Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.194.2.2
      1  1.194.2.2      matt /*	$NetBSD: kern_synch.c,v 1.194.2.2 2007/11/06 23:31:59 matt Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4      1.174        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5       1.63   thorpej  * All rights reserved.
      6       1.63   thorpej  *
      7       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9      1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10      1.188      yamt  * Daniel Sieger.
     11       1.63   thorpej  *
     12       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13       1.63   thorpej  * modification, are permitted provided that the following conditions
     14       1.63   thorpej  * are met:
     15       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20       1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     21       1.63   thorpej  *    must display the following acknowledgement:
     22       1.63   thorpej  *	This product includes software developed by the NetBSD
     23       1.63   thorpej  *	Foundation, Inc. and its contributors.
     24       1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25       1.63   thorpej  *    contributors may be used to endorse or promote products derived
     26       1.63   thorpej  *    from this software without specific prior written permission.
     27       1.63   thorpej  *
     28       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     39       1.63   thorpej  */
     40       1.26       cgd 
     41       1.26       cgd /*-
     42       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     44       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     45       1.26       cgd  * All or some portions of this file are derived from material licensed
     46       1.26       cgd  * to the University of California by American Telephone and Telegraph
     47       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     49       1.26       cgd  *
     50       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     51       1.26       cgd  * modification, are permitted provided that the following conditions
     52       1.26       cgd  * are met:
     53       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     54       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     55       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     56       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     57       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     58      1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     59       1.26       cgd  *    may be used to endorse or promote products derived from this software
     60       1.26       cgd  *    without specific prior written permission.
     61       1.26       cgd  *
     62       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72       1.26       cgd  * SUCH DAMAGE.
     73       1.26       cgd  *
     74       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75       1.26       cgd  */
     76      1.106     lukem 
     77      1.106     lukem #include <sys/cdefs.h>
     78  1.194.2.2      matt __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.194.2.2 2007/11/06 23:31:59 matt Exp $");
     79       1.48       mrg 
     80      1.109      yamt #include "opt_kstack.h"
     81       1.82   thorpej #include "opt_lockdebug.h"
     82       1.83   thorpej #include "opt_multiprocessor.h"
     83      1.110    briggs #include "opt_perfctrs.h"
     84       1.26       cgd 
     85      1.174        ad #define	__MUTEX_PRIVATE
     86      1.174        ad 
     87       1.26       cgd #include <sys/param.h>
     88       1.26       cgd #include <sys/systm.h>
     89       1.26       cgd #include <sys/proc.h>
     90       1.26       cgd #include <sys/kernel.h>
     91      1.111    briggs #if defined(PERFCTRS)
     92      1.110    briggs #include <sys/pmc.h>
     93      1.111    briggs #endif
     94      1.188      yamt #include <sys/cpu.h>
     95       1.26       cgd #include <sys/resourcevar.h>
     96       1.55      ross #include <sys/sched.h>
     97      1.179       dsl #include <sys/syscall_stats.h>
     98      1.174        ad #include <sys/sleepq.h>
     99      1.174        ad #include <sys/lockdebug.h>
    100      1.190        ad #include <sys/evcnt.h>
    101  1.194.2.2      matt #include <sys/intr.h>
    102       1.47       mrg 
    103       1.47       mrg #include <uvm/uvm_extern.h>
    104       1.47       mrg 
    105      1.190        ad callout_t sched_pstats_ch;
    106      1.188      yamt unsigned int sched_pstats_ticks;
    107       1.34  christos 
    108      1.190        ad kcondvar_t	lbolt;			/* once a second sleep address */
    109       1.26       cgd 
    110      1.188      yamt static void	sched_unsleep(struct lwp *);
    111      1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    112      1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    113      1.122   thorpej 
    114      1.174        ad syncobj_t sleep_syncobj = {
    115      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    116      1.174        ad 	sleepq_unsleep,
    117      1.184      yamt 	sleepq_changepri,
    118      1.184      yamt 	sleepq_lendpri,
    119      1.184      yamt 	syncobj_noowner,
    120      1.174        ad };
    121      1.174        ad 
    122      1.174        ad syncobj_t sched_syncobj = {
    123      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    124      1.174        ad 	sched_unsleep,
    125      1.184      yamt 	sched_changepri,
    126      1.184      yamt 	sched_lendpri,
    127      1.184      yamt 	syncobj_noowner,
    128      1.174        ad };
    129      1.122   thorpej 
    130       1.26       cgd /*
    131      1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    132      1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    133      1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    134      1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    135      1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    136      1.174        ad  * it can be made higher to block network software interrupts after panics.
    137       1.26       cgd  */
    138      1.174        ad int	safepri;
    139       1.26       cgd 
    140       1.26       cgd /*
    141      1.174        ad  * OBSOLETE INTERFACE
    142      1.174        ad  *
    143       1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    144       1.26       cgd  * performed on the specified identifier.  The process will then be made
    145      1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    146      1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    147       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    148       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    149       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    150       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    151       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    152       1.77   thorpej  *
    153      1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    154      1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    155      1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    156      1.174        ad  * return.
    157       1.26       cgd  */
    158       1.26       cgd int
    159      1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    160      1.174        ad 	volatile struct simplelock *interlock)
    161       1.26       cgd {
    162      1.122   thorpej 	struct lwp *l = curlwp;
    163      1.174        ad 	sleepq_t *sq;
    164      1.188      yamt 	int error;
    165       1.26       cgd 
    166  1.194.2.2      matt 	KASSERT((l->l_pflag & LP_INTR) == 0);
    167  1.194.2.2      matt 
    168      1.174        ad 	if (sleepq_dontsleep(l)) {
    169      1.174        ad 		(void)sleepq_abort(NULL, 0);
    170      1.174        ad 		if ((priority & PNORELOCK) != 0)
    171       1.77   thorpej 			simple_unlock(interlock);
    172      1.174        ad 		return 0;
    173       1.26       cgd 	}
    174       1.78  sommerfe 
    175  1.194.2.2      matt 	l->l_kpriority = true;
    176      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    177      1.174        ad 	sleepq_enter(sq, l);
    178  1.194.2.2      matt 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    179       1.42       cgd 
    180      1.174        ad 	if (interlock != NULL) {
    181  1.194.2.2      matt 		KASSERT(simple_lock_held(interlock));
    182      1.174        ad 		simple_unlock(interlock);
    183      1.150       chs 	}
    184      1.150       chs 
    185      1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    186      1.126        pk 
    187      1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    188      1.126        pk 		simple_lock(interlock);
    189      1.174        ad 
    190      1.174        ad 	return error;
    191       1.26       cgd }
    192       1.26       cgd 
    193      1.187        ad int
    194      1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    195      1.187        ad 	kmutex_t *mtx)
    196      1.187        ad {
    197      1.187        ad 	struct lwp *l = curlwp;
    198      1.187        ad 	sleepq_t *sq;
    199      1.188      yamt 	int error;
    200      1.187        ad 
    201  1.194.2.2      matt 	KASSERT((l->l_pflag & LP_INTR) == 0);
    202  1.194.2.2      matt 
    203      1.187        ad 	if (sleepq_dontsleep(l)) {
    204      1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    205      1.187        ad 		return 0;
    206      1.187        ad 	}
    207      1.187        ad 
    208  1.194.2.2      matt 	l->l_kpriority = true;
    209      1.187        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    210      1.187        ad 	sleepq_enter(sq, l);
    211  1.194.2.2      matt 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    212      1.187        ad 	mutex_exit(mtx);
    213      1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    214      1.187        ad 
    215      1.187        ad 	if ((priority & PNORELOCK) == 0)
    216      1.187        ad 		mutex_enter(mtx);
    217      1.187        ad 
    218      1.187        ad 	return error;
    219      1.187        ad }
    220      1.187        ad 
    221       1.26       cgd /*
    222      1.174        ad  * General sleep call for situations where a wake-up is not expected.
    223       1.26       cgd  */
    224      1.174        ad int
    225      1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    226       1.26       cgd {
    227      1.174        ad 	struct lwp *l = curlwp;
    228      1.174        ad 	sleepq_t *sq;
    229      1.174        ad 	int error;
    230       1.26       cgd 
    231      1.174        ad 	if (sleepq_dontsleep(l))
    232      1.174        ad 		return sleepq_abort(NULL, 0);
    233       1.26       cgd 
    234      1.174        ad 	if (mtx != NULL)
    235      1.174        ad 		mutex_exit(mtx);
    236  1.194.2.2      matt 	l->l_kpriority = true;
    237      1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    238      1.174        ad 	sleepq_enter(sq, l);
    239  1.194.2.2      matt 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    240      1.188      yamt 	error = sleepq_block(timo, intr);
    241      1.174        ad 	if (mtx != NULL)
    242      1.174        ad 		mutex_enter(mtx);
    243       1.83   thorpej 
    244      1.174        ad 	return error;
    245      1.139        cl }
    246      1.139        cl 
    247       1.26       cgd /*
    248      1.174        ad  * OBSOLETE INTERFACE
    249      1.174        ad  *
    250       1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    251       1.26       cgd  */
    252       1.26       cgd void
    253      1.174        ad wakeup(wchan_t ident)
    254       1.26       cgd {
    255      1.174        ad 	sleepq_t *sq;
    256       1.83   thorpej 
    257      1.174        ad 	if (cold)
    258      1.174        ad 		return;
    259       1.83   thorpej 
    260      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    261      1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    262       1.63   thorpej }
    263       1.63   thorpej 
    264       1.63   thorpej /*
    265      1.174        ad  * OBSOLETE INTERFACE
    266      1.174        ad  *
    267       1.63   thorpej  * Make the highest priority process first in line on the specified
    268       1.63   thorpej  * identifier runnable.
    269       1.63   thorpej  */
    270      1.174        ad void
    271      1.174        ad wakeup_one(wchan_t ident)
    272       1.63   thorpej {
    273      1.174        ad 	sleepq_t *sq;
    274       1.63   thorpej 
    275      1.174        ad 	if (cold)
    276      1.174        ad 		return;
    277      1.188      yamt 
    278      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    279      1.174        ad 	sleepq_wake(sq, ident, 1);
    280      1.174        ad }
    281       1.63   thorpej 
    282      1.117  gmcgarry 
    283      1.117  gmcgarry /*
    284      1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    285      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    286  1.194.2.2      matt  * current process explicitly requests it (eg sched_yield(2)).
    287      1.117  gmcgarry  */
    288      1.117  gmcgarry void
    289      1.117  gmcgarry yield(void)
    290      1.117  gmcgarry {
    291      1.122   thorpej 	struct lwp *l = curlwp;
    292      1.117  gmcgarry 
    293      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    294      1.174        ad 	lwp_lock(l);
    295      1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    296      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    297  1.194.2.2      matt 	l->l_kpriority = false;
    298  1.194.2.2      matt 	if (l->l_class == SCHED_OTHER) {
    299  1.194.2.2      matt 		/*
    300  1.194.2.2      matt 		 * Only for timeshared threads.  It will be reset
    301  1.194.2.2      matt 		 * by the scheduler in due course.
    302  1.194.2.2      matt 		 */
    303  1.194.2.2      matt 		l->l_priority = 0;
    304  1.194.2.2      matt 	}
    305      1.188      yamt 	(void)mi_switch(l);
    306      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    307       1.69   thorpej }
    308       1.69   thorpej 
    309       1.69   thorpej /*
    310       1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    311      1.156    rpaulo  * and performs an involuntary context switch.
    312       1.69   thorpej  */
    313       1.69   thorpej void
    314      1.174        ad preempt(void)
    315       1.69   thorpej {
    316      1.122   thorpej 	struct lwp *l = curlwp;
    317       1.69   thorpej 
    318      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    319      1.174        ad 	lwp_lock(l);
    320      1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    321      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    322  1.194.2.2      matt 	l->l_kpriority = false;
    323      1.174        ad 	l->l_nivcsw++;
    324      1.188      yamt 	(void)mi_switch(l);
    325      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    326       1.69   thorpej }
    327       1.69   thorpej 
    328       1.69   thorpej /*
    329      1.188      yamt  * Compute the amount of time during which the current lwp was running.
    330      1.130   nathanw  *
    331      1.188      yamt  * - update l_rtime unless it's an idle lwp.
    332      1.188      yamt  */
    333      1.188      yamt 
    334  1.194.2.2      matt void
    335  1.194.2.2      matt updatertime(lwp_t *l, const struct timeval *tv)
    336      1.188      yamt {
    337      1.188      yamt 	long s, u;
    338      1.188      yamt 
    339  1.194.2.2      matt 	if ((l->l_flag & LW_IDLE) != 0)
    340      1.188      yamt 		return;
    341      1.188      yamt 
    342  1.194.2.2      matt 	u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
    343  1.194.2.2      matt 	s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
    344      1.188      yamt 	if (u < 0) {
    345      1.188      yamt 		u += 1000000;
    346      1.188      yamt 		s--;
    347      1.188      yamt 	} else if (u >= 1000000) {
    348      1.188      yamt 		u -= 1000000;
    349      1.188      yamt 		s++;
    350      1.188      yamt 	}
    351      1.188      yamt 	l->l_rtime.tv_usec = u;
    352      1.188      yamt 	l->l_rtime.tv_sec = s;
    353      1.188      yamt }
    354      1.188      yamt 
    355      1.188      yamt /*
    356      1.188      yamt  * The machine independent parts of context switch.
    357      1.188      yamt  *
    358      1.188      yamt  * Returns 1 if another LWP was actually run.
    359       1.26       cgd  */
    360      1.122   thorpej int
    361  1.194.2.2      matt mi_switch(lwp_t *l)
    362       1.26       cgd {
    363       1.76   thorpej 	struct schedstate_percpu *spc;
    364      1.188      yamt 	struct lwp *newl;
    365      1.174        ad 	int retval, oldspl;
    366  1.194.2.2      matt 	struct cpu_info *ci;
    367  1.194.2.2      matt 	struct timeval tv;
    368  1.194.2.2      matt 	bool returning;
    369       1.26       cgd 
    370      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    371      1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    372      1.174        ad 
    373      1.174        ad #ifdef KSTACK_CHECK_MAGIC
    374      1.174        ad 	kstack_check_magic(l);
    375      1.174        ad #endif
    376       1.83   thorpej 
    377  1.194.2.2      matt 	microtime(&tv);
    378  1.194.2.2      matt 
    379       1.90  sommerfe 	/*
    380      1.174        ad 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    381      1.174        ad 	 * are after is the run time and that's guarenteed to have been last
    382      1.174        ad 	 * updated by this CPU.
    383       1.90  sommerfe 	 */
    384  1.194.2.2      matt 	ci = l->l_cpu;
    385  1.194.2.2      matt 	KDASSERT(ci == curcpu());
    386       1.26       cgd 
    387      1.190        ad 	/*
    388      1.190        ad 	 * Process is about to yield the CPU; clear the appropriate
    389      1.190        ad 	 * scheduling flags.
    390      1.190        ad 	 */
    391  1.194.2.2      matt 	spc = &ci->ci_schedstate;
    392  1.194.2.2      matt 	returning = false;
    393      1.190        ad 	newl = NULL;
    394      1.190        ad 
    395  1.194.2.2      matt 	/*
    396  1.194.2.2      matt 	 * If we have been asked to switch to a specific LWP, then there
    397  1.194.2.2      matt 	 * is no need to inspect the run queues.  If a soft interrupt is
    398  1.194.2.2      matt 	 * blocking, then return to the interrupted thread without adjusting
    399  1.194.2.2      matt 	 * VM context or its start time: neither have been changed in order
    400  1.194.2.2      matt 	 * to take the interrupt.
    401  1.194.2.2      matt 	 */
    402      1.190        ad 	if (l->l_switchto != NULL) {
    403  1.194.2.2      matt 		if ((l->l_pflag & LP_INTR) != 0) {
    404  1.194.2.2      matt 			returning = true;
    405  1.194.2.2      matt 			softint_block(l);
    406  1.194.2.2      matt 			if ((l->l_flag & LW_TIMEINTR) != 0)
    407  1.194.2.2      matt 				updatertime(l, &tv);
    408  1.194.2.2      matt 		}
    409      1.190        ad 		newl = l->l_switchto;
    410      1.190        ad 		l->l_switchto = NULL;
    411      1.190        ad 	}
    412  1.194.2.2      matt #ifndef __HAVE_FAST_SOFTINTS
    413  1.194.2.2      matt 	else if (ci->ci_data.cpu_softints != 0) {
    414  1.194.2.2      matt 		/* There are pending soft interrupts, so pick one. */
    415  1.194.2.2      matt 		newl = softint_picklwp();
    416  1.194.2.2      matt 		newl->l_stat = LSONPROC;
    417  1.194.2.2      matt 		newl->l_flag |= LW_RUNNING;
    418  1.194.2.2      matt 	}
    419  1.194.2.2      matt #endif	/* !__HAVE_FAST_SOFTINTS */
    420      1.190        ad 
    421      1.180       dsl 	/* Count time spent in current system call */
    422  1.194.2.2      matt 	if (!returning) {
    423  1.194.2.2      matt 		SYSCALL_TIME_SLEEP(l);
    424      1.180       dsl 
    425  1.194.2.2      matt 		/*
    426  1.194.2.2      matt 		 * XXXSMP If we are using h/w performance counters,
    427  1.194.2.2      matt 		 * save context.
    428  1.194.2.2      matt 		 */
    429      1.174        ad #if PERFCTRS
    430  1.194.2.2      matt 		if (PMC_ENABLED(l->l_proc)) {
    431  1.194.2.2      matt 			pmc_save_context(l->l_proc);
    432  1.194.2.2      matt 		}
    433      1.109      yamt #endif
    434  1.194.2.2      matt 		updatertime(l, &tv);
    435  1.194.2.2      matt 	}
    436      1.113  gmcgarry 
    437      1.113  gmcgarry 	/*
    438      1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    439      1.113  gmcgarry 	 */
    440      1.188      yamt 	mutex_spin_enter(spc->spc_mutex);
    441      1.174        ad 	KASSERT(l->l_stat != LSRUN);
    442  1.194.2.2      matt 	if (l->l_stat == LSONPROC && l != newl) {
    443      1.188      yamt 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    444      1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    445      1.188      yamt 			l->l_stat = LSRUN;
    446      1.188      yamt 			lwp_setlock(l, spc->spc_mutex);
    447      1.188      yamt 			sched_enqueue(l, true);
    448      1.188      yamt 		} else
    449      1.188      yamt 			l->l_stat = LSIDL;
    450      1.174        ad 	}
    451      1.174        ad 
    452      1.174        ad 	/*
    453  1.194.2.2      matt 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    454      1.188      yamt 	 * If no LWP is runnable, switch to the idle LWP.
    455  1.194.2.2      matt 	 * Note that spc_lwplock might not necessary be held.
    456      1.174        ad 	 */
    457      1.190        ad 	if (newl == NULL) {
    458      1.190        ad 		newl = sched_nextlwp();
    459      1.190        ad 		if (newl != NULL) {
    460      1.190        ad 			sched_dequeue(newl);
    461      1.190        ad 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    462      1.190        ad 			newl->l_stat = LSONPROC;
    463  1.194.2.2      matt 			newl->l_cpu = ci;
    464      1.190        ad 			newl->l_flag |= LW_RUNNING;
    465      1.190        ad 			lwp_setlock(newl, &spc->spc_lwplock);
    466      1.190        ad 		} else {
    467  1.194.2.2      matt 			newl = ci->ci_data.cpu_idlelwp;
    468      1.190        ad 			newl->l_stat = LSONPROC;
    469      1.190        ad 			newl->l_flag |= LW_RUNNING;
    470      1.190        ad 		}
    471  1.194.2.2      matt 		/*
    472  1.194.2.2      matt 		 * Only clear want_resched if there are no
    473  1.194.2.2      matt 		 * pending (slow) software interrupts.
    474  1.194.2.2      matt 		 */
    475  1.194.2.2      matt 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    476  1.194.2.2      matt 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    477  1.194.2.2      matt 		spc->spc_curpriority = lwp_eprio(newl);
    478  1.194.2.2      matt 	}
    479  1.194.2.2      matt 
    480  1.194.2.2      matt 	/* Items that must be updated with the CPU locked. */
    481  1.194.2.2      matt 	if (!returning) {
    482  1.194.2.2      matt 		/* Update the new LWP's start time. */
    483  1.194.2.2      matt 		newl->l_stime = tv;
    484  1.194.2.2      matt 
    485  1.194.2.2      matt 		/*
    486  1.194.2.2      matt 		 * ci_curlwp changes when a fast soft interrupt occurs.
    487  1.194.2.2      matt 		 * We use cpu_onproc to keep track of which kernel or
    488  1.194.2.2      matt 		 * user thread is running 'underneath' the software
    489  1.194.2.2      matt 		 * interrupt.  This is important for time accounting,
    490  1.194.2.2      matt 		 * itimers and forcing user threads to preempt (aston).
    491  1.194.2.2      matt 		 */
    492  1.194.2.2      matt 		ci->ci_data.cpu_onproc = newl;
    493      1.188      yamt 	}
    494      1.188      yamt 
    495      1.188      yamt 	if (l != newl) {
    496      1.188      yamt 		struct lwp *prevlwp;
    497      1.174        ad 
    498      1.188      yamt 		/*
    499      1.188      yamt 		 * If the old LWP has been moved to a run queue above,
    500      1.188      yamt 		 * drop the general purpose LWP lock: it's now locked
    501      1.188      yamt 		 * by the scheduler lock.
    502      1.188      yamt 		 *
    503      1.188      yamt 		 * Otherwise, drop the scheduler lock.  We're done with
    504      1.188      yamt 		 * the run queues for now.
    505      1.188      yamt 		 */
    506      1.188      yamt 		if (l->l_mutex == spc->spc_mutex) {
    507      1.188      yamt 			mutex_spin_exit(&spc->spc_lwplock);
    508      1.188      yamt 		} else {
    509      1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    510      1.188      yamt 		}
    511      1.188      yamt 
    512      1.188      yamt 		/* Unlocked, but for statistics only. */
    513      1.188      yamt 		uvmexp.swtch++;
    514      1.188      yamt 
    515  1.194.2.2      matt 		/*
    516  1.194.2.2      matt 		 * Save old VM context, unless a soft interrupt
    517  1.194.2.2      matt 		 * handler is blocking.
    518  1.194.2.2      matt 		 */
    519  1.194.2.2      matt 		if (!returning)
    520  1.194.2.2      matt 			pmap_deactivate(l);
    521      1.188      yamt 
    522      1.188      yamt 		/* Switch to the new LWP.. */
    523      1.188      yamt 		l->l_ncsw++;
    524      1.188      yamt 		l->l_flag &= ~LW_RUNNING;
    525  1.194.2.2      matt 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    526  1.194.2.2      matt 		prevlwp = cpu_switchto(l, newl, returning);
    527      1.188      yamt 		/*
    528      1.188      yamt 		 * .. we have switched away and are now back so we must
    529      1.188      yamt 		 * be the new curlwp.  prevlwp is who we replaced.
    530      1.188      yamt 		 */
    531      1.188      yamt 		if (prevlwp != NULL) {
    532      1.188      yamt 			curcpu()->ci_mtx_oldspl = oldspl;
    533      1.188      yamt 			lwp_unlock(prevlwp);
    534      1.188      yamt 		} else {
    535      1.188      yamt 			splx(oldspl);
    536      1.188      yamt 		}
    537      1.174        ad 
    538      1.188      yamt 		/* Restore VM context. */
    539      1.188      yamt 		pmap_activate(l);
    540      1.188      yamt 		retval = 1;
    541      1.188      yamt 	} else {
    542      1.188      yamt 		/* Nothing to do - just unlock and return. */
    543      1.188      yamt 		mutex_spin_exit(spc->spc_mutex);
    544      1.188      yamt 		lwp_unlock(l);
    545      1.122   thorpej 		retval = 0;
    546      1.122   thorpej 	}
    547      1.110    briggs 
    548      1.188      yamt 	KASSERT(l == curlwp);
    549      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    550  1.194.2.2      matt 	KASSERT(l->l_cpu == curcpu());
    551      1.188      yamt 
    552      1.110    briggs 	/*
    553      1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    554       1.26       cgd 	 */
    555      1.114  gmcgarry #if PERFCTRS
    556      1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    557      1.175  christos 		pmc_restore_context(l->l_proc);
    558      1.166  christos 	}
    559      1.114  gmcgarry #endif
    560      1.110    briggs 
    561      1.110    briggs 	/*
    562       1.76   thorpej 	 * We're running again; record our new start time.  We might
    563      1.174        ad 	 * be running on a new CPU now, so don't use the cached
    564       1.76   thorpej 	 * schedstate_percpu pointer.
    565       1.76   thorpej 	 */
    566      1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    567  1.194.2.2      matt 	KASSERT(curlwp == l);
    568      1.122   thorpej 	KDASSERT(l->l_cpu == curcpu());
    569      1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    570      1.169      yamt 
    571      1.122   thorpej 	return retval;
    572       1.26       cgd }
    573       1.26       cgd 
    574       1.26       cgd /*
    575      1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    576      1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    577      1.174        ad  *
    578      1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    579       1.26       cgd  */
    580       1.26       cgd void
    581      1.122   thorpej setrunnable(struct lwp *l)
    582       1.26       cgd {
    583      1.122   thorpej 	struct proc *p = l->l_proc;
    584      1.174        ad 	sigset_t *ss;
    585       1.26       cgd 
    586      1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    587      1.183        ad 	KASSERT(mutex_owned(&p->p_smutex));
    588      1.183        ad 	KASSERT(lwp_locked(l, NULL));
    589       1.83   thorpej 
    590      1.122   thorpej 	switch (l->l_stat) {
    591      1.122   thorpej 	case LSSTOP:
    592       1.33   mycroft 		/*
    593       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    594       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    595       1.33   mycroft 		 */
    596      1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    597      1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    598      1.174        ad 				ss = &l->l_sigpend.sp_set;
    599      1.174        ad 			else
    600      1.174        ad 				ss = &p->p_sigpend.sp_set;
    601      1.174        ad 			sigaddset(ss, p->p_xstat);
    602      1.174        ad 			signotify(l);
    603       1.53   mycroft 		}
    604      1.174        ad 		p->p_nrlwps++;
    605       1.26       cgd 		break;
    606      1.174        ad 	case LSSUSPENDED:
    607      1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    608      1.174        ad 		p->p_nrlwps++;
    609      1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    610      1.122   thorpej 		break;
    611      1.174        ad 	case LSSLEEP:
    612      1.174        ad 		KASSERT(l->l_wchan != NULL);
    613       1.26       cgd 		break;
    614      1.174        ad 	default:
    615      1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    616       1.26       cgd 	}
    617      1.139        cl 
    618      1.174        ad 	/*
    619      1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    620      1.174        ad 	 * again.  If not, mark it as still sleeping.
    621      1.174        ad 	 */
    622      1.174        ad 	if (l->l_wchan != NULL) {
    623      1.174        ad 		l->l_stat = LSSLEEP;
    624      1.183        ad 		/* lwp_unsleep() will release the lock. */
    625      1.183        ad 		lwp_unsleep(l);
    626      1.174        ad 		return;
    627      1.174        ad 	}
    628      1.139        cl 
    629      1.174        ad 	/*
    630      1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    631      1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    632      1.174        ad 	 */
    633      1.188      yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    634      1.174        ad 		l->l_stat = LSONPROC;
    635      1.174        ad 		l->l_slptime = 0;
    636      1.174        ad 		lwp_unlock(l);
    637      1.174        ad 		return;
    638      1.174        ad 	}
    639      1.122   thorpej 
    640      1.174        ad 	/*
    641      1.174        ad 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    642      1.174        ad 	 * to bring it back in.  Otherwise, enter it into a run queue.
    643      1.174        ad 	 */
    644      1.189        ad 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    645      1.189        ad 		spc_lock(l->l_cpu);
    646      1.189        ad 		lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
    647      1.189        ad 	}
    648      1.189        ad 
    649      1.188      yamt 	sched_setrunnable(l);
    650      1.174        ad 	l->l_stat = LSRUN;
    651      1.122   thorpej 	l->l_slptime = 0;
    652      1.174        ad 
    653      1.178     pavel 	if (l->l_flag & LW_INMEM) {
    654      1.188      yamt 		sched_enqueue(l, false);
    655      1.188      yamt 		resched_cpu(l);
    656      1.174        ad 		lwp_unlock(l);
    657      1.174        ad 	} else {
    658      1.174        ad 		lwp_unlock(l);
    659      1.177        ad 		uvm_kick_scheduler();
    660      1.174        ad 	}
    661       1.26       cgd }
    662       1.26       cgd 
    663       1.26       cgd /*
    664      1.174        ad  * suspendsched:
    665      1.174        ad  *
    666      1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    667      1.174        ad  */
    668       1.94    bouyer void
    669      1.174        ad suspendsched(void)
    670       1.94    bouyer {
    671      1.174        ad 	CPU_INFO_ITERATOR cii;
    672      1.174        ad 	struct cpu_info *ci;
    673      1.122   thorpej 	struct lwp *l;
    674      1.174        ad 	struct proc *p;
    675       1.94    bouyer 
    676       1.94    bouyer 	/*
    677      1.174        ad 	 * We do this by process in order not to violate the locking rules.
    678       1.94    bouyer 	 */
    679  1.194.2.2      matt 	mutex_enter(&proclist_lock);
    680      1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    681      1.174        ad 		mutex_enter(&p->p_smutex);
    682      1.174        ad 
    683      1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    684      1.174        ad 			mutex_exit(&p->p_smutex);
    685       1.94    bouyer 			continue;
    686      1.174        ad 		}
    687      1.174        ad 
    688      1.174        ad 		p->p_stat = SSTOP;
    689      1.174        ad 
    690      1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    691      1.174        ad 			if (l == curlwp)
    692      1.174        ad 				continue;
    693      1.174        ad 
    694      1.174        ad 			lwp_lock(l);
    695      1.122   thorpej 
    696       1.97     enami 			/*
    697      1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    698      1.174        ad 			 * when it tries to return to user mode.  We want to
    699      1.174        ad 			 * try and get to get as many LWPs as possible to
    700      1.174        ad 			 * the user / kernel boundary, so that they will
    701      1.174        ad 			 * release any locks that they hold.
    702       1.97     enami 			 */
    703      1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    704      1.174        ad 
    705      1.174        ad 			if (l->l_stat == LSSLEEP &&
    706      1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    707      1.174        ad 				/* setrunnable() will release the lock. */
    708      1.174        ad 				setrunnable(l);
    709      1.174        ad 				continue;
    710      1.174        ad 			}
    711      1.174        ad 
    712      1.174        ad 			lwp_unlock(l);
    713       1.94    bouyer 		}
    714      1.174        ad 
    715      1.174        ad 		mutex_exit(&p->p_smutex);
    716       1.94    bouyer 	}
    717  1.194.2.2      matt 	mutex_exit(&proclist_lock);
    718      1.174        ad 
    719      1.174        ad 	/*
    720      1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    721      1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    722      1.174        ad 	 */
    723  1.194.2.2      matt 	for (CPU_INFO_FOREACH(cii, ci)) {
    724  1.194.2.2      matt 		spc_lock(ci);
    725  1.194.2.2      matt 		cpu_need_resched(ci, RESCHED_IMMED);
    726  1.194.2.2      matt 		spc_unlock(ci);
    727  1.194.2.2      matt 	}
    728      1.174        ad }
    729      1.174        ad 
    730      1.174        ad /*
    731      1.174        ad  * sched_kpri:
    732      1.174        ad  *
    733      1.174        ad  *	Scale a priority level to a kernel priority level, usually
    734      1.174        ad  *	for an LWP that is about to sleep.
    735      1.174        ad  */
    736      1.185      yamt pri_t
    737      1.174        ad sched_kpri(struct lwp *l)
    738      1.174        ad {
    739  1.194.2.2      matt 	pri_t pri;
    740  1.194.2.2      matt 
    741  1.194.2.2      matt #ifndef __HAVE_FAST_SOFTINTS
    742      1.174        ad 	/*
    743  1.194.2.2      matt 	 * Hack: if a user thread is being used to run a soft
    744  1.194.2.2      matt 	 * interrupt, we need to boost the priority here.
    745  1.194.2.2      matt 	 */
    746  1.194.2.2      matt 	if ((l->l_pflag & LP_INTR) != 0 && l->l_priority < PRI_KERNEL_RT)
    747  1.194.2.2      matt 		return softint_kpri(l);
    748  1.194.2.2      matt #endif
    749      1.174        ad 
    750  1.194.2.2      matt 	/*
    751  1.194.2.2      matt 	 * Scale user priorities (0 -> 63) up to kernel priorities
    752  1.194.2.2      matt 	 * in the range (64 -> 95).  This makes assumptions about
    753  1.194.2.2      matt 	 * the priority space and so should be kept in sync with
    754  1.194.2.2      matt 	 * param.h.
    755  1.194.2.2      matt 	 */
    756  1.194.2.2      matt 	if ((pri = l->l_priority) >= PRI_KERNEL)
    757  1.194.2.2      matt 		return pri;
    758  1.194.2.2      matt 	return (pri >> 1) + PRI_KERNEL;
    759      1.174        ad }
    760      1.174        ad 
    761      1.174        ad /*
    762      1.174        ad  * sched_unsleep:
    763      1.174        ad  *
    764      1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    765      1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    766      1.174        ad  *	it's not a valid action for running or idle LWPs.
    767      1.174        ad  */
    768      1.188      yamt static void
    769      1.174        ad sched_unsleep(struct lwp *l)
    770      1.174        ad {
    771      1.174        ad 
    772      1.174        ad 	lwp_unlock(l);
    773      1.174        ad 	panic("sched_unsleep");
    774      1.174        ad }
    775      1.174        ad 
    776  1.194.2.2      matt void
    777      1.188      yamt resched_cpu(struct lwp *l)
    778      1.188      yamt {
    779      1.188      yamt 	struct cpu_info *ci;
    780      1.188      yamt 
    781      1.188      yamt 	/*
    782      1.188      yamt 	 * XXXSMP
    783      1.188      yamt 	 * Since l->l_cpu persists across a context switch,
    784      1.188      yamt 	 * this gives us *very weak* processor affinity, in
    785      1.188      yamt 	 * that we notify the CPU on which the process last
    786      1.188      yamt 	 * ran that it should try to switch.
    787      1.188      yamt 	 *
    788      1.188      yamt 	 * This does not guarantee that the process will run on
    789      1.188      yamt 	 * that processor next, because another processor might
    790      1.188      yamt 	 * grab it the next time it performs a context switch.
    791      1.188      yamt 	 *
    792      1.188      yamt 	 * This also does not handle the case where its last
    793      1.188      yamt 	 * CPU is running a higher-priority process, but every
    794      1.188      yamt 	 * other CPU is running a lower-priority process.  There
    795      1.188      yamt 	 * are ways to handle this situation, but they're not
    796      1.188      yamt 	 * currently very pretty, and we also need to weigh the
    797      1.188      yamt 	 * cost of moving a process from one CPU to another.
    798      1.188      yamt 	 */
    799  1.194.2.2      matt 	ci = l->l_cpu;
    800  1.194.2.2      matt 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
    801      1.188      yamt 		cpu_need_resched(ci, 0);
    802      1.188      yamt }
    803      1.188      yamt 
    804      1.188      yamt static void
    805      1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
    806      1.174        ad {
    807      1.174        ad 
    808      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    809      1.174        ad 
    810  1.194.2.2      matt 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    811  1.194.2.2      matt 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    812  1.194.2.2      matt 		sched_dequeue(l);
    813  1.194.2.2      matt 		l->l_priority = pri;
    814  1.194.2.2      matt 		sched_enqueue(l, false);
    815  1.194.2.2      matt 	} else {
    816      1.174        ad 		l->l_priority = pri;
    817      1.157      yamt 	}
    818      1.188      yamt 	resched_cpu(l);
    819      1.184      yamt }
    820      1.184      yamt 
    821      1.188      yamt static void
    822      1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
    823      1.184      yamt {
    824      1.184      yamt 
    825      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    826      1.184      yamt 
    827  1.194.2.2      matt 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    828  1.194.2.2      matt 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    829  1.194.2.2      matt 		sched_dequeue(l);
    830  1.194.2.2      matt 		l->l_inheritedprio = pri;
    831  1.194.2.2      matt 		sched_enqueue(l, false);
    832  1.194.2.2      matt 	} else {
    833      1.184      yamt 		l->l_inheritedprio = pri;
    834      1.184      yamt 	}
    835      1.188      yamt 	resched_cpu(l);
    836      1.184      yamt }
    837      1.184      yamt 
    838      1.184      yamt struct lwp *
    839      1.184      yamt syncobj_noowner(wchan_t wchan)
    840      1.184      yamt {
    841      1.184      yamt 
    842      1.184      yamt 	return NULL;
    843      1.151      yamt }
    844      1.151      yamt 
    845      1.113  gmcgarry 
    846      1.188      yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    847      1.188      yamt fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    848      1.115  nisimura 
    849      1.130   nathanw /*
    850      1.188      yamt  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    851      1.188      yamt  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    852      1.188      yamt  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    853      1.188      yamt  *
    854      1.188      yamt  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    855      1.188      yamt  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    856      1.188      yamt  *
    857      1.188      yamt  * If you dont want to bother with the faster/more-accurate formula, you
    858      1.188      yamt  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    859      1.188      yamt  * (more general) method of calculating the %age of CPU used by a process.
    860      1.134      matt  */
    861      1.188      yamt #define	CCPU_SHIFT	(FSHIFT + 1)
    862      1.134      matt 
    863      1.134      matt /*
    864      1.188      yamt  * sched_pstats:
    865      1.188      yamt  *
    866      1.188      yamt  * Update process statistics and check CPU resource allocation.
    867      1.188      yamt  * Call scheduler-specific hook to eventually adjust process/LWP
    868      1.188      yamt  * priorities.
    869      1.130   nathanw  */
    870      1.188      yamt /* ARGSUSED */
    871      1.113  gmcgarry void
    872      1.188      yamt sched_pstats(void *arg)
    873      1.113  gmcgarry {
    874      1.188      yamt 	struct rlimit *rlim;
    875      1.188      yamt 	struct lwp *l;
    876      1.188      yamt 	struct proc *p;
    877  1.194.2.2      matt 	int sig, clkhz;
    878      1.188      yamt 	long runtm;
    879      1.113  gmcgarry 
    880      1.188      yamt 	sched_pstats_ticks++;
    881      1.174        ad 
    882      1.188      yamt 	mutex_enter(&proclist_mutex);
    883      1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
    884      1.188      yamt 		/*
    885      1.188      yamt 		 * Increment time in/out of memory and sleep time (if
    886      1.188      yamt 		 * sleeping).  We ignore overflow; with 16-bit int's
    887      1.188      yamt 		 * (remember them?) overflow takes 45 days.
    888      1.188      yamt 		 */
    889      1.188      yamt 		mutex_enter(&p->p_smutex);
    890      1.188      yamt 		mutex_spin_enter(&p->p_stmutex);
    891      1.188      yamt 		runtm = p->p_rtime.tv_sec;
    892      1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    893      1.188      yamt 			if ((l->l_flag & LW_IDLE) != 0)
    894      1.188      yamt 				continue;
    895      1.188      yamt 			lwp_lock(l);
    896      1.188      yamt 			runtm += l->l_rtime.tv_sec;
    897      1.188      yamt 			l->l_swtime++;
    898  1.194.2.2      matt 			sched_pstats_hook(l);
    899      1.188      yamt 			lwp_unlock(l);
    900      1.113  gmcgarry 
    901      1.188      yamt 			/*
    902      1.188      yamt 			 * p_pctcpu is only for ps.
    903      1.188      yamt 			 */
    904      1.188      yamt 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    905      1.188      yamt 			if (l->l_slptime < 1) {
    906      1.188      yamt 				clkhz = stathz != 0 ? stathz : hz;
    907      1.188      yamt #if	(FSHIFT >= CCPU_SHIFT)
    908      1.188      yamt 				l->l_pctcpu += (clkhz == 100) ?
    909      1.188      yamt 				    ((fixpt_t)l->l_cpticks) <<
    910      1.188      yamt 				        (FSHIFT - CCPU_SHIFT) :
    911      1.188      yamt 				    100 * (((fixpt_t) p->p_cpticks)
    912      1.188      yamt 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    913      1.188      yamt #else
    914      1.188      yamt 				l->l_pctcpu += ((FSCALE - ccpu) *
    915      1.188      yamt 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    916      1.146      matt #endif
    917      1.188      yamt 				l->l_cpticks = 0;
    918      1.188      yamt 			}
    919      1.188      yamt 		}
    920      1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    921      1.188      yamt 		mutex_spin_exit(&p->p_stmutex);
    922      1.174        ad 
    923      1.188      yamt 		/*
    924      1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
    925      1.188      yamt 		 * If over max, kill it.
    926      1.188      yamt 		 */
    927      1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
    928      1.188      yamt 		sig = 0;
    929      1.188      yamt 		if (runtm >= rlim->rlim_cur) {
    930      1.188      yamt 			if (runtm >= rlim->rlim_max)
    931      1.188      yamt 				sig = SIGKILL;
    932      1.188      yamt 			else {
    933      1.188      yamt 				sig = SIGXCPU;
    934      1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
    935      1.188      yamt 					rlim->rlim_cur += 5;
    936      1.188      yamt 			}
    937      1.188      yamt 		}
    938      1.188      yamt 		mutex_exit(&p->p_smutex);
    939      1.188      yamt 		if (sig) {
    940      1.188      yamt 			psignal(p, sig);
    941      1.188      yamt 		}
    942      1.174        ad 	}
    943      1.188      yamt 	mutex_exit(&proclist_mutex);
    944      1.188      yamt 	uvm_meter();
    945      1.191        ad 	cv_wakeup(&lbolt);
    946      1.188      yamt 	callout_schedule(&sched_pstats_ch, hz);
    947      1.113  gmcgarry }
    948      1.190        ad 
    949      1.190        ad void
    950      1.190        ad sched_init(void)
    951      1.190        ad {
    952      1.190        ad 
    953      1.190        ad 	callout_init(&sched_pstats_ch, 0);
    954      1.190        ad 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    955      1.190        ad 	sched_setup();
    956      1.190        ad 	sched_pstats(NULL);
    957      1.190        ad }
    958