kern_synch.c revision 1.197 1 1.197 ad /* $NetBSD: kern_synch.c,v 1.197 2007/10/02 13:17:16 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.174 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
21 1.63 thorpej * must display the following acknowledgement:
22 1.63 thorpej * This product includes software developed by the NetBSD
23 1.63 thorpej * Foundation, Inc. and its contributors.
24 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.63 thorpej * contributors may be used to endorse or promote products derived
26 1.63 thorpej * from this software without specific prior written permission.
27 1.63 thorpej *
28 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
39 1.63 thorpej */
40 1.26 cgd
41 1.26 cgd /*-
42 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.26 cgd * The Regents of the University of California. All rights reserved.
44 1.26 cgd * (c) UNIX System Laboratories, Inc.
45 1.26 cgd * All or some portions of this file are derived from material licensed
46 1.26 cgd * to the University of California by American Telephone and Telegraph
47 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.26 cgd * the permission of UNIX System Laboratories, Inc.
49 1.26 cgd *
50 1.26 cgd * Redistribution and use in source and binary forms, with or without
51 1.26 cgd * modification, are permitted provided that the following conditions
52 1.26 cgd * are met:
53 1.26 cgd * 1. Redistributions of source code must retain the above copyright
54 1.26 cgd * notice, this list of conditions and the following disclaimer.
55 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
56 1.26 cgd * notice, this list of conditions and the following disclaimer in the
57 1.26 cgd * documentation and/or other materials provided with the distribution.
58 1.136 agc * 3. Neither the name of the University nor the names of its contributors
59 1.26 cgd * may be used to endorse or promote products derived from this software
60 1.26 cgd * without specific prior written permission.
61 1.26 cgd *
62 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.26 cgd * SUCH DAMAGE.
73 1.26 cgd *
74 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.26 cgd */
76 1.106 lukem
77 1.106 lukem #include <sys/cdefs.h>
78 1.197 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.197 2007/10/02 13:17:16 ad Exp $");
79 1.48 mrg
80 1.109 yamt #include "opt_kstack.h"
81 1.82 thorpej #include "opt_lockdebug.h"
82 1.83 thorpej #include "opt_multiprocessor.h"
83 1.110 briggs #include "opt_perfctrs.h"
84 1.26 cgd
85 1.174 ad #define __MUTEX_PRIVATE
86 1.174 ad
87 1.26 cgd #include <sys/param.h>
88 1.26 cgd #include <sys/systm.h>
89 1.26 cgd #include <sys/proc.h>
90 1.26 cgd #include <sys/kernel.h>
91 1.111 briggs #if defined(PERFCTRS)
92 1.110 briggs #include <sys/pmc.h>
93 1.111 briggs #endif
94 1.188 yamt #include <sys/cpu.h>
95 1.26 cgd #include <sys/resourcevar.h>
96 1.55 ross #include <sys/sched.h>
97 1.179 dsl #include <sys/syscall_stats.h>
98 1.174 ad #include <sys/sleepq.h>
99 1.174 ad #include <sys/lockdebug.h>
100 1.190 ad #include <sys/evcnt.h>
101 1.47 mrg
102 1.47 mrg #include <uvm/uvm_extern.h>
103 1.47 mrg
104 1.190 ad callout_t sched_pstats_ch;
105 1.188 yamt unsigned int sched_pstats_ticks;
106 1.34 christos
107 1.190 ad kcondvar_t lbolt; /* once a second sleep address */
108 1.26 cgd
109 1.188 yamt static void sched_unsleep(struct lwp *);
110 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
111 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
112 1.122 thorpej
113 1.174 ad syncobj_t sleep_syncobj = {
114 1.174 ad SOBJ_SLEEPQ_SORTED,
115 1.174 ad sleepq_unsleep,
116 1.184 yamt sleepq_changepri,
117 1.184 yamt sleepq_lendpri,
118 1.184 yamt syncobj_noowner,
119 1.174 ad };
120 1.174 ad
121 1.174 ad syncobj_t sched_syncobj = {
122 1.174 ad SOBJ_SLEEPQ_SORTED,
123 1.174 ad sched_unsleep,
124 1.184 yamt sched_changepri,
125 1.184 yamt sched_lendpri,
126 1.184 yamt syncobj_noowner,
127 1.174 ad };
128 1.122 thorpej
129 1.26 cgd /*
130 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
131 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
132 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
133 1.174 ad * maintained in the machine-dependent layers. This priority will typically
134 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
135 1.174 ad * it can be made higher to block network software interrupts after panics.
136 1.26 cgd */
137 1.174 ad int safepri;
138 1.26 cgd
139 1.26 cgd /*
140 1.174 ad * OBSOLETE INTERFACE
141 1.174 ad *
142 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
143 1.26 cgd * performed on the specified identifier. The process will then be made
144 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
145 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
146 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
147 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
148 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
149 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
150 1.26 cgd * call should be interrupted by the signal (return EINTR).
151 1.77 thorpej *
152 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
153 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
154 1.174 ad * is specified, in which case the interlock will always be unlocked upon
155 1.174 ad * return.
156 1.26 cgd */
157 1.26 cgd int
158 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
159 1.174 ad volatile struct simplelock *interlock)
160 1.26 cgd {
161 1.122 thorpej struct lwp *l = curlwp;
162 1.174 ad sleepq_t *sq;
163 1.188 yamt int error;
164 1.26 cgd
165 1.174 ad if (sleepq_dontsleep(l)) {
166 1.174 ad (void)sleepq_abort(NULL, 0);
167 1.174 ad if ((priority & PNORELOCK) != 0)
168 1.77 thorpej simple_unlock(interlock);
169 1.174 ad return 0;
170 1.26 cgd }
171 1.78 sommerfe
172 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
173 1.174 ad sleepq_enter(sq, l);
174 1.188 yamt sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
175 1.42 cgd
176 1.174 ad if (interlock != NULL) {
177 1.174 ad LOCK_ASSERT(simple_lock_held(interlock));
178 1.174 ad simple_unlock(interlock);
179 1.150 chs }
180 1.150 chs
181 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
182 1.126 pk
183 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
184 1.126 pk simple_lock(interlock);
185 1.174 ad
186 1.174 ad return error;
187 1.26 cgd }
188 1.26 cgd
189 1.187 ad int
190 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
191 1.187 ad kmutex_t *mtx)
192 1.187 ad {
193 1.187 ad struct lwp *l = curlwp;
194 1.187 ad sleepq_t *sq;
195 1.188 yamt int error;
196 1.187 ad
197 1.187 ad if (sleepq_dontsleep(l)) {
198 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
199 1.187 ad return 0;
200 1.187 ad }
201 1.187 ad
202 1.187 ad sq = sleeptab_lookup(&sleeptab, ident);
203 1.187 ad sleepq_enter(sq, l);
204 1.188 yamt sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
205 1.187 ad mutex_exit(mtx);
206 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
207 1.187 ad
208 1.187 ad if ((priority & PNORELOCK) == 0)
209 1.187 ad mutex_enter(mtx);
210 1.187 ad
211 1.187 ad return error;
212 1.187 ad }
213 1.187 ad
214 1.26 cgd /*
215 1.174 ad * General sleep call for situations where a wake-up is not expected.
216 1.26 cgd */
217 1.174 ad int
218 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
219 1.26 cgd {
220 1.174 ad struct lwp *l = curlwp;
221 1.174 ad sleepq_t *sq;
222 1.174 ad int error;
223 1.26 cgd
224 1.174 ad if (sleepq_dontsleep(l))
225 1.174 ad return sleepq_abort(NULL, 0);
226 1.26 cgd
227 1.174 ad if (mtx != NULL)
228 1.174 ad mutex_exit(mtx);
229 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
230 1.174 ad sleepq_enter(sq, l);
231 1.188 yamt sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
232 1.188 yamt error = sleepq_block(timo, intr);
233 1.174 ad if (mtx != NULL)
234 1.174 ad mutex_enter(mtx);
235 1.83 thorpej
236 1.174 ad return error;
237 1.139 cl }
238 1.139 cl
239 1.26 cgd /*
240 1.174 ad * OBSOLETE INTERFACE
241 1.174 ad *
242 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
243 1.26 cgd */
244 1.26 cgd void
245 1.174 ad wakeup(wchan_t ident)
246 1.26 cgd {
247 1.174 ad sleepq_t *sq;
248 1.83 thorpej
249 1.174 ad if (cold)
250 1.174 ad return;
251 1.83 thorpej
252 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
253 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
254 1.63 thorpej }
255 1.63 thorpej
256 1.63 thorpej /*
257 1.174 ad * OBSOLETE INTERFACE
258 1.174 ad *
259 1.63 thorpej * Make the highest priority process first in line on the specified
260 1.63 thorpej * identifier runnable.
261 1.63 thorpej */
262 1.174 ad void
263 1.174 ad wakeup_one(wchan_t ident)
264 1.63 thorpej {
265 1.174 ad sleepq_t *sq;
266 1.63 thorpej
267 1.174 ad if (cold)
268 1.174 ad return;
269 1.188 yamt
270 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
271 1.174 ad sleepq_wake(sq, ident, 1);
272 1.174 ad }
273 1.63 thorpej
274 1.117 gmcgarry
275 1.117 gmcgarry /*
276 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
277 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
278 1.117 gmcgarry * current process explicitly requests it (eg sched_yield(2) in compat code).
279 1.117 gmcgarry */
280 1.117 gmcgarry void
281 1.117 gmcgarry yield(void)
282 1.117 gmcgarry {
283 1.122 thorpej struct lwp *l = curlwp;
284 1.117 gmcgarry
285 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
286 1.174 ad lwp_lock(l);
287 1.188 yamt KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
288 1.188 yamt KASSERT(l->l_stat == LSONPROC);
289 1.188 yamt l->l_priority = l->l_usrpri;
290 1.188 yamt (void)mi_switch(l);
291 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
292 1.69 thorpej }
293 1.69 thorpej
294 1.69 thorpej /*
295 1.69 thorpej * General preemption call. Puts the current process back on its run queue
296 1.156 rpaulo * and performs an involuntary context switch.
297 1.69 thorpej */
298 1.69 thorpej void
299 1.174 ad preempt(void)
300 1.69 thorpej {
301 1.122 thorpej struct lwp *l = curlwp;
302 1.69 thorpej
303 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
304 1.174 ad lwp_lock(l);
305 1.188 yamt KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
306 1.188 yamt KASSERT(l->l_stat == LSONPROC);
307 1.188 yamt l->l_priority = l->l_usrpri;
308 1.174 ad l->l_nivcsw++;
309 1.188 yamt (void)mi_switch(l);
310 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
311 1.69 thorpej }
312 1.69 thorpej
313 1.69 thorpej /*
314 1.188 yamt * Compute the amount of time during which the current lwp was running.
315 1.130 nathanw *
316 1.188 yamt * - update l_rtime unless it's an idle lwp.
317 1.188 yamt * - update spc_runtime for the next lwp.
318 1.188 yamt */
319 1.188 yamt
320 1.188 yamt static inline void
321 1.188 yamt updatertime(struct lwp *l, struct schedstate_percpu *spc)
322 1.188 yamt {
323 1.188 yamt struct timeval tv;
324 1.188 yamt long s, u;
325 1.188 yamt
326 1.188 yamt if ((l->l_flag & LW_IDLE) != 0) {
327 1.188 yamt microtime(&spc->spc_runtime);
328 1.188 yamt return;
329 1.188 yamt }
330 1.188 yamt
331 1.188 yamt microtime(&tv);
332 1.188 yamt u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
333 1.188 yamt s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
334 1.188 yamt if (u < 0) {
335 1.188 yamt u += 1000000;
336 1.188 yamt s--;
337 1.188 yamt } else if (u >= 1000000) {
338 1.188 yamt u -= 1000000;
339 1.188 yamt s++;
340 1.188 yamt }
341 1.188 yamt l->l_rtime.tv_usec = u;
342 1.188 yamt l->l_rtime.tv_sec = s;
343 1.188 yamt
344 1.188 yamt spc->spc_runtime = tv;
345 1.188 yamt }
346 1.188 yamt
347 1.188 yamt /*
348 1.188 yamt * The machine independent parts of context switch.
349 1.188 yamt *
350 1.188 yamt * Returns 1 if another LWP was actually run.
351 1.26 cgd */
352 1.122 thorpej int
353 1.188 yamt mi_switch(struct lwp *l)
354 1.26 cgd {
355 1.76 thorpej struct schedstate_percpu *spc;
356 1.188 yamt struct lwp *newl;
357 1.174 ad int retval, oldspl;
358 1.196 ad struct cpu_info *ci;
359 1.26 cgd
360 1.188 yamt KASSERT(lwp_locked(l, NULL));
361 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
362 1.174 ad
363 1.174 ad #ifdef KSTACK_CHECK_MAGIC
364 1.174 ad kstack_check_magic(l);
365 1.174 ad #endif
366 1.83 thorpej
367 1.90 sommerfe /*
368 1.174 ad * It's safe to read the per CPU schedstate unlocked here, as all we
369 1.174 ad * are after is the run time and that's guarenteed to have been last
370 1.174 ad * updated by this CPU.
371 1.90 sommerfe */
372 1.196 ad ci = l->l_cpu;
373 1.196 ad KDASSERT(ci == curcpu());
374 1.26 cgd
375 1.190 ad /*
376 1.190 ad * Process is about to yield the CPU; clear the appropriate
377 1.190 ad * scheduling flags.
378 1.190 ad */
379 1.196 ad spc = &ci->ci_schedstate;
380 1.190 ad newl = NULL;
381 1.190 ad
382 1.190 ad if (l->l_switchto != NULL) {
383 1.190 ad newl = l->l_switchto;
384 1.190 ad l->l_switchto = NULL;
385 1.190 ad }
386 1.190 ad
387 1.180 dsl /* Count time spent in current system call */
388 1.180 dsl SYSCALL_TIME_SLEEP(l);
389 1.180 dsl
390 1.26 cgd /*
391 1.190 ad * XXXSMP If we are using h/w performance counters,
392 1.190 ad * save context.
393 1.69 thorpej */
394 1.174 ad #if PERFCTRS
395 1.175 christos if (PMC_ENABLED(l->l_proc)) {
396 1.175 christos pmc_save_context(l->l_proc);
397 1.174 ad }
398 1.109 yamt #endif
399 1.188 yamt updatertime(l, spc);
400 1.113 gmcgarry
401 1.113 gmcgarry /*
402 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
403 1.113 gmcgarry */
404 1.188 yamt mutex_spin_enter(spc->spc_mutex);
405 1.193 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
406 1.174 ad KASSERT(l->l_stat != LSRUN);
407 1.174 ad if (l->l_stat == LSONPROC) {
408 1.188 yamt KASSERT(lwp_locked(l, &spc->spc_lwplock));
409 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
410 1.188 yamt l->l_stat = LSRUN;
411 1.188 yamt lwp_setlock(l, spc->spc_mutex);
412 1.188 yamt sched_enqueue(l, true);
413 1.188 yamt } else
414 1.188 yamt l->l_stat = LSIDL;
415 1.174 ad }
416 1.174 ad
417 1.174 ad /*
418 1.188 yamt * Let sched_nextlwp() select the LWP to run the CPU next.
419 1.188 yamt * If no LWP is runnable, switch to the idle LWP.
420 1.174 ad */
421 1.190 ad if (newl == NULL) {
422 1.190 ad newl = sched_nextlwp();
423 1.190 ad if (newl != NULL) {
424 1.190 ad sched_dequeue(newl);
425 1.190 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
426 1.190 ad newl->l_stat = LSONPROC;
427 1.196 ad newl->l_cpu = ci;
428 1.190 ad newl->l_flag |= LW_RUNNING;
429 1.190 ad lwp_setlock(newl, &spc->spc_lwplock);
430 1.190 ad } else {
431 1.196 ad newl = ci->ci_data.cpu_idlelwp;
432 1.190 ad newl->l_stat = LSONPROC;
433 1.190 ad newl->l_flag |= LW_RUNNING;
434 1.190 ad }
435 1.190 ad spc->spc_curpriority = newl->l_usrpri;
436 1.190 ad newl->l_priority = newl->l_usrpri;
437 1.196 ad ci->ci_want_resched = 0;
438 1.188 yamt }
439 1.188 yamt
440 1.188 yamt if (l != newl) {
441 1.188 yamt struct lwp *prevlwp;
442 1.174 ad
443 1.188 yamt /*
444 1.188 yamt * If the old LWP has been moved to a run queue above,
445 1.188 yamt * drop the general purpose LWP lock: it's now locked
446 1.188 yamt * by the scheduler lock.
447 1.188 yamt *
448 1.188 yamt * Otherwise, drop the scheduler lock. We're done with
449 1.188 yamt * the run queues for now.
450 1.188 yamt */
451 1.188 yamt if (l->l_mutex == spc->spc_mutex) {
452 1.188 yamt mutex_spin_exit(&spc->spc_lwplock);
453 1.188 yamt } else {
454 1.188 yamt mutex_spin_exit(spc->spc_mutex);
455 1.188 yamt }
456 1.188 yamt
457 1.188 yamt /* Unlocked, but for statistics only. */
458 1.188 yamt uvmexp.swtch++;
459 1.188 yamt
460 1.188 yamt /* Save old VM context. */
461 1.188 yamt pmap_deactivate(l);
462 1.188 yamt
463 1.188 yamt /* Switch to the new LWP.. */
464 1.188 yamt l->l_ncsw++;
465 1.188 yamt l->l_flag &= ~LW_RUNNING;
466 1.196 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
467 1.188 yamt prevlwp = cpu_switchto(l, newl);
468 1.174 ad
469 1.188 yamt /*
470 1.188 yamt * .. we have switched away and are now back so we must
471 1.188 yamt * be the new curlwp. prevlwp is who we replaced.
472 1.188 yamt */
473 1.188 yamt if (prevlwp != NULL) {
474 1.188 yamt curcpu()->ci_mtx_oldspl = oldspl;
475 1.188 yamt lwp_unlock(prevlwp);
476 1.188 yamt } else {
477 1.188 yamt splx(oldspl);
478 1.188 yamt }
479 1.174 ad
480 1.188 yamt /* Restore VM context. */
481 1.188 yamt pmap_activate(l);
482 1.188 yamt retval = 1;
483 1.188 yamt } else {
484 1.188 yamt /* Nothing to do - just unlock and return. */
485 1.188 yamt mutex_spin_exit(spc->spc_mutex);
486 1.188 yamt lwp_unlock(l);
487 1.122 thorpej retval = 0;
488 1.122 thorpej }
489 1.110 briggs
490 1.188 yamt KASSERT(l == curlwp);
491 1.188 yamt KASSERT(l->l_stat == LSONPROC);
492 1.188 yamt
493 1.110 briggs /*
494 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
495 1.26 cgd */
496 1.114 gmcgarry #if PERFCTRS
497 1.175 christos if (PMC_ENABLED(l->l_proc)) {
498 1.175 christos pmc_restore_context(l->l_proc);
499 1.166 christos }
500 1.114 gmcgarry #endif
501 1.110 briggs
502 1.110 briggs /*
503 1.76 thorpej * We're running again; record our new start time. We might
504 1.174 ad * be running on a new CPU now, so don't use the cached
505 1.76 thorpej * schedstate_percpu pointer.
506 1.76 thorpej */
507 1.180 dsl SYSCALL_TIME_WAKEUP(l);
508 1.195 ad KASSERT(curlwp == l);
509 1.197 ad KDASSERT(l->l_cpu == curcpu());
510 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
511 1.169 yamt
512 1.122 thorpej return retval;
513 1.26 cgd }
514 1.26 cgd
515 1.26 cgd /*
516 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
517 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
518 1.174 ad *
519 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
520 1.26 cgd */
521 1.26 cgd void
522 1.122 thorpej setrunnable(struct lwp *l)
523 1.26 cgd {
524 1.122 thorpej struct proc *p = l->l_proc;
525 1.174 ad sigset_t *ss;
526 1.26 cgd
527 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
528 1.183 ad KASSERT(mutex_owned(&p->p_smutex));
529 1.183 ad KASSERT(lwp_locked(l, NULL));
530 1.83 thorpej
531 1.122 thorpej switch (l->l_stat) {
532 1.122 thorpej case LSSTOP:
533 1.33 mycroft /*
534 1.33 mycroft * If we're being traced (possibly because someone attached us
535 1.33 mycroft * while we were stopped), check for a signal from the debugger.
536 1.33 mycroft */
537 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
538 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
539 1.174 ad ss = &l->l_sigpend.sp_set;
540 1.174 ad else
541 1.174 ad ss = &p->p_sigpend.sp_set;
542 1.174 ad sigaddset(ss, p->p_xstat);
543 1.174 ad signotify(l);
544 1.53 mycroft }
545 1.174 ad p->p_nrlwps++;
546 1.26 cgd break;
547 1.174 ad case LSSUSPENDED:
548 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
549 1.174 ad p->p_nrlwps++;
550 1.192 rmind cv_broadcast(&p->p_lwpcv);
551 1.122 thorpej break;
552 1.174 ad case LSSLEEP:
553 1.174 ad KASSERT(l->l_wchan != NULL);
554 1.26 cgd break;
555 1.174 ad default:
556 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
557 1.26 cgd }
558 1.139 cl
559 1.174 ad /*
560 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
561 1.174 ad * again. If not, mark it as still sleeping.
562 1.174 ad */
563 1.174 ad if (l->l_wchan != NULL) {
564 1.174 ad l->l_stat = LSSLEEP;
565 1.183 ad /* lwp_unsleep() will release the lock. */
566 1.183 ad lwp_unsleep(l);
567 1.174 ad return;
568 1.174 ad }
569 1.139 cl
570 1.174 ad /*
571 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
572 1.174 ad * about to call mi_switch(), in which case it will yield.
573 1.174 ad */
574 1.188 yamt if ((l->l_flag & LW_RUNNING) != 0) {
575 1.174 ad l->l_stat = LSONPROC;
576 1.174 ad l->l_slptime = 0;
577 1.174 ad lwp_unlock(l);
578 1.174 ad return;
579 1.174 ad }
580 1.122 thorpej
581 1.174 ad /*
582 1.174 ad * Set the LWP runnable. If it's swapped out, we need to wake the swapper
583 1.174 ad * to bring it back in. Otherwise, enter it into a run queue.
584 1.174 ad */
585 1.189 ad if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
586 1.189 ad spc_lock(l->l_cpu);
587 1.189 ad lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
588 1.189 ad }
589 1.189 ad
590 1.188 yamt sched_setrunnable(l);
591 1.174 ad l->l_stat = LSRUN;
592 1.122 thorpej l->l_slptime = 0;
593 1.174 ad
594 1.178 pavel if (l->l_flag & LW_INMEM) {
595 1.188 yamt sched_enqueue(l, false);
596 1.188 yamt resched_cpu(l);
597 1.174 ad lwp_unlock(l);
598 1.174 ad } else {
599 1.174 ad lwp_unlock(l);
600 1.177 ad uvm_kick_scheduler();
601 1.174 ad }
602 1.26 cgd }
603 1.26 cgd
604 1.26 cgd /*
605 1.174 ad * suspendsched:
606 1.174 ad *
607 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
608 1.174 ad */
609 1.94 bouyer void
610 1.174 ad suspendsched(void)
611 1.94 bouyer {
612 1.174 ad CPU_INFO_ITERATOR cii;
613 1.174 ad struct cpu_info *ci;
614 1.122 thorpej struct lwp *l;
615 1.174 ad struct proc *p;
616 1.94 bouyer
617 1.94 bouyer /*
618 1.174 ad * We do this by process in order not to violate the locking rules.
619 1.94 bouyer */
620 1.174 ad mutex_enter(&proclist_mutex);
621 1.174 ad PROCLIST_FOREACH(p, &allproc) {
622 1.174 ad mutex_enter(&p->p_smutex);
623 1.174 ad
624 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
625 1.174 ad mutex_exit(&p->p_smutex);
626 1.94 bouyer continue;
627 1.174 ad }
628 1.174 ad
629 1.174 ad p->p_stat = SSTOP;
630 1.174 ad
631 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
632 1.174 ad if (l == curlwp)
633 1.174 ad continue;
634 1.174 ad
635 1.174 ad lwp_lock(l);
636 1.122 thorpej
637 1.97 enami /*
638 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
639 1.174 ad * when it tries to return to user mode. We want to
640 1.174 ad * try and get to get as many LWPs as possible to
641 1.174 ad * the user / kernel boundary, so that they will
642 1.174 ad * release any locks that they hold.
643 1.97 enami */
644 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
645 1.174 ad
646 1.174 ad if (l->l_stat == LSSLEEP &&
647 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
648 1.174 ad /* setrunnable() will release the lock. */
649 1.174 ad setrunnable(l);
650 1.174 ad continue;
651 1.174 ad }
652 1.174 ad
653 1.174 ad lwp_unlock(l);
654 1.94 bouyer }
655 1.174 ad
656 1.174 ad mutex_exit(&p->p_smutex);
657 1.94 bouyer }
658 1.174 ad mutex_exit(&proclist_mutex);
659 1.174 ad
660 1.174 ad /*
661 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
662 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
663 1.174 ad */
664 1.174 ad for (CPU_INFO_FOREACH(cii, ci))
665 1.188 yamt cpu_need_resched(ci, 0);
666 1.174 ad }
667 1.174 ad
668 1.174 ad /*
669 1.174 ad * sched_kpri:
670 1.174 ad *
671 1.174 ad * Scale a priority level to a kernel priority level, usually
672 1.174 ad * for an LWP that is about to sleep.
673 1.174 ad */
674 1.185 yamt pri_t
675 1.174 ad sched_kpri(struct lwp *l)
676 1.174 ad {
677 1.174 ad /*
678 1.174 ad * Scale user priorities (127 -> 50) up to kernel priorities
679 1.174 ad * in the range (49 -> 8). Reserve the top 8 kernel priorities
680 1.174 ad * for high priority kthreads. Kernel priorities passed in
681 1.174 ad * are left "as is". XXX This is somewhat arbitrary.
682 1.174 ad */
683 1.174 ad static const uint8_t kpri_tab[] = {
684 1.174 ad 0, 1, 2, 3, 4, 5, 6, 7,
685 1.174 ad 8, 9, 10, 11, 12, 13, 14, 15,
686 1.174 ad 16, 17, 18, 19, 20, 21, 22, 23,
687 1.174 ad 24, 25, 26, 27, 28, 29, 30, 31,
688 1.174 ad 32, 33, 34, 35, 36, 37, 38, 39,
689 1.174 ad 40, 41, 42, 43, 44, 45, 46, 47,
690 1.174 ad 48, 49, 8, 8, 9, 9, 10, 10,
691 1.174 ad 11, 11, 12, 12, 13, 14, 14, 15,
692 1.174 ad 15, 16, 16, 17, 17, 18, 18, 19,
693 1.174 ad 20, 20, 21, 21, 22, 22, 23, 23,
694 1.174 ad 24, 24, 25, 26, 26, 27, 27, 28,
695 1.174 ad 28, 29, 29, 30, 30, 31, 32, 32,
696 1.174 ad 33, 33, 34, 34, 35, 35, 36, 36,
697 1.174 ad 37, 38, 38, 39, 39, 40, 40, 41,
698 1.174 ad 41, 42, 42, 43, 44, 44, 45, 45,
699 1.174 ad 46, 46, 47, 47, 48, 48, 49, 49,
700 1.174 ad };
701 1.174 ad
702 1.185 yamt return (pri_t)kpri_tab[l->l_usrpri];
703 1.174 ad }
704 1.174 ad
705 1.174 ad /*
706 1.174 ad * sched_unsleep:
707 1.174 ad *
708 1.174 ad * The is called when the LWP has not been awoken normally but instead
709 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
710 1.174 ad * it's not a valid action for running or idle LWPs.
711 1.174 ad */
712 1.188 yamt static void
713 1.174 ad sched_unsleep(struct lwp *l)
714 1.174 ad {
715 1.174 ad
716 1.174 ad lwp_unlock(l);
717 1.174 ad panic("sched_unsleep");
718 1.174 ad }
719 1.174 ad
720 1.188 yamt inline void
721 1.188 yamt resched_cpu(struct lwp *l)
722 1.188 yamt {
723 1.188 yamt struct cpu_info *ci;
724 1.188 yamt const pri_t pri = lwp_eprio(l);
725 1.188 yamt
726 1.188 yamt /*
727 1.188 yamt * XXXSMP
728 1.188 yamt * Since l->l_cpu persists across a context switch,
729 1.188 yamt * this gives us *very weak* processor affinity, in
730 1.188 yamt * that we notify the CPU on which the process last
731 1.188 yamt * ran that it should try to switch.
732 1.188 yamt *
733 1.188 yamt * This does not guarantee that the process will run on
734 1.188 yamt * that processor next, because another processor might
735 1.188 yamt * grab it the next time it performs a context switch.
736 1.188 yamt *
737 1.188 yamt * This also does not handle the case where its last
738 1.188 yamt * CPU is running a higher-priority process, but every
739 1.188 yamt * other CPU is running a lower-priority process. There
740 1.188 yamt * are ways to handle this situation, but they're not
741 1.188 yamt * currently very pretty, and we also need to weigh the
742 1.188 yamt * cost of moving a process from one CPU to another.
743 1.188 yamt */
744 1.188 yamt ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
745 1.188 yamt if (pri < ci->ci_schedstate.spc_curpriority)
746 1.188 yamt cpu_need_resched(ci, 0);
747 1.188 yamt }
748 1.188 yamt
749 1.188 yamt static void
750 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
751 1.174 ad {
752 1.174 ad
753 1.188 yamt KASSERT(lwp_locked(l, NULL));
754 1.174 ad
755 1.174 ad l->l_usrpri = pri;
756 1.174 ad if (l->l_priority < PUSER)
757 1.174 ad return;
758 1.184 yamt
759 1.184 yamt if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
760 1.174 ad l->l_priority = pri;
761 1.174 ad return;
762 1.157 yamt }
763 1.174 ad
764 1.188 yamt KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
765 1.188 yamt
766 1.188 yamt sched_dequeue(l);
767 1.174 ad l->l_priority = pri;
768 1.188 yamt sched_enqueue(l, false);
769 1.188 yamt resched_cpu(l);
770 1.184 yamt }
771 1.184 yamt
772 1.188 yamt static void
773 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
774 1.184 yamt {
775 1.184 yamt
776 1.188 yamt KASSERT(lwp_locked(l, NULL));
777 1.184 yamt
778 1.184 yamt if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
779 1.184 yamt l->l_inheritedprio = pri;
780 1.184 yamt return;
781 1.184 yamt }
782 1.184 yamt
783 1.188 yamt KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
784 1.188 yamt
785 1.188 yamt sched_dequeue(l);
786 1.184 yamt l->l_inheritedprio = pri;
787 1.188 yamt sched_enqueue(l, false);
788 1.188 yamt resched_cpu(l);
789 1.184 yamt }
790 1.184 yamt
791 1.184 yamt struct lwp *
792 1.184 yamt syncobj_noowner(wchan_t wchan)
793 1.184 yamt {
794 1.184 yamt
795 1.184 yamt return NULL;
796 1.151 yamt }
797 1.151 yamt
798 1.113 gmcgarry
799 1.188 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
800 1.188 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
801 1.115 nisimura
802 1.130 nathanw /*
803 1.188 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
804 1.188 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
805 1.188 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
806 1.188 yamt *
807 1.188 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
808 1.188 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
809 1.188 yamt *
810 1.188 yamt * If you dont want to bother with the faster/more-accurate formula, you
811 1.188 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
812 1.188 yamt * (more general) method of calculating the %age of CPU used by a process.
813 1.134 matt */
814 1.188 yamt #define CCPU_SHIFT (FSHIFT + 1)
815 1.134 matt
816 1.134 matt /*
817 1.188 yamt * sched_pstats:
818 1.188 yamt *
819 1.188 yamt * Update process statistics and check CPU resource allocation.
820 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
821 1.188 yamt * priorities.
822 1.188 yamt *
823 1.188 yamt * XXXSMP This needs to be reorganised in order to reduce the locking
824 1.188 yamt * burden.
825 1.130 nathanw */
826 1.188 yamt /* ARGSUSED */
827 1.113 gmcgarry void
828 1.188 yamt sched_pstats(void *arg)
829 1.113 gmcgarry {
830 1.188 yamt struct rlimit *rlim;
831 1.188 yamt struct lwp *l;
832 1.188 yamt struct proc *p;
833 1.188 yamt int minslp, sig, clkhz;
834 1.188 yamt long runtm;
835 1.113 gmcgarry
836 1.188 yamt sched_pstats_ticks++;
837 1.174 ad
838 1.188 yamt mutex_enter(&proclist_mutex);
839 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
840 1.188 yamt /*
841 1.188 yamt * Increment time in/out of memory and sleep time (if
842 1.188 yamt * sleeping). We ignore overflow; with 16-bit int's
843 1.188 yamt * (remember them?) overflow takes 45 days.
844 1.188 yamt */
845 1.188 yamt minslp = 2;
846 1.188 yamt mutex_enter(&p->p_smutex);
847 1.188 yamt mutex_spin_enter(&p->p_stmutex);
848 1.188 yamt runtm = p->p_rtime.tv_sec;
849 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
850 1.188 yamt if ((l->l_flag & LW_IDLE) != 0)
851 1.188 yamt continue;
852 1.188 yamt lwp_lock(l);
853 1.188 yamt runtm += l->l_rtime.tv_sec;
854 1.188 yamt l->l_swtime++;
855 1.188 yamt if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
856 1.188 yamt l->l_stat == LSSUSPENDED) {
857 1.188 yamt l->l_slptime++;
858 1.188 yamt minslp = min(minslp, l->l_slptime);
859 1.188 yamt } else
860 1.188 yamt minslp = 0;
861 1.188 yamt lwp_unlock(l);
862 1.113 gmcgarry
863 1.188 yamt /*
864 1.188 yamt * p_pctcpu is only for ps.
865 1.188 yamt */
866 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
867 1.188 yamt if (l->l_slptime < 1) {
868 1.188 yamt clkhz = stathz != 0 ? stathz : hz;
869 1.188 yamt #if (FSHIFT >= CCPU_SHIFT)
870 1.188 yamt l->l_pctcpu += (clkhz == 100) ?
871 1.188 yamt ((fixpt_t)l->l_cpticks) <<
872 1.188 yamt (FSHIFT - CCPU_SHIFT) :
873 1.188 yamt 100 * (((fixpt_t) p->p_cpticks)
874 1.188 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
875 1.188 yamt #else
876 1.188 yamt l->l_pctcpu += ((FSCALE - ccpu) *
877 1.188 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
878 1.146 matt #endif
879 1.188 yamt l->l_cpticks = 0;
880 1.188 yamt }
881 1.188 yamt }
882 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
883 1.188 yamt sched_pstats_hook(p, minslp);
884 1.188 yamt mutex_spin_exit(&p->p_stmutex);
885 1.174 ad
886 1.188 yamt /*
887 1.188 yamt * Check if the process exceeds its CPU resource allocation.
888 1.188 yamt * If over max, kill it.
889 1.188 yamt */
890 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
891 1.188 yamt sig = 0;
892 1.188 yamt if (runtm >= rlim->rlim_cur) {
893 1.188 yamt if (runtm >= rlim->rlim_max)
894 1.188 yamt sig = SIGKILL;
895 1.188 yamt else {
896 1.188 yamt sig = SIGXCPU;
897 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
898 1.188 yamt rlim->rlim_cur += 5;
899 1.188 yamt }
900 1.188 yamt }
901 1.188 yamt mutex_exit(&p->p_smutex);
902 1.188 yamt if (sig) {
903 1.188 yamt psignal(p, sig);
904 1.188 yamt }
905 1.174 ad }
906 1.188 yamt mutex_exit(&proclist_mutex);
907 1.188 yamt uvm_meter();
908 1.191 ad cv_wakeup(&lbolt);
909 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
910 1.113 gmcgarry }
911 1.190 ad
912 1.190 ad void
913 1.190 ad sched_init(void)
914 1.190 ad {
915 1.190 ad
916 1.190 ad cv_init(&lbolt, "lbolt");
917 1.190 ad callout_init(&sched_pstats_ch, 0);
918 1.190 ad callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
919 1.190 ad sched_setup();
920 1.190 ad sched_pstats(NULL);
921 1.190 ad }
922