Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.192.2.11
      1  1.192.2.11     joerg /*	$NetBSD: kern_synch.c,v 1.192.2.11 2007/11/14 19:04:42 joerg Exp $	*/
      2        1.63   thorpej 
      3        1.63   thorpej /*-
      4       1.174        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5        1.63   thorpej  * All rights reserved.
      6        1.63   thorpej  *
      7        1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8        1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9       1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10       1.188      yamt  * Daniel Sieger.
     11        1.63   thorpej  *
     12        1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13        1.63   thorpej  * modification, are permitted provided that the following conditions
     14        1.63   thorpej  * are met:
     15        1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16        1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17        1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18        1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19        1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20        1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     21        1.63   thorpej  *    must display the following acknowledgement:
     22        1.63   thorpej  *	This product includes software developed by the NetBSD
     23        1.63   thorpej  *	Foundation, Inc. and its contributors.
     24        1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25        1.63   thorpej  *    contributors may be used to endorse or promote products derived
     26        1.63   thorpej  *    from this software without specific prior written permission.
     27        1.63   thorpej  *
     28        1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29        1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30        1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31        1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32        1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33        1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34        1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35        1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36        1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37        1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38        1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     39        1.63   thorpej  */
     40        1.26       cgd 
     41        1.26       cgd /*-
     42        1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43        1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     44        1.26       cgd  * (c) UNIX System Laboratories, Inc.
     45        1.26       cgd  * All or some portions of this file are derived from material licensed
     46        1.26       cgd  * to the University of California by American Telephone and Telegraph
     47        1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48        1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     49        1.26       cgd  *
     50        1.26       cgd  * Redistribution and use in source and binary forms, with or without
     51        1.26       cgd  * modification, are permitted provided that the following conditions
     52        1.26       cgd  * are met:
     53        1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     54        1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     55        1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     56        1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     57        1.26       cgd  *    documentation and/or other materials provided with the distribution.
     58       1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     59        1.26       cgd  *    may be used to endorse or promote products derived from this software
     60        1.26       cgd  *    without specific prior written permission.
     61        1.26       cgd  *
     62        1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63        1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64        1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65        1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66        1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67        1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68        1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69        1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70        1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71        1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72        1.26       cgd  * SUCH DAMAGE.
     73        1.26       cgd  *
     74        1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75        1.26       cgd  */
     76       1.106     lukem 
     77       1.106     lukem #include <sys/cdefs.h>
     78  1.192.2.11     joerg __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.192.2.11 2007/11/14 19:04:42 joerg Exp $");
     79        1.48       mrg 
     80       1.109      yamt #include "opt_kstack.h"
     81        1.82   thorpej #include "opt_lockdebug.h"
     82        1.83   thorpej #include "opt_multiprocessor.h"
     83       1.110    briggs #include "opt_perfctrs.h"
     84        1.26       cgd 
     85       1.174        ad #define	__MUTEX_PRIVATE
     86       1.174        ad 
     87        1.26       cgd #include <sys/param.h>
     88        1.26       cgd #include <sys/systm.h>
     89        1.26       cgd #include <sys/proc.h>
     90        1.26       cgd #include <sys/kernel.h>
     91       1.111    briggs #if defined(PERFCTRS)
     92       1.110    briggs #include <sys/pmc.h>
     93       1.111    briggs #endif
     94       1.188      yamt #include <sys/cpu.h>
     95        1.26       cgd #include <sys/resourcevar.h>
     96        1.55      ross #include <sys/sched.h>
     97       1.179       dsl #include <sys/syscall_stats.h>
     98       1.174        ad #include <sys/sleepq.h>
     99       1.174        ad #include <sys/lockdebug.h>
    100       1.190        ad #include <sys/evcnt.h>
    101   1.192.2.5     joerg #include <sys/intr.h>
    102  1.192.2.11     joerg #include <sys/lwpctl.h>
    103        1.47       mrg 
    104        1.47       mrg #include <uvm/uvm_extern.h>
    105        1.47       mrg 
    106       1.190        ad callout_t sched_pstats_ch;
    107       1.188      yamt unsigned int sched_pstats_ticks;
    108        1.34  christos 
    109       1.190        ad kcondvar_t	lbolt;			/* once a second sleep address */
    110        1.26       cgd 
    111       1.188      yamt static void	sched_unsleep(struct lwp *);
    112       1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    113       1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    114       1.122   thorpej 
    115       1.174        ad syncobj_t sleep_syncobj = {
    116       1.174        ad 	SOBJ_SLEEPQ_SORTED,
    117       1.174        ad 	sleepq_unsleep,
    118       1.184      yamt 	sleepq_changepri,
    119       1.184      yamt 	sleepq_lendpri,
    120       1.184      yamt 	syncobj_noowner,
    121       1.174        ad };
    122       1.174        ad 
    123       1.174        ad syncobj_t sched_syncobj = {
    124       1.174        ad 	SOBJ_SLEEPQ_SORTED,
    125       1.174        ad 	sched_unsleep,
    126       1.184      yamt 	sched_changepri,
    127       1.184      yamt 	sched_lendpri,
    128       1.184      yamt 	syncobj_noowner,
    129       1.174        ad };
    130       1.122   thorpej 
    131        1.26       cgd /*
    132       1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    133       1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    134       1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    135       1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    136       1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    137       1.174        ad  * it can be made higher to block network software interrupts after panics.
    138        1.26       cgd  */
    139       1.174        ad int	safepri;
    140        1.26       cgd 
    141        1.26       cgd /*
    142       1.174        ad  * OBSOLETE INTERFACE
    143       1.174        ad  *
    144        1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    145        1.26       cgd  * performed on the specified identifier.  The process will then be made
    146       1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    147       1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    148        1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    149        1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    150        1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    151        1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    152        1.26       cgd  * call should be interrupted by the signal (return EINTR).
    153        1.77   thorpej  *
    154       1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    155       1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    156       1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    157       1.174        ad  * return.
    158        1.26       cgd  */
    159        1.26       cgd int
    160       1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    161       1.174        ad 	volatile struct simplelock *interlock)
    162        1.26       cgd {
    163       1.122   thorpej 	struct lwp *l = curlwp;
    164       1.174        ad 	sleepq_t *sq;
    165       1.188      yamt 	int error;
    166        1.26       cgd 
    167   1.192.2.8     joerg 	KASSERT((l->l_pflag & LP_INTR) == 0);
    168   1.192.2.8     joerg 
    169       1.174        ad 	if (sleepq_dontsleep(l)) {
    170       1.174        ad 		(void)sleepq_abort(NULL, 0);
    171       1.174        ad 		if ((priority & PNORELOCK) != 0)
    172        1.77   thorpej 			simple_unlock(interlock);
    173       1.174        ad 		return 0;
    174        1.26       cgd 	}
    175        1.78  sommerfe 
    176   1.192.2.8     joerg 	l->l_kpriority = true;
    177       1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    178       1.174        ad 	sleepq_enter(sq, l);
    179   1.192.2.8     joerg 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    180        1.42       cgd 
    181       1.174        ad 	if (interlock != NULL) {
    182   1.192.2.8     joerg 		KASSERT(simple_lock_held(interlock));
    183       1.174        ad 		simple_unlock(interlock);
    184       1.150       chs 	}
    185       1.150       chs 
    186       1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    187       1.126        pk 
    188       1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    189       1.126        pk 		simple_lock(interlock);
    190       1.174        ad 
    191       1.174        ad 	return error;
    192        1.26       cgd }
    193        1.26       cgd 
    194       1.187        ad int
    195       1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    196       1.187        ad 	kmutex_t *mtx)
    197       1.187        ad {
    198       1.187        ad 	struct lwp *l = curlwp;
    199       1.187        ad 	sleepq_t *sq;
    200       1.188      yamt 	int error;
    201       1.187        ad 
    202   1.192.2.8     joerg 	KASSERT((l->l_pflag & LP_INTR) == 0);
    203   1.192.2.8     joerg 
    204       1.187        ad 	if (sleepq_dontsleep(l)) {
    205       1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    206       1.187        ad 		return 0;
    207       1.187        ad 	}
    208       1.187        ad 
    209   1.192.2.8     joerg 	l->l_kpriority = true;
    210       1.187        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    211       1.187        ad 	sleepq_enter(sq, l);
    212   1.192.2.8     joerg 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    213       1.187        ad 	mutex_exit(mtx);
    214       1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    215       1.187        ad 
    216       1.187        ad 	if ((priority & PNORELOCK) == 0)
    217       1.187        ad 		mutex_enter(mtx);
    218       1.187        ad 
    219       1.187        ad 	return error;
    220       1.187        ad }
    221       1.187        ad 
    222        1.26       cgd /*
    223       1.174        ad  * General sleep call for situations where a wake-up is not expected.
    224        1.26       cgd  */
    225       1.174        ad int
    226       1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    227        1.26       cgd {
    228       1.174        ad 	struct lwp *l = curlwp;
    229       1.174        ad 	sleepq_t *sq;
    230       1.174        ad 	int error;
    231        1.26       cgd 
    232       1.174        ad 	if (sleepq_dontsleep(l))
    233       1.174        ad 		return sleepq_abort(NULL, 0);
    234        1.26       cgd 
    235       1.174        ad 	if (mtx != NULL)
    236       1.174        ad 		mutex_exit(mtx);
    237   1.192.2.8     joerg 	l->l_kpriority = true;
    238       1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    239       1.174        ad 	sleepq_enter(sq, l);
    240   1.192.2.8     joerg 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    241       1.188      yamt 	error = sleepq_block(timo, intr);
    242       1.174        ad 	if (mtx != NULL)
    243       1.174        ad 		mutex_enter(mtx);
    244        1.83   thorpej 
    245       1.174        ad 	return error;
    246       1.139        cl }
    247       1.139        cl 
    248        1.26       cgd /*
    249       1.174        ad  * OBSOLETE INTERFACE
    250       1.174        ad  *
    251        1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    252        1.26       cgd  */
    253        1.26       cgd void
    254       1.174        ad wakeup(wchan_t ident)
    255        1.26       cgd {
    256       1.174        ad 	sleepq_t *sq;
    257        1.83   thorpej 
    258       1.174        ad 	if (cold)
    259       1.174        ad 		return;
    260        1.83   thorpej 
    261       1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    262       1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    263        1.63   thorpej }
    264        1.63   thorpej 
    265        1.63   thorpej /*
    266       1.174        ad  * OBSOLETE INTERFACE
    267       1.174        ad  *
    268        1.63   thorpej  * Make the highest priority process first in line on the specified
    269        1.63   thorpej  * identifier runnable.
    270        1.63   thorpej  */
    271       1.174        ad void
    272       1.174        ad wakeup_one(wchan_t ident)
    273        1.63   thorpej {
    274       1.174        ad 	sleepq_t *sq;
    275        1.63   thorpej 
    276       1.174        ad 	if (cold)
    277       1.174        ad 		return;
    278       1.188      yamt 
    279       1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    280       1.174        ad 	sleepq_wake(sq, ident, 1);
    281       1.174        ad }
    282        1.63   thorpej 
    283       1.117  gmcgarry 
    284       1.117  gmcgarry /*
    285       1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    286       1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    287   1.192.2.4     joerg  * current process explicitly requests it (eg sched_yield(2)).
    288       1.117  gmcgarry  */
    289       1.117  gmcgarry void
    290       1.117  gmcgarry yield(void)
    291       1.117  gmcgarry {
    292       1.122   thorpej 	struct lwp *l = curlwp;
    293       1.117  gmcgarry 
    294       1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    295       1.174        ad 	lwp_lock(l);
    296       1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    297       1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    298   1.192.2.8     joerg 	l->l_kpriority = false;
    299   1.192.2.8     joerg 	if (l->l_class == SCHED_OTHER) {
    300   1.192.2.8     joerg 		/*
    301   1.192.2.8     joerg 		 * Only for timeshared threads.  It will be reset
    302   1.192.2.8     joerg 		 * by the scheduler in due course.
    303   1.192.2.8     joerg 		 */
    304   1.192.2.8     joerg 		l->l_priority = 0;
    305   1.192.2.8     joerg 	}
    306       1.188      yamt 	(void)mi_switch(l);
    307       1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    308        1.69   thorpej }
    309        1.69   thorpej 
    310        1.69   thorpej /*
    311        1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    312       1.156    rpaulo  * and performs an involuntary context switch.
    313        1.69   thorpej  */
    314        1.69   thorpej void
    315       1.174        ad preempt(void)
    316        1.69   thorpej {
    317       1.122   thorpej 	struct lwp *l = curlwp;
    318        1.69   thorpej 
    319       1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    320       1.174        ad 	lwp_lock(l);
    321       1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    322       1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    323   1.192.2.8     joerg 	l->l_kpriority = false;
    324       1.174        ad 	l->l_nivcsw++;
    325       1.188      yamt 	(void)mi_switch(l);
    326       1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    327        1.69   thorpej }
    328        1.69   thorpej 
    329        1.69   thorpej /*
    330       1.188      yamt  * Compute the amount of time during which the current lwp was running.
    331       1.130   nathanw  *
    332       1.188      yamt  * - update l_rtime unless it's an idle lwp.
    333       1.188      yamt  */
    334       1.188      yamt 
    335   1.192.2.5     joerg void
    336   1.192.2.5     joerg updatertime(lwp_t *l, const struct timeval *tv)
    337       1.188      yamt {
    338       1.188      yamt 	long s, u;
    339       1.188      yamt 
    340   1.192.2.5     joerg 	if ((l->l_flag & LW_IDLE) != 0)
    341       1.188      yamt 		return;
    342       1.188      yamt 
    343   1.192.2.5     joerg 	u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
    344   1.192.2.5     joerg 	s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
    345       1.188      yamt 	if (u < 0) {
    346       1.188      yamt 		u += 1000000;
    347       1.188      yamt 		s--;
    348       1.188      yamt 	} else if (u >= 1000000) {
    349       1.188      yamt 		u -= 1000000;
    350       1.188      yamt 		s++;
    351       1.188      yamt 	}
    352       1.188      yamt 	l->l_rtime.tv_usec = u;
    353       1.188      yamt 	l->l_rtime.tv_sec = s;
    354       1.188      yamt }
    355       1.188      yamt 
    356       1.188      yamt /*
    357       1.188      yamt  * The machine independent parts of context switch.
    358       1.188      yamt  *
    359       1.188      yamt  * Returns 1 if another LWP was actually run.
    360        1.26       cgd  */
    361       1.122   thorpej int
    362   1.192.2.5     joerg mi_switch(lwp_t *l)
    363        1.26       cgd {
    364        1.76   thorpej 	struct schedstate_percpu *spc;
    365       1.188      yamt 	struct lwp *newl;
    366       1.174        ad 	int retval, oldspl;
    367   1.192.2.3     joerg 	struct cpu_info *ci;
    368   1.192.2.5     joerg 	struct timeval tv;
    369   1.192.2.5     joerg 	bool returning;
    370        1.26       cgd 
    371       1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    372       1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    373       1.174        ad 
    374       1.174        ad #ifdef KSTACK_CHECK_MAGIC
    375       1.174        ad 	kstack_check_magic(l);
    376       1.174        ad #endif
    377        1.83   thorpej 
    378   1.192.2.5     joerg 	microtime(&tv);
    379   1.192.2.5     joerg 
    380        1.90  sommerfe 	/*
    381       1.174        ad 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    382       1.174        ad 	 * are after is the run time and that's guarenteed to have been last
    383       1.174        ad 	 * updated by this CPU.
    384        1.90  sommerfe 	 */
    385   1.192.2.3     joerg 	ci = l->l_cpu;
    386   1.192.2.3     joerg 	KDASSERT(ci == curcpu());
    387        1.26       cgd 
    388       1.190        ad 	/*
    389       1.190        ad 	 * Process is about to yield the CPU; clear the appropriate
    390       1.190        ad 	 * scheduling flags.
    391       1.190        ad 	 */
    392   1.192.2.3     joerg 	spc = &ci->ci_schedstate;
    393   1.192.2.5     joerg 	returning = false;
    394       1.190        ad 	newl = NULL;
    395       1.190        ad 
    396   1.192.2.5     joerg 	/*
    397   1.192.2.5     joerg 	 * If we have been asked to switch to a specific LWP, then there
    398   1.192.2.5     joerg 	 * is no need to inspect the run queues.  If a soft interrupt is
    399   1.192.2.5     joerg 	 * blocking, then return to the interrupted thread without adjusting
    400   1.192.2.5     joerg 	 * VM context or its start time: neither have been changed in order
    401   1.192.2.5     joerg 	 * to take the interrupt.
    402   1.192.2.5     joerg 	 */
    403       1.190        ad 	if (l->l_switchto != NULL) {
    404   1.192.2.8     joerg 		if ((l->l_pflag & LP_INTR) != 0) {
    405   1.192.2.5     joerg 			returning = true;
    406   1.192.2.5     joerg 			softint_block(l);
    407   1.192.2.5     joerg 			if ((l->l_flag & LW_TIMEINTR) != 0)
    408   1.192.2.5     joerg 				updatertime(l, &tv);
    409   1.192.2.5     joerg 		}
    410       1.190        ad 		newl = l->l_switchto;
    411       1.190        ad 		l->l_switchto = NULL;
    412       1.190        ad 	}
    413   1.192.2.8     joerg #ifndef __HAVE_FAST_SOFTINTS
    414   1.192.2.8     joerg 	else if (ci->ci_data.cpu_softints != 0) {
    415   1.192.2.8     joerg 		/* There are pending soft interrupts, so pick one. */
    416   1.192.2.8     joerg 		newl = softint_picklwp();
    417   1.192.2.8     joerg 		newl->l_stat = LSONPROC;
    418   1.192.2.8     joerg 		newl->l_flag |= LW_RUNNING;
    419   1.192.2.8     joerg 	}
    420   1.192.2.8     joerg #endif	/* !__HAVE_FAST_SOFTINTS */
    421       1.190        ad 
    422       1.180       dsl 	/* Count time spent in current system call */
    423   1.192.2.5     joerg 	if (!returning) {
    424   1.192.2.5     joerg 		SYSCALL_TIME_SLEEP(l);
    425       1.180       dsl 
    426   1.192.2.5     joerg 		/*
    427   1.192.2.5     joerg 		 * XXXSMP If we are using h/w performance counters,
    428   1.192.2.5     joerg 		 * save context.
    429   1.192.2.5     joerg 		 */
    430       1.174        ad #if PERFCTRS
    431   1.192.2.5     joerg 		if (PMC_ENABLED(l->l_proc)) {
    432   1.192.2.5     joerg 			pmc_save_context(l->l_proc);
    433   1.192.2.5     joerg 		}
    434       1.109      yamt #endif
    435   1.192.2.5     joerg 		updatertime(l, &tv);
    436   1.192.2.5     joerg 	}
    437       1.113  gmcgarry 
    438       1.113  gmcgarry 	/*
    439       1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    440       1.113  gmcgarry 	 */
    441       1.188      yamt 	mutex_spin_enter(spc->spc_mutex);
    442       1.174        ad 	KASSERT(l->l_stat != LSRUN);
    443   1.192.2.8     joerg 	if (l->l_stat == LSONPROC && l != newl) {
    444       1.188      yamt 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    445       1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    446       1.188      yamt 			l->l_stat = LSRUN;
    447       1.188      yamt 			lwp_setlock(l, spc->spc_mutex);
    448       1.188      yamt 			sched_enqueue(l, true);
    449       1.188      yamt 		} else
    450       1.188      yamt 			l->l_stat = LSIDL;
    451       1.174        ad 	}
    452       1.174        ad 
    453       1.174        ad 	/*
    454   1.192.2.5     joerg 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    455       1.188      yamt 	 * If no LWP is runnable, switch to the idle LWP.
    456   1.192.2.5     joerg 	 * Note that spc_lwplock might not necessary be held.
    457       1.174        ad 	 */
    458       1.190        ad 	if (newl == NULL) {
    459       1.190        ad 		newl = sched_nextlwp();
    460       1.190        ad 		if (newl != NULL) {
    461       1.190        ad 			sched_dequeue(newl);
    462       1.190        ad 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    463       1.190        ad 			newl->l_stat = LSONPROC;
    464   1.192.2.3     joerg 			newl->l_cpu = ci;
    465       1.190        ad 			newl->l_flag |= LW_RUNNING;
    466       1.190        ad 			lwp_setlock(newl, &spc->spc_lwplock);
    467       1.190        ad 		} else {
    468   1.192.2.3     joerg 			newl = ci->ci_data.cpu_idlelwp;
    469       1.190        ad 			newl->l_stat = LSONPROC;
    470       1.190        ad 			newl->l_flag |= LW_RUNNING;
    471       1.190        ad 		}
    472   1.192.2.8     joerg 		/*
    473   1.192.2.8     joerg 		 * Only clear want_resched if there are no
    474   1.192.2.8     joerg 		 * pending (slow) software interrupts.
    475   1.192.2.8     joerg 		 */
    476   1.192.2.8     joerg 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    477   1.192.2.5     joerg 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    478   1.192.2.8     joerg 		spc->spc_curpriority = lwp_eprio(newl);
    479   1.192.2.5     joerg 	}
    480   1.192.2.5     joerg 
    481   1.192.2.8     joerg 	/* Items that must be updated with the CPU locked. */
    482   1.192.2.5     joerg 	if (!returning) {
    483   1.192.2.8     joerg 		/* Update the new LWP's start time. */
    484   1.192.2.5     joerg 		newl->l_stime = tv;
    485   1.192.2.8     joerg 
    486   1.192.2.5     joerg 		/*
    487   1.192.2.8     joerg 		 * ci_curlwp changes when a fast soft interrupt occurs.
    488   1.192.2.8     joerg 		 * We use cpu_onproc to keep track of which kernel or
    489   1.192.2.8     joerg 		 * user thread is running 'underneath' the software
    490   1.192.2.8     joerg 		 * interrupt.  This is important for time accounting,
    491   1.192.2.8     joerg 		 * itimers and forcing user threads to preempt (aston).
    492   1.192.2.5     joerg 		 */
    493   1.192.2.8     joerg 		ci->ci_data.cpu_onproc = newl;
    494       1.188      yamt 	}
    495       1.188      yamt 
    496       1.188      yamt 	if (l != newl) {
    497       1.188      yamt 		struct lwp *prevlwp;
    498       1.174        ad 
    499       1.188      yamt 		/*
    500       1.188      yamt 		 * If the old LWP has been moved to a run queue above,
    501       1.188      yamt 		 * drop the general purpose LWP lock: it's now locked
    502       1.188      yamt 		 * by the scheduler lock.
    503       1.188      yamt 		 *
    504       1.188      yamt 		 * Otherwise, drop the scheduler lock.  We're done with
    505       1.188      yamt 		 * the run queues for now.
    506       1.188      yamt 		 */
    507       1.188      yamt 		if (l->l_mutex == spc->spc_mutex) {
    508       1.188      yamt 			mutex_spin_exit(&spc->spc_lwplock);
    509       1.188      yamt 		} else {
    510       1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    511       1.188      yamt 		}
    512       1.188      yamt 
    513       1.188      yamt 		/* Unlocked, but for statistics only. */
    514       1.188      yamt 		uvmexp.swtch++;
    515       1.188      yamt 
    516   1.192.2.5     joerg 		/*
    517   1.192.2.5     joerg 		 * Save old VM context, unless a soft interrupt
    518   1.192.2.5     joerg 		 * handler is blocking.
    519   1.192.2.5     joerg 		 */
    520   1.192.2.5     joerg 		if (!returning)
    521   1.192.2.5     joerg 			pmap_deactivate(l);
    522       1.188      yamt 
    523  1.192.2.11     joerg 		/* Update status for lwpctl, if present. */
    524  1.192.2.11     joerg 	        if (l->l_lwpctl != NULL)
    525  1.192.2.11     joerg 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    526  1.192.2.11     joerg 
    527       1.188      yamt 		/* Switch to the new LWP.. */
    528       1.188      yamt 		l->l_ncsw++;
    529       1.188      yamt 		l->l_flag &= ~LW_RUNNING;
    530   1.192.2.3     joerg 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    531   1.192.2.8     joerg 		prevlwp = cpu_switchto(l, newl, returning);
    532  1.192.2.11     joerg 		ci = curcpu();
    533  1.192.2.11     joerg 
    534       1.188      yamt 		/*
    535       1.188      yamt 		 * .. we have switched away and are now back so we must
    536       1.188      yamt 		 * be the new curlwp.  prevlwp is who we replaced.
    537       1.188      yamt 		 */
    538       1.188      yamt 		if (prevlwp != NULL) {
    539  1.192.2.11     joerg 			ci->ci_mtx_oldspl = oldspl;
    540       1.188      yamt 			lwp_unlock(prevlwp);
    541       1.188      yamt 		} else {
    542       1.188      yamt 			splx(oldspl);
    543       1.188      yamt 		}
    544       1.174        ad 
    545       1.188      yamt 		/* Restore VM context. */
    546       1.188      yamt 		pmap_activate(l);
    547       1.188      yamt 		retval = 1;
    548  1.192.2.11     joerg 
    549  1.192.2.11     joerg 		/* Update status for lwpctl, if present. */
    550  1.192.2.11     joerg 	        if (l->l_lwpctl != NULL)
    551  1.192.2.11     joerg 			l->l_lwpctl->lc_curcpu = (short)ci->ci_data.cpu_index;
    552       1.188      yamt 	} else {
    553       1.188      yamt 		/* Nothing to do - just unlock and return. */
    554       1.188      yamt 		mutex_spin_exit(spc->spc_mutex);
    555       1.188      yamt 		lwp_unlock(l);
    556       1.122   thorpej 		retval = 0;
    557       1.122   thorpej 	}
    558       1.110    briggs 
    559       1.188      yamt 	KASSERT(l == curlwp);
    560       1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    561  1.192.2.11     joerg 	KASSERT(l->l_cpu == ci);
    562       1.188      yamt 
    563       1.110    briggs 	/*
    564       1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    565        1.26       cgd 	 */
    566       1.114  gmcgarry #if PERFCTRS
    567       1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    568       1.175  christos 		pmc_restore_context(l->l_proc);
    569       1.166  christos 	}
    570       1.114  gmcgarry #endif
    571       1.110    briggs 
    572       1.110    briggs 	/*
    573        1.76   thorpej 	 * We're running again; record our new start time.  We might
    574       1.174        ad 	 * be running on a new CPU now, so don't use the cached
    575        1.76   thorpej 	 * schedstate_percpu pointer.
    576        1.76   thorpej 	 */
    577       1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    578   1.192.2.3     joerg 	KASSERT(curlwp == l);
    579  1.192.2.11     joerg 	KDASSERT(l->l_cpu == ci);
    580       1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    581       1.169      yamt 
    582       1.122   thorpej 	return retval;
    583        1.26       cgd }
    584        1.26       cgd 
    585        1.26       cgd /*
    586       1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    587       1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    588       1.174        ad  *
    589       1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    590        1.26       cgd  */
    591        1.26       cgd void
    592       1.122   thorpej setrunnable(struct lwp *l)
    593        1.26       cgd {
    594       1.122   thorpej 	struct proc *p = l->l_proc;
    595   1.192.2.9     joerg 	struct cpu_info *ci;
    596       1.174        ad 	sigset_t *ss;
    597        1.26       cgd 
    598       1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    599       1.183        ad 	KASSERT(mutex_owned(&p->p_smutex));
    600       1.183        ad 	KASSERT(lwp_locked(l, NULL));
    601   1.192.2.9     joerg 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    602        1.83   thorpej 
    603       1.122   thorpej 	switch (l->l_stat) {
    604       1.122   thorpej 	case LSSTOP:
    605        1.33   mycroft 		/*
    606        1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    607        1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    608        1.33   mycroft 		 */
    609       1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    610       1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    611       1.174        ad 				ss = &l->l_sigpend.sp_set;
    612       1.174        ad 			else
    613       1.174        ad 				ss = &p->p_sigpend.sp_set;
    614       1.174        ad 			sigaddset(ss, p->p_xstat);
    615       1.174        ad 			signotify(l);
    616        1.53   mycroft 		}
    617       1.174        ad 		p->p_nrlwps++;
    618        1.26       cgd 		break;
    619       1.174        ad 	case LSSUSPENDED:
    620       1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    621       1.174        ad 		p->p_nrlwps++;
    622       1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    623       1.122   thorpej 		break;
    624       1.174        ad 	case LSSLEEP:
    625       1.174        ad 		KASSERT(l->l_wchan != NULL);
    626        1.26       cgd 		break;
    627       1.174        ad 	default:
    628       1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    629        1.26       cgd 	}
    630       1.139        cl 
    631       1.174        ad 	/*
    632       1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    633       1.174        ad 	 * again.  If not, mark it as still sleeping.
    634       1.174        ad 	 */
    635       1.174        ad 	if (l->l_wchan != NULL) {
    636       1.174        ad 		l->l_stat = LSSLEEP;
    637       1.183        ad 		/* lwp_unsleep() will release the lock. */
    638       1.183        ad 		lwp_unsleep(l);
    639       1.174        ad 		return;
    640       1.174        ad 	}
    641       1.139        cl 
    642       1.174        ad 	/*
    643       1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    644       1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    645       1.174        ad 	 */
    646       1.188      yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    647       1.174        ad 		l->l_stat = LSONPROC;
    648       1.174        ad 		l->l_slptime = 0;
    649       1.174        ad 		lwp_unlock(l);
    650       1.174        ad 		return;
    651       1.174        ad 	}
    652       1.122   thorpej 
    653       1.174        ad 	/*
    654   1.192.2.9     joerg 	 * Look for a CPU to run.
    655   1.192.2.9     joerg 	 * Set the LWP runnable.
    656       1.174        ad 	 */
    657   1.192.2.9     joerg 	ci = sched_takecpu(l);
    658   1.192.2.9     joerg 	l->l_cpu = ci;
    659  1.192.2.10     joerg 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    660  1.192.2.10     joerg 		lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    661  1.192.2.10     joerg 		lwp_lock(l);
    662  1.192.2.10     joerg 	}
    663       1.188      yamt 	sched_setrunnable(l);
    664       1.174        ad 	l->l_stat = LSRUN;
    665       1.122   thorpej 	l->l_slptime = 0;
    666       1.174        ad 
    667   1.192.2.9     joerg 	/*
    668   1.192.2.9     joerg 	 * If thread is swapped out - wake the swapper to bring it back in.
    669   1.192.2.9     joerg 	 * Otherwise, enter it into a run queue.
    670   1.192.2.9     joerg 	 */
    671       1.178     pavel 	if (l->l_flag & LW_INMEM) {
    672       1.188      yamt 		sched_enqueue(l, false);
    673       1.188      yamt 		resched_cpu(l);
    674       1.174        ad 		lwp_unlock(l);
    675       1.174        ad 	} else {
    676       1.174        ad 		lwp_unlock(l);
    677       1.177        ad 		uvm_kick_scheduler();
    678       1.174        ad 	}
    679        1.26       cgd }
    680        1.26       cgd 
    681        1.26       cgd /*
    682       1.174        ad  * suspendsched:
    683       1.174        ad  *
    684       1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    685       1.174        ad  */
    686        1.94    bouyer void
    687       1.174        ad suspendsched(void)
    688        1.94    bouyer {
    689       1.174        ad 	CPU_INFO_ITERATOR cii;
    690       1.174        ad 	struct cpu_info *ci;
    691       1.122   thorpej 	struct lwp *l;
    692       1.174        ad 	struct proc *p;
    693        1.94    bouyer 
    694        1.94    bouyer 	/*
    695       1.174        ad 	 * We do this by process in order not to violate the locking rules.
    696        1.94    bouyer 	 */
    697   1.192.2.8     joerg 	mutex_enter(&proclist_lock);
    698       1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    699       1.174        ad 		mutex_enter(&p->p_smutex);
    700       1.174        ad 
    701       1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    702       1.174        ad 			mutex_exit(&p->p_smutex);
    703        1.94    bouyer 			continue;
    704       1.174        ad 		}
    705       1.174        ad 
    706       1.174        ad 		p->p_stat = SSTOP;
    707       1.174        ad 
    708       1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    709       1.174        ad 			if (l == curlwp)
    710       1.174        ad 				continue;
    711       1.174        ad 
    712       1.174        ad 			lwp_lock(l);
    713       1.122   thorpej 
    714        1.97     enami 			/*
    715       1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    716       1.174        ad 			 * when it tries to return to user mode.  We want to
    717       1.174        ad 			 * try and get to get as many LWPs as possible to
    718       1.174        ad 			 * the user / kernel boundary, so that they will
    719       1.174        ad 			 * release any locks that they hold.
    720        1.97     enami 			 */
    721       1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    722       1.174        ad 
    723       1.174        ad 			if (l->l_stat == LSSLEEP &&
    724       1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    725       1.174        ad 				/* setrunnable() will release the lock. */
    726       1.174        ad 				setrunnable(l);
    727       1.174        ad 				continue;
    728       1.174        ad 			}
    729       1.174        ad 
    730       1.174        ad 			lwp_unlock(l);
    731        1.94    bouyer 		}
    732       1.174        ad 
    733       1.174        ad 		mutex_exit(&p->p_smutex);
    734        1.94    bouyer 	}
    735   1.192.2.8     joerg 	mutex_exit(&proclist_lock);
    736       1.174        ad 
    737       1.174        ad 	/*
    738       1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    739       1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    740       1.174        ad 	 */
    741   1.192.2.8     joerg 	for (CPU_INFO_FOREACH(cii, ci)) {
    742   1.192.2.8     joerg 		spc_lock(ci);
    743   1.192.2.8     joerg 		cpu_need_resched(ci, RESCHED_IMMED);
    744   1.192.2.8     joerg 		spc_unlock(ci);
    745   1.192.2.8     joerg 	}
    746       1.174        ad }
    747       1.174        ad 
    748       1.174        ad /*
    749       1.174        ad  * sched_kpri:
    750       1.174        ad  *
    751       1.174        ad  *	Scale a priority level to a kernel priority level, usually
    752       1.174        ad  *	for an LWP that is about to sleep.
    753       1.174        ad  */
    754       1.185      yamt pri_t
    755       1.174        ad sched_kpri(struct lwp *l)
    756       1.174        ad {
    757   1.192.2.8     joerg 	pri_t pri;
    758   1.192.2.8     joerg 
    759   1.192.2.8     joerg #ifndef __HAVE_FAST_SOFTINTS
    760       1.174        ad 	/*
    761   1.192.2.8     joerg 	 * Hack: if a user thread is being used to run a soft
    762   1.192.2.8     joerg 	 * interrupt, we need to boost the priority here.
    763   1.192.2.8     joerg 	 */
    764   1.192.2.8     joerg 	if ((l->l_pflag & LP_INTR) != 0 && l->l_priority < PRI_KERNEL_RT)
    765   1.192.2.8     joerg 		return softint_kpri(l);
    766   1.192.2.8     joerg #endif
    767       1.174        ad 
    768   1.192.2.8     joerg 	/*
    769   1.192.2.8     joerg 	 * Scale user priorities (0 -> 63) up to kernel priorities
    770   1.192.2.8     joerg 	 * in the range (64 -> 95).  This makes assumptions about
    771   1.192.2.8     joerg 	 * the priority space and so should be kept in sync with
    772   1.192.2.8     joerg 	 * param.h.
    773   1.192.2.8     joerg 	 */
    774   1.192.2.8     joerg 	if ((pri = l->l_priority) >= PRI_KERNEL)
    775   1.192.2.8     joerg 		return pri;
    776   1.192.2.8     joerg 	return (pri >> 1) + PRI_KERNEL;
    777       1.174        ad }
    778       1.174        ad 
    779       1.174        ad /*
    780       1.174        ad  * sched_unsleep:
    781       1.174        ad  *
    782       1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    783       1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    784       1.174        ad  *	it's not a valid action for running or idle LWPs.
    785       1.174        ad  */
    786       1.188      yamt static void
    787       1.174        ad sched_unsleep(struct lwp *l)
    788       1.174        ad {
    789       1.174        ad 
    790       1.174        ad 	lwp_unlock(l);
    791       1.174        ad 	panic("sched_unsleep");
    792       1.174        ad }
    793       1.174        ad 
    794   1.192.2.8     joerg void
    795       1.188      yamt resched_cpu(struct lwp *l)
    796       1.188      yamt {
    797       1.188      yamt 	struct cpu_info *ci;
    798       1.188      yamt 
    799       1.188      yamt 	/*
    800       1.188      yamt 	 * XXXSMP
    801       1.188      yamt 	 * Since l->l_cpu persists across a context switch,
    802       1.188      yamt 	 * this gives us *very weak* processor affinity, in
    803       1.188      yamt 	 * that we notify the CPU on which the process last
    804       1.188      yamt 	 * ran that it should try to switch.
    805       1.188      yamt 	 *
    806       1.188      yamt 	 * This does not guarantee that the process will run on
    807       1.188      yamt 	 * that processor next, because another processor might
    808       1.188      yamt 	 * grab it the next time it performs a context switch.
    809       1.188      yamt 	 *
    810       1.188      yamt 	 * This also does not handle the case where its last
    811       1.188      yamt 	 * CPU is running a higher-priority process, but every
    812       1.188      yamt 	 * other CPU is running a lower-priority process.  There
    813       1.188      yamt 	 * are ways to handle this situation, but they're not
    814       1.188      yamt 	 * currently very pretty, and we also need to weigh the
    815       1.188      yamt 	 * cost of moving a process from one CPU to another.
    816       1.188      yamt 	 */
    817   1.192.2.8     joerg 	ci = l->l_cpu;
    818   1.192.2.8     joerg 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
    819       1.188      yamt 		cpu_need_resched(ci, 0);
    820       1.188      yamt }
    821       1.188      yamt 
    822       1.188      yamt static void
    823       1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
    824       1.174        ad {
    825       1.174        ad 
    826       1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    827       1.174        ad 
    828   1.192.2.8     joerg 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    829   1.192.2.8     joerg 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    830   1.192.2.8     joerg 		sched_dequeue(l);
    831   1.192.2.8     joerg 		l->l_priority = pri;
    832   1.192.2.8     joerg 		sched_enqueue(l, false);
    833   1.192.2.8     joerg 	} else {
    834       1.174        ad 		l->l_priority = pri;
    835       1.157      yamt 	}
    836       1.188      yamt 	resched_cpu(l);
    837       1.184      yamt }
    838       1.184      yamt 
    839       1.188      yamt static void
    840       1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
    841       1.184      yamt {
    842       1.184      yamt 
    843       1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    844       1.184      yamt 
    845   1.192.2.8     joerg 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    846   1.192.2.8     joerg 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    847   1.192.2.8     joerg 		sched_dequeue(l);
    848   1.192.2.8     joerg 		l->l_inheritedprio = pri;
    849   1.192.2.8     joerg 		sched_enqueue(l, false);
    850   1.192.2.8     joerg 	} else {
    851       1.184      yamt 		l->l_inheritedprio = pri;
    852       1.184      yamt 	}
    853       1.188      yamt 	resched_cpu(l);
    854       1.184      yamt }
    855       1.184      yamt 
    856       1.184      yamt struct lwp *
    857       1.184      yamt syncobj_noowner(wchan_t wchan)
    858       1.184      yamt {
    859       1.184      yamt 
    860       1.184      yamt 	return NULL;
    861       1.151      yamt }
    862       1.151      yamt 
    863       1.113  gmcgarry 
    864       1.188      yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    865       1.188      yamt fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    866       1.115  nisimura 
    867       1.130   nathanw /*
    868       1.188      yamt  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    869       1.188      yamt  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    870       1.188      yamt  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    871       1.188      yamt  *
    872       1.188      yamt  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    873       1.188      yamt  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    874       1.188      yamt  *
    875       1.188      yamt  * If you dont want to bother with the faster/more-accurate formula, you
    876       1.188      yamt  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    877       1.188      yamt  * (more general) method of calculating the %age of CPU used by a process.
    878       1.134      matt  */
    879       1.188      yamt #define	CCPU_SHIFT	(FSHIFT + 1)
    880       1.134      matt 
    881       1.134      matt /*
    882       1.188      yamt  * sched_pstats:
    883       1.188      yamt  *
    884       1.188      yamt  * Update process statistics and check CPU resource allocation.
    885       1.188      yamt  * Call scheduler-specific hook to eventually adjust process/LWP
    886       1.188      yamt  * priorities.
    887       1.130   nathanw  */
    888       1.188      yamt /* ARGSUSED */
    889       1.113  gmcgarry void
    890       1.188      yamt sched_pstats(void *arg)
    891       1.113  gmcgarry {
    892       1.188      yamt 	struct rlimit *rlim;
    893       1.188      yamt 	struct lwp *l;
    894       1.188      yamt 	struct proc *p;
    895   1.192.2.8     joerg 	int sig, clkhz;
    896       1.188      yamt 	long runtm;
    897       1.113  gmcgarry 
    898       1.188      yamt 	sched_pstats_ticks++;
    899       1.174        ad 
    900       1.188      yamt 	mutex_enter(&proclist_mutex);
    901       1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
    902       1.188      yamt 		/*
    903       1.188      yamt 		 * Increment time in/out of memory and sleep time (if
    904       1.188      yamt 		 * sleeping).  We ignore overflow; with 16-bit int's
    905       1.188      yamt 		 * (remember them?) overflow takes 45 days.
    906       1.188      yamt 		 */
    907       1.188      yamt 		mutex_enter(&p->p_smutex);
    908       1.188      yamt 		mutex_spin_enter(&p->p_stmutex);
    909       1.188      yamt 		runtm = p->p_rtime.tv_sec;
    910       1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    911       1.188      yamt 			if ((l->l_flag & LW_IDLE) != 0)
    912       1.188      yamt 				continue;
    913       1.188      yamt 			lwp_lock(l);
    914       1.188      yamt 			runtm += l->l_rtime.tv_sec;
    915       1.188      yamt 			l->l_swtime++;
    916   1.192.2.5     joerg 			sched_pstats_hook(l);
    917       1.188      yamt 			lwp_unlock(l);
    918       1.113  gmcgarry 
    919       1.188      yamt 			/*
    920       1.188      yamt 			 * p_pctcpu is only for ps.
    921       1.188      yamt 			 */
    922       1.188      yamt 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    923       1.188      yamt 			if (l->l_slptime < 1) {
    924       1.188      yamt 				clkhz = stathz != 0 ? stathz : hz;
    925       1.188      yamt #if	(FSHIFT >= CCPU_SHIFT)
    926       1.188      yamt 				l->l_pctcpu += (clkhz == 100) ?
    927       1.188      yamt 				    ((fixpt_t)l->l_cpticks) <<
    928       1.188      yamt 				        (FSHIFT - CCPU_SHIFT) :
    929       1.188      yamt 				    100 * (((fixpt_t) p->p_cpticks)
    930       1.188      yamt 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    931       1.188      yamt #else
    932       1.188      yamt 				l->l_pctcpu += ((FSCALE - ccpu) *
    933       1.188      yamt 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    934       1.146      matt #endif
    935       1.188      yamt 				l->l_cpticks = 0;
    936       1.188      yamt 			}
    937       1.188      yamt 		}
    938       1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    939       1.188      yamt 		mutex_spin_exit(&p->p_stmutex);
    940       1.174        ad 
    941       1.188      yamt 		/*
    942       1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
    943       1.188      yamt 		 * If over max, kill it.
    944       1.188      yamt 		 */
    945       1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
    946       1.188      yamt 		sig = 0;
    947       1.188      yamt 		if (runtm >= rlim->rlim_cur) {
    948       1.188      yamt 			if (runtm >= rlim->rlim_max)
    949       1.188      yamt 				sig = SIGKILL;
    950       1.188      yamt 			else {
    951       1.188      yamt 				sig = SIGXCPU;
    952       1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
    953       1.188      yamt 					rlim->rlim_cur += 5;
    954       1.188      yamt 			}
    955       1.188      yamt 		}
    956       1.188      yamt 		mutex_exit(&p->p_smutex);
    957       1.188      yamt 		if (sig) {
    958       1.188      yamt 			psignal(p, sig);
    959       1.188      yamt 		}
    960       1.174        ad 	}
    961       1.188      yamt 	mutex_exit(&proclist_mutex);
    962       1.188      yamt 	uvm_meter();
    963       1.191        ad 	cv_wakeup(&lbolt);
    964       1.188      yamt 	callout_schedule(&sched_pstats_ch, hz);
    965       1.113  gmcgarry }
    966       1.190        ad 
    967       1.190        ad void
    968       1.190        ad sched_init(void)
    969       1.190        ad {
    970       1.190        ad 
    971       1.190        ad 	callout_init(&sched_pstats_ch, 0);
    972       1.190        ad 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    973       1.190        ad 	sched_setup();
    974       1.190        ad 	sched_pstats(NULL);
    975       1.190        ad }
    976