Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.200
      1  1.200     rmind /*	$NetBSD: kern_synch.c,v 1.200 2007/10/09 19:00:14 rmind Exp $	*/
      2   1.63   thorpej 
      3   1.63   thorpej /*-
      4  1.174        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5   1.63   thorpej  * All rights reserved.
      6   1.63   thorpej  *
      7   1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  1.188      yamt  * Daniel Sieger.
     11   1.63   thorpej  *
     12   1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13   1.63   thorpej  * modification, are permitted provided that the following conditions
     14   1.63   thorpej  * are met:
     15   1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16   1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17   1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19   1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20   1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     21   1.63   thorpej  *    must display the following acknowledgement:
     22   1.63   thorpej  *	This product includes software developed by the NetBSD
     23   1.63   thorpej  *	Foundation, Inc. and its contributors.
     24   1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25   1.63   thorpej  *    contributors may be used to endorse or promote products derived
     26   1.63   thorpej  *    from this software without specific prior written permission.
     27   1.63   thorpej  *
     28   1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29   1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30   1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31   1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32   1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33   1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34   1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35   1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36   1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37   1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38   1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     39   1.63   thorpej  */
     40   1.26       cgd 
     41   1.26       cgd /*-
     42   1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43   1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     44   1.26       cgd  * (c) UNIX System Laboratories, Inc.
     45   1.26       cgd  * All or some portions of this file are derived from material licensed
     46   1.26       cgd  * to the University of California by American Telephone and Telegraph
     47   1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48   1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     49   1.26       cgd  *
     50   1.26       cgd  * Redistribution and use in source and binary forms, with or without
     51   1.26       cgd  * modification, are permitted provided that the following conditions
     52   1.26       cgd  * are met:
     53   1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     54   1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     55   1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     56   1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     57   1.26       cgd  *    documentation and/or other materials provided with the distribution.
     58  1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     59   1.26       cgd  *    may be used to endorse or promote products derived from this software
     60   1.26       cgd  *    without specific prior written permission.
     61   1.26       cgd  *
     62   1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63   1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64   1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65   1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66   1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67   1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68   1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69   1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70   1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71   1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72   1.26       cgd  * SUCH DAMAGE.
     73   1.26       cgd  *
     74   1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75   1.26       cgd  */
     76  1.106     lukem 
     77  1.106     lukem #include <sys/cdefs.h>
     78  1.200     rmind __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.200 2007/10/09 19:00:14 rmind Exp $");
     79   1.48       mrg 
     80  1.109      yamt #include "opt_kstack.h"
     81   1.82   thorpej #include "opt_lockdebug.h"
     82   1.83   thorpej #include "opt_multiprocessor.h"
     83  1.110    briggs #include "opt_perfctrs.h"
     84   1.26       cgd 
     85  1.174        ad #define	__MUTEX_PRIVATE
     86  1.174        ad 
     87   1.26       cgd #include <sys/param.h>
     88   1.26       cgd #include <sys/systm.h>
     89   1.26       cgd #include <sys/proc.h>
     90   1.26       cgd #include <sys/kernel.h>
     91  1.111    briggs #if defined(PERFCTRS)
     92  1.110    briggs #include <sys/pmc.h>
     93  1.111    briggs #endif
     94  1.188      yamt #include <sys/cpu.h>
     95   1.26       cgd #include <sys/resourcevar.h>
     96   1.55      ross #include <sys/sched.h>
     97  1.179       dsl #include <sys/syscall_stats.h>
     98  1.174        ad #include <sys/sleepq.h>
     99  1.174        ad #include <sys/lockdebug.h>
    100  1.190        ad #include <sys/evcnt.h>
    101  1.199        ad #include <sys/intr.h>
    102   1.47       mrg 
    103   1.47       mrg #include <uvm/uvm_extern.h>
    104   1.47       mrg 
    105  1.190        ad callout_t sched_pstats_ch;
    106  1.188      yamt unsigned int sched_pstats_ticks;
    107   1.34  christos 
    108  1.190        ad kcondvar_t	lbolt;			/* once a second sleep address */
    109   1.26       cgd 
    110  1.188      yamt static void	sched_unsleep(struct lwp *);
    111  1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    112  1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    113  1.122   thorpej 
    114  1.174        ad syncobj_t sleep_syncobj = {
    115  1.174        ad 	SOBJ_SLEEPQ_SORTED,
    116  1.174        ad 	sleepq_unsleep,
    117  1.184      yamt 	sleepq_changepri,
    118  1.184      yamt 	sleepq_lendpri,
    119  1.184      yamt 	syncobj_noowner,
    120  1.174        ad };
    121  1.174        ad 
    122  1.174        ad syncobj_t sched_syncobj = {
    123  1.174        ad 	SOBJ_SLEEPQ_SORTED,
    124  1.174        ad 	sched_unsleep,
    125  1.184      yamt 	sched_changepri,
    126  1.184      yamt 	sched_lendpri,
    127  1.184      yamt 	syncobj_noowner,
    128  1.174        ad };
    129  1.122   thorpej 
    130   1.26       cgd /*
    131  1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    132  1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    133  1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    134  1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    135  1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    136  1.174        ad  * it can be made higher to block network software interrupts after panics.
    137   1.26       cgd  */
    138  1.174        ad int	safepri;
    139   1.26       cgd 
    140   1.26       cgd /*
    141  1.174        ad  * OBSOLETE INTERFACE
    142  1.174        ad  *
    143   1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    144   1.26       cgd  * performed on the specified identifier.  The process will then be made
    145  1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    146  1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    147   1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    148   1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    149   1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    150   1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    151   1.26       cgd  * call should be interrupted by the signal (return EINTR).
    152   1.77   thorpej  *
    153  1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    154  1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    155  1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    156  1.174        ad  * return.
    157   1.26       cgd  */
    158   1.26       cgd int
    159  1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    160  1.174        ad 	volatile struct simplelock *interlock)
    161   1.26       cgd {
    162  1.122   thorpej 	struct lwp *l = curlwp;
    163  1.174        ad 	sleepq_t *sq;
    164  1.188      yamt 	int error;
    165   1.26       cgd 
    166  1.174        ad 	if (sleepq_dontsleep(l)) {
    167  1.174        ad 		(void)sleepq_abort(NULL, 0);
    168  1.174        ad 		if ((priority & PNORELOCK) != 0)
    169   1.77   thorpej 			simple_unlock(interlock);
    170  1.174        ad 		return 0;
    171   1.26       cgd 	}
    172   1.78  sommerfe 
    173  1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    174  1.174        ad 	sleepq_enter(sq, l);
    175  1.188      yamt 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    176   1.42       cgd 
    177  1.174        ad 	if (interlock != NULL) {
    178  1.174        ad 		LOCK_ASSERT(simple_lock_held(interlock));
    179  1.174        ad 		simple_unlock(interlock);
    180  1.150       chs 	}
    181  1.150       chs 
    182  1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    183  1.126        pk 
    184  1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    185  1.126        pk 		simple_lock(interlock);
    186  1.174        ad 
    187  1.174        ad 	return error;
    188   1.26       cgd }
    189   1.26       cgd 
    190  1.187        ad int
    191  1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    192  1.187        ad 	kmutex_t *mtx)
    193  1.187        ad {
    194  1.187        ad 	struct lwp *l = curlwp;
    195  1.187        ad 	sleepq_t *sq;
    196  1.188      yamt 	int error;
    197  1.187        ad 
    198  1.187        ad 	if (sleepq_dontsleep(l)) {
    199  1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    200  1.187        ad 		return 0;
    201  1.187        ad 	}
    202  1.187        ad 
    203  1.187        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    204  1.187        ad 	sleepq_enter(sq, l);
    205  1.188      yamt 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    206  1.187        ad 	mutex_exit(mtx);
    207  1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    208  1.187        ad 
    209  1.187        ad 	if ((priority & PNORELOCK) == 0)
    210  1.187        ad 		mutex_enter(mtx);
    211  1.187        ad 
    212  1.187        ad 	return error;
    213  1.187        ad }
    214  1.187        ad 
    215   1.26       cgd /*
    216  1.174        ad  * General sleep call for situations where a wake-up is not expected.
    217   1.26       cgd  */
    218  1.174        ad int
    219  1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    220   1.26       cgd {
    221  1.174        ad 	struct lwp *l = curlwp;
    222  1.174        ad 	sleepq_t *sq;
    223  1.174        ad 	int error;
    224   1.26       cgd 
    225  1.174        ad 	if (sleepq_dontsleep(l))
    226  1.174        ad 		return sleepq_abort(NULL, 0);
    227   1.26       cgd 
    228  1.174        ad 	if (mtx != NULL)
    229  1.174        ad 		mutex_exit(mtx);
    230  1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    231  1.174        ad 	sleepq_enter(sq, l);
    232  1.188      yamt 	sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
    233  1.188      yamt 	error = sleepq_block(timo, intr);
    234  1.174        ad 	if (mtx != NULL)
    235  1.174        ad 		mutex_enter(mtx);
    236   1.83   thorpej 
    237  1.174        ad 	return error;
    238  1.139        cl }
    239  1.139        cl 
    240   1.26       cgd /*
    241  1.174        ad  * OBSOLETE INTERFACE
    242  1.174        ad  *
    243   1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    244   1.26       cgd  */
    245   1.26       cgd void
    246  1.174        ad wakeup(wchan_t ident)
    247   1.26       cgd {
    248  1.174        ad 	sleepq_t *sq;
    249   1.83   thorpej 
    250  1.174        ad 	if (cold)
    251  1.174        ad 		return;
    252   1.83   thorpej 
    253  1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    254  1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    255   1.63   thorpej }
    256   1.63   thorpej 
    257   1.63   thorpej /*
    258  1.174        ad  * OBSOLETE INTERFACE
    259  1.174        ad  *
    260   1.63   thorpej  * Make the highest priority process first in line on the specified
    261   1.63   thorpej  * identifier runnable.
    262   1.63   thorpej  */
    263  1.174        ad void
    264  1.174        ad wakeup_one(wchan_t ident)
    265   1.63   thorpej {
    266  1.174        ad 	sleepq_t *sq;
    267   1.63   thorpej 
    268  1.174        ad 	if (cold)
    269  1.174        ad 		return;
    270  1.188      yamt 
    271  1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    272  1.174        ad 	sleepq_wake(sq, ident, 1);
    273  1.174        ad }
    274   1.63   thorpej 
    275  1.117  gmcgarry 
    276  1.117  gmcgarry /*
    277  1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    278  1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    279  1.198        ad  * current process explicitly requests it (eg sched_yield(2)).
    280  1.117  gmcgarry  */
    281  1.117  gmcgarry void
    282  1.117  gmcgarry yield(void)
    283  1.117  gmcgarry {
    284  1.122   thorpej 	struct lwp *l = curlwp;
    285  1.117  gmcgarry 
    286  1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    287  1.174        ad 	lwp_lock(l);
    288  1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    289  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    290  1.198        ad 	/* XXX Only do this for timeshared threads. */
    291  1.198        ad 	l->l_priority = MAXPRI;
    292  1.188      yamt 	(void)mi_switch(l);
    293  1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    294   1.69   thorpej }
    295   1.69   thorpej 
    296   1.69   thorpej /*
    297   1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    298  1.156    rpaulo  * and performs an involuntary context switch.
    299   1.69   thorpej  */
    300   1.69   thorpej void
    301  1.174        ad preempt(void)
    302   1.69   thorpej {
    303  1.122   thorpej 	struct lwp *l = curlwp;
    304   1.69   thorpej 
    305  1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    306  1.174        ad 	lwp_lock(l);
    307  1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    308  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    309  1.188      yamt 	l->l_priority = l->l_usrpri;
    310  1.174        ad 	l->l_nivcsw++;
    311  1.188      yamt 	(void)mi_switch(l);
    312  1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    313   1.69   thorpej }
    314   1.69   thorpej 
    315   1.69   thorpej /*
    316  1.188      yamt  * Compute the amount of time during which the current lwp was running.
    317  1.130   nathanw  *
    318  1.188      yamt  * - update l_rtime unless it's an idle lwp.
    319  1.188      yamt  */
    320  1.188      yamt 
    321  1.199        ad void
    322  1.199        ad updatertime(lwp_t *l, const struct timeval *tv)
    323  1.188      yamt {
    324  1.188      yamt 	long s, u;
    325  1.188      yamt 
    326  1.199        ad 	if ((l->l_flag & LW_IDLE) != 0)
    327  1.188      yamt 		return;
    328  1.188      yamt 
    329  1.199        ad 	u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
    330  1.199        ad 	s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
    331  1.188      yamt 	if (u < 0) {
    332  1.188      yamt 		u += 1000000;
    333  1.188      yamt 		s--;
    334  1.188      yamt 	} else if (u >= 1000000) {
    335  1.188      yamt 		u -= 1000000;
    336  1.188      yamt 		s++;
    337  1.188      yamt 	}
    338  1.188      yamt 	l->l_rtime.tv_usec = u;
    339  1.188      yamt 	l->l_rtime.tv_sec = s;
    340  1.188      yamt }
    341  1.188      yamt 
    342  1.188      yamt /*
    343  1.188      yamt  * The machine independent parts of context switch.
    344  1.188      yamt  *
    345  1.188      yamt  * Returns 1 if another LWP was actually run.
    346   1.26       cgd  */
    347  1.122   thorpej int
    348  1.199        ad mi_switch(lwp_t *l)
    349   1.26       cgd {
    350   1.76   thorpej 	struct schedstate_percpu *spc;
    351  1.188      yamt 	struct lwp *newl;
    352  1.174        ad 	int retval, oldspl;
    353  1.196        ad 	struct cpu_info *ci;
    354  1.199        ad 	struct timeval tv;
    355  1.199        ad 	bool returning;
    356   1.26       cgd 
    357  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    358  1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    359  1.174        ad 
    360  1.174        ad #ifdef KSTACK_CHECK_MAGIC
    361  1.174        ad 	kstack_check_magic(l);
    362  1.174        ad #endif
    363   1.83   thorpej 
    364  1.199        ad 	microtime(&tv);
    365  1.199        ad 
    366   1.90  sommerfe 	/*
    367  1.174        ad 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    368  1.174        ad 	 * are after is the run time and that's guarenteed to have been last
    369  1.174        ad 	 * updated by this CPU.
    370   1.90  sommerfe 	 */
    371  1.196        ad 	ci = l->l_cpu;
    372  1.196        ad 	KDASSERT(ci == curcpu());
    373   1.26       cgd 
    374  1.190        ad 	/*
    375  1.190        ad 	 * Process is about to yield the CPU; clear the appropriate
    376  1.190        ad 	 * scheduling flags.
    377  1.190        ad 	 */
    378  1.196        ad 	spc = &ci->ci_schedstate;
    379  1.199        ad 	returning = false;
    380  1.190        ad 	newl = NULL;
    381  1.190        ad 
    382  1.199        ad 	/*
    383  1.199        ad 	 * If we have been asked to switch to a specific LWP, then there
    384  1.199        ad 	 * is no need to inspect the run queues.  If a soft interrupt is
    385  1.199        ad 	 * blocking, then return to the interrupted thread without adjusting
    386  1.199        ad 	 * VM context or its start time: neither have been changed in order
    387  1.199        ad 	 * to take the interrupt.
    388  1.199        ad 	 */
    389  1.190        ad 	if (l->l_switchto != NULL) {
    390  1.199        ad 		if ((l->l_flag & LW_INTR) != 0) {
    391  1.199        ad 			returning = true;
    392  1.199        ad 			softint_block(l);
    393  1.199        ad 			if ((l->l_flag & LW_TIMEINTR) != 0)
    394  1.199        ad 				updatertime(l, &tv);
    395  1.199        ad 		}
    396  1.190        ad 		newl = l->l_switchto;
    397  1.190        ad 		l->l_switchto = NULL;
    398  1.190        ad 	}
    399  1.190        ad 
    400  1.180       dsl 	/* Count time spent in current system call */
    401  1.199        ad 	if (!returning) {
    402  1.199        ad 		SYSCALL_TIME_SLEEP(l);
    403  1.180       dsl 
    404  1.199        ad 		/*
    405  1.199        ad 		 * XXXSMP If we are using h/w performance counters,
    406  1.199        ad 		 * save context.
    407  1.199        ad 		 */
    408  1.174        ad #if PERFCTRS
    409  1.199        ad 		if (PMC_ENABLED(l->l_proc)) {
    410  1.199        ad 			pmc_save_context(l->l_proc);
    411  1.199        ad 		}
    412  1.199        ad #endif
    413  1.199        ad 		updatertime(l, &tv);
    414  1.174        ad 	}
    415  1.113  gmcgarry 
    416  1.113  gmcgarry 	/*
    417  1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    418  1.113  gmcgarry 	 */
    419  1.188      yamt 	mutex_spin_enter(spc->spc_mutex);
    420  1.174        ad 	KASSERT(l->l_stat != LSRUN);
    421  1.174        ad 	if (l->l_stat == LSONPROC) {
    422  1.188      yamt 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    423  1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    424  1.188      yamt 			l->l_stat = LSRUN;
    425  1.188      yamt 			lwp_setlock(l, spc->spc_mutex);
    426  1.188      yamt 			sched_enqueue(l, true);
    427  1.188      yamt 		} else
    428  1.188      yamt 			l->l_stat = LSIDL;
    429  1.174        ad 	}
    430  1.174        ad 
    431  1.174        ad 	/*
    432  1.188      yamt 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    433  1.188      yamt 	 * If no LWP is runnable, switch to the idle LWP.
    434  1.174        ad 	 */
    435  1.190        ad 	if (newl == NULL) {
    436  1.190        ad 		newl = sched_nextlwp();
    437  1.190        ad 		if (newl != NULL) {
    438  1.190        ad 			sched_dequeue(newl);
    439  1.190        ad 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    440  1.190        ad 			newl->l_stat = LSONPROC;
    441  1.196        ad 			newl->l_cpu = ci;
    442  1.190        ad 			newl->l_flag |= LW_RUNNING;
    443  1.190        ad 			lwp_setlock(newl, &spc->spc_lwplock);
    444  1.190        ad 		} else {
    445  1.196        ad 			newl = ci->ci_data.cpu_idlelwp;
    446  1.190        ad 			newl->l_stat = LSONPROC;
    447  1.190        ad 			newl->l_flag |= LW_RUNNING;
    448  1.190        ad 		}
    449  1.196        ad 		ci->ci_want_resched = 0;
    450  1.199        ad 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    451  1.199        ad 	}
    452  1.199        ad 
    453  1.199        ad 	/* Update the new LWP's start time while it is still locked. */
    454  1.199        ad 	if (!returning) {
    455  1.199        ad 		newl->l_stime = tv;
    456  1.199        ad 		/*
    457  1.199        ad 		 * XXX The following may be done unlocked if newl != NULL
    458  1.199        ad 		 * above.
    459  1.199        ad 		 */
    460  1.199        ad 		newl->l_priority = newl->l_usrpri;
    461  1.188      yamt 	}
    462  1.188      yamt 
    463  1.198        ad 	spc->spc_curpriority = newl->l_usrpri;
    464  1.198        ad 
    465  1.188      yamt 	if (l != newl) {
    466  1.188      yamt 		struct lwp *prevlwp;
    467  1.174        ad 
    468  1.188      yamt 		/*
    469  1.188      yamt 		 * If the old LWP has been moved to a run queue above,
    470  1.188      yamt 		 * drop the general purpose LWP lock: it's now locked
    471  1.188      yamt 		 * by the scheduler lock.
    472  1.188      yamt 		 *
    473  1.188      yamt 		 * Otherwise, drop the scheduler lock.  We're done with
    474  1.188      yamt 		 * the run queues for now.
    475  1.188      yamt 		 */
    476  1.188      yamt 		if (l->l_mutex == spc->spc_mutex) {
    477  1.188      yamt 			mutex_spin_exit(&spc->spc_lwplock);
    478  1.188      yamt 		} else {
    479  1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    480  1.188      yamt 		}
    481  1.188      yamt 
    482  1.188      yamt 		/* Unlocked, but for statistics only. */
    483  1.188      yamt 		uvmexp.swtch++;
    484  1.188      yamt 
    485  1.199        ad 		/*
    486  1.199        ad 		 * Save old VM context, unless a soft interrupt
    487  1.199        ad 		 * handler is blocking.
    488  1.199        ad 		 */
    489  1.199        ad 		if (!returning)
    490  1.199        ad 			pmap_deactivate(l);
    491  1.188      yamt 
    492  1.188      yamt 		/* Switch to the new LWP.. */
    493  1.188      yamt 		l->l_ncsw++;
    494  1.188      yamt 		l->l_flag &= ~LW_RUNNING;
    495  1.196        ad 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    496  1.188      yamt 		prevlwp = cpu_switchto(l, newl);
    497  1.174        ad 
    498  1.188      yamt 		/*
    499  1.188      yamt 		 * .. we have switched away and are now back so we must
    500  1.188      yamt 		 * be the new curlwp.  prevlwp is who we replaced.
    501  1.188      yamt 		 */
    502  1.188      yamt 		if (prevlwp != NULL) {
    503  1.188      yamt 			curcpu()->ci_mtx_oldspl = oldspl;
    504  1.188      yamt 			lwp_unlock(prevlwp);
    505  1.188      yamt 		} else {
    506  1.188      yamt 			splx(oldspl);
    507  1.188      yamt 		}
    508  1.174        ad 
    509  1.188      yamt 		/* Restore VM context. */
    510  1.188      yamt 		pmap_activate(l);
    511  1.188      yamt 		retval = 1;
    512  1.188      yamt 	} else {
    513  1.188      yamt 		/* Nothing to do - just unlock and return. */
    514  1.188      yamt 		mutex_spin_exit(spc->spc_mutex);
    515  1.188      yamt 		lwp_unlock(l);
    516  1.122   thorpej 		retval = 0;
    517  1.122   thorpej 	}
    518  1.110    briggs 
    519  1.188      yamt 	KASSERT(l == curlwp);
    520  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    521  1.199        ad 	KASSERT(l->l_cpu == curcpu());
    522  1.188      yamt 
    523  1.110    briggs 	/*
    524  1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    525   1.26       cgd 	 */
    526  1.114  gmcgarry #if PERFCTRS
    527  1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    528  1.175  christos 		pmc_restore_context(l->l_proc);
    529  1.166  christos 	}
    530  1.114  gmcgarry #endif
    531  1.110    briggs 
    532  1.110    briggs 	/*
    533   1.76   thorpej 	 * We're running again; record our new start time.  We might
    534  1.174        ad 	 * be running on a new CPU now, so don't use the cached
    535   1.76   thorpej 	 * schedstate_percpu pointer.
    536   1.76   thorpej 	 */
    537  1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    538  1.195        ad 	KASSERT(curlwp == l);
    539  1.197        ad 	KDASSERT(l->l_cpu == curcpu());
    540  1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    541  1.169      yamt 
    542  1.122   thorpej 	return retval;
    543   1.26       cgd }
    544   1.26       cgd 
    545   1.26       cgd /*
    546  1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    547  1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    548  1.174        ad  *
    549  1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    550   1.26       cgd  */
    551   1.26       cgd void
    552  1.122   thorpej setrunnable(struct lwp *l)
    553   1.26       cgd {
    554  1.122   thorpej 	struct proc *p = l->l_proc;
    555  1.174        ad 	sigset_t *ss;
    556   1.26       cgd 
    557  1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    558  1.183        ad 	KASSERT(mutex_owned(&p->p_smutex));
    559  1.183        ad 	KASSERT(lwp_locked(l, NULL));
    560   1.83   thorpej 
    561  1.122   thorpej 	switch (l->l_stat) {
    562  1.122   thorpej 	case LSSTOP:
    563   1.33   mycroft 		/*
    564   1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    565   1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    566   1.33   mycroft 		 */
    567  1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    568  1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    569  1.174        ad 				ss = &l->l_sigpend.sp_set;
    570  1.174        ad 			else
    571  1.174        ad 				ss = &p->p_sigpend.sp_set;
    572  1.174        ad 			sigaddset(ss, p->p_xstat);
    573  1.174        ad 			signotify(l);
    574   1.53   mycroft 		}
    575  1.174        ad 		p->p_nrlwps++;
    576   1.26       cgd 		break;
    577  1.174        ad 	case LSSUSPENDED:
    578  1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    579  1.174        ad 		p->p_nrlwps++;
    580  1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    581  1.122   thorpej 		break;
    582  1.174        ad 	case LSSLEEP:
    583  1.174        ad 		KASSERT(l->l_wchan != NULL);
    584   1.26       cgd 		break;
    585  1.174        ad 	default:
    586  1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    587   1.26       cgd 	}
    588  1.139        cl 
    589  1.174        ad 	/*
    590  1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    591  1.174        ad 	 * again.  If not, mark it as still sleeping.
    592  1.174        ad 	 */
    593  1.174        ad 	if (l->l_wchan != NULL) {
    594  1.174        ad 		l->l_stat = LSSLEEP;
    595  1.183        ad 		/* lwp_unsleep() will release the lock. */
    596  1.183        ad 		lwp_unsleep(l);
    597  1.174        ad 		return;
    598  1.174        ad 	}
    599  1.139        cl 
    600  1.174        ad 	/*
    601  1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    602  1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    603  1.174        ad 	 */
    604  1.188      yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    605  1.174        ad 		l->l_stat = LSONPROC;
    606  1.174        ad 		l->l_slptime = 0;
    607  1.174        ad 		lwp_unlock(l);
    608  1.174        ad 		return;
    609  1.174        ad 	}
    610  1.122   thorpej 
    611  1.174        ad 	/*
    612  1.174        ad 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    613  1.174        ad 	 * to bring it back in.  Otherwise, enter it into a run queue.
    614  1.174        ad 	 */
    615  1.189        ad 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    616  1.189        ad 		spc_lock(l->l_cpu);
    617  1.189        ad 		lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
    618  1.189        ad 	}
    619  1.189        ad 
    620  1.188      yamt 	sched_setrunnable(l);
    621  1.174        ad 	l->l_stat = LSRUN;
    622  1.122   thorpej 	l->l_slptime = 0;
    623  1.174        ad 
    624  1.178     pavel 	if (l->l_flag & LW_INMEM) {
    625  1.188      yamt 		sched_enqueue(l, false);
    626  1.188      yamt 		resched_cpu(l);
    627  1.174        ad 		lwp_unlock(l);
    628  1.174        ad 	} else {
    629  1.174        ad 		lwp_unlock(l);
    630  1.177        ad 		uvm_kick_scheduler();
    631  1.174        ad 	}
    632   1.26       cgd }
    633   1.26       cgd 
    634   1.26       cgd /*
    635  1.174        ad  * suspendsched:
    636  1.174        ad  *
    637  1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    638  1.174        ad  */
    639   1.94    bouyer void
    640  1.174        ad suspendsched(void)
    641   1.94    bouyer {
    642  1.174        ad 	CPU_INFO_ITERATOR cii;
    643  1.174        ad 	struct cpu_info *ci;
    644  1.122   thorpej 	struct lwp *l;
    645  1.174        ad 	struct proc *p;
    646   1.94    bouyer 
    647   1.94    bouyer 	/*
    648  1.174        ad 	 * We do this by process in order not to violate the locking rules.
    649   1.94    bouyer 	 */
    650  1.174        ad 	mutex_enter(&proclist_mutex);
    651  1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    652  1.174        ad 		mutex_enter(&p->p_smutex);
    653  1.174        ad 
    654  1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    655  1.174        ad 			mutex_exit(&p->p_smutex);
    656   1.94    bouyer 			continue;
    657  1.174        ad 		}
    658  1.174        ad 
    659  1.174        ad 		p->p_stat = SSTOP;
    660  1.174        ad 
    661  1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    662  1.174        ad 			if (l == curlwp)
    663  1.174        ad 				continue;
    664  1.174        ad 
    665  1.174        ad 			lwp_lock(l);
    666  1.122   thorpej 
    667   1.97     enami 			/*
    668  1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    669  1.174        ad 			 * when it tries to return to user mode.  We want to
    670  1.174        ad 			 * try and get to get as many LWPs as possible to
    671  1.174        ad 			 * the user / kernel boundary, so that they will
    672  1.174        ad 			 * release any locks that they hold.
    673   1.97     enami 			 */
    674  1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    675  1.174        ad 
    676  1.174        ad 			if (l->l_stat == LSSLEEP &&
    677  1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    678  1.174        ad 				/* setrunnable() will release the lock. */
    679  1.174        ad 				setrunnable(l);
    680  1.174        ad 				continue;
    681  1.174        ad 			}
    682  1.174        ad 
    683  1.174        ad 			lwp_unlock(l);
    684   1.94    bouyer 		}
    685  1.174        ad 
    686  1.174        ad 		mutex_exit(&p->p_smutex);
    687   1.94    bouyer 	}
    688  1.174        ad 	mutex_exit(&proclist_mutex);
    689  1.174        ad 
    690  1.174        ad 	/*
    691  1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    692  1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    693  1.174        ad 	 */
    694  1.174        ad 	for (CPU_INFO_FOREACH(cii, ci))
    695  1.188      yamt 		cpu_need_resched(ci, 0);
    696  1.174        ad }
    697  1.174        ad 
    698  1.174        ad /*
    699  1.174        ad  * sched_kpri:
    700  1.174        ad  *
    701  1.174        ad  *	Scale a priority level to a kernel priority level, usually
    702  1.174        ad  *	for an LWP that is about to sleep.
    703  1.174        ad  */
    704  1.185      yamt pri_t
    705  1.174        ad sched_kpri(struct lwp *l)
    706  1.174        ad {
    707  1.174        ad 	/*
    708  1.174        ad 	 * Scale user priorities (127 -> 50) up to kernel priorities
    709  1.174        ad 	 * in the range (49 -> 8).  Reserve the top 8 kernel priorities
    710  1.174        ad 	 * for high priority kthreads.  Kernel priorities passed in
    711  1.174        ad 	 * are left "as is".  XXX This is somewhat arbitrary.
    712  1.174        ad 	 */
    713  1.174        ad 	static const uint8_t kpri_tab[] = {
    714  1.174        ad 		 0,   1,   2,   3,   4,   5,   6,   7,
    715  1.174        ad 		 8,   9,  10,  11,  12,  13,  14,  15,
    716  1.174        ad 		16,  17,  18,  19,  20,  21,  22,  23,
    717  1.174        ad 		24,  25,  26,  27,  28,  29,  30,  31,
    718  1.174        ad 		32,  33,  34,  35,  36,  37,  38,  39,
    719  1.174        ad 		40,  41,  42,  43,  44,  45,  46,  47,
    720  1.174        ad 		48,  49,   8,   8,   9,   9,  10,  10,
    721  1.174        ad 		11,  11,  12,  12,  13,  14,  14,  15,
    722  1.174        ad 		15,  16,  16,  17,  17,  18,  18,  19,
    723  1.174        ad 		20,  20,  21,  21,  22,  22,  23,  23,
    724  1.174        ad 		24,  24,  25,  26,  26,  27,  27,  28,
    725  1.174        ad 		28,  29,  29,  30,  30,  31,  32,  32,
    726  1.174        ad 		33,  33,  34,  34,  35,  35,  36,  36,
    727  1.174        ad 		37,  38,  38,  39,  39,  40,  40,  41,
    728  1.174        ad 		41,  42,  42,  43,  44,  44,  45,  45,
    729  1.174        ad 		46,  46,  47,  47,  48,  48,  49,  49,
    730  1.174        ad 	};
    731  1.174        ad 
    732  1.185      yamt 	return (pri_t)kpri_tab[l->l_usrpri];
    733  1.174        ad }
    734  1.174        ad 
    735  1.174        ad /*
    736  1.174        ad  * sched_unsleep:
    737  1.174        ad  *
    738  1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    739  1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    740  1.174        ad  *	it's not a valid action for running or idle LWPs.
    741  1.174        ad  */
    742  1.188      yamt static void
    743  1.174        ad sched_unsleep(struct lwp *l)
    744  1.174        ad {
    745  1.174        ad 
    746  1.174        ad 	lwp_unlock(l);
    747  1.174        ad 	panic("sched_unsleep");
    748  1.174        ad }
    749  1.174        ad 
    750  1.188      yamt inline void
    751  1.188      yamt resched_cpu(struct lwp *l)
    752  1.188      yamt {
    753  1.188      yamt 	struct cpu_info *ci;
    754  1.188      yamt 	const pri_t pri = lwp_eprio(l);
    755  1.188      yamt 
    756  1.188      yamt 	/*
    757  1.188      yamt 	 * XXXSMP
    758  1.188      yamt 	 * Since l->l_cpu persists across a context switch,
    759  1.188      yamt 	 * this gives us *very weak* processor affinity, in
    760  1.188      yamt 	 * that we notify the CPU on which the process last
    761  1.188      yamt 	 * ran that it should try to switch.
    762  1.188      yamt 	 *
    763  1.188      yamt 	 * This does not guarantee that the process will run on
    764  1.188      yamt 	 * that processor next, because another processor might
    765  1.188      yamt 	 * grab it the next time it performs a context switch.
    766  1.188      yamt 	 *
    767  1.188      yamt 	 * This also does not handle the case where its last
    768  1.188      yamt 	 * CPU is running a higher-priority process, but every
    769  1.188      yamt 	 * other CPU is running a lower-priority process.  There
    770  1.188      yamt 	 * are ways to handle this situation, but they're not
    771  1.188      yamt 	 * currently very pretty, and we also need to weigh the
    772  1.188      yamt 	 * cost of moving a process from one CPU to another.
    773  1.188      yamt 	 */
    774  1.188      yamt 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    775  1.188      yamt 	if (pri < ci->ci_schedstate.spc_curpriority)
    776  1.188      yamt 		cpu_need_resched(ci, 0);
    777  1.188      yamt }
    778  1.188      yamt 
    779  1.188      yamt static void
    780  1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
    781  1.174        ad {
    782  1.174        ad 
    783  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    784  1.174        ad 
    785  1.174        ad 	l->l_usrpri = pri;
    786  1.174        ad 	if (l->l_priority < PUSER)
    787  1.174        ad 		return;
    788  1.184      yamt 
    789  1.184      yamt 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    790  1.174        ad 		l->l_priority = pri;
    791  1.174        ad 		return;
    792  1.157      yamt 	}
    793  1.174        ad 
    794  1.188      yamt 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    795  1.188      yamt 
    796  1.188      yamt 	sched_dequeue(l);
    797  1.174        ad 	l->l_priority = pri;
    798  1.188      yamt 	sched_enqueue(l, false);
    799  1.188      yamt 	resched_cpu(l);
    800  1.184      yamt }
    801  1.184      yamt 
    802  1.188      yamt static void
    803  1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
    804  1.184      yamt {
    805  1.184      yamt 
    806  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    807  1.184      yamt 
    808  1.184      yamt 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    809  1.184      yamt 		l->l_inheritedprio = pri;
    810  1.184      yamt 		return;
    811  1.184      yamt 	}
    812  1.184      yamt 
    813  1.188      yamt 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    814  1.188      yamt 
    815  1.188      yamt 	sched_dequeue(l);
    816  1.184      yamt 	l->l_inheritedprio = pri;
    817  1.188      yamt 	sched_enqueue(l, false);
    818  1.188      yamt 	resched_cpu(l);
    819  1.184      yamt }
    820  1.184      yamt 
    821  1.184      yamt struct lwp *
    822  1.184      yamt syncobj_noowner(wchan_t wchan)
    823  1.184      yamt {
    824  1.184      yamt 
    825  1.184      yamt 	return NULL;
    826  1.151      yamt }
    827  1.151      yamt 
    828  1.113  gmcgarry 
    829  1.188      yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    830  1.188      yamt fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    831  1.115  nisimura 
    832  1.130   nathanw /*
    833  1.188      yamt  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    834  1.188      yamt  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    835  1.188      yamt  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    836  1.188      yamt  *
    837  1.188      yamt  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    838  1.188      yamt  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    839  1.188      yamt  *
    840  1.188      yamt  * If you dont want to bother with the faster/more-accurate formula, you
    841  1.188      yamt  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    842  1.188      yamt  * (more general) method of calculating the %age of CPU used by a process.
    843  1.134      matt  */
    844  1.188      yamt #define	CCPU_SHIFT	(FSHIFT + 1)
    845  1.134      matt 
    846  1.134      matt /*
    847  1.188      yamt  * sched_pstats:
    848  1.188      yamt  *
    849  1.188      yamt  * Update process statistics and check CPU resource allocation.
    850  1.188      yamt  * Call scheduler-specific hook to eventually adjust process/LWP
    851  1.188      yamt  * priorities.
    852  1.130   nathanw  */
    853  1.188      yamt /* ARGSUSED */
    854  1.113  gmcgarry void
    855  1.188      yamt sched_pstats(void *arg)
    856  1.113  gmcgarry {
    857  1.188      yamt 	struct rlimit *rlim;
    858  1.188      yamt 	struct lwp *l;
    859  1.188      yamt 	struct proc *p;
    860  1.188      yamt 	int minslp, sig, clkhz;
    861  1.188      yamt 	long runtm;
    862  1.113  gmcgarry 
    863  1.188      yamt 	sched_pstats_ticks++;
    864  1.174        ad 
    865  1.188      yamt 	mutex_enter(&proclist_mutex);
    866  1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
    867  1.188      yamt 		/*
    868  1.188      yamt 		 * Increment time in/out of memory and sleep time (if
    869  1.188      yamt 		 * sleeping).  We ignore overflow; with 16-bit int's
    870  1.188      yamt 		 * (remember them?) overflow takes 45 days.
    871  1.188      yamt 		 */
    872  1.188      yamt 		minslp = 2;
    873  1.188      yamt 		mutex_enter(&p->p_smutex);
    874  1.188      yamt 		mutex_spin_enter(&p->p_stmutex);
    875  1.188      yamt 		runtm = p->p_rtime.tv_sec;
    876  1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    877  1.188      yamt 			if ((l->l_flag & LW_IDLE) != 0)
    878  1.188      yamt 				continue;
    879  1.188      yamt 			lwp_lock(l);
    880  1.188      yamt 			runtm += l->l_rtime.tv_sec;
    881  1.188      yamt 			l->l_swtime++;
    882  1.188      yamt 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    883  1.188      yamt 			    l->l_stat == LSSUSPENDED) {
    884  1.188      yamt 				l->l_slptime++;
    885  1.188      yamt 				minslp = min(minslp, l->l_slptime);
    886  1.188      yamt 			} else
    887  1.188      yamt 				minslp = 0;
    888  1.200     rmind 			sched_pstats_hook(l);
    889  1.188      yamt 			lwp_unlock(l);
    890  1.113  gmcgarry 
    891  1.188      yamt 			/*
    892  1.188      yamt 			 * p_pctcpu is only for ps.
    893  1.188      yamt 			 */
    894  1.188      yamt 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    895  1.188      yamt 			if (l->l_slptime < 1) {
    896  1.188      yamt 				clkhz = stathz != 0 ? stathz : hz;
    897  1.188      yamt #if	(FSHIFT >= CCPU_SHIFT)
    898  1.188      yamt 				l->l_pctcpu += (clkhz == 100) ?
    899  1.188      yamt 				    ((fixpt_t)l->l_cpticks) <<
    900  1.188      yamt 				        (FSHIFT - CCPU_SHIFT) :
    901  1.188      yamt 				    100 * (((fixpt_t) p->p_cpticks)
    902  1.188      yamt 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    903  1.188      yamt #else
    904  1.188      yamt 				l->l_pctcpu += ((FSCALE - ccpu) *
    905  1.188      yamt 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    906  1.146      matt #endif
    907  1.188      yamt 				l->l_cpticks = 0;
    908  1.188      yamt 			}
    909  1.188      yamt 		}
    910  1.200     rmind 
    911  1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    912  1.200     rmind #ifdef SCHED_4BSD
    913  1.200     rmind 		/*
    914  1.200     rmind 		 * XXX: Workaround - belongs to sched_4bsd.c
    915  1.200     rmind 		 * If the process has slept the entire second,
    916  1.200     rmind 		 * stop recalculating its priority until it wakes up.
    917  1.200     rmind 		 */
    918  1.200     rmind 		if (minslp <= 1) {
    919  1.200     rmind 			extern fixpt_t decay_cpu(fixpt_t, fixpt_t);
    920  1.200     rmind 
    921  1.200     rmind 			fixpt_t loadfac = 2 * (averunnable.ldavg[0]);
    922  1.200     rmind 			p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    923  1.200     rmind 		}
    924  1.200     rmind #endif
    925  1.188      yamt 		mutex_spin_exit(&p->p_stmutex);
    926  1.174        ad 
    927  1.188      yamt 		/*
    928  1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
    929  1.188      yamt 		 * If over max, kill it.
    930  1.188      yamt 		 */
    931  1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
    932  1.188      yamt 		sig = 0;
    933  1.188      yamt 		if (runtm >= rlim->rlim_cur) {
    934  1.188      yamt 			if (runtm >= rlim->rlim_max)
    935  1.188      yamt 				sig = SIGKILL;
    936  1.188      yamt 			else {
    937  1.188      yamt 				sig = SIGXCPU;
    938  1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
    939  1.188      yamt 					rlim->rlim_cur += 5;
    940  1.188      yamt 			}
    941  1.188      yamt 		}
    942  1.188      yamt 		mutex_exit(&p->p_smutex);
    943  1.188      yamt 		if (sig) {
    944  1.188      yamt 			psignal(p, sig);
    945  1.188      yamt 		}
    946  1.174        ad 	}
    947  1.188      yamt 	mutex_exit(&proclist_mutex);
    948  1.188      yamt 	uvm_meter();
    949  1.191        ad 	cv_wakeup(&lbolt);
    950  1.188      yamt 	callout_schedule(&sched_pstats_ch, hz);
    951  1.113  gmcgarry }
    952  1.190        ad 
    953  1.190        ad void
    954  1.190        ad sched_init(void)
    955  1.190        ad {
    956  1.190        ad 
    957  1.190        ad 	cv_init(&lbolt, "lbolt");
    958  1.190        ad 	callout_init(&sched_pstats_ch, 0);
    959  1.190        ad 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    960  1.190        ad 	sched_setup();
    961  1.190        ad 	sched_pstats(NULL);
    962  1.190        ad }
    963