been last
    372  1.174        ad 	 * updated by this CPU.
    373   1.90  sommerfe 	 */
    374  1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    375   1.26       cgd 
    376  1.180       dsl 	/* Count time spent in current system call */
    377  1.180       dsl 	SYSCALL_TIME_SLEEP(l);
    378  1.180       dsl 
    379   1.26       cgd 	/*
    380  1.174        ad 	 * XXXSMP If we are using h/w performance counters, save context.
    381   1.69   thorpej 	 */
    382  1.174        ad #if PERFCTRS
    383  1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    384  1.175  christos 		pmc_save_context(l->l_proc);
    385  1.174        ad 	}
    386  1.109      yamt #endif
    387  1.113  gmcgarry 	/*
    388  1.188      yamt 	 * Process is about to yield the CPU; clear the appropriate
    389  1.188      yamt 	 * scheduling flags.
    390  1.113  gmcgarry 	 */
    391  1.188      yamt 	spc = &l->l_cpu->ci_schedstate;
    392  1.188      yamt 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    393  1.188      yamt 	updatertime(l, spc);
    394  1.113  gmcgarry 
    395  1.113  gmcgarry 	/*
    396  1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    397  1.113  gmcgarry 	 */
    398  1.188      yamt 	mutex_spin_enter(spc->spc_mutex);
    399  1.174        ad 	KASSERT(l->l_stat != LSRUN);
    400  1.174        ad 	if (l->l_stat == LSONPROC) {
    401  1.188      yamt 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    402  1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    403  1.188      yamt 			l->l_stat = LSRUN;
    404  1.188      yamt 			lwp_setlock(l, spc->spc_mutex);
    405  1.188      yamt 			sched_enqueue(l, true);
    406  1.188      yamt 		} else
    407  1.188      yamt 			l->l_stat = LSIDL;
    408  1.174        ad 	}
    409  1.174        ad 
    410  1.174        ad 	/*
    411  1.188      yamt 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    412  1.188      yamt 	 * If no LWP is runnable, switch to the idle LWP.
    413  1.174        ad 	 */
    414  1.188      yamt 	newl = sched_nextlwp();
    415  1.188      yamt 	if (newl) {
    416  1.188      yamt 		sched_dequeue(newl);
    417  1.188      yamt 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    418  1.188      yamt 		newl->l_stat = LSONPROC;
    419  1.188      yamt 		newl->l_cpu = l->l_cpu;
    420  1.188      yamt 		newl->l_flag |= LW_RUNNING;
    421  1.188      yamt 		lwp_setlock(newl, &spc->spc_lwplock);
    422  1.188      yamt 	} else {
    423  1.188      yamt 		newl = l->l_cpu->ci_data.cpu_idlelwp;
    424  1.188      yamt 		newl->l_stat = LSONPROC;
    425  1.188      yamt 		newl->l_flag |= LW_RUNNING;
    426  1.188      yamt 	}
    427  1.188      yamt 	spc->spc_curpriority = newl->l_usrpri;
    428  1.188      yamt 	cpu_did_resched();
    429  1.188      yamt 
    430  1.188      yamt 	if (l != newl) {
    431  1.188      yamt 		struct lwp *prevlwp;
    432  1.174        ad 
    433  1.188      yamt 		/*
    434  1.188      yamt 		 * If the old LWP has been moved to a run queue above,
    435  1.188      yamt 		 * drop the general purpose LWP lock: it's now locked
    436  1.188      yamt 		 * by the scheduler lock.
    437  1.188      yamt 		 *
    438  1.188      yamt 		 * Otherwise, drop the scheduler lock.  We're done with
    439  1.188      yamt 		 * the run queues for now.
    440  1.188      yamt 		 */
    441  1.188      yamt 		if (l->l_mutex == spc->spc_mutex) {
    442  1.188      yamt 			mutex_spin_exit(&spc->spc_lwplock);
    443  1.188      yamt 		} else {
    444  1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    445  1.188      yamt 		}
    446  1.188      yamt 
    447  1.188      yamt 		/* Unlocked, but for statistics only. */
    448  1.188      yamt 		uvmexp.swtch++;
    449  1.188      yamt 
    450  1.188      yamt 		/* Save old VM context. */
    451  1.188      yamt 		pmap_deactivate(l);
    452  1.188      yamt 
    453  1.188      yamt 		/* Switch to the new LWP.. */
    454  1.188      yamt 		l->l_ncsw++;
    455  1.188      yamt 		l->l_flag &= ~LW_RUNNING;
    456  1.188      yamt 		oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    457  1.188      yamt 		prevlwp = cpu_switchto(l, newl);
    458  1.174        ad 
    459  1.188      yamt 		/*
    460  1.188      yamt 		 * .. we have switched away and are now back so we must
    461  1.188      yamt 		 * be the new curlwp.  prevlwp is who we replaced.
    462  1.188      yamt 		 */
    463  1.188      yamt 		curlwp = l;
    464  1.188      yamt 		if (prevlwp != NULL) {
    465  1.188      yamt 			curcpu()->ci_mtx_oldspl = oldspl;
    466  1.188      yamt 			lwp_unlock(prevlwp);
    467  1.188      yamt 		} else {
    468  1.188      yamt 			splx(oldspl);
    469  1.188      yamt 		}
    470  1.174        ad 
    471  1.188      yamt 		/* Restore VM context. */
    472  1.188      yamt 		pmap_activate(l);
    473  1.188      yamt 		retval = 1;
    474  1.188      yamt 	} else {
    475  1.188      yamt 		/* Nothing to do - just unlock and return. */
    476  1.188      yamt 		mutex_spin_exit(spc->spc_mutex);
    477  1.188      yamt 		lwp_unlock(l);
    478  1.122   thorpej 		retval = 0;
    479  1.122   thorpej 	}
    480  1.110    briggs 
    481  1.188      yamt 	KASSERT(l == curlwp);
    482  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    483  1.188      yamt 
    484  1.110    briggs 	/*
    485  1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    486   1.26       cgd 	 */
    487  1.114  gmcgarry #if PERFCTRS
    488  1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    489  1.175  christos 		pmc_restore_context(l->l_proc);
    490  1.166  christos 	}
    491  1.114  gmcgarry #endif
    492  1.110    briggs 
    493  1.110    briggs 	/*
    494   1.76   thorpej 	 * We're running again; record our new start time.  We might
    495  1.174        ad 	 * be running on a new CPU now, so don't use the cached
    496   1.76   thorpej 	 * schedstate_percpu pointer.
    497   1.76   thorpej 	 */
    498  1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    499  1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    500  1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    501  1.169      yamt 
    502  1.122   thorpej 	return retval;
    503   1.26       cgd }
    504   1.26       cgd 
    505   1.26       cgd /*
    506  1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    507  1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    508  1.174        ad  *
    509  1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    510   1.26       cgd  */
    511   1.26       cgd void
    512  1.122   thorpej setrunnable(struct lwp *l)
    513   1.26       cgd {
    514  1.122   thorpej 	struct proc *p = l->l_proc;
    515  1.174        ad 	sigset_t *ss;
    516   1.26       cgd 
    517  1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    518  1.183        ad 	KASSERT(mutex_owned(&p->p_smutex));
    519  1.183        ad 	KASSERT(lwp_locked(l, NULL));
    520   1.83   thorpej 
    521  1.122   thorpej 	switch (l->l_stat) {
    522  1.122   thorpej 	case LSSTOP:
    523   1.33   mycroft 		/*
    524   1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    525   1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    526   1.33   mycroft 		 */
    527  1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    528  1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    529  1.174        ad 				ss = &l->l_sigpend.sp_set;
    530  1.174        ad 			else
    531  1.174        ad 				ss = &p->p_sigpend.sp_set;
    532  1.174        ad 			sigaddset(ss, p->p_xstat);
    533  1.174        ad 			signotify(l);
    534   1.53   mycroft 		}
    535  1.174        ad 		p->p_nrlwps++;
    536   1.26       cgd 		break;
    537  1.174        ad 	case LSSUSPENDED:
    538  1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    539  1.174        ad 		p->p_nrlwps++;
    540  1.122   thorpej 		break;
    541  1.174        ad 	case LSSLEEP:
    542  1.174        ad 		KASSERT(l->l_wchan != NULL);
    543   1.26       cgd 		break;
    544  1.174        ad 	default:
    545  1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    546   1.26       cgd 	}
    547  1.139        cl 
    548  1.174        ad 	/*
    549  1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    550  1.174        ad 	 * again.  If not, mark it as still sleeping.
    551  1.174        ad 	 */
    552  1.174        ad 	if (l->l_wchan != NULL) {
    553  1.174        ad 		l->l_stat = LSSLEEP;
    554  1.183        ad 		/* lwp_unsleep() will release the lock. */
    555  1.183        ad 		lwp_unsleep(l);
    556  1.174        ad 		return;
    557  1.174        ad 	}
    558  1.139        cl 
    559  1.174        ad 	/*
    560  1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    561  1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    562  1.174        ad 	 */
    563  1.188      yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    564  1.174        ad 		l->l_stat = LSONPROC;
    565  1.174        ad 		l->l_slptime = 0;
    566  1.174        ad 		lwp_unlock(l);
    567  1.174        ad 		return;
    568  1.174        ad 	}
    569  1.122   thorpej 
    570  1.174        ad 	/*
    571  1.174        ad 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    572  1.174        ad 	 * to bring it back in.  Otherwise, enter it into a run queue.
    573  1.174        ad 	 */
    574  1.189        ad 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    575  1.189        ad 		spc_lock(l->l_cpu);
    576  1.189        ad 		lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
    577  1.189        ad 	}
    578  1.189        ad 
    579  1.188      yamt 	sched_setrunnable(l);
    580  1.174        ad 	l->l_stat = LSRUN;
    581  1.122   thorpej 	l->l_slptime = 0;
    582  1.174        ad 
    583  1.178     pavel 	if (l->l_flag & LW_INMEM) {
    584  1.188      yamt 		sched_enqueue(l, false);
    585  1.188      yamt 		resched_cpu(l);
    586  1.174        ad 		lwp_unlock(l);
    587  1.174        ad 	} else {
    588  1.174        ad 		lwp_unlock(l);
    589  1.177        ad 		uvm_kick_scheduler();
    590  1.174        ad 	}
    591   1.26       cgd }
    592   1.26       cgd 
    593   1.26       cgd /*
    594  1.174        ad  * suspendsched:
    595  1.174        ad  *
    596  1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    597  1.174        ad  */
    598   1.94    bouyer void
    599  1.174        ad suspendsched(void)
    600   1.94    bouyer {
    601  1.174        ad #ifdef MULTIPROCESSOR
    602  1.174        ad 	CPU_INFO_ITERATOR cii;
    603  1.174        ad 	struct cpu_info *ci;
    604  1.174        ad #endif
    605  1.122   thorpej 	struct lwp *l;
    606  1.174        ad 	struct proc *p;
    607   1.94    bouyer 
    608   1.94    bouyer 	/*
    609  1.174        ad 	 * We do this by process in order not to violate the locking rules.
    610   1.94    bouyer 	 */
    611  1.174        ad 	mutex_enter(&proclist_mutex);
    612  1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    613  1.174        ad 		mutex_enter(&p->p_smutex);
    614  1.174        ad 
    615  1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    616  1.174        ad 			mutex_exit(&p->p_smutex);
    617   1.94    bouyer 			continue;
    618  1.174        ad 		}
    619  1.174        ad 
    620  1.174        ad 		p->p_stat = SSTOP;
    621  1.174        ad 
    622  1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    623  1.174        ad 			if (l == curlwp)
    624  1.174        ad 				continue;
    625  1.174        ad 
    626  1.174        ad 			lwp_lock(l);
    627  1.122   thorpej 
    628   1.97     enami 			/*
    629  1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    630  1.174        ad 			 * when it tries to return to user mode.  We want to
    631  1.174        ad 			 * try and get to get as many LWPs as possible to
    632  1.174        ad 			 * the user / kernel boundary, so that they will
    633  1.174        ad 			 * release any locks that they hold.
    634   1.97     enami 			 */
    635  1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    636  1.174        ad 
    637  1.174        ad 			if (l->l_stat == LSSLEEP &&
    638  1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    639  1.174        ad 				/* setrunnable() will release the lock. */
    640  1.174        ad 				setrunnable(l);
    641  1.174        ad 				continue;
    642  1.174        ad 			}
    643  1.174        ad 
    644  1.174        ad 			lwp_unlock(l);
    645   1.94    bouyer 		}
    646  1.174        ad 
    647  1.174        ad 		mutex_exit(&p->p_smutex);
    648   1.94    bouyer 	}
    649  1.174        ad 	mutex_exit(&proclist_mutex);
    650  1.174        ad 
    651  1.174        ad 	/*
    652  1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    653  1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    654  1.174        ad 	 */
    655  1.174        ad #ifdef MULTIPROCESSOR
    656  1.174        ad 	for (CPU_INFO_FOREACH(cii, ci))
    657  1.188      yamt 		cpu_need_resched(ci, 0);
    658  1.174        ad #else
    659  1.188      yamt 	cpu_need_resched(curcpu(), 0);
    660  1.174        ad #endif
    661  1.174        ad }
    662  1.174        ad 
    663  1.174        ad /*
    664  1.174        ad  * sched_kpri:
    665  1.174        ad  *
    666  1.174        ad  *	Scale a priority level to a kernel priority level, usually
    667  1.174        ad  *	for an LWP that is about to sleep.
    668  1.174        ad  */
    669  1.185      yamt pri_t
    670  1.174        ad sched_kpri(struct lwp *l)
    671  1.174        ad {
    672  1.174        ad 	/*
    673  1.174        ad 	 * Scale user priorities (127 -> 50) up to kernel priorities
    674  1.174        ad 	 * in the range (49 -> 8).  Reserve the top 8 kernel priorities
    675  1.174        ad 	 * for high priority kthreads.  Kernel priorities passed in
    676  1.174        ad 	 * are left "as is".  XXX This is somewhat arbitrary.
    677  1.174        ad 	 */
    678  1.174        ad 	static const uint8_t kpri_tab[] = {
    679  1.174        ad 		 0,   1,   2,   3,   4,   5,   6,   7,
    680  1.174        ad 		 8,   9,  10,  11,  12,  13,  14,  15,
    681  1.174        ad 		16,  17,  18,  19,  20,  21,  22,  23,
    682  1.174        ad 		24,  25,  26,  27,  28,  29,  30,  31,
    683  1.174        ad 		32,  33,  34,  35,  36,  37,  38,  39,
    684  1.174        ad 		40,  41,  42,  43,  44,  45,  46,  47,
    685  1.174        ad 		48,  49,   8,   8,   9,   9,  10,  10,
    686  1.174        ad 		11,  11,  12,  12,  13,  14,  14,  15,
    687  1.174        ad 		15,  16,  16,  17,  17,  18,  18,  19,
    688  1.174        ad 		20,  20,  21,  21,  22,  22,  23,  23,
    689  1.174        ad 		24,  24,  25,  26,  26,  27,  27,  28,
    690  1.174        ad 		28,  29,  29,  30,  30,  31,  32,  32,
    691  1.174        ad 		33,  33,  34,  34,  35,  35,  36,  36,
    692  1.174        ad 		37,  38,  38,  39,  39,  40,  40,  41,
    693  1.174        ad 		41,  42,  42,  43,  44,  44,  45,  45,
    694  1.174        ad 		46,  46,  47,  47,  48,  48,  49,  49,
    695  1.174        ad 	};
    696  1.174        ad 
    697  1.185      yamt 	return (pri_t)kpri_tab[l->l_usrpri];
    698  1.174        ad }
    699  1.174        ad 
    700  1.174        ad /*
    701  1.174        ad  * sched_unsleep:
    702  1.174        ad  *
    703  1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    704  1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    705  1.174        ad  *	it's not a valid action for running or idle LWPs.
    706  1.174        ad  */
    707  1.188      yamt static void
    708  1.174        ad sched_unsleep(struct lwp *l)
    709  1.174        ad {
    710  1.174        ad 
    711  1.174        ad 	lwp_unlock(l);
    712  1.174        ad 	panic("sched_unsleep");
    713  1.174        ad }
    714  1.174        ad 
    715  1.188      yamt inline void
    716  1.188      yamt resched_cpu(struct lwp *l)
    717  1.188      yamt {
    718  1.188      yamt 	struct cpu_info *ci;
    719  1.188      yamt 	const pri_t pri = lwp_eprio(l);
    720  1.188      yamt 
    721  1.188      yamt 	/*
    722  1.188      yamt 	 * XXXSMP
    723  1.188      yamt 	 * Since l->l_cpu persists across a context switch,
    724  1.188      yamt 	 * this gives us *very weak* processor affinity, in
    725  1.188      yamt 	 * that we notify the CPU on which the process last
    726  1.188      yamt 	 * ran that it should try to switch.
    727  1.188      yamt 	 *
    728  1.188      yamt 	 * This does not guarantee that the process will run on
    729  1.188      yamt 	 * that processor next, because another processor might
    730  1.188      yamt 	 * grab it the next time it performs a context switch.
    731  1.188      yamt 	 *
    732  1.188      yamt 	 * This also does not handle the case where its last
    733  1.188      yamt 	 * CPU is running a higher-priority process, but every
    734  1.188      yamt 	 * other CPU is running a lower-priority process.  There
    735  1.188      yamt 	 * are ways to handle this situation, but they're not
    736  1.188      yamt 	 * currently very pretty, and we also need to weigh the
    737  1.188      yamt 	 * cost of moving a process from one CPU to another.
    738  1.188      yamt 	 */
    739  1.188      yamt 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    740  1.188      yamt 	if (pri < ci->ci_schedstate.spc_curpriority)
    741  1.188      yamt 		cpu_need_resched(ci, 0);
    742  1.188      yamt }
    743  1.188      yamt 
    744  1.188      yamt static void
    745  1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
    746  1.174        ad {
    747  1.174        ad 
    748  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    749  1.174        ad 
    750  1.174        ad 	l->l_usrpri = pri;
    751  1.174        ad 	if (l->l_priority < PUSER)
    752  1.174        ad 		return;
    753  1.184      yamt 
    754  1.184      yamt 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    755  1.174        ad 		l->l_priority = pri;
    756  1.174        ad 		return;
    757  1.157      yamt 	}
    758  1.174        ad 
    759  1.188      yamt 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    760  1.188      yamt 
    761  1.188      yamt 	sched_dequeue(l);
    762  1.174        ad 	l->l_priority = pri;
    763  1.188      yamt 	sched_enqueue(l, false);
    764  1.188      yamt 	resched_cpu(l);
    765  1.184      yamt }
    766  1.184      yamt 
    767  1.188      yamt static void
    768  1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
    769  1.184      yamt {
    770  1.184      yamt 
    771  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    772  1.184      yamt 
    773  1.184      yamt 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    774  1.184      yamt 		l->l_inheritedprio = pri;
    775  1.184      yamt 		return;
    776  1.184      yamt 	}
    777  1.184      yamt 
    778  1.188      yamt 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    779  1.188      yamt 
    780  1.188      yamt 	sched_dequeue(l);
    781  1.184      yamt 	l->l_inheritedprio = pri;
    782  1.188      yamt 	sched_enqueue(l, false);
    783  1.188      yamt 	resched_cpu(l);
    784  1.184      yamt }
    785  1.184      yamt 
    786  1.184      yamt struct lwp *
    787  1.184      yamt syncobj_noowner(wchan_t wchan)
    788  1.184      yamt {
    789  1.184      yamt 
    790  1.184      yamt 	return NULL;
    791  1.151      yamt }
    792  1.151      yamt 
    793  1.113  gmcgarry 
    794  1.188      yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    795  1.188      yamt fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    796  1.115  nisimura 
    797  1.130   nathanw /*
    798  1.188      yamt  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    799  1.188      yamt  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    800  1.188      yamt  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    801  1.188      yamt  *
    802  1.188      yamt  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    803  1.188      yamt  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    804  1.188      yamt  *
    805  1.188      yamt  * If you dont want to bother with the faster/more-accurate formula, you
    806  1.188      yamt  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    807  1.188      yamt  * (more general) method of calculating the %age of CPU used by a process.
    808  1.134      matt  */
    809  1.188      yamt #define	CCPU_SHIFT	(FSHIFT + 1)
    810  1.134      matt 
    811  1.134      matt /*
    812  1.188      yamt  * sched_pstats:
    813  1.188      yamt  *
    814  1.188      yamt  * Update process statistics and check CPU resource allocation.
    815  1.188      yamt  * Call scheduler-specific hook to eventually adjust process/LWP
    816  1.188      yamt  * priorities.
    817  1.188      yamt  *
    818  1.188      yamt  *	XXXSMP This needs to be reorganised in order to reduce the locking
    819  1.188      yamt  *	burden.
    820  1.130   nathanw  */
    821  1.188      yamt /* ARGSUSED */
    822  1.113  gmcgarry void
    823  1.188      yamt sched_pstats(void *arg)
    824  1.113  gmcgarry {
    825  1.188      yamt 	struct rlimit *rlim;
    826  1.188      yamt 	struct lwp *l;
    827  1.188      yamt 	struct proc *p;
    828  1.188      yamt 	int minslp, sig, clkhz;
    829  1.188      yamt 	long runtm;
    830  1.113  gmcgarry 
    831  1.188      yamt 	sched_pstats_ticks++;
    832  1.174        ad 
    833  1.188      yamt 	mutex_enter(&proclist_mutex);
    834  1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
    835  1.188      yamt 		/*
    836  1.188      yamt 		 * Increment time in/out of memory and sleep time (if
    837  1.188      yamt 		 * sleeping).  We ignore overflow; with 16-bit int's
    838  1.188      yamt 		 * (remember them?) overflow takes 45 days.
    839  1.188      yamt 		 */
    840  1.188      yamt 		minslp = 2;
    841  1.188      yamt 		mutex_enter(&p->p_smutex);
    842  1.188      yamt 		mutex_spin_enter(&p->p_stmutex);
    843  1.188      yamt 		runtm = p->p_rtime.tv_sec;
    844  1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    845  1.188      yamt 			if ((l->l_flag & LW_IDLE) != 0)
    846  1.188      yamt 				continue;
    847  1.188      yamt 			lwp_lock(l);
    848  1.188      yamt 			runtm += l->l_rtime.tv_sec;
    849  1.188      yamt 			l->l_swtime++;
    850  1.188      yamt 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    851  1.188      yamt 			    l->l_stat == LSSUSPENDED) {
    852  1.188      yamt 				l->l_slptime++;
    853  1.188      yamt 				minslp = min(minslp, l->l_slptime);
    854  1.188      yamt 			} else
    855  1.188      yamt 				minslp = 0;
    856  1.188      yamt 			lwp_unlock(l);
    857  1.113  gmcgarry 
    858  1.188      yamt 			/*
    859  1.188      yamt 			 * p_pctcpu is only for ps.
    860  1.188      yamt 			 */
    861  1.188      yamt 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    862  1.188      yamt 			if (l->l_slptime < 1) {
    863  1.188      yamt 				clkhz = stathz != 0 ? stathz : hz;
    864  1.188      yamt #if	(FSHIFT >= CCPU_SHIFT)
    865  1.188      yamt 				l->l_pctcpu += (clkhz == 100) ?
    866  1.188      yamt 				    ((fixpt_t)l->l_cpticks) <<
    867  1.188      yamt 				        (FSHIFT - CCPU_SHIFT) :
    868  1.188      yamt 				    100 * (((fixpt_t) p->p_cpticks)
    869  1.188      yamt 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    870  1.188      yamt #else
    871  1.188      yamt 				l->l_pctcpu += ((FSCALE - ccpu) *
    872  1.188      yamt 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    873  1.146      matt #endif
    874  1.188      yamt 				l->l_cpticks = 0;
    875  1.188      yamt 			}
    876  1.188      yamt 		}
    877  1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    878  1.188      yamt 		sched_pstats_hook(p, minslp);
    879  1.188      yamt 		mutex_spin_exit(&p->p_stmutex);
    880  1.174        ad 
    881  1.188      yamt 		/*
    882  1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
    883  1.188      yamt 		 * If over max, kill it.
    884  1.188      yamt 		 */
    885  1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
    886  1.188      yamt 		sig = 0;
    887  1.188      yamt 		if (runtm >= rlim->rlim_cur) {
    888  1.188      yamt 			if (runtm >= rlim->rlim_max)
    889  1.188      yamt 				sig = SIGKILL;
    890  1.188      yamt 			else {
    891  1.188      yamt 				sig = SIGXCPU;
    892  1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
    893  1.188      yamt 					rlim->rlim_cur += 5;
    894  1.188      yamt 			}
    895  1.188      yamt 		}
    896  1.188      yamt 		mutex_exit(&p->p_smutex);
    897  1.188      yamt 		if (sig) {
    898  1.188      yamt 			psignal(p, sig);
    899  1.188      yamt 		}
    900  1.174        ad 	}
    901  1.188      yamt 	mutex_exit(&proclist_mutex);
    902  1.188      yamt 	uvm_meter();
    903  1.188      yamt 	wakeup(&lbolt);
    904  1.188      yamt 	callout_schedule(&sched_pstats_ch, hz);
    905  1.113  gmcgarry }
    906