Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.192.2.12
      1  1.192.2.12     joerg /*	$NetBSD: kern_synch.c,v 1.192.2.12 2007/12/03 16:14:54 joerg Exp $	*/
      2        1.63   thorpej 
      3        1.63   thorpej /*-
      4       1.174        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5        1.63   thorpej  * All rights reserved.
      6        1.63   thorpej  *
      7        1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8        1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9       1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10       1.188      yamt  * Daniel Sieger.
     11        1.63   thorpej  *
     12        1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13        1.63   thorpej  * modification, are permitted provided that the following conditions
     14        1.63   thorpej  * are met:
     15        1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16        1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17        1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18        1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19        1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20        1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     21        1.63   thorpej  *    must display the following acknowledgement:
     22        1.63   thorpej  *	This product includes software developed by the NetBSD
     23        1.63   thorpej  *	Foundation, Inc. and its contributors.
     24        1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25        1.63   thorpej  *    contributors may be used to endorse or promote products derived
     26        1.63   thorpej  *    from this software without specific prior written permission.
     27        1.63   thorpej  *
     28        1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29        1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30        1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31        1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32        1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33        1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34        1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35        1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36        1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37        1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38        1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     39        1.63   thorpej  */
     40        1.26       cgd 
     41        1.26       cgd /*-
     42        1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43        1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     44        1.26       cgd  * (c) UNIX System Laboratories, Inc.
     45        1.26       cgd  * All or some portions of this file are derived from material licensed
     46        1.26       cgd  * to the University of California by American Telephone and Telegraph
     47        1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48        1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     49        1.26       cgd  *
     50        1.26       cgd  * Redistribution and use in source and binary forms, with or without
     51        1.26       cgd  * modification, are permitted provided that the following conditions
     52        1.26       cgd  * are met:
     53        1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     54        1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     55        1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     56        1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     57        1.26       cgd  *    documentation and/or other materials provided with the distribution.
     58       1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     59        1.26       cgd  *    may be used to endorse or promote products derived from this software
     60        1.26       cgd  *    without specific prior written permission.
     61        1.26       cgd  *
     62        1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63        1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64        1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65        1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66        1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67        1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68        1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69        1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70        1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71        1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72        1.26       cgd  * SUCH DAMAGE.
     73        1.26       cgd  *
     74        1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75        1.26       cgd  */
     76       1.106     lukem 
     77       1.106     lukem #include <sys/cdefs.h>
     78  1.192.2.12     joerg __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.192.2.12 2007/12/03 16:14:54 joerg Exp $");
     79        1.48       mrg 
     80       1.109      yamt #include "opt_kstack.h"
     81        1.82   thorpej #include "opt_lockdebug.h"
     82        1.83   thorpej #include "opt_multiprocessor.h"
     83       1.110    briggs #include "opt_perfctrs.h"
     84        1.26       cgd 
     85       1.174        ad #define	__MUTEX_PRIVATE
     86       1.174        ad 
     87        1.26       cgd #include <sys/param.h>
     88        1.26       cgd #include <sys/systm.h>
     89        1.26       cgd #include <sys/proc.h>
     90        1.26       cgd #include <sys/kernel.h>
     91       1.111    briggs #if defined(PERFCTRS)
     92       1.110    briggs #include <sys/pmc.h>
     93       1.111    briggs #endif
     94       1.188      yamt #include <sys/cpu.h>
     95        1.26       cgd #include <sys/resourcevar.h>
     96        1.55      ross #include <sys/sched.h>
     97       1.179       dsl #include <sys/syscall_stats.h>
     98       1.174        ad #include <sys/sleepq.h>
     99       1.174        ad #include <sys/lockdebug.h>
    100       1.190        ad #include <sys/evcnt.h>
    101   1.192.2.5     joerg #include <sys/intr.h>
    102  1.192.2.11     joerg #include <sys/lwpctl.h>
    103  1.192.2.12     joerg #include <sys/atomic.h>
    104        1.47       mrg 
    105        1.47       mrg #include <uvm/uvm_extern.h>
    106        1.47       mrg 
    107       1.190        ad callout_t sched_pstats_ch;
    108       1.188      yamt unsigned int sched_pstats_ticks;
    109        1.34  christos 
    110       1.190        ad kcondvar_t	lbolt;			/* once a second sleep address */
    111        1.26       cgd 
    112       1.188      yamt static void	sched_unsleep(struct lwp *);
    113       1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    114       1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    115       1.122   thorpej 
    116       1.174        ad syncobj_t sleep_syncobj = {
    117       1.174        ad 	SOBJ_SLEEPQ_SORTED,
    118       1.174        ad 	sleepq_unsleep,
    119       1.184      yamt 	sleepq_changepri,
    120       1.184      yamt 	sleepq_lendpri,
    121       1.184      yamt 	syncobj_noowner,
    122       1.174        ad };
    123       1.174        ad 
    124       1.174        ad syncobj_t sched_syncobj = {
    125       1.174        ad 	SOBJ_SLEEPQ_SORTED,
    126       1.174        ad 	sched_unsleep,
    127       1.184      yamt 	sched_changepri,
    128       1.184      yamt 	sched_lendpri,
    129       1.184      yamt 	syncobj_noowner,
    130       1.174        ad };
    131       1.122   thorpej 
    132        1.26       cgd /*
    133       1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    134       1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    135       1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    136       1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    137       1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    138       1.174        ad  * it can be made higher to block network software interrupts after panics.
    139        1.26       cgd  */
    140       1.174        ad int	safepri;
    141        1.26       cgd 
    142        1.26       cgd /*
    143       1.174        ad  * OBSOLETE INTERFACE
    144       1.174        ad  *
    145        1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    146        1.26       cgd  * performed on the specified identifier.  The process will then be made
    147       1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    148       1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    149        1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    150        1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    151        1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    152        1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    153        1.26       cgd  * call should be interrupted by the signal (return EINTR).
    154        1.77   thorpej  *
    155       1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    156       1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    157       1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    158       1.174        ad  * return.
    159        1.26       cgd  */
    160        1.26       cgd int
    161       1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    162       1.174        ad 	volatile struct simplelock *interlock)
    163        1.26       cgd {
    164       1.122   thorpej 	struct lwp *l = curlwp;
    165       1.174        ad 	sleepq_t *sq;
    166       1.188      yamt 	int error;
    167        1.26       cgd 
    168   1.192.2.8     joerg 	KASSERT((l->l_pflag & LP_INTR) == 0);
    169   1.192.2.8     joerg 
    170       1.174        ad 	if (sleepq_dontsleep(l)) {
    171       1.174        ad 		(void)sleepq_abort(NULL, 0);
    172       1.174        ad 		if ((priority & PNORELOCK) != 0)
    173        1.77   thorpej 			simple_unlock(interlock);
    174       1.174        ad 		return 0;
    175        1.26       cgd 	}
    176        1.78  sommerfe 
    177   1.192.2.8     joerg 	l->l_kpriority = true;
    178       1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    179       1.174        ad 	sleepq_enter(sq, l);
    180   1.192.2.8     joerg 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    181        1.42       cgd 
    182       1.174        ad 	if (interlock != NULL) {
    183   1.192.2.8     joerg 		KASSERT(simple_lock_held(interlock));
    184       1.174        ad 		simple_unlock(interlock);
    185       1.150       chs 	}
    186       1.150       chs 
    187       1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    188       1.126        pk 
    189       1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    190       1.126        pk 		simple_lock(interlock);
    191       1.174        ad 
    192       1.174        ad 	return error;
    193        1.26       cgd }
    194        1.26       cgd 
    195       1.187        ad int
    196       1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    197       1.187        ad 	kmutex_t *mtx)
    198       1.187        ad {
    199       1.187        ad 	struct lwp *l = curlwp;
    200       1.187        ad 	sleepq_t *sq;
    201       1.188      yamt 	int error;
    202       1.187        ad 
    203   1.192.2.8     joerg 	KASSERT((l->l_pflag & LP_INTR) == 0);
    204   1.192.2.8     joerg 
    205       1.187        ad 	if (sleepq_dontsleep(l)) {
    206       1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    207       1.187        ad 		return 0;
    208       1.187        ad 	}
    209       1.187        ad 
    210   1.192.2.8     joerg 	l->l_kpriority = true;
    211       1.187        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    212       1.187        ad 	sleepq_enter(sq, l);
    213   1.192.2.8     joerg 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    214       1.187        ad 	mutex_exit(mtx);
    215       1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    216       1.187        ad 
    217       1.187        ad 	if ((priority & PNORELOCK) == 0)
    218       1.187        ad 		mutex_enter(mtx);
    219       1.187        ad 
    220       1.187        ad 	return error;
    221       1.187        ad }
    222       1.187        ad 
    223        1.26       cgd /*
    224       1.174        ad  * General sleep call for situations where a wake-up is not expected.
    225        1.26       cgd  */
    226       1.174        ad int
    227       1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    228        1.26       cgd {
    229       1.174        ad 	struct lwp *l = curlwp;
    230       1.174        ad 	sleepq_t *sq;
    231       1.174        ad 	int error;
    232        1.26       cgd 
    233       1.174        ad 	if (sleepq_dontsleep(l))
    234       1.174        ad 		return sleepq_abort(NULL, 0);
    235        1.26       cgd 
    236       1.174        ad 	if (mtx != NULL)
    237       1.174        ad 		mutex_exit(mtx);
    238   1.192.2.8     joerg 	l->l_kpriority = true;
    239       1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    240       1.174        ad 	sleepq_enter(sq, l);
    241   1.192.2.8     joerg 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    242       1.188      yamt 	error = sleepq_block(timo, intr);
    243       1.174        ad 	if (mtx != NULL)
    244       1.174        ad 		mutex_enter(mtx);
    245        1.83   thorpej 
    246       1.174        ad 	return error;
    247       1.139        cl }
    248       1.139        cl 
    249        1.26       cgd /*
    250       1.174        ad  * OBSOLETE INTERFACE
    251       1.174        ad  *
    252        1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    253        1.26       cgd  */
    254        1.26       cgd void
    255       1.174        ad wakeup(wchan_t ident)
    256        1.26       cgd {
    257       1.174        ad 	sleepq_t *sq;
    258        1.83   thorpej 
    259       1.174        ad 	if (cold)
    260       1.174        ad 		return;
    261        1.83   thorpej 
    262       1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    263       1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    264        1.63   thorpej }
    265        1.63   thorpej 
    266        1.63   thorpej /*
    267       1.174        ad  * OBSOLETE INTERFACE
    268       1.174        ad  *
    269        1.63   thorpej  * Make the highest priority process first in line on the specified
    270        1.63   thorpej  * identifier runnable.
    271        1.63   thorpej  */
    272       1.174        ad void
    273       1.174        ad wakeup_one(wchan_t ident)
    274        1.63   thorpej {
    275       1.174        ad 	sleepq_t *sq;
    276        1.63   thorpej 
    277       1.174        ad 	if (cold)
    278       1.174        ad 		return;
    279       1.188      yamt 
    280       1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    281       1.174        ad 	sleepq_wake(sq, ident, 1);
    282       1.174        ad }
    283        1.63   thorpej 
    284       1.117  gmcgarry 
    285       1.117  gmcgarry /*
    286       1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    287       1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    288   1.192.2.4     joerg  * current process explicitly requests it (eg sched_yield(2)).
    289       1.117  gmcgarry  */
    290       1.117  gmcgarry void
    291       1.117  gmcgarry yield(void)
    292       1.117  gmcgarry {
    293       1.122   thorpej 	struct lwp *l = curlwp;
    294       1.117  gmcgarry 
    295       1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    296       1.174        ad 	lwp_lock(l);
    297       1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    298       1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    299   1.192.2.8     joerg 	l->l_kpriority = false;
    300   1.192.2.8     joerg 	if (l->l_class == SCHED_OTHER) {
    301   1.192.2.8     joerg 		/*
    302   1.192.2.8     joerg 		 * Only for timeshared threads.  It will be reset
    303   1.192.2.8     joerg 		 * by the scheduler in due course.
    304   1.192.2.8     joerg 		 */
    305   1.192.2.8     joerg 		l->l_priority = 0;
    306   1.192.2.8     joerg 	}
    307       1.188      yamt 	(void)mi_switch(l);
    308       1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    309        1.69   thorpej }
    310        1.69   thorpej 
    311        1.69   thorpej /*
    312        1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    313       1.156    rpaulo  * and performs an involuntary context switch.
    314        1.69   thorpej  */
    315        1.69   thorpej void
    316       1.174        ad preempt(void)
    317        1.69   thorpej {
    318       1.122   thorpej 	struct lwp *l = curlwp;
    319        1.69   thorpej 
    320       1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    321       1.174        ad 	lwp_lock(l);
    322       1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    323       1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    324   1.192.2.8     joerg 	l->l_kpriority = false;
    325       1.174        ad 	l->l_nivcsw++;
    326       1.188      yamt 	(void)mi_switch(l);
    327       1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    328        1.69   thorpej }
    329        1.69   thorpej 
    330        1.69   thorpej /*
    331       1.188      yamt  * Compute the amount of time during which the current lwp was running.
    332       1.130   nathanw  *
    333       1.188      yamt  * - update l_rtime unless it's an idle lwp.
    334       1.188      yamt  */
    335       1.188      yamt 
    336   1.192.2.5     joerg void
    337   1.192.2.5     joerg updatertime(lwp_t *l, const struct timeval *tv)
    338       1.188      yamt {
    339       1.188      yamt 	long s, u;
    340       1.188      yamt 
    341   1.192.2.5     joerg 	if ((l->l_flag & LW_IDLE) != 0)
    342       1.188      yamt 		return;
    343       1.188      yamt 
    344   1.192.2.5     joerg 	u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
    345   1.192.2.5     joerg 	s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
    346       1.188      yamt 	if (u < 0) {
    347       1.188      yamt 		u += 1000000;
    348       1.188      yamt 		s--;
    349       1.188      yamt 	} else if (u >= 1000000) {
    350       1.188      yamt 		u -= 1000000;
    351       1.188      yamt 		s++;
    352       1.188      yamt 	}
    353       1.188      yamt 	l->l_rtime.tv_usec = u;
    354       1.188      yamt 	l->l_rtime.tv_sec = s;
    355       1.188      yamt }
    356       1.188      yamt 
    357       1.188      yamt /*
    358       1.188      yamt  * The machine independent parts of context switch.
    359       1.188      yamt  *
    360       1.188      yamt  * Returns 1 if another LWP was actually run.
    361        1.26       cgd  */
    362       1.122   thorpej int
    363   1.192.2.5     joerg mi_switch(lwp_t *l)
    364        1.26       cgd {
    365        1.76   thorpej 	struct schedstate_percpu *spc;
    366       1.188      yamt 	struct lwp *newl;
    367       1.174        ad 	int retval, oldspl;
    368   1.192.2.3     joerg 	struct cpu_info *ci;
    369   1.192.2.5     joerg 	struct timeval tv;
    370   1.192.2.5     joerg 	bool returning;
    371        1.26       cgd 
    372       1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    373       1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    374       1.174        ad 
    375       1.174        ad #ifdef KSTACK_CHECK_MAGIC
    376       1.174        ad 	kstack_check_magic(l);
    377       1.174        ad #endif
    378        1.83   thorpej 
    379   1.192.2.5     joerg 	microtime(&tv);
    380   1.192.2.5     joerg 
    381  1.192.2.12     joerg 	KDASSERT(l->l_cpu == curcpu());
    382   1.192.2.3     joerg 	ci = l->l_cpu;
    383   1.192.2.3     joerg 	spc = &ci->ci_schedstate;
    384   1.192.2.5     joerg 	returning = false;
    385       1.190        ad 	newl = NULL;
    386       1.190        ad 
    387   1.192.2.5     joerg 	/*
    388   1.192.2.5     joerg 	 * If we have been asked to switch to a specific LWP, then there
    389   1.192.2.5     joerg 	 * is no need to inspect the run queues.  If a soft interrupt is
    390   1.192.2.5     joerg 	 * blocking, then return to the interrupted thread without adjusting
    391   1.192.2.5     joerg 	 * VM context or its start time: neither have been changed in order
    392   1.192.2.5     joerg 	 * to take the interrupt.
    393   1.192.2.5     joerg 	 */
    394       1.190        ad 	if (l->l_switchto != NULL) {
    395   1.192.2.8     joerg 		if ((l->l_pflag & LP_INTR) != 0) {
    396   1.192.2.5     joerg 			returning = true;
    397   1.192.2.5     joerg 			softint_block(l);
    398   1.192.2.5     joerg 			if ((l->l_flag & LW_TIMEINTR) != 0)
    399   1.192.2.5     joerg 				updatertime(l, &tv);
    400   1.192.2.5     joerg 		}
    401       1.190        ad 		newl = l->l_switchto;
    402       1.190        ad 		l->l_switchto = NULL;
    403       1.190        ad 	}
    404   1.192.2.8     joerg #ifndef __HAVE_FAST_SOFTINTS
    405   1.192.2.8     joerg 	else if (ci->ci_data.cpu_softints != 0) {
    406   1.192.2.8     joerg 		/* There are pending soft interrupts, so pick one. */
    407   1.192.2.8     joerg 		newl = softint_picklwp();
    408   1.192.2.8     joerg 		newl->l_stat = LSONPROC;
    409   1.192.2.8     joerg 		newl->l_flag |= LW_RUNNING;
    410   1.192.2.8     joerg 	}
    411   1.192.2.8     joerg #endif	/* !__HAVE_FAST_SOFTINTS */
    412       1.190        ad 
    413       1.180       dsl 	/* Count time spent in current system call */
    414   1.192.2.5     joerg 	if (!returning) {
    415   1.192.2.5     joerg 		SYSCALL_TIME_SLEEP(l);
    416       1.180       dsl 
    417   1.192.2.5     joerg 		/*
    418   1.192.2.5     joerg 		 * XXXSMP If we are using h/w performance counters,
    419   1.192.2.5     joerg 		 * save context.
    420   1.192.2.5     joerg 		 */
    421       1.174        ad #if PERFCTRS
    422   1.192.2.5     joerg 		if (PMC_ENABLED(l->l_proc)) {
    423   1.192.2.5     joerg 			pmc_save_context(l->l_proc);
    424   1.192.2.5     joerg 		}
    425       1.109      yamt #endif
    426   1.192.2.5     joerg 		updatertime(l, &tv);
    427   1.192.2.5     joerg 	}
    428       1.113  gmcgarry 
    429       1.113  gmcgarry 	/*
    430       1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    431       1.113  gmcgarry 	 */
    432       1.188      yamt 	mutex_spin_enter(spc->spc_mutex);
    433       1.174        ad 	KASSERT(l->l_stat != LSRUN);
    434   1.192.2.8     joerg 	if (l->l_stat == LSONPROC && l != newl) {
    435       1.188      yamt 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    436       1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    437       1.188      yamt 			l->l_stat = LSRUN;
    438       1.188      yamt 			lwp_setlock(l, spc->spc_mutex);
    439       1.188      yamt 			sched_enqueue(l, true);
    440       1.188      yamt 		} else
    441       1.188      yamt 			l->l_stat = LSIDL;
    442       1.174        ad 	}
    443       1.174        ad 
    444       1.174        ad 	/*
    445   1.192.2.5     joerg 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    446  1.192.2.12     joerg 	 * If no LWP is runnable, select the idle LWP.
    447  1.192.2.12     joerg 	 *
    448  1.192.2.12     joerg 	 * Note that spc_lwplock might not necessary be held, and
    449  1.192.2.12     joerg 	 * new thread would be unlocked after setting the LWP-lock.
    450       1.174        ad 	 */
    451       1.190        ad 	if (newl == NULL) {
    452       1.190        ad 		newl = sched_nextlwp();
    453       1.190        ad 		if (newl != NULL) {
    454       1.190        ad 			sched_dequeue(newl);
    455       1.190        ad 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    456       1.190        ad 			newl->l_stat = LSONPROC;
    457   1.192.2.3     joerg 			newl->l_cpu = ci;
    458       1.190        ad 			newl->l_flag |= LW_RUNNING;
    459       1.190        ad 			lwp_setlock(newl, &spc->spc_lwplock);
    460       1.190        ad 		} else {
    461   1.192.2.3     joerg 			newl = ci->ci_data.cpu_idlelwp;
    462       1.190        ad 			newl->l_stat = LSONPROC;
    463       1.190        ad 			newl->l_flag |= LW_RUNNING;
    464       1.190        ad 		}
    465   1.192.2.8     joerg 		/*
    466   1.192.2.8     joerg 		 * Only clear want_resched if there are no
    467   1.192.2.8     joerg 		 * pending (slow) software interrupts.
    468   1.192.2.8     joerg 		 */
    469   1.192.2.8     joerg 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    470   1.192.2.5     joerg 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    471   1.192.2.8     joerg 		spc->spc_curpriority = lwp_eprio(newl);
    472   1.192.2.5     joerg 	}
    473   1.192.2.5     joerg 
    474   1.192.2.8     joerg 	/* Items that must be updated with the CPU locked. */
    475   1.192.2.5     joerg 	if (!returning) {
    476   1.192.2.8     joerg 		/* Update the new LWP's start time. */
    477   1.192.2.5     joerg 		newl->l_stime = tv;
    478   1.192.2.8     joerg 
    479   1.192.2.5     joerg 		/*
    480   1.192.2.8     joerg 		 * ci_curlwp changes when a fast soft interrupt occurs.
    481   1.192.2.8     joerg 		 * We use cpu_onproc to keep track of which kernel or
    482   1.192.2.8     joerg 		 * user thread is running 'underneath' the software
    483   1.192.2.8     joerg 		 * interrupt.  This is important for time accounting,
    484   1.192.2.8     joerg 		 * itimers and forcing user threads to preempt (aston).
    485   1.192.2.5     joerg 		 */
    486   1.192.2.8     joerg 		ci->ci_data.cpu_onproc = newl;
    487       1.188      yamt 	}
    488       1.188      yamt 
    489       1.188      yamt 	if (l != newl) {
    490       1.188      yamt 		struct lwp *prevlwp;
    491       1.174        ad 
    492  1.192.2.12     joerg 		/* Release all locks, but leave the current LWP locked */
    493       1.188      yamt 		if (l->l_mutex == spc->spc_mutex) {
    494  1.192.2.12     joerg 			/*
    495  1.192.2.12     joerg 			 * Drop spc_lwplock, if the current LWP has been moved
    496  1.192.2.12     joerg 			 * to the run queue (it is now locked by spc_mutex).
    497  1.192.2.12     joerg 			 */
    498       1.188      yamt 			mutex_spin_exit(&spc->spc_lwplock);
    499       1.188      yamt 		} else {
    500  1.192.2.12     joerg 			/*
    501  1.192.2.12     joerg 			 * Otherwise, drop the spc_mutex, we are done with the
    502  1.192.2.12     joerg 			 * run queues.
    503  1.192.2.12     joerg 			 */
    504       1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    505       1.188      yamt 		}
    506       1.188      yamt 
    507  1.192.2.12     joerg 		/*
    508  1.192.2.12     joerg 		 * Mark that context switch is going to be perfomed
    509  1.192.2.12     joerg 		 * for this LWP, to protect it from being switched
    510  1.192.2.12     joerg 		 * to on another CPU.
    511  1.192.2.12     joerg 		 */
    512  1.192.2.12     joerg 		KASSERT(l->l_ctxswtch == 0);
    513  1.192.2.12     joerg 		l->l_ctxswtch = 1;
    514  1.192.2.12     joerg 		l->l_ncsw++;
    515  1.192.2.12     joerg 		l->l_flag &= ~LW_RUNNING;
    516  1.192.2.12     joerg 
    517  1.192.2.12     joerg 		/*
    518  1.192.2.12     joerg 		 * Increase the count of spin-mutexes before the release
    519  1.192.2.12     joerg 		 * of the last lock - we must remain at IPL_SCHED during
    520  1.192.2.12     joerg 		 * the context switch.
    521  1.192.2.12     joerg 		 */
    522  1.192.2.12     joerg 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    523  1.192.2.12     joerg 		ci->ci_mtx_count--;
    524  1.192.2.12     joerg 		lwp_unlock(l);
    525  1.192.2.12     joerg 
    526       1.188      yamt 		/* Unlocked, but for statistics only. */
    527       1.188      yamt 		uvmexp.swtch++;
    528       1.188      yamt 
    529  1.192.2.12     joerg 		/* Update status for lwpctl, if present. */
    530  1.192.2.12     joerg 		if (l->l_lwpctl != NULL)
    531  1.192.2.12     joerg 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    532  1.192.2.12     joerg 
    533   1.192.2.5     joerg 		/*
    534   1.192.2.5     joerg 		 * Save old VM context, unless a soft interrupt
    535   1.192.2.5     joerg 		 * handler is blocking.
    536   1.192.2.5     joerg 		 */
    537   1.192.2.5     joerg 		if (!returning)
    538   1.192.2.5     joerg 			pmap_deactivate(l);
    539       1.188      yamt 
    540  1.192.2.12     joerg 		/*
    541  1.192.2.12     joerg 		 * We may need to spin-wait for if 'newl' is still
    542  1.192.2.12     joerg 		 * context switching on another CPU.
    543  1.192.2.12     joerg 		 */
    544  1.192.2.12     joerg 		if (newl->l_ctxswtch != 0) {
    545  1.192.2.12     joerg 			u_int count;
    546  1.192.2.12     joerg 			count = SPINLOCK_BACKOFF_MIN;
    547  1.192.2.12     joerg 			while (newl->l_ctxswtch)
    548  1.192.2.12     joerg 				SPINLOCK_BACKOFF(count);
    549  1.192.2.12     joerg 		}
    550  1.192.2.11     joerg 
    551       1.188      yamt 		/* Switch to the new LWP.. */
    552   1.192.2.8     joerg 		prevlwp = cpu_switchto(l, newl, returning);
    553  1.192.2.11     joerg 		ci = curcpu();
    554  1.192.2.11     joerg 
    555       1.188      yamt 		/*
    556  1.192.2.12     joerg 		 * Switched away - we have new curlwp.
    557  1.192.2.12     joerg 		 * Restore VM context and IPL.
    558       1.188      yamt 		 */
    559  1.192.2.12     joerg 		pmap_activate(l);
    560       1.188      yamt 		if (prevlwp != NULL) {
    561  1.192.2.12     joerg 			/* Normalize the count of the spin-mutexes */
    562  1.192.2.12     joerg 			ci->ci_mtx_count++;
    563  1.192.2.12     joerg 			/* Unmark the state of context switch */
    564  1.192.2.12     joerg 			membar_exit();
    565  1.192.2.12     joerg 			prevlwp->l_ctxswtch = 0;
    566       1.188      yamt 		}
    567  1.192.2.12     joerg 		splx(oldspl);
    568  1.192.2.11     joerg 
    569  1.192.2.11     joerg 		/* Update status for lwpctl, if present. */
    570  1.192.2.12     joerg 		if (l->l_lwpctl != NULL)
    571  1.192.2.12     joerg 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    572  1.192.2.12     joerg 
    573  1.192.2.12     joerg 		retval = 1;
    574       1.188      yamt 	} else {
    575       1.188      yamt 		/* Nothing to do - just unlock and return. */
    576       1.188      yamt 		mutex_spin_exit(spc->spc_mutex);
    577       1.188      yamt 		lwp_unlock(l);
    578       1.122   thorpej 		retval = 0;
    579       1.122   thorpej 	}
    580       1.110    briggs 
    581       1.188      yamt 	KASSERT(l == curlwp);
    582       1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    583  1.192.2.11     joerg 	KASSERT(l->l_cpu == ci);
    584       1.188      yamt 
    585       1.110    briggs 	/*
    586       1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    587        1.26       cgd 	 */
    588       1.114  gmcgarry #if PERFCTRS
    589       1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    590       1.175  christos 		pmc_restore_context(l->l_proc);
    591       1.166  christos 	}
    592       1.114  gmcgarry #endif
    593       1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    594       1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    595       1.169      yamt 
    596       1.122   thorpej 	return retval;
    597        1.26       cgd }
    598        1.26       cgd 
    599        1.26       cgd /*
    600       1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    601       1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    602       1.174        ad  *
    603       1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    604        1.26       cgd  */
    605        1.26       cgd void
    606       1.122   thorpej setrunnable(struct lwp *l)
    607        1.26       cgd {
    608       1.122   thorpej 	struct proc *p = l->l_proc;
    609   1.192.2.9     joerg 	struct cpu_info *ci;
    610       1.174        ad 	sigset_t *ss;
    611        1.26       cgd 
    612       1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    613       1.183        ad 	KASSERT(mutex_owned(&p->p_smutex));
    614       1.183        ad 	KASSERT(lwp_locked(l, NULL));
    615   1.192.2.9     joerg 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    616        1.83   thorpej 
    617       1.122   thorpej 	switch (l->l_stat) {
    618       1.122   thorpej 	case LSSTOP:
    619        1.33   mycroft 		/*
    620        1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    621        1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    622        1.33   mycroft 		 */
    623       1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    624       1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    625       1.174        ad 				ss = &l->l_sigpend.sp_set;
    626       1.174        ad 			else
    627       1.174        ad 				ss = &p->p_sigpend.sp_set;
    628       1.174        ad 			sigaddset(ss, p->p_xstat);
    629       1.174        ad 			signotify(l);
    630        1.53   mycroft 		}
    631       1.174        ad 		p->p_nrlwps++;
    632        1.26       cgd 		break;
    633       1.174        ad 	case LSSUSPENDED:
    634       1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    635       1.174        ad 		p->p_nrlwps++;
    636       1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    637       1.122   thorpej 		break;
    638       1.174        ad 	case LSSLEEP:
    639       1.174        ad 		KASSERT(l->l_wchan != NULL);
    640        1.26       cgd 		break;
    641       1.174        ad 	default:
    642       1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    643        1.26       cgd 	}
    644       1.139        cl 
    645       1.174        ad 	/*
    646       1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    647       1.174        ad 	 * again.  If not, mark it as still sleeping.
    648       1.174        ad 	 */
    649       1.174        ad 	if (l->l_wchan != NULL) {
    650       1.174        ad 		l->l_stat = LSSLEEP;
    651       1.183        ad 		/* lwp_unsleep() will release the lock. */
    652       1.183        ad 		lwp_unsleep(l);
    653       1.174        ad 		return;
    654       1.174        ad 	}
    655       1.139        cl 
    656       1.174        ad 	/*
    657       1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    658       1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    659       1.174        ad 	 */
    660       1.188      yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    661       1.174        ad 		l->l_stat = LSONPROC;
    662       1.174        ad 		l->l_slptime = 0;
    663       1.174        ad 		lwp_unlock(l);
    664       1.174        ad 		return;
    665       1.174        ad 	}
    666       1.122   thorpej 
    667       1.174        ad 	/*
    668   1.192.2.9     joerg 	 * Look for a CPU to run.
    669   1.192.2.9     joerg 	 * Set the LWP runnable.
    670       1.174        ad 	 */
    671   1.192.2.9     joerg 	ci = sched_takecpu(l);
    672   1.192.2.9     joerg 	l->l_cpu = ci;
    673  1.192.2.10     joerg 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    674  1.192.2.10     joerg 		lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    675  1.192.2.10     joerg 		lwp_lock(l);
    676  1.192.2.10     joerg 	}
    677       1.188      yamt 	sched_setrunnable(l);
    678       1.174        ad 	l->l_stat = LSRUN;
    679       1.122   thorpej 	l->l_slptime = 0;
    680       1.174        ad 
    681   1.192.2.9     joerg 	/*
    682   1.192.2.9     joerg 	 * If thread is swapped out - wake the swapper to bring it back in.
    683   1.192.2.9     joerg 	 * Otherwise, enter it into a run queue.
    684   1.192.2.9     joerg 	 */
    685       1.178     pavel 	if (l->l_flag & LW_INMEM) {
    686       1.188      yamt 		sched_enqueue(l, false);
    687       1.188      yamt 		resched_cpu(l);
    688       1.174        ad 		lwp_unlock(l);
    689       1.174        ad 	} else {
    690       1.174        ad 		lwp_unlock(l);
    691       1.177        ad 		uvm_kick_scheduler();
    692       1.174        ad 	}
    693        1.26       cgd }
    694        1.26       cgd 
    695        1.26       cgd /*
    696       1.174        ad  * suspendsched:
    697       1.174        ad  *
    698       1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    699       1.174        ad  */
    700        1.94    bouyer void
    701       1.174        ad suspendsched(void)
    702        1.94    bouyer {
    703       1.174        ad 	CPU_INFO_ITERATOR cii;
    704       1.174        ad 	struct cpu_info *ci;
    705       1.122   thorpej 	struct lwp *l;
    706       1.174        ad 	struct proc *p;
    707        1.94    bouyer 
    708        1.94    bouyer 	/*
    709       1.174        ad 	 * We do this by process in order not to violate the locking rules.
    710        1.94    bouyer 	 */
    711   1.192.2.8     joerg 	mutex_enter(&proclist_lock);
    712       1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    713       1.174        ad 		mutex_enter(&p->p_smutex);
    714       1.174        ad 
    715       1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    716       1.174        ad 			mutex_exit(&p->p_smutex);
    717        1.94    bouyer 			continue;
    718       1.174        ad 		}
    719       1.174        ad 
    720       1.174        ad 		p->p_stat = SSTOP;
    721       1.174        ad 
    722       1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    723       1.174        ad 			if (l == curlwp)
    724       1.174        ad 				continue;
    725       1.174        ad 
    726       1.174        ad 			lwp_lock(l);
    727       1.122   thorpej 
    728        1.97     enami 			/*
    729       1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    730       1.174        ad 			 * when it tries to return to user mode.  We want to
    731       1.174        ad 			 * try and get to get as many LWPs as possible to
    732       1.174        ad 			 * the user / kernel boundary, so that they will
    733       1.174        ad 			 * release any locks that they hold.
    734        1.97     enami 			 */
    735       1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    736       1.174        ad 
    737       1.174        ad 			if (l->l_stat == LSSLEEP &&
    738       1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    739       1.174        ad 				/* setrunnable() will release the lock. */
    740       1.174        ad 				setrunnable(l);
    741       1.174        ad 				continue;
    742       1.174        ad 			}
    743       1.174        ad 
    744       1.174        ad 			lwp_unlock(l);
    745        1.94    bouyer 		}
    746       1.174        ad 
    747       1.174        ad 		mutex_exit(&p->p_smutex);
    748        1.94    bouyer 	}
    749   1.192.2.8     joerg 	mutex_exit(&proclist_lock);
    750       1.174        ad 
    751       1.174        ad 	/*
    752       1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    753       1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    754       1.174        ad 	 */
    755   1.192.2.8     joerg 	for (CPU_INFO_FOREACH(cii, ci)) {
    756   1.192.2.8     joerg 		spc_lock(ci);
    757   1.192.2.8     joerg 		cpu_need_resched(ci, RESCHED_IMMED);
    758   1.192.2.8     joerg 		spc_unlock(ci);
    759   1.192.2.8     joerg 	}
    760       1.174        ad }
    761       1.174        ad 
    762       1.174        ad /*
    763       1.174        ad  * sched_kpri:
    764       1.174        ad  *
    765       1.174        ad  *	Scale a priority level to a kernel priority level, usually
    766       1.174        ad  *	for an LWP that is about to sleep.
    767       1.174        ad  */
    768       1.185      yamt pri_t
    769       1.174        ad sched_kpri(struct lwp *l)
    770       1.174        ad {
    771   1.192.2.8     joerg 	pri_t pri;
    772   1.192.2.8     joerg 
    773   1.192.2.8     joerg #ifndef __HAVE_FAST_SOFTINTS
    774       1.174        ad 	/*
    775   1.192.2.8     joerg 	 * Hack: if a user thread is being used to run a soft
    776   1.192.2.8     joerg 	 * interrupt, we need to boost the priority here.
    777   1.192.2.8     joerg 	 */
    778   1.192.2.8     joerg 	if ((l->l_pflag & LP_INTR) != 0 && l->l_priority < PRI_KERNEL_RT)
    779   1.192.2.8     joerg 		return softint_kpri(l);
    780   1.192.2.8     joerg #endif
    781       1.174        ad 
    782   1.192.2.8     joerg 	/*
    783   1.192.2.8     joerg 	 * Scale user priorities (0 -> 63) up to kernel priorities
    784   1.192.2.8     joerg 	 * in the range (64 -> 95).  This makes assumptions about
    785   1.192.2.8     joerg 	 * the priority space and so should be kept in sync with
    786   1.192.2.8     joerg 	 * param.h.
    787   1.192.2.8     joerg 	 */
    788   1.192.2.8     joerg 	if ((pri = l->l_priority) >= PRI_KERNEL)
    789   1.192.2.8     joerg 		return pri;
    790   1.192.2.8     joerg 	return (pri >> 1) + PRI_KERNEL;
    791       1.174        ad }
    792       1.174        ad 
    793       1.174        ad /*
    794       1.174        ad  * sched_unsleep:
    795       1.174        ad  *
    796       1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    797       1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    798       1.174        ad  *	it's not a valid action for running or idle LWPs.
    799       1.174        ad  */
    800       1.188      yamt static void
    801       1.174        ad sched_unsleep(struct lwp *l)
    802       1.174        ad {
    803       1.174        ad 
    804       1.174        ad 	lwp_unlock(l);
    805       1.174        ad 	panic("sched_unsleep");
    806       1.174        ad }
    807       1.174        ad 
    808   1.192.2.8     joerg void
    809       1.188      yamt resched_cpu(struct lwp *l)
    810       1.188      yamt {
    811       1.188      yamt 	struct cpu_info *ci;
    812       1.188      yamt 
    813       1.188      yamt 	/*
    814       1.188      yamt 	 * XXXSMP
    815       1.188      yamt 	 * Since l->l_cpu persists across a context switch,
    816       1.188      yamt 	 * this gives us *very weak* processor affinity, in
    817       1.188      yamt 	 * that we notify the CPU on which the process last
    818       1.188      yamt 	 * ran that it should try to switch.
    819       1.188      yamt 	 *
    820       1.188      yamt 	 * This does not guarantee that the process will run on
    821       1.188      yamt 	 * that processor next, because another processor might
    822       1.188      yamt 	 * grab it the next time it performs a context switch.
    823       1.188      yamt 	 *
    824       1.188      yamt 	 * This also does not handle the case where its last
    825       1.188      yamt 	 * CPU is running a higher-priority process, but every
    826       1.188      yamt 	 * other CPU is running a lower-priority process.  There
    827       1.188      yamt 	 * are ways to handle this situation, but they're not
    828       1.188      yamt 	 * currently very pretty, and we also need to weigh the
    829       1.188      yamt 	 * cost of moving a process from one CPU to another.
    830       1.188      yamt 	 */
    831   1.192.2.8     joerg 	ci = l->l_cpu;
    832   1.192.2.8     joerg 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
    833       1.188      yamt 		cpu_need_resched(ci, 0);
    834       1.188      yamt }
    835       1.188      yamt 
    836       1.188      yamt static void
    837       1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
    838       1.174        ad {
    839       1.174        ad 
    840       1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    841       1.174        ad 
    842   1.192.2.8     joerg 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    843   1.192.2.8     joerg 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    844   1.192.2.8     joerg 		sched_dequeue(l);
    845   1.192.2.8     joerg 		l->l_priority = pri;
    846   1.192.2.8     joerg 		sched_enqueue(l, false);
    847   1.192.2.8     joerg 	} else {
    848       1.174        ad 		l->l_priority = pri;
    849       1.157      yamt 	}
    850       1.188      yamt 	resched_cpu(l);
    851       1.184      yamt }
    852       1.184      yamt 
    853       1.188      yamt static void
    854       1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
    855       1.184      yamt {
    856       1.184      yamt 
    857       1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    858       1.184      yamt 
    859   1.192.2.8     joerg 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    860   1.192.2.8     joerg 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    861   1.192.2.8     joerg 		sched_dequeue(l);
    862   1.192.2.8     joerg 		l->l_inheritedprio = pri;
    863   1.192.2.8     joerg 		sched_enqueue(l, false);
    864   1.192.2.8     joerg 	} else {
    865       1.184      yamt 		l->l_inheritedprio = pri;
    866       1.184      yamt 	}
    867       1.188      yamt 	resched_cpu(l);
    868       1.184      yamt }
    869       1.184      yamt 
    870       1.184      yamt struct lwp *
    871       1.184      yamt syncobj_noowner(wchan_t wchan)
    872       1.184      yamt {
    873       1.184      yamt 
    874       1.184      yamt 	return NULL;
    875       1.151      yamt }
    876       1.151      yamt 
    877       1.113  gmcgarry 
    878       1.188      yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    879       1.188      yamt fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    880       1.115  nisimura 
    881       1.130   nathanw /*
    882       1.188      yamt  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    883       1.188      yamt  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    884       1.188      yamt  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    885       1.188      yamt  *
    886       1.188      yamt  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    887       1.188      yamt  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    888       1.188      yamt  *
    889       1.188      yamt  * If you dont want to bother with the faster/more-accurate formula, you
    890       1.188      yamt  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    891       1.188      yamt  * (more general) method of calculating the %age of CPU used by a process.
    892       1.134      matt  */
    893       1.188      yamt #define	CCPU_SHIFT	(FSHIFT + 1)
    894       1.134      matt 
    895       1.134      matt /*
    896       1.188      yamt  * sched_pstats:
    897       1.188      yamt  *
    898       1.188      yamt  * Update process statistics and check CPU resource allocation.
    899       1.188      yamt  * Call scheduler-specific hook to eventually adjust process/LWP
    900       1.188      yamt  * priorities.
    901       1.130   nathanw  */
    902       1.188      yamt /* ARGSUSED */
    903       1.113  gmcgarry void
    904       1.188      yamt sched_pstats(void *arg)
    905       1.113  gmcgarry {
    906       1.188      yamt 	struct rlimit *rlim;
    907       1.188      yamt 	struct lwp *l;
    908       1.188      yamt 	struct proc *p;
    909   1.192.2.8     joerg 	int sig, clkhz;
    910       1.188      yamt 	long runtm;
    911       1.113  gmcgarry 
    912       1.188      yamt 	sched_pstats_ticks++;
    913       1.174        ad 
    914       1.188      yamt 	mutex_enter(&proclist_mutex);
    915       1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
    916       1.188      yamt 		/*
    917       1.188      yamt 		 * Increment time in/out of memory and sleep time (if
    918       1.188      yamt 		 * sleeping).  We ignore overflow; with 16-bit int's
    919       1.188      yamt 		 * (remember them?) overflow takes 45 days.
    920       1.188      yamt 		 */
    921       1.188      yamt 		mutex_enter(&p->p_smutex);
    922       1.188      yamt 		mutex_spin_enter(&p->p_stmutex);
    923       1.188      yamt 		runtm = p->p_rtime.tv_sec;
    924       1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    925       1.188      yamt 			if ((l->l_flag & LW_IDLE) != 0)
    926       1.188      yamt 				continue;
    927       1.188      yamt 			lwp_lock(l);
    928       1.188      yamt 			runtm += l->l_rtime.tv_sec;
    929       1.188      yamt 			l->l_swtime++;
    930   1.192.2.5     joerg 			sched_pstats_hook(l);
    931       1.188      yamt 			lwp_unlock(l);
    932       1.113  gmcgarry 
    933       1.188      yamt 			/*
    934       1.188      yamt 			 * p_pctcpu is only for ps.
    935       1.188      yamt 			 */
    936       1.188      yamt 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    937       1.188      yamt 			if (l->l_slptime < 1) {
    938       1.188      yamt 				clkhz = stathz != 0 ? stathz : hz;
    939       1.188      yamt #if	(FSHIFT >= CCPU_SHIFT)
    940       1.188      yamt 				l->l_pctcpu += (clkhz == 100) ?
    941       1.188      yamt 				    ((fixpt_t)l->l_cpticks) <<
    942       1.188      yamt 				        (FSHIFT - CCPU_SHIFT) :
    943       1.188      yamt 				    100 * (((fixpt_t) p->p_cpticks)
    944       1.188      yamt 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    945       1.188      yamt #else
    946       1.188      yamt 				l->l_pctcpu += ((FSCALE - ccpu) *
    947       1.188      yamt 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    948       1.146      matt #endif
    949       1.188      yamt 				l->l_cpticks = 0;
    950       1.188      yamt 			}
    951       1.188      yamt 		}
    952       1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    953       1.188      yamt 		mutex_spin_exit(&p->p_stmutex);
    954       1.174        ad 
    955       1.188      yamt 		/*
    956       1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
    957       1.188      yamt 		 * If over max, kill it.
    958       1.188      yamt 		 */
    959       1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
    960       1.188      yamt 		sig = 0;
    961       1.188      yamt 		if (runtm >= rlim->rlim_cur) {
    962       1.188      yamt 			if (runtm >= rlim->rlim_max)
    963       1.188      yamt 				sig = SIGKILL;
    964       1.188      yamt 			else {
    965       1.188      yamt 				sig = SIGXCPU;
    966       1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
    967       1.188      yamt 					rlim->rlim_cur += 5;
    968       1.188      yamt 			}
    969       1.188      yamt 		}
    970       1.188      yamt 		mutex_exit(&p->p_smutex);
    971       1.188      yamt 		if (sig) {
    972       1.188      yamt 			psignal(p, sig);
    973       1.188      yamt 		}
    974       1.174        ad 	}
    975       1.188      yamt 	mutex_exit(&proclist_mutex);
    976       1.188      yamt 	uvm_meter();
    977       1.191        ad 	cv_wakeup(&lbolt);
    978       1.188      yamt 	callout_schedule(&sched_pstats_ch, hz);
    979       1.113  gmcgarry }
    980       1.190        ad 
    981       1.190        ad void
    982       1.190        ad sched_init(void)
    983       1.190        ad {
    984       1.190        ad 
    985  1.192.2.12     joerg 	cv_init(&lbolt, "lbolt");
    986       1.190        ad 	callout_init(&sched_pstats_ch, 0);
    987       1.190        ad 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    988       1.190        ad 	sched_setup();
    989       1.190        ad 	sched_pstats(NULL);
    990       1.190        ad }
    991