Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.192.2.10
      1  1.192.2.10     joerg /*	$NetBSD: kern_synch.c,v 1.192.2.10 2007/11/11 16:48:04 joerg Exp $	*/
      2        1.63   thorpej 
      3        1.63   thorpej /*-
      4       1.174        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5        1.63   thorpej  * All rights reserved.
      6        1.63   thorpej  *
      7        1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8        1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9       1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10       1.188      yamt  * Daniel Sieger.
     11        1.63   thorpej  *
     12        1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13        1.63   thorpej  * modification, are permitted provided that the following conditions
     14        1.63   thorpej  * are met:
     15        1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16        1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17        1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18        1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19        1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20        1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     21        1.63   thorpej  *    must display the following acknowledgement:
     22        1.63   thorpej  *	This product includes software developed by the NetBSD
     23        1.63   thorpej  *	Foundation, Inc. and its contributors.
     24        1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25        1.63   thorpej  *    contributors may be used to endorse or promote products derived
     26        1.63   thorpej  *    from this software without specific prior written permission.
     27        1.63   thorpej  *
     28        1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29        1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30        1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31        1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32        1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33        1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34        1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35        1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36        1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37        1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38        1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     39        1.63   thorpej  */
     40        1.26       cgd 
     41        1.26       cgd /*-
     42        1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43        1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     44        1.26       cgd  * (c) UNIX System Laboratories, Inc.
     45        1.26       cgd  * All or some portions of this file are derived from material licensed
     46        1.26       cgd  * to the University of California by American Telephone and Telegraph
     47        1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48        1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     49        1.26       cgd  *
     50        1.26       cgd  * Redistribution and use in source and binary forms, with or without
     51        1.26       cgd  * modification, are permitted provided that the following conditions
     52        1.26       cgd  * are met:
     53        1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     54        1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     55        1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     56        1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     57        1.26       cgd  *    documentation and/or other materials provided with the distribution.
     58       1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     59        1.26       cgd  *    may be used to endorse or promote products derived from this software
     60        1.26       cgd  *    without specific prior written permission.
     61        1.26       cgd  *
     62        1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63        1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64        1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65        1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66        1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67        1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68        1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69        1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70        1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71        1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72        1.26       cgd  * SUCH DAMAGE.
     73        1.26       cgd  *
     74        1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75        1.26       cgd  */
     76       1.106     lukem 
     77       1.106     lukem #include <sys/cdefs.h>
     78  1.192.2.10     joerg __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.192.2.10 2007/11/11 16:48:04 joerg Exp $");
     79        1.48       mrg 
     80       1.109      yamt #include "opt_kstack.h"
     81        1.82   thorpej #include "opt_lockdebug.h"
     82        1.83   thorpej #include "opt_multiprocessor.h"
     83       1.110    briggs #include "opt_perfctrs.h"
     84        1.26       cgd 
     85       1.174        ad #define	__MUTEX_PRIVATE
     86       1.174        ad 
     87        1.26       cgd #include <sys/param.h>
     88        1.26       cgd #include <sys/systm.h>
     89        1.26       cgd #include <sys/proc.h>
     90        1.26       cgd #include <sys/kernel.h>
     91       1.111    briggs #if defined(PERFCTRS)
     92       1.110    briggs #include <sys/pmc.h>
     93       1.111    briggs #endif
     94       1.188      yamt #include <sys/cpu.h>
     95        1.26       cgd #include <sys/resourcevar.h>
     96        1.55      ross #include <sys/sched.h>
     97       1.179       dsl #include <sys/syscall_stats.h>
     98       1.174        ad #include <sys/sleepq.h>
     99       1.174        ad #include <sys/lockdebug.h>
    100       1.190        ad #include <sys/evcnt.h>
    101   1.192.2.5     joerg #include <sys/intr.h>
    102        1.47       mrg 
    103        1.47       mrg #include <uvm/uvm_extern.h>
    104        1.47       mrg 
    105       1.190        ad callout_t sched_pstats_ch;
    106       1.188      yamt unsigned int sched_pstats_ticks;
    107        1.34  christos 
    108       1.190        ad kcondvar_t	lbolt;			/* once a second sleep address */
    109        1.26       cgd 
    110       1.188      yamt static void	sched_unsleep(struct lwp *);
    111       1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    112       1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    113       1.122   thorpej 
    114       1.174        ad syncobj_t sleep_syncobj = {
    115       1.174        ad 	SOBJ_SLEEPQ_SORTED,
    116       1.174        ad 	sleepq_unsleep,
    117       1.184      yamt 	sleepq_changepri,
    118       1.184      yamt 	sleepq_lendpri,
    119       1.184      yamt 	syncobj_noowner,
    120       1.174        ad };
    121       1.174        ad 
    122       1.174        ad syncobj_t sched_syncobj = {
    123       1.174        ad 	SOBJ_SLEEPQ_SORTED,
    124       1.174        ad 	sched_unsleep,
    125       1.184      yamt 	sched_changepri,
    126       1.184      yamt 	sched_lendpri,
    127       1.184      yamt 	syncobj_noowner,
    128       1.174        ad };
    129       1.122   thorpej 
    130        1.26       cgd /*
    131       1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    132       1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    133       1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    134       1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    135       1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    136       1.174        ad  * it can be made higher to block network software interrupts after panics.
    137        1.26       cgd  */
    138       1.174        ad int	safepri;
    139        1.26       cgd 
    140        1.26       cgd /*
    141       1.174        ad  * OBSOLETE INTERFACE
    142       1.174        ad  *
    143        1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    144        1.26       cgd  * performed on the specified identifier.  The process will then be made
    145       1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    146       1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    147        1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    148        1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    149        1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    150        1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    151        1.26       cgd  * call should be interrupted by the signal (return EINTR).
    152        1.77   thorpej  *
    153       1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    154       1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    155       1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    156       1.174        ad  * return.
    157        1.26       cgd  */
    158        1.26       cgd int
    159       1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    160       1.174        ad 	volatile struct simplelock *interlock)
    161        1.26       cgd {
    162       1.122   thorpej 	struct lwp *l = curlwp;
    163       1.174        ad 	sleepq_t *sq;
    164       1.188      yamt 	int error;
    165        1.26       cgd 
    166   1.192.2.8     joerg 	KASSERT((l->l_pflag & LP_INTR) == 0);
    167   1.192.2.8     joerg 
    168       1.174        ad 	if (sleepq_dontsleep(l)) {
    169       1.174        ad 		(void)sleepq_abort(NULL, 0);
    170       1.174        ad 		if ((priority & PNORELOCK) != 0)
    171        1.77   thorpej 			simple_unlock(interlock);
    172       1.174        ad 		return 0;
    173        1.26       cgd 	}
    174        1.78  sommerfe 
    175   1.192.2.8     joerg 	l->l_kpriority = true;
    176       1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    177       1.174        ad 	sleepq_enter(sq, l);
    178   1.192.2.8     joerg 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    179        1.42       cgd 
    180       1.174        ad 	if (interlock != NULL) {
    181   1.192.2.8     joerg 		KASSERT(simple_lock_held(interlock));
    182       1.174        ad 		simple_unlock(interlock);
    183       1.150       chs 	}
    184       1.150       chs 
    185       1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    186       1.126        pk 
    187       1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    188       1.126        pk 		simple_lock(interlock);
    189       1.174        ad 
    190       1.174        ad 	return error;
    191        1.26       cgd }
    192        1.26       cgd 
    193       1.187        ad int
    194       1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    195       1.187        ad 	kmutex_t *mtx)
    196       1.187        ad {
    197       1.187        ad 	struct lwp *l = curlwp;
    198       1.187        ad 	sleepq_t *sq;
    199       1.188      yamt 	int error;
    200       1.187        ad 
    201   1.192.2.8     joerg 	KASSERT((l->l_pflag & LP_INTR) == 0);
    202   1.192.2.8     joerg 
    203       1.187        ad 	if (sleepq_dontsleep(l)) {
    204       1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    205       1.187        ad 		return 0;
    206       1.187        ad 	}
    207       1.187        ad 
    208   1.192.2.8     joerg 	l->l_kpriority = true;
    209       1.187        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    210       1.187        ad 	sleepq_enter(sq, l);
    211   1.192.2.8     joerg 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    212       1.187        ad 	mutex_exit(mtx);
    213       1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    214       1.187        ad 
    215       1.187        ad 	if ((priority & PNORELOCK) == 0)
    216       1.187        ad 		mutex_enter(mtx);
    217       1.187        ad 
    218       1.187        ad 	return error;
    219       1.187        ad }
    220       1.187        ad 
    221        1.26       cgd /*
    222       1.174        ad  * General sleep call for situations where a wake-up is not expected.
    223        1.26       cgd  */
    224       1.174        ad int
    225       1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    226        1.26       cgd {
    227       1.174        ad 	struct lwp *l = curlwp;
    228       1.174        ad 	sleepq_t *sq;
    229       1.174        ad 	int error;
    230        1.26       cgd 
    231       1.174        ad 	if (sleepq_dontsleep(l))
    232       1.174        ad 		return sleepq_abort(NULL, 0);
    233        1.26       cgd 
    234       1.174        ad 	if (mtx != NULL)
    235       1.174        ad 		mutex_exit(mtx);
    236   1.192.2.8     joerg 	l->l_kpriority = true;
    237       1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    238       1.174        ad 	sleepq_enter(sq, l);
    239   1.192.2.8     joerg 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    240       1.188      yamt 	error = sleepq_block(timo, intr);
    241       1.174        ad 	if (mtx != NULL)
    242       1.174        ad 		mutex_enter(mtx);
    243        1.83   thorpej 
    244       1.174        ad 	return error;
    245       1.139        cl }
    246       1.139        cl 
    247        1.26       cgd /*
    248       1.174        ad  * OBSOLETE INTERFACE
    249       1.174        ad  *
    250        1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    251        1.26       cgd  */
    252        1.26       cgd void
    253       1.174        ad wakeup(wchan_t ident)
    254        1.26       cgd {
    255       1.174        ad 	sleepq_t *sq;
    256        1.83   thorpej 
    257       1.174        ad 	if (cold)
    258       1.174        ad 		return;
    259        1.83   thorpej 
    260       1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    261       1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    262        1.63   thorpej }
    263        1.63   thorpej 
    264        1.63   thorpej /*
    265       1.174        ad  * OBSOLETE INTERFACE
    266       1.174        ad  *
    267        1.63   thorpej  * Make the highest priority process first in line on the specified
    268        1.63   thorpej  * identifier runnable.
    269        1.63   thorpej  */
    270       1.174        ad void
    271       1.174        ad wakeup_one(wchan_t ident)
    272        1.63   thorpej {
    273       1.174        ad 	sleepq_t *sq;
    274        1.63   thorpej 
    275       1.174        ad 	if (cold)
    276       1.174        ad 		return;
    277       1.188      yamt 
    278       1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    279       1.174        ad 	sleepq_wake(sq, ident, 1);
    280       1.174        ad }
    281        1.63   thorpej 
    282       1.117  gmcgarry 
    283       1.117  gmcgarry /*
    284       1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    285       1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    286   1.192.2.4     joerg  * current process explicitly requests it (eg sched_yield(2)).
    287       1.117  gmcgarry  */
    288       1.117  gmcgarry void
    289       1.117  gmcgarry yield(void)
    290       1.117  gmcgarry {
    291       1.122   thorpej 	struct lwp *l = curlwp;
    292       1.117  gmcgarry 
    293       1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    294       1.174        ad 	lwp_lock(l);
    295       1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    296       1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    297   1.192.2.8     joerg 	l->l_kpriority = false;
    298   1.192.2.8     joerg 	if (l->l_class == SCHED_OTHER) {
    299   1.192.2.8     joerg 		/*
    300   1.192.2.8     joerg 		 * Only for timeshared threads.  It will be reset
    301   1.192.2.8     joerg 		 * by the scheduler in due course.
    302   1.192.2.8     joerg 		 */
    303   1.192.2.8     joerg 		l->l_priority = 0;
    304   1.192.2.8     joerg 	}
    305       1.188      yamt 	(void)mi_switch(l);
    306       1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    307        1.69   thorpej }
    308        1.69   thorpej 
    309        1.69   thorpej /*
    310        1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    311       1.156    rpaulo  * and performs an involuntary context switch.
    312        1.69   thorpej  */
    313        1.69   thorpej void
    314       1.174        ad preempt(void)
    315        1.69   thorpej {
    316       1.122   thorpej 	struct lwp *l = curlwp;
    317        1.69   thorpej 
    318       1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    319       1.174        ad 	lwp_lock(l);
    320       1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    321       1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    322   1.192.2.8     joerg 	l->l_kpriority = false;
    323       1.174        ad 	l->l_nivcsw++;
    324       1.188      yamt 	(void)mi_switch(l);
    325       1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    326        1.69   thorpej }
    327        1.69   thorpej 
    328        1.69   thorpej /*
    329       1.188      yamt  * Compute the amount of time during which the current lwp was running.
    330       1.130   nathanw  *
    331       1.188      yamt  * - update l_rtime unless it's an idle lwp.
    332       1.188      yamt  */
    333       1.188      yamt 
    334   1.192.2.5     joerg void
    335   1.192.2.5     joerg updatertime(lwp_t *l, const struct timeval *tv)
    336       1.188      yamt {
    337       1.188      yamt 	long s, u;
    338       1.188      yamt 
    339   1.192.2.5     joerg 	if ((l->l_flag & LW_IDLE) != 0)
    340       1.188      yamt 		return;
    341       1.188      yamt 
    342   1.192.2.5     joerg 	u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
    343   1.192.2.5     joerg 	s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
    344       1.188      yamt 	if (u < 0) {
    345       1.188      yamt 		u += 1000000;
    346       1.188      yamt 		s--;
    347       1.188      yamt 	} else if (u >= 1000000) {
    348       1.188      yamt 		u -= 1000000;
    349       1.188      yamt 		s++;
    350       1.188      yamt 	}
    351       1.188      yamt 	l->l_rtime.tv_usec = u;
    352       1.188      yamt 	l->l_rtime.tv_sec = s;
    353       1.188      yamt }
    354       1.188      yamt 
    355       1.188      yamt /*
    356       1.188      yamt  * The machine independent parts of context switch.
    357       1.188      yamt  *
    358       1.188      yamt  * Returns 1 if another LWP was actually run.
    359        1.26       cgd  */
    360       1.122   thorpej int
    361   1.192.2.5     joerg mi_switch(lwp_t *l)
    362        1.26       cgd {
    363        1.76   thorpej 	struct schedstate_percpu *spc;
    364       1.188      yamt 	struct lwp *newl;
    365       1.174        ad 	int retval, oldspl;
    366   1.192.2.3     joerg 	struct cpu_info *ci;
    367   1.192.2.5     joerg 	struct timeval tv;
    368   1.192.2.5     joerg 	bool returning;
    369        1.26       cgd 
    370       1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    371       1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    372       1.174        ad 
    373       1.174        ad #ifdef KSTACK_CHECK_MAGIC
    374       1.174        ad 	kstack_check_magic(l);
    375       1.174        ad #endif
    376        1.83   thorpej 
    377   1.192.2.5     joerg 	microtime(&tv);
    378   1.192.2.5     joerg 
    379        1.90  sommerfe 	/*
    380       1.174        ad 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    381       1.174        ad 	 * are after is the run time and that's guarenteed to have been last
    382       1.174        ad 	 * updated by this CPU.
    383        1.90  sommerfe 	 */
    384   1.192.2.3     joerg 	ci = l->l_cpu;
    385   1.192.2.3     joerg 	KDASSERT(ci == curcpu());
    386        1.26       cgd 
    387       1.190        ad 	/*
    388       1.190        ad 	 * Process is about to yield the CPU; clear the appropriate
    389       1.190        ad 	 * scheduling flags.
    390       1.190        ad 	 */
    391   1.192.2.3     joerg 	spc = &ci->ci_schedstate;
    392   1.192.2.5     joerg 	returning = false;
    393       1.190        ad 	newl = NULL;
    394       1.190        ad 
    395   1.192.2.5     joerg 	/*
    396   1.192.2.5     joerg 	 * If we have been asked to switch to a specific LWP, then there
    397   1.192.2.5     joerg 	 * is no need to inspect the run queues.  If a soft interrupt is
    398   1.192.2.5     joerg 	 * blocking, then return to the interrupted thread without adjusting
    399   1.192.2.5     joerg 	 * VM context or its start time: neither have been changed in order
    400   1.192.2.5     joerg 	 * to take the interrupt.
    401   1.192.2.5     joerg 	 */
    402       1.190        ad 	if (l->l_switchto != NULL) {
    403   1.192.2.8     joerg 		if ((l->l_pflag & LP_INTR) != 0) {
    404   1.192.2.5     joerg 			returning = true;
    405   1.192.2.5     joerg 			softint_block(l);
    406   1.192.2.5     joerg 			if ((l->l_flag & LW_TIMEINTR) != 0)
    407   1.192.2.5     joerg 				updatertime(l, &tv);
    408   1.192.2.5     joerg 		}
    409       1.190        ad 		newl = l->l_switchto;
    410       1.190        ad 		l->l_switchto = NULL;
    411       1.190        ad 	}
    412   1.192.2.8     joerg #ifndef __HAVE_FAST_SOFTINTS
    413   1.192.2.8     joerg 	else if (ci->ci_data.cpu_softints != 0) {
    414   1.192.2.8     joerg 		/* There are pending soft interrupts, so pick one. */
    415   1.192.2.8     joerg 		newl = softint_picklwp();
    416   1.192.2.8     joerg 		newl->l_stat = LSONPROC;
    417   1.192.2.8     joerg 		newl->l_flag |= LW_RUNNING;
    418   1.192.2.8     joerg 	}
    419   1.192.2.8     joerg #endif	/* !__HAVE_FAST_SOFTINTS */
    420       1.190        ad 
    421       1.180       dsl 	/* Count time spent in current system call */
    422   1.192.2.5     joerg 	if (!returning) {
    423   1.192.2.5     joerg 		SYSCALL_TIME_SLEEP(l);
    424       1.180       dsl 
    425   1.192.2.5     joerg 		/*
    426   1.192.2.5     joerg 		 * XXXSMP If we are using h/w performance counters,
    427   1.192.2.5     joerg 		 * save context.
    428   1.192.2.5     joerg 		 */
    429       1.174        ad #if PERFCTRS
    430   1.192.2.5     joerg 		if (PMC_ENABLED(l->l_proc)) {
    431   1.192.2.5     joerg 			pmc_save_context(l->l_proc);
    432   1.192.2.5     joerg 		}
    433       1.109      yamt #endif
    434   1.192.2.5     joerg 		updatertime(l, &tv);
    435   1.192.2.5     joerg 	}
    436       1.113  gmcgarry 
    437       1.113  gmcgarry 	/*
    438       1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    439       1.113  gmcgarry 	 */
    440       1.188      yamt 	mutex_spin_enter(spc->spc_mutex);
    441       1.174        ad 	KASSERT(l->l_stat != LSRUN);
    442   1.192.2.8     joerg 	if (l->l_stat == LSONPROC && l != newl) {
    443       1.188      yamt 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    444       1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    445       1.188      yamt 			l->l_stat = LSRUN;
    446       1.188      yamt 			lwp_setlock(l, spc->spc_mutex);
    447       1.188      yamt 			sched_enqueue(l, true);
    448       1.188      yamt 		} else
    449       1.188      yamt 			l->l_stat = LSIDL;
    450       1.174        ad 	}
    451       1.174        ad 
    452       1.174        ad 	/*
    453   1.192.2.5     joerg 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    454       1.188      yamt 	 * If no LWP is runnable, switch to the idle LWP.
    455   1.192.2.5     joerg 	 * Note that spc_lwplock might not necessary be held.
    456       1.174        ad 	 */
    457       1.190        ad 	if (newl == NULL) {
    458       1.190        ad 		newl = sched_nextlwp();
    459       1.190        ad 		if (newl != NULL) {
    460       1.190        ad 			sched_dequeue(newl);
    461       1.190        ad 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    462       1.190        ad 			newl->l_stat = LSONPROC;
    463   1.192.2.3     joerg 			newl->l_cpu = ci;
    464       1.190        ad 			newl->l_flag |= LW_RUNNING;
    465       1.190        ad 			lwp_setlock(newl, &spc->spc_lwplock);
    466       1.190        ad 		} else {
    467   1.192.2.3     joerg 			newl = ci->ci_data.cpu_idlelwp;
    468       1.190        ad 			newl->l_stat = LSONPROC;
    469       1.190        ad 			newl->l_flag |= LW_RUNNING;
    470       1.190        ad 		}
    471   1.192.2.8     joerg 		/*
    472   1.192.2.8     joerg 		 * Only clear want_resched if there are no
    473   1.192.2.8     joerg 		 * pending (slow) software interrupts.
    474   1.192.2.8     joerg 		 */
    475   1.192.2.8     joerg 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    476   1.192.2.5     joerg 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    477   1.192.2.8     joerg 		spc->spc_curpriority = lwp_eprio(newl);
    478   1.192.2.5     joerg 	}
    479   1.192.2.5     joerg 
    480   1.192.2.8     joerg 	/* Items that must be updated with the CPU locked. */
    481   1.192.2.5     joerg 	if (!returning) {
    482   1.192.2.8     joerg 		/* Update the new LWP's start time. */
    483   1.192.2.5     joerg 		newl->l_stime = tv;
    484   1.192.2.8     joerg 
    485   1.192.2.5     joerg 		/*
    486   1.192.2.8     joerg 		 * ci_curlwp changes when a fast soft interrupt occurs.
    487   1.192.2.8     joerg 		 * We use cpu_onproc to keep track of which kernel or
    488   1.192.2.8     joerg 		 * user thread is running 'underneath' the software
    489   1.192.2.8     joerg 		 * interrupt.  This is important for time accounting,
    490   1.192.2.8     joerg 		 * itimers and forcing user threads to preempt (aston).
    491   1.192.2.5     joerg 		 */
    492   1.192.2.8     joerg 		ci->ci_data.cpu_onproc = newl;
    493       1.188      yamt 	}
    494       1.188      yamt 
    495       1.188      yamt 	if (l != newl) {
    496       1.188      yamt 		struct lwp *prevlwp;
    497       1.174        ad 
    498       1.188      yamt 		/*
    499       1.188      yamt 		 * If the old LWP has been moved to a run queue above,
    500       1.188      yamt 		 * drop the general purpose LWP lock: it's now locked
    501       1.188      yamt 		 * by the scheduler lock.
    502       1.188      yamt 		 *
    503       1.188      yamt 		 * Otherwise, drop the scheduler lock.  We're done with
    504       1.188      yamt 		 * the run queues for now.
    505       1.188      yamt 		 */
    506       1.188      yamt 		if (l->l_mutex == spc->spc_mutex) {
    507       1.188      yamt 			mutex_spin_exit(&spc->spc_lwplock);
    508       1.188      yamt 		} else {
    509       1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    510       1.188      yamt 		}
    511       1.188      yamt 
    512       1.188      yamt 		/* Unlocked, but for statistics only. */
    513       1.188      yamt 		uvmexp.swtch++;
    514       1.188      yamt 
    515   1.192.2.5     joerg 		/*
    516   1.192.2.5     joerg 		 * Save old VM context, unless a soft interrupt
    517   1.192.2.5     joerg 		 * handler is blocking.
    518   1.192.2.5     joerg 		 */
    519   1.192.2.5     joerg 		if (!returning)
    520   1.192.2.5     joerg 			pmap_deactivate(l);
    521       1.188      yamt 
    522       1.188      yamt 		/* Switch to the new LWP.. */
    523       1.188      yamt 		l->l_ncsw++;
    524       1.188      yamt 		l->l_flag &= ~LW_RUNNING;
    525   1.192.2.3     joerg 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    526   1.192.2.8     joerg 		prevlwp = cpu_switchto(l, newl, returning);
    527       1.188      yamt 		/*
    528       1.188      yamt 		 * .. we have switched away and are now back so we must
    529       1.188      yamt 		 * be the new curlwp.  prevlwp is who we replaced.
    530       1.188      yamt 		 */
    531       1.188      yamt 		if (prevlwp != NULL) {
    532       1.188      yamt 			curcpu()->ci_mtx_oldspl = oldspl;
    533       1.188      yamt 			lwp_unlock(prevlwp);
    534       1.188      yamt 		} else {
    535       1.188      yamt 			splx(oldspl);
    536       1.188      yamt 		}
    537       1.174        ad 
    538       1.188      yamt 		/* Restore VM context. */
    539       1.188      yamt 		pmap_activate(l);
    540       1.188      yamt 		retval = 1;
    541       1.188      yamt 	} else {
    542       1.188      yamt 		/* Nothing to do - just unlock and return. */
    543       1.188      yamt 		mutex_spin_exit(spc->spc_mutex);
    544       1.188      yamt 		lwp_unlock(l);
    545       1.122   thorpej 		retval = 0;
    546       1.122   thorpej 	}
    547       1.110    briggs 
    548       1.188      yamt 	KASSERT(l == curlwp);
    549       1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    550   1.192.2.5     joerg 	KASSERT(l->l_cpu == curcpu());
    551       1.188      yamt 
    552       1.110    briggs 	/*
    553       1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    554        1.26       cgd 	 */
    555       1.114  gmcgarry #if PERFCTRS
    556       1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    557       1.175  christos 		pmc_restore_context(l->l_proc);
    558       1.166  christos 	}
    559       1.114  gmcgarry #endif
    560       1.110    briggs 
    561       1.110    briggs 	/*
    562        1.76   thorpej 	 * We're running again; record our new start time.  We might
    563       1.174        ad 	 * be running on a new CPU now, so don't use the cached
    564        1.76   thorpej 	 * schedstate_percpu pointer.
    565        1.76   thorpej 	 */
    566       1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    567   1.192.2.3     joerg 	KASSERT(curlwp == l);
    568       1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    569       1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    570       1.169      yamt 
    571       1.122   thorpej 	return retval;
    572        1.26       cgd }
    573        1.26       cgd 
    574        1.26       cgd /*
    575       1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    576       1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    577       1.174        ad  *
    578       1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    579        1.26       cgd  */
    580        1.26       cgd void
    581       1.122   thorpej setrunnable(struct lwp *l)
    582        1.26       cgd {
    583       1.122   thorpej 	struct proc *p = l->l_proc;
    584   1.192.2.9     joerg 	struct cpu_info *ci;
    585       1.174        ad 	sigset_t *ss;
    586        1.26       cgd 
    587       1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    588       1.183        ad 	KASSERT(mutex_owned(&p->p_smutex));
    589       1.183        ad 	KASSERT(lwp_locked(l, NULL));
    590   1.192.2.9     joerg 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    591        1.83   thorpej 
    592       1.122   thorpej 	switch (l->l_stat) {
    593       1.122   thorpej 	case LSSTOP:
    594        1.33   mycroft 		/*
    595        1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    596        1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    597        1.33   mycroft 		 */
    598       1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    599       1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    600       1.174        ad 				ss = &l->l_sigpend.sp_set;
    601       1.174        ad 			else
    602       1.174        ad 				ss = &p->p_sigpend.sp_set;
    603       1.174        ad 			sigaddset(ss, p->p_xstat);
    604       1.174        ad 			signotify(l);
    605        1.53   mycroft 		}
    606       1.174        ad 		p->p_nrlwps++;
    607        1.26       cgd 		break;
    608       1.174        ad 	case LSSUSPENDED:
    609       1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    610       1.174        ad 		p->p_nrlwps++;
    611       1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    612       1.122   thorpej 		break;
    613       1.174        ad 	case LSSLEEP:
    614       1.174        ad 		KASSERT(l->l_wchan != NULL);
    615        1.26       cgd 		break;
    616       1.174        ad 	default:
    617       1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    618        1.26       cgd 	}
    619       1.139        cl 
    620       1.174        ad 	/*
    621       1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    622       1.174        ad 	 * again.  If not, mark it as still sleeping.
    623       1.174        ad 	 */
    624       1.174        ad 	if (l->l_wchan != NULL) {
    625       1.174        ad 		l->l_stat = LSSLEEP;
    626       1.183        ad 		/* lwp_unsleep() will release the lock. */
    627       1.183        ad 		lwp_unsleep(l);
    628       1.174        ad 		return;
    629       1.174        ad 	}
    630       1.139        cl 
    631       1.174        ad 	/*
    632       1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    633       1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    634       1.174        ad 	 */
    635       1.188      yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    636       1.174        ad 		l->l_stat = LSONPROC;
    637       1.174        ad 		l->l_slptime = 0;
    638       1.174        ad 		lwp_unlock(l);
    639       1.174        ad 		return;
    640       1.174        ad 	}
    641       1.122   thorpej 
    642       1.174        ad 	/*
    643   1.192.2.9     joerg 	 * Look for a CPU to run.
    644   1.192.2.9     joerg 	 * Set the LWP runnable.
    645       1.174        ad 	 */
    646   1.192.2.9     joerg 	ci = sched_takecpu(l);
    647   1.192.2.9     joerg 	l->l_cpu = ci;
    648  1.192.2.10     joerg 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    649  1.192.2.10     joerg 		lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    650  1.192.2.10     joerg 		lwp_lock(l);
    651  1.192.2.10     joerg 	}
    652       1.188      yamt 	sched_setrunnable(l);
    653       1.174        ad 	l->l_stat = LSRUN;
    654       1.122   thorpej 	l->l_slptime = 0;
    655       1.174        ad 
    656   1.192.2.9     joerg 	/*
    657   1.192.2.9     joerg 	 * If thread is swapped out - wake the swapper to bring it back in.
    658   1.192.2.9     joerg 	 * Otherwise, enter it into a run queue.
    659   1.192.2.9     joerg 	 */
    660       1.178     pavel 	if (l->l_flag & LW_INMEM) {
    661       1.188      yamt 		sched_enqueue(l, false);
    662       1.188      yamt 		resched_cpu(l);
    663       1.174        ad 		lwp_unlock(l);
    664       1.174        ad 	} else {
    665       1.174        ad 		lwp_unlock(l);
    666       1.177        ad 		uvm_kick_scheduler();
    667       1.174        ad 	}
    668        1.26       cgd }
    669        1.26       cgd 
    670        1.26       cgd /*
    671       1.174        ad  * suspendsched:
    672       1.174        ad  *
    673       1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    674       1.174        ad  */
    675        1.94    bouyer void
    676       1.174        ad suspendsched(void)
    677        1.94    bouyer {
    678       1.174        ad 	CPU_INFO_ITERATOR cii;
    679       1.174        ad 	struct cpu_info *ci;
    680       1.122   thorpej 	struct lwp *l;
    681       1.174        ad 	struct proc *p;
    682        1.94    bouyer 
    683        1.94    bouyer 	/*
    684       1.174        ad 	 * We do this by process in order not to violate the locking rules.
    685        1.94    bouyer 	 */
    686   1.192.2.8     joerg 	mutex_enter(&proclist_lock);
    687       1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    688       1.174        ad 		mutex_enter(&p->p_smutex);
    689       1.174        ad 
    690       1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    691       1.174        ad 			mutex_exit(&p->p_smutex);
    692        1.94    bouyer 			continue;
    693       1.174        ad 		}
    694       1.174        ad 
    695       1.174        ad 		p->p_stat = SSTOP;
    696       1.174        ad 
    697       1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    698       1.174        ad 			if (l == curlwp)
    699       1.174        ad 				continue;
    700       1.174        ad 
    701       1.174        ad 			lwp_lock(l);
    702       1.122   thorpej 
    703        1.97     enami 			/*
    704       1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    705       1.174        ad 			 * when it tries to return to user mode.  We want to
    706       1.174        ad 			 * try and get to get as many LWPs as possible to
    707       1.174        ad 			 * the user / kernel boundary, so that they will
    708       1.174        ad 			 * release any locks that they hold.
    709        1.97     enami 			 */
    710       1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    711       1.174        ad 
    712       1.174        ad 			if (l->l_stat == LSSLEEP &&
    713       1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    714       1.174        ad 				/* setrunnable() will release the lock. */
    715       1.174        ad 				setrunnable(l);
    716       1.174        ad 				continue;
    717       1.174        ad 			}
    718       1.174        ad 
    719       1.174        ad 			lwp_unlock(l);
    720        1.94    bouyer 		}
    721       1.174        ad 
    722       1.174        ad 		mutex_exit(&p->p_smutex);
    723        1.94    bouyer 	}
    724   1.192.2.8     joerg 	mutex_exit(&proclist_lock);
    725       1.174        ad 
    726       1.174        ad 	/*
    727       1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    728       1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    729       1.174        ad 	 */
    730   1.192.2.8     joerg 	for (CPU_INFO_FOREACH(cii, ci)) {
    731   1.192.2.8     joerg 		spc_lock(ci);
    732   1.192.2.8     joerg 		cpu_need_resched(ci, RESCHED_IMMED);
    733   1.192.2.8     joerg 		spc_unlock(ci);
    734   1.192.2.8     joerg 	}
    735       1.174        ad }
    736       1.174        ad 
    737       1.174        ad /*
    738       1.174        ad  * sched_kpri:
    739       1.174        ad  *
    740       1.174        ad  *	Scale a priority level to a kernel priority level, usually
    741       1.174        ad  *	for an LWP that is about to sleep.
    742       1.174        ad  */
    743       1.185      yamt pri_t
    744       1.174        ad sched_kpri(struct lwp *l)
    745       1.174        ad {
    746   1.192.2.8     joerg 	pri_t pri;
    747   1.192.2.8     joerg 
    748   1.192.2.8     joerg #ifndef __HAVE_FAST_SOFTINTS
    749       1.174        ad 	/*
    750   1.192.2.8     joerg 	 * Hack: if a user thread is being used to run a soft
    751   1.192.2.8     joerg 	 * interrupt, we need to boost the priority here.
    752   1.192.2.8     joerg 	 */
    753   1.192.2.8     joerg 	if ((l->l_pflag & LP_INTR) != 0 && l->l_priority < PRI_KERNEL_RT)
    754   1.192.2.8     joerg 		return softint_kpri(l);
    755   1.192.2.8     joerg #endif
    756       1.174        ad 
    757   1.192.2.8     joerg 	/*
    758   1.192.2.8     joerg 	 * Scale user priorities (0 -> 63) up to kernel priorities
    759   1.192.2.8     joerg 	 * in the range (64 -> 95).  This makes assumptions about
    760   1.192.2.8     joerg 	 * the priority space and so should be kept in sync with
    761   1.192.2.8     joerg 	 * param.h.
    762   1.192.2.8     joerg 	 */
    763   1.192.2.8     joerg 	if ((pri = l->l_priority) >= PRI_KERNEL)
    764   1.192.2.8     joerg 		return pri;
    765   1.192.2.8     joerg 	return (pri >> 1) + PRI_KERNEL;
    766       1.174        ad }
    767       1.174        ad 
    768       1.174        ad /*
    769       1.174        ad  * sched_unsleep:
    770       1.174        ad  *
    771       1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    772       1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    773       1.174        ad  *	it's not a valid action for running or idle LWPs.
    774       1.174        ad  */
    775       1.188      yamt static void
    776       1.174        ad sched_unsleep(struct lwp *l)
    777       1.174        ad {
    778       1.174        ad 
    779       1.174        ad 	lwp_unlock(l);
    780       1.174        ad 	panic("sched_unsleep");
    781       1.174        ad }
    782       1.174        ad 
    783   1.192.2.8     joerg void
    784       1.188      yamt resched_cpu(struct lwp *l)
    785       1.188      yamt {
    786       1.188      yamt 	struct cpu_info *ci;
    787       1.188      yamt 
    788       1.188      yamt 	/*
    789       1.188      yamt 	 * XXXSMP
    790       1.188      yamt 	 * Since l->l_cpu persists across a context switch,
    791       1.188      yamt 	 * this gives us *very weak* processor affinity, in
    792       1.188      yamt 	 * that we notify the CPU on which the process last
    793       1.188      yamt 	 * ran that it should try to switch.
    794       1.188      yamt 	 *
    795       1.188      yamt 	 * This does not guarantee that the process will run on
    796       1.188      yamt 	 * that processor next, because another processor might
    797       1.188      yamt 	 * grab it the next time it performs a context switch.
    798       1.188      yamt 	 *
    799       1.188      yamt 	 * This also does not handle the case where its last
    800       1.188      yamt 	 * CPU is running a higher-priority process, but every
    801       1.188      yamt 	 * other CPU is running a lower-priority process.  There
    802       1.188      yamt 	 * are ways to handle this situation, but they're not
    803       1.188      yamt 	 * currently very pretty, and we also need to weigh the
    804       1.188      yamt 	 * cost of moving a process from one CPU to another.
    805       1.188      yamt 	 */
    806   1.192.2.8     joerg 	ci = l->l_cpu;
    807   1.192.2.8     joerg 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
    808       1.188      yamt 		cpu_need_resched(ci, 0);
    809       1.188      yamt }
    810       1.188      yamt 
    811       1.188      yamt static void
    812       1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
    813       1.174        ad {
    814       1.174        ad 
    815       1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    816       1.174        ad 
    817   1.192.2.8     joerg 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    818   1.192.2.8     joerg 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    819   1.192.2.8     joerg 		sched_dequeue(l);
    820   1.192.2.8     joerg 		l->l_priority = pri;
    821   1.192.2.8     joerg 		sched_enqueue(l, false);
    822   1.192.2.8     joerg 	} else {
    823       1.174        ad 		l->l_priority = pri;
    824       1.157      yamt 	}
    825       1.188      yamt 	resched_cpu(l);
    826       1.184      yamt }
    827       1.184      yamt 
    828       1.188      yamt static void
    829       1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
    830       1.184      yamt {
    831       1.184      yamt 
    832       1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    833       1.184      yamt 
    834   1.192.2.8     joerg 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    835   1.192.2.8     joerg 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    836   1.192.2.8     joerg 		sched_dequeue(l);
    837   1.192.2.8     joerg 		l->l_inheritedprio = pri;
    838   1.192.2.8     joerg 		sched_enqueue(l, false);
    839   1.192.2.8     joerg 	} else {
    840       1.184      yamt 		l->l_inheritedprio = pri;
    841       1.184      yamt 	}
    842       1.188      yamt 	resched_cpu(l);
    843       1.184      yamt }
    844       1.184      yamt 
    845       1.184      yamt struct lwp *
    846       1.184      yamt syncobj_noowner(wchan_t wchan)
    847       1.184      yamt {
    848       1.184      yamt 
    849       1.184      yamt 	return NULL;
    850       1.151      yamt }
    851       1.151      yamt 
    852       1.113  gmcgarry 
    853       1.188      yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    854       1.188      yamt fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    855       1.115  nisimura 
    856       1.130   nathanw /*
    857       1.188      yamt  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    858       1.188      yamt  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    859       1.188      yamt  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    860       1.188      yamt  *
    861       1.188      yamt  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    862       1.188      yamt  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    863       1.188      yamt  *
    864       1.188      yamt  * If you dont want to bother with the faster/more-accurate formula, you
    865       1.188      yamt  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    866       1.188      yamt  * (more general) method of calculating the %age of CPU used by a process.
    867       1.134      matt  */
    868       1.188      yamt #define	CCPU_SHIFT	(FSHIFT + 1)
    869       1.134      matt 
    870       1.134      matt /*
    871       1.188      yamt  * sched_pstats:
    872       1.188      yamt  *
    873       1.188      yamt  * Update process statistics and check CPU resource allocation.
    874       1.188      yamt  * Call scheduler-specific hook to eventually adjust process/LWP
    875       1.188      yamt  * priorities.
    876       1.130   nathanw  */
    877       1.188      yamt /* ARGSUSED */
    878       1.113  gmcgarry void
    879       1.188      yamt sched_pstats(void *arg)
    880       1.113  gmcgarry {
    881       1.188      yamt 	struct rlimit *rlim;
    882       1.188      yamt 	struct lwp *l;
    883       1.188      yamt 	struct proc *p;
    884   1.192.2.8     joerg 	int sig, clkhz;
    885       1.188      yamt 	long runtm;
    886       1.113  gmcgarry 
    887       1.188      yamt 	sched_pstats_ticks++;
    888       1.174        ad 
    889       1.188      yamt 	mutex_enter(&proclist_mutex);
    890       1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
    891       1.188      yamt 		/*
    892       1.188      yamt 		 * Increment time in/out of memory and sleep time (if
    893       1.188      yamt 		 * sleeping).  We ignore overflow; with 16-bit int's
    894       1.188      yamt 		 * (remember them?) overflow takes 45 days.
    895       1.188      yamt 		 */
    896       1.188      yamt 		mutex_enter(&p->p_smutex);
    897       1.188      yamt 		mutex_spin_enter(&p->p_stmutex);
    898       1.188      yamt 		runtm = p->p_rtime.tv_sec;
    899       1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    900       1.188      yamt 			if ((l->l_flag & LW_IDLE) != 0)
    901       1.188      yamt 				continue;
    902       1.188      yamt 			lwp_lock(l);
    903       1.188      yamt 			runtm += l->l_rtime.tv_sec;
    904       1.188      yamt 			l->l_swtime++;
    905   1.192.2.5     joerg 			sched_pstats_hook(l);
    906       1.188      yamt 			lwp_unlock(l);
    907       1.113  gmcgarry 
    908       1.188      yamt 			/*
    909       1.188      yamt 			 * p_pctcpu is only for ps.
    910       1.188      yamt 			 */
    911       1.188      yamt 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    912       1.188      yamt 			if (l->l_slptime < 1) {
    913       1.188      yamt 				clkhz = stathz != 0 ? stathz : hz;
    914       1.188      yamt #if	(FSHIFT >= CCPU_SHIFT)
    915       1.188      yamt 				l->l_pctcpu += (clkhz == 100) ?
    916       1.188      yamt 				    ((fixpt_t)l->l_cpticks) <<
    917       1.188      yamt 				        (FSHIFT - CCPU_SHIFT) :
    918       1.188      yamt 				    100 * (((fixpt_t) p->p_cpticks)
    919       1.188      yamt 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    920       1.188      yamt #else
    921       1.188      yamt 				l->l_pctcpu += ((FSCALE - ccpu) *
    922       1.188      yamt 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    923       1.146      matt #endif
    924       1.188      yamt 				l->l_cpticks = 0;
    925       1.188      yamt 			}
    926       1.188      yamt 		}
    927       1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    928       1.188      yamt 		mutex_spin_exit(&p->p_stmutex);
    929       1.174        ad 
    930       1.188      yamt 		/*
    931       1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
    932       1.188      yamt 		 * If over max, kill it.
    933       1.188      yamt 		 */
    934       1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
    935       1.188      yamt 		sig = 0;
    936       1.188      yamt 		if (runtm >= rlim->rlim_cur) {
    937       1.188      yamt 			if (runtm >= rlim->rlim_max)
    938       1.188      yamt 				sig = SIGKILL;
    939       1.188      yamt 			else {
    940       1.188      yamt 				sig = SIGXCPU;
    941       1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
    942       1.188      yamt 					rlim->rlim_cur += 5;
    943       1.188      yamt 			}
    944       1.188      yamt 		}
    945       1.188      yamt 		mutex_exit(&p->p_smutex);
    946       1.188      yamt 		if (sig) {
    947       1.188      yamt 			psignal(p, sig);
    948       1.188      yamt 		}
    949       1.174        ad 	}
    950       1.188      yamt 	mutex_exit(&proclist_mutex);
    951       1.188      yamt 	uvm_meter();
    952       1.191        ad 	cv_wakeup(&lbolt);
    953       1.188      yamt 	callout_schedule(&sched_pstats_ch, hz);
    954       1.113  gmcgarry }
    955       1.190        ad 
    956       1.190        ad void
    957       1.190        ad sched_init(void)
    958       1.190        ad {
    959       1.190        ad 
    960       1.190        ad 	callout_init(&sched_pstats_ch, 0);
    961       1.190        ad 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    962       1.190        ad 	sched_setup();
    963       1.190        ad 	sched_pstats(NULL);
    964       1.190        ad }
    965