kern_synch.c revision 1.201 1 1.201 rmind /* $NetBSD: kern_synch.c,v 1.201 2007/10/13 00:30:26 rmind Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.174 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
21 1.63 thorpej * must display the following acknowledgement:
22 1.63 thorpej * This product includes software developed by the NetBSD
23 1.63 thorpej * Foundation, Inc. and its contributors.
24 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.63 thorpej * contributors may be used to endorse or promote products derived
26 1.63 thorpej * from this software without specific prior written permission.
27 1.63 thorpej *
28 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
39 1.63 thorpej */
40 1.26 cgd
41 1.26 cgd /*-
42 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.26 cgd * The Regents of the University of California. All rights reserved.
44 1.26 cgd * (c) UNIX System Laboratories, Inc.
45 1.26 cgd * All or some portions of this file are derived from material licensed
46 1.26 cgd * to the University of California by American Telephone and Telegraph
47 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.26 cgd * the permission of UNIX System Laboratories, Inc.
49 1.26 cgd *
50 1.26 cgd * Redistribution and use in source and binary forms, with or without
51 1.26 cgd * modification, are permitted provided that the following conditions
52 1.26 cgd * are met:
53 1.26 cgd * 1. Redistributions of source code must retain the above copyright
54 1.26 cgd * notice, this list of conditions and the following disclaimer.
55 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
56 1.26 cgd * notice, this list of conditions and the following disclaimer in the
57 1.26 cgd * documentation and/or other materials provided with the distribution.
58 1.136 agc * 3. Neither the name of the University nor the names of its contributors
59 1.26 cgd * may be used to endorse or promote products derived from this software
60 1.26 cgd * without specific prior written permission.
61 1.26 cgd *
62 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.26 cgd * SUCH DAMAGE.
73 1.26 cgd *
74 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.26 cgd */
76 1.106 lukem
77 1.106 lukem #include <sys/cdefs.h>
78 1.201 rmind __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.201 2007/10/13 00:30:26 rmind Exp $");
79 1.48 mrg
80 1.109 yamt #include "opt_kstack.h"
81 1.82 thorpej #include "opt_lockdebug.h"
82 1.83 thorpej #include "opt_multiprocessor.h"
83 1.110 briggs #include "opt_perfctrs.h"
84 1.26 cgd
85 1.174 ad #define __MUTEX_PRIVATE
86 1.174 ad
87 1.26 cgd #include <sys/param.h>
88 1.26 cgd #include <sys/systm.h>
89 1.26 cgd #include <sys/proc.h>
90 1.26 cgd #include <sys/kernel.h>
91 1.111 briggs #if defined(PERFCTRS)
92 1.110 briggs #include <sys/pmc.h>
93 1.111 briggs #endif
94 1.188 yamt #include <sys/cpu.h>
95 1.26 cgd #include <sys/resourcevar.h>
96 1.55 ross #include <sys/sched.h>
97 1.179 dsl #include <sys/syscall_stats.h>
98 1.174 ad #include <sys/sleepq.h>
99 1.174 ad #include <sys/lockdebug.h>
100 1.190 ad #include <sys/evcnt.h>
101 1.199 ad #include <sys/intr.h>
102 1.47 mrg
103 1.47 mrg #include <uvm/uvm_extern.h>
104 1.47 mrg
105 1.190 ad callout_t sched_pstats_ch;
106 1.188 yamt unsigned int sched_pstats_ticks;
107 1.34 christos
108 1.190 ad kcondvar_t lbolt; /* once a second sleep address */
109 1.26 cgd
110 1.188 yamt static void sched_unsleep(struct lwp *);
111 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
112 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
113 1.122 thorpej
114 1.174 ad syncobj_t sleep_syncobj = {
115 1.174 ad SOBJ_SLEEPQ_SORTED,
116 1.174 ad sleepq_unsleep,
117 1.184 yamt sleepq_changepri,
118 1.184 yamt sleepq_lendpri,
119 1.184 yamt syncobj_noowner,
120 1.174 ad };
121 1.174 ad
122 1.174 ad syncobj_t sched_syncobj = {
123 1.174 ad SOBJ_SLEEPQ_SORTED,
124 1.174 ad sched_unsleep,
125 1.184 yamt sched_changepri,
126 1.184 yamt sched_lendpri,
127 1.184 yamt syncobj_noowner,
128 1.174 ad };
129 1.122 thorpej
130 1.26 cgd /*
131 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
132 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
133 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
134 1.174 ad * maintained in the machine-dependent layers. This priority will typically
135 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
136 1.174 ad * it can be made higher to block network software interrupts after panics.
137 1.26 cgd */
138 1.174 ad int safepri;
139 1.26 cgd
140 1.26 cgd /*
141 1.174 ad * OBSOLETE INTERFACE
142 1.174 ad *
143 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
144 1.26 cgd * performed on the specified identifier. The process will then be made
145 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
146 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
147 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
148 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
149 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
150 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
151 1.26 cgd * call should be interrupted by the signal (return EINTR).
152 1.77 thorpej *
153 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
154 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
155 1.174 ad * is specified, in which case the interlock will always be unlocked upon
156 1.174 ad * return.
157 1.26 cgd */
158 1.26 cgd int
159 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
160 1.174 ad volatile struct simplelock *interlock)
161 1.26 cgd {
162 1.122 thorpej struct lwp *l = curlwp;
163 1.174 ad sleepq_t *sq;
164 1.188 yamt int error;
165 1.26 cgd
166 1.174 ad if (sleepq_dontsleep(l)) {
167 1.174 ad (void)sleepq_abort(NULL, 0);
168 1.174 ad if ((priority & PNORELOCK) != 0)
169 1.77 thorpej simple_unlock(interlock);
170 1.174 ad return 0;
171 1.26 cgd }
172 1.78 sommerfe
173 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
174 1.174 ad sleepq_enter(sq, l);
175 1.188 yamt sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
176 1.42 cgd
177 1.174 ad if (interlock != NULL) {
178 1.174 ad LOCK_ASSERT(simple_lock_held(interlock));
179 1.174 ad simple_unlock(interlock);
180 1.150 chs }
181 1.150 chs
182 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
183 1.126 pk
184 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
185 1.126 pk simple_lock(interlock);
186 1.174 ad
187 1.174 ad return error;
188 1.26 cgd }
189 1.26 cgd
190 1.187 ad int
191 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
192 1.187 ad kmutex_t *mtx)
193 1.187 ad {
194 1.187 ad struct lwp *l = curlwp;
195 1.187 ad sleepq_t *sq;
196 1.188 yamt int error;
197 1.187 ad
198 1.187 ad if (sleepq_dontsleep(l)) {
199 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
200 1.187 ad return 0;
201 1.187 ad }
202 1.187 ad
203 1.187 ad sq = sleeptab_lookup(&sleeptab, ident);
204 1.187 ad sleepq_enter(sq, l);
205 1.188 yamt sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
206 1.187 ad mutex_exit(mtx);
207 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
208 1.187 ad
209 1.187 ad if ((priority & PNORELOCK) == 0)
210 1.187 ad mutex_enter(mtx);
211 1.187 ad
212 1.187 ad return error;
213 1.187 ad }
214 1.187 ad
215 1.26 cgd /*
216 1.174 ad * General sleep call for situations where a wake-up is not expected.
217 1.26 cgd */
218 1.174 ad int
219 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
220 1.26 cgd {
221 1.174 ad struct lwp *l = curlwp;
222 1.174 ad sleepq_t *sq;
223 1.174 ad int error;
224 1.26 cgd
225 1.174 ad if (sleepq_dontsleep(l))
226 1.174 ad return sleepq_abort(NULL, 0);
227 1.26 cgd
228 1.174 ad if (mtx != NULL)
229 1.174 ad mutex_exit(mtx);
230 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
231 1.174 ad sleepq_enter(sq, l);
232 1.188 yamt sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
233 1.188 yamt error = sleepq_block(timo, intr);
234 1.174 ad if (mtx != NULL)
235 1.174 ad mutex_enter(mtx);
236 1.83 thorpej
237 1.174 ad return error;
238 1.139 cl }
239 1.139 cl
240 1.26 cgd /*
241 1.174 ad * OBSOLETE INTERFACE
242 1.174 ad *
243 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
244 1.26 cgd */
245 1.26 cgd void
246 1.174 ad wakeup(wchan_t ident)
247 1.26 cgd {
248 1.174 ad sleepq_t *sq;
249 1.83 thorpej
250 1.174 ad if (cold)
251 1.174 ad return;
252 1.83 thorpej
253 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
254 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
255 1.63 thorpej }
256 1.63 thorpej
257 1.63 thorpej /*
258 1.174 ad * OBSOLETE INTERFACE
259 1.174 ad *
260 1.63 thorpej * Make the highest priority process first in line on the specified
261 1.63 thorpej * identifier runnable.
262 1.63 thorpej */
263 1.174 ad void
264 1.174 ad wakeup_one(wchan_t ident)
265 1.63 thorpej {
266 1.174 ad sleepq_t *sq;
267 1.63 thorpej
268 1.174 ad if (cold)
269 1.174 ad return;
270 1.188 yamt
271 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
272 1.174 ad sleepq_wake(sq, ident, 1);
273 1.174 ad }
274 1.63 thorpej
275 1.117 gmcgarry
276 1.117 gmcgarry /*
277 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
278 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
279 1.198 ad * current process explicitly requests it (eg sched_yield(2)).
280 1.117 gmcgarry */
281 1.117 gmcgarry void
282 1.117 gmcgarry yield(void)
283 1.117 gmcgarry {
284 1.122 thorpej struct lwp *l = curlwp;
285 1.117 gmcgarry
286 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
287 1.174 ad lwp_lock(l);
288 1.188 yamt KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
289 1.188 yamt KASSERT(l->l_stat == LSONPROC);
290 1.198 ad /* XXX Only do this for timeshared threads. */
291 1.198 ad l->l_priority = MAXPRI;
292 1.188 yamt (void)mi_switch(l);
293 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
294 1.69 thorpej }
295 1.69 thorpej
296 1.69 thorpej /*
297 1.69 thorpej * General preemption call. Puts the current process back on its run queue
298 1.156 rpaulo * and performs an involuntary context switch.
299 1.69 thorpej */
300 1.69 thorpej void
301 1.174 ad preempt(void)
302 1.69 thorpej {
303 1.122 thorpej struct lwp *l = curlwp;
304 1.69 thorpej
305 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
306 1.174 ad lwp_lock(l);
307 1.188 yamt KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
308 1.188 yamt KASSERT(l->l_stat == LSONPROC);
309 1.188 yamt l->l_priority = l->l_usrpri;
310 1.174 ad l->l_nivcsw++;
311 1.188 yamt (void)mi_switch(l);
312 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
313 1.69 thorpej }
314 1.69 thorpej
315 1.69 thorpej /*
316 1.188 yamt * Compute the amount of time during which the current lwp was running.
317 1.130 nathanw *
318 1.188 yamt * - update l_rtime unless it's an idle lwp.
319 1.188 yamt */
320 1.188 yamt
321 1.199 ad void
322 1.199 ad updatertime(lwp_t *l, const struct timeval *tv)
323 1.188 yamt {
324 1.188 yamt long s, u;
325 1.188 yamt
326 1.199 ad if ((l->l_flag & LW_IDLE) != 0)
327 1.188 yamt return;
328 1.188 yamt
329 1.199 ad u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
330 1.199 ad s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
331 1.188 yamt if (u < 0) {
332 1.188 yamt u += 1000000;
333 1.188 yamt s--;
334 1.188 yamt } else if (u >= 1000000) {
335 1.188 yamt u -= 1000000;
336 1.188 yamt s++;
337 1.188 yamt }
338 1.188 yamt l->l_rtime.tv_usec = u;
339 1.188 yamt l->l_rtime.tv_sec = s;
340 1.188 yamt }
341 1.188 yamt
342 1.188 yamt /*
343 1.188 yamt * The machine independent parts of context switch.
344 1.188 yamt *
345 1.188 yamt * Returns 1 if another LWP was actually run.
346 1.26 cgd */
347 1.122 thorpej int
348 1.199 ad mi_switch(lwp_t *l)
349 1.26 cgd {
350 1.76 thorpej struct schedstate_percpu *spc;
351 1.188 yamt struct lwp *newl;
352 1.174 ad int retval, oldspl;
353 1.196 ad struct cpu_info *ci;
354 1.199 ad struct timeval tv;
355 1.199 ad bool returning;
356 1.26 cgd
357 1.188 yamt KASSERT(lwp_locked(l, NULL));
358 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
359 1.174 ad
360 1.174 ad #ifdef KSTACK_CHECK_MAGIC
361 1.174 ad kstack_check_magic(l);
362 1.174 ad #endif
363 1.83 thorpej
364 1.199 ad microtime(&tv);
365 1.199 ad
366 1.90 sommerfe /*
367 1.174 ad * It's safe to read the per CPU schedstate unlocked here, as all we
368 1.174 ad * are after is the run time and that's guarenteed to have been last
369 1.174 ad * updated by this CPU.
370 1.90 sommerfe */
371 1.196 ad ci = l->l_cpu;
372 1.196 ad KDASSERT(ci == curcpu());
373 1.26 cgd
374 1.190 ad /*
375 1.190 ad * Process is about to yield the CPU; clear the appropriate
376 1.190 ad * scheduling flags.
377 1.190 ad */
378 1.196 ad spc = &ci->ci_schedstate;
379 1.199 ad returning = false;
380 1.190 ad newl = NULL;
381 1.190 ad
382 1.199 ad /*
383 1.199 ad * If we have been asked to switch to a specific LWP, then there
384 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
385 1.199 ad * blocking, then return to the interrupted thread without adjusting
386 1.199 ad * VM context or its start time: neither have been changed in order
387 1.199 ad * to take the interrupt.
388 1.199 ad */
389 1.190 ad if (l->l_switchto != NULL) {
390 1.199 ad if ((l->l_flag & LW_INTR) != 0) {
391 1.199 ad returning = true;
392 1.199 ad softint_block(l);
393 1.199 ad if ((l->l_flag & LW_TIMEINTR) != 0)
394 1.199 ad updatertime(l, &tv);
395 1.199 ad }
396 1.190 ad newl = l->l_switchto;
397 1.190 ad l->l_switchto = NULL;
398 1.190 ad }
399 1.190 ad
400 1.180 dsl /* Count time spent in current system call */
401 1.199 ad if (!returning) {
402 1.199 ad SYSCALL_TIME_SLEEP(l);
403 1.180 dsl
404 1.199 ad /*
405 1.199 ad * XXXSMP If we are using h/w performance counters,
406 1.199 ad * save context.
407 1.199 ad */
408 1.174 ad #if PERFCTRS
409 1.199 ad if (PMC_ENABLED(l->l_proc)) {
410 1.199 ad pmc_save_context(l->l_proc);
411 1.199 ad }
412 1.199 ad #endif
413 1.199 ad updatertime(l, &tv);
414 1.174 ad }
415 1.113 gmcgarry
416 1.113 gmcgarry /*
417 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
418 1.113 gmcgarry */
419 1.188 yamt mutex_spin_enter(spc->spc_mutex);
420 1.174 ad KASSERT(l->l_stat != LSRUN);
421 1.174 ad if (l->l_stat == LSONPROC) {
422 1.188 yamt KASSERT(lwp_locked(l, &spc->spc_lwplock));
423 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
424 1.188 yamt l->l_stat = LSRUN;
425 1.188 yamt lwp_setlock(l, spc->spc_mutex);
426 1.188 yamt sched_enqueue(l, true);
427 1.188 yamt } else
428 1.188 yamt l->l_stat = LSIDL;
429 1.174 ad }
430 1.174 ad
431 1.174 ad /*
432 1.201 rmind * Let sched_nextlwp() select the LWP to run the CPU next.
433 1.188 yamt * If no LWP is runnable, switch to the idle LWP.
434 1.201 rmind * Note that spc_lwplock might not necessary be held.
435 1.174 ad */
436 1.190 ad if (newl == NULL) {
437 1.190 ad newl = sched_nextlwp();
438 1.190 ad if (newl != NULL) {
439 1.190 ad sched_dequeue(newl);
440 1.190 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
441 1.190 ad newl->l_stat = LSONPROC;
442 1.196 ad newl->l_cpu = ci;
443 1.190 ad newl->l_flag |= LW_RUNNING;
444 1.190 ad lwp_setlock(newl, &spc->spc_lwplock);
445 1.190 ad } else {
446 1.196 ad newl = ci->ci_data.cpu_idlelwp;
447 1.190 ad newl->l_stat = LSONPROC;
448 1.190 ad newl->l_flag |= LW_RUNNING;
449 1.190 ad }
450 1.196 ad ci->ci_want_resched = 0;
451 1.199 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
452 1.199 ad }
453 1.199 ad
454 1.199 ad /* Update the new LWP's start time while it is still locked. */
455 1.199 ad if (!returning) {
456 1.199 ad newl->l_stime = tv;
457 1.199 ad /*
458 1.199 ad * XXX The following may be done unlocked if newl != NULL
459 1.199 ad * above.
460 1.199 ad */
461 1.199 ad newl->l_priority = newl->l_usrpri;
462 1.188 yamt }
463 1.188 yamt
464 1.198 ad spc->spc_curpriority = newl->l_usrpri;
465 1.198 ad
466 1.188 yamt if (l != newl) {
467 1.188 yamt struct lwp *prevlwp;
468 1.174 ad
469 1.188 yamt /*
470 1.188 yamt * If the old LWP has been moved to a run queue above,
471 1.188 yamt * drop the general purpose LWP lock: it's now locked
472 1.188 yamt * by the scheduler lock.
473 1.188 yamt *
474 1.188 yamt * Otherwise, drop the scheduler lock. We're done with
475 1.188 yamt * the run queues for now.
476 1.188 yamt */
477 1.188 yamt if (l->l_mutex == spc->spc_mutex) {
478 1.188 yamt mutex_spin_exit(&spc->spc_lwplock);
479 1.188 yamt } else {
480 1.188 yamt mutex_spin_exit(spc->spc_mutex);
481 1.188 yamt }
482 1.188 yamt
483 1.188 yamt /* Unlocked, but for statistics only. */
484 1.188 yamt uvmexp.swtch++;
485 1.188 yamt
486 1.199 ad /*
487 1.199 ad * Save old VM context, unless a soft interrupt
488 1.199 ad * handler is blocking.
489 1.199 ad */
490 1.199 ad if (!returning)
491 1.199 ad pmap_deactivate(l);
492 1.188 yamt
493 1.188 yamt /* Switch to the new LWP.. */
494 1.188 yamt l->l_ncsw++;
495 1.188 yamt l->l_flag &= ~LW_RUNNING;
496 1.196 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
497 1.188 yamt prevlwp = cpu_switchto(l, newl);
498 1.174 ad
499 1.188 yamt /*
500 1.188 yamt * .. we have switched away and are now back so we must
501 1.188 yamt * be the new curlwp. prevlwp is who we replaced.
502 1.188 yamt */
503 1.188 yamt if (prevlwp != NULL) {
504 1.188 yamt curcpu()->ci_mtx_oldspl = oldspl;
505 1.188 yamt lwp_unlock(prevlwp);
506 1.188 yamt } else {
507 1.188 yamt splx(oldspl);
508 1.188 yamt }
509 1.174 ad
510 1.188 yamt /* Restore VM context. */
511 1.188 yamt pmap_activate(l);
512 1.188 yamt retval = 1;
513 1.188 yamt } else {
514 1.188 yamt /* Nothing to do - just unlock and return. */
515 1.188 yamt mutex_spin_exit(spc->spc_mutex);
516 1.188 yamt lwp_unlock(l);
517 1.122 thorpej retval = 0;
518 1.122 thorpej }
519 1.110 briggs
520 1.188 yamt KASSERT(l == curlwp);
521 1.188 yamt KASSERT(l->l_stat == LSONPROC);
522 1.199 ad KASSERT(l->l_cpu == curcpu());
523 1.188 yamt
524 1.110 briggs /*
525 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
526 1.26 cgd */
527 1.114 gmcgarry #if PERFCTRS
528 1.175 christos if (PMC_ENABLED(l->l_proc)) {
529 1.175 christos pmc_restore_context(l->l_proc);
530 1.166 christos }
531 1.114 gmcgarry #endif
532 1.110 briggs
533 1.110 briggs /*
534 1.76 thorpej * We're running again; record our new start time. We might
535 1.174 ad * be running on a new CPU now, so don't use the cached
536 1.76 thorpej * schedstate_percpu pointer.
537 1.76 thorpej */
538 1.180 dsl SYSCALL_TIME_WAKEUP(l);
539 1.195 ad KASSERT(curlwp == l);
540 1.197 ad KDASSERT(l->l_cpu == curcpu());
541 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
542 1.169 yamt
543 1.122 thorpej return retval;
544 1.26 cgd }
545 1.26 cgd
546 1.26 cgd /*
547 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
548 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
549 1.174 ad *
550 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
551 1.26 cgd */
552 1.26 cgd void
553 1.122 thorpej setrunnable(struct lwp *l)
554 1.26 cgd {
555 1.122 thorpej struct proc *p = l->l_proc;
556 1.174 ad sigset_t *ss;
557 1.26 cgd
558 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
559 1.183 ad KASSERT(mutex_owned(&p->p_smutex));
560 1.183 ad KASSERT(lwp_locked(l, NULL));
561 1.83 thorpej
562 1.122 thorpej switch (l->l_stat) {
563 1.122 thorpej case LSSTOP:
564 1.33 mycroft /*
565 1.33 mycroft * If we're being traced (possibly because someone attached us
566 1.33 mycroft * while we were stopped), check for a signal from the debugger.
567 1.33 mycroft */
568 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
569 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
570 1.174 ad ss = &l->l_sigpend.sp_set;
571 1.174 ad else
572 1.174 ad ss = &p->p_sigpend.sp_set;
573 1.174 ad sigaddset(ss, p->p_xstat);
574 1.174 ad signotify(l);
575 1.53 mycroft }
576 1.174 ad p->p_nrlwps++;
577 1.26 cgd break;
578 1.174 ad case LSSUSPENDED:
579 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
580 1.174 ad p->p_nrlwps++;
581 1.192 rmind cv_broadcast(&p->p_lwpcv);
582 1.122 thorpej break;
583 1.174 ad case LSSLEEP:
584 1.174 ad KASSERT(l->l_wchan != NULL);
585 1.26 cgd break;
586 1.174 ad default:
587 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
588 1.26 cgd }
589 1.139 cl
590 1.174 ad /*
591 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
592 1.174 ad * again. If not, mark it as still sleeping.
593 1.174 ad */
594 1.174 ad if (l->l_wchan != NULL) {
595 1.174 ad l->l_stat = LSSLEEP;
596 1.183 ad /* lwp_unsleep() will release the lock. */
597 1.183 ad lwp_unsleep(l);
598 1.174 ad return;
599 1.174 ad }
600 1.139 cl
601 1.174 ad /*
602 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
603 1.174 ad * about to call mi_switch(), in which case it will yield.
604 1.174 ad */
605 1.188 yamt if ((l->l_flag & LW_RUNNING) != 0) {
606 1.174 ad l->l_stat = LSONPROC;
607 1.174 ad l->l_slptime = 0;
608 1.174 ad lwp_unlock(l);
609 1.174 ad return;
610 1.174 ad }
611 1.122 thorpej
612 1.174 ad /*
613 1.174 ad * Set the LWP runnable. If it's swapped out, we need to wake the swapper
614 1.174 ad * to bring it back in. Otherwise, enter it into a run queue.
615 1.174 ad */
616 1.189 ad if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
617 1.189 ad spc_lock(l->l_cpu);
618 1.189 ad lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
619 1.189 ad }
620 1.189 ad
621 1.188 yamt sched_setrunnable(l);
622 1.174 ad l->l_stat = LSRUN;
623 1.122 thorpej l->l_slptime = 0;
624 1.174 ad
625 1.178 pavel if (l->l_flag & LW_INMEM) {
626 1.188 yamt sched_enqueue(l, false);
627 1.188 yamt resched_cpu(l);
628 1.174 ad lwp_unlock(l);
629 1.174 ad } else {
630 1.174 ad lwp_unlock(l);
631 1.177 ad uvm_kick_scheduler();
632 1.174 ad }
633 1.26 cgd }
634 1.26 cgd
635 1.26 cgd /*
636 1.174 ad * suspendsched:
637 1.174 ad *
638 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
639 1.174 ad */
640 1.94 bouyer void
641 1.174 ad suspendsched(void)
642 1.94 bouyer {
643 1.174 ad CPU_INFO_ITERATOR cii;
644 1.174 ad struct cpu_info *ci;
645 1.122 thorpej struct lwp *l;
646 1.174 ad struct proc *p;
647 1.94 bouyer
648 1.94 bouyer /*
649 1.174 ad * We do this by process in order not to violate the locking rules.
650 1.94 bouyer */
651 1.174 ad mutex_enter(&proclist_mutex);
652 1.174 ad PROCLIST_FOREACH(p, &allproc) {
653 1.174 ad mutex_enter(&p->p_smutex);
654 1.174 ad
655 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
656 1.174 ad mutex_exit(&p->p_smutex);
657 1.94 bouyer continue;
658 1.174 ad }
659 1.174 ad
660 1.174 ad p->p_stat = SSTOP;
661 1.174 ad
662 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
663 1.174 ad if (l == curlwp)
664 1.174 ad continue;
665 1.174 ad
666 1.174 ad lwp_lock(l);
667 1.122 thorpej
668 1.97 enami /*
669 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
670 1.174 ad * when it tries to return to user mode. We want to
671 1.174 ad * try and get to get as many LWPs as possible to
672 1.174 ad * the user / kernel boundary, so that they will
673 1.174 ad * release any locks that they hold.
674 1.97 enami */
675 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
676 1.174 ad
677 1.174 ad if (l->l_stat == LSSLEEP &&
678 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
679 1.174 ad /* setrunnable() will release the lock. */
680 1.174 ad setrunnable(l);
681 1.174 ad continue;
682 1.174 ad }
683 1.174 ad
684 1.174 ad lwp_unlock(l);
685 1.94 bouyer }
686 1.174 ad
687 1.174 ad mutex_exit(&p->p_smutex);
688 1.94 bouyer }
689 1.174 ad mutex_exit(&proclist_mutex);
690 1.174 ad
691 1.174 ad /*
692 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
693 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
694 1.174 ad */
695 1.174 ad for (CPU_INFO_FOREACH(cii, ci))
696 1.188 yamt cpu_need_resched(ci, 0);
697 1.174 ad }
698 1.174 ad
699 1.174 ad /*
700 1.174 ad * sched_kpri:
701 1.174 ad *
702 1.174 ad * Scale a priority level to a kernel priority level, usually
703 1.174 ad * for an LWP that is about to sleep.
704 1.174 ad */
705 1.185 yamt pri_t
706 1.174 ad sched_kpri(struct lwp *l)
707 1.174 ad {
708 1.174 ad /*
709 1.174 ad * Scale user priorities (127 -> 50) up to kernel priorities
710 1.174 ad * in the range (49 -> 8). Reserve the top 8 kernel priorities
711 1.174 ad * for high priority kthreads. Kernel priorities passed in
712 1.174 ad * are left "as is". XXX This is somewhat arbitrary.
713 1.174 ad */
714 1.174 ad static const uint8_t kpri_tab[] = {
715 1.174 ad 0, 1, 2, 3, 4, 5, 6, 7,
716 1.174 ad 8, 9, 10, 11, 12, 13, 14, 15,
717 1.174 ad 16, 17, 18, 19, 20, 21, 22, 23,
718 1.174 ad 24, 25, 26, 27, 28, 29, 30, 31,
719 1.174 ad 32, 33, 34, 35, 36, 37, 38, 39,
720 1.174 ad 40, 41, 42, 43, 44, 45, 46, 47,
721 1.174 ad 48, 49, 8, 8, 9, 9, 10, 10,
722 1.174 ad 11, 11, 12, 12, 13, 14, 14, 15,
723 1.174 ad 15, 16, 16, 17, 17, 18, 18, 19,
724 1.174 ad 20, 20, 21, 21, 22, 22, 23, 23,
725 1.174 ad 24, 24, 25, 26, 26, 27, 27, 28,
726 1.174 ad 28, 29, 29, 30, 30, 31, 32, 32,
727 1.174 ad 33, 33, 34, 34, 35, 35, 36, 36,
728 1.174 ad 37, 38, 38, 39, 39, 40, 40, 41,
729 1.174 ad 41, 42, 42, 43, 44, 44, 45, 45,
730 1.174 ad 46, 46, 47, 47, 48, 48, 49, 49,
731 1.174 ad };
732 1.174 ad
733 1.185 yamt return (pri_t)kpri_tab[l->l_usrpri];
734 1.174 ad }
735 1.174 ad
736 1.174 ad /*
737 1.174 ad * sched_unsleep:
738 1.174 ad *
739 1.174 ad * The is called when the LWP has not been awoken normally but instead
740 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
741 1.174 ad * it's not a valid action for running or idle LWPs.
742 1.174 ad */
743 1.188 yamt static void
744 1.174 ad sched_unsleep(struct lwp *l)
745 1.174 ad {
746 1.174 ad
747 1.174 ad lwp_unlock(l);
748 1.174 ad panic("sched_unsleep");
749 1.174 ad }
750 1.174 ad
751 1.188 yamt inline void
752 1.188 yamt resched_cpu(struct lwp *l)
753 1.188 yamt {
754 1.188 yamt struct cpu_info *ci;
755 1.188 yamt const pri_t pri = lwp_eprio(l);
756 1.188 yamt
757 1.188 yamt /*
758 1.188 yamt * XXXSMP
759 1.188 yamt * Since l->l_cpu persists across a context switch,
760 1.188 yamt * this gives us *very weak* processor affinity, in
761 1.188 yamt * that we notify the CPU on which the process last
762 1.188 yamt * ran that it should try to switch.
763 1.188 yamt *
764 1.188 yamt * This does not guarantee that the process will run on
765 1.188 yamt * that processor next, because another processor might
766 1.188 yamt * grab it the next time it performs a context switch.
767 1.188 yamt *
768 1.188 yamt * This also does not handle the case where its last
769 1.188 yamt * CPU is running a higher-priority process, but every
770 1.188 yamt * other CPU is running a lower-priority process. There
771 1.188 yamt * are ways to handle this situation, but they're not
772 1.188 yamt * currently very pretty, and we also need to weigh the
773 1.188 yamt * cost of moving a process from one CPU to another.
774 1.188 yamt */
775 1.188 yamt ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
776 1.188 yamt if (pri < ci->ci_schedstate.spc_curpriority)
777 1.188 yamt cpu_need_resched(ci, 0);
778 1.188 yamt }
779 1.188 yamt
780 1.188 yamt static void
781 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
782 1.174 ad {
783 1.174 ad
784 1.188 yamt KASSERT(lwp_locked(l, NULL));
785 1.174 ad
786 1.174 ad l->l_usrpri = pri;
787 1.174 ad if (l->l_priority < PUSER)
788 1.174 ad return;
789 1.184 yamt
790 1.184 yamt if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
791 1.174 ad l->l_priority = pri;
792 1.174 ad return;
793 1.157 yamt }
794 1.174 ad
795 1.188 yamt KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
796 1.188 yamt
797 1.188 yamt sched_dequeue(l);
798 1.174 ad l->l_priority = pri;
799 1.188 yamt sched_enqueue(l, false);
800 1.188 yamt resched_cpu(l);
801 1.184 yamt }
802 1.184 yamt
803 1.188 yamt static void
804 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
805 1.184 yamt {
806 1.184 yamt
807 1.188 yamt KASSERT(lwp_locked(l, NULL));
808 1.184 yamt
809 1.184 yamt if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
810 1.184 yamt l->l_inheritedprio = pri;
811 1.184 yamt return;
812 1.184 yamt }
813 1.184 yamt
814 1.188 yamt KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
815 1.188 yamt
816 1.188 yamt sched_dequeue(l);
817 1.184 yamt l->l_inheritedprio = pri;
818 1.188 yamt sched_enqueue(l, false);
819 1.188 yamt resched_cpu(l);
820 1.184 yamt }
821 1.184 yamt
822 1.184 yamt struct lwp *
823 1.184 yamt syncobj_noowner(wchan_t wchan)
824 1.184 yamt {
825 1.184 yamt
826 1.184 yamt return NULL;
827 1.151 yamt }
828 1.151 yamt
829 1.113 gmcgarry
830 1.188 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
831 1.188 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
832 1.115 nisimura
833 1.130 nathanw /*
834 1.188 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
835 1.188 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
836 1.188 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
837 1.188 yamt *
838 1.188 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
839 1.188 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
840 1.188 yamt *
841 1.188 yamt * If you dont want to bother with the faster/more-accurate formula, you
842 1.188 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
843 1.188 yamt * (more general) method of calculating the %age of CPU used by a process.
844 1.134 matt */
845 1.188 yamt #define CCPU_SHIFT (FSHIFT + 1)
846 1.134 matt
847 1.134 matt /*
848 1.188 yamt * sched_pstats:
849 1.188 yamt *
850 1.188 yamt * Update process statistics and check CPU resource allocation.
851 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
852 1.188 yamt * priorities.
853 1.130 nathanw */
854 1.188 yamt /* ARGSUSED */
855 1.113 gmcgarry void
856 1.188 yamt sched_pstats(void *arg)
857 1.113 gmcgarry {
858 1.188 yamt struct rlimit *rlim;
859 1.188 yamt struct lwp *l;
860 1.188 yamt struct proc *p;
861 1.188 yamt int minslp, sig, clkhz;
862 1.188 yamt long runtm;
863 1.113 gmcgarry
864 1.188 yamt sched_pstats_ticks++;
865 1.174 ad
866 1.188 yamt mutex_enter(&proclist_mutex);
867 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
868 1.188 yamt /*
869 1.188 yamt * Increment time in/out of memory and sleep time (if
870 1.188 yamt * sleeping). We ignore overflow; with 16-bit int's
871 1.188 yamt * (remember them?) overflow takes 45 days.
872 1.188 yamt */
873 1.188 yamt minslp = 2;
874 1.188 yamt mutex_enter(&p->p_smutex);
875 1.188 yamt mutex_spin_enter(&p->p_stmutex);
876 1.188 yamt runtm = p->p_rtime.tv_sec;
877 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
878 1.188 yamt if ((l->l_flag & LW_IDLE) != 0)
879 1.188 yamt continue;
880 1.188 yamt lwp_lock(l);
881 1.188 yamt runtm += l->l_rtime.tv_sec;
882 1.188 yamt l->l_swtime++;
883 1.188 yamt if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
884 1.188 yamt l->l_stat == LSSUSPENDED) {
885 1.188 yamt l->l_slptime++;
886 1.188 yamt minslp = min(minslp, l->l_slptime);
887 1.188 yamt } else
888 1.188 yamt minslp = 0;
889 1.200 rmind sched_pstats_hook(l);
890 1.188 yamt lwp_unlock(l);
891 1.113 gmcgarry
892 1.188 yamt /*
893 1.188 yamt * p_pctcpu is only for ps.
894 1.188 yamt */
895 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
896 1.188 yamt if (l->l_slptime < 1) {
897 1.188 yamt clkhz = stathz != 0 ? stathz : hz;
898 1.188 yamt #if (FSHIFT >= CCPU_SHIFT)
899 1.188 yamt l->l_pctcpu += (clkhz == 100) ?
900 1.188 yamt ((fixpt_t)l->l_cpticks) <<
901 1.188 yamt (FSHIFT - CCPU_SHIFT) :
902 1.188 yamt 100 * (((fixpt_t) p->p_cpticks)
903 1.188 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
904 1.188 yamt #else
905 1.188 yamt l->l_pctcpu += ((FSCALE - ccpu) *
906 1.188 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
907 1.146 matt #endif
908 1.188 yamt l->l_cpticks = 0;
909 1.188 yamt }
910 1.188 yamt }
911 1.200 rmind
912 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
913 1.200 rmind #ifdef SCHED_4BSD
914 1.200 rmind /*
915 1.200 rmind * XXX: Workaround - belongs to sched_4bsd.c
916 1.200 rmind * If the process has slept the entire second,
917 1.200 rmind * stop recalculating its priority until it wakes up.
918 1.200 rmind */
919 1.200 rmind if (minslp <= 1) {
920 1.200 rmind extern fixpt_t decay_cpu(fixpt_t, fixpt_t);
921 1.200 rmind
922 1.200 rmind fixpt_t loadfac = 2 * (averunnable.ldavg[0]);
923 1.200 rmind p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
924 1.200 rmind }
925 1.200 rmind #endif
926 1.188 yamt mutex_spin_exit(&p->p_stmutex);
927 1.174 ad
928 1.188 yamt /*
929 1.188 yamt * Check if the process exceeds its CPU resource allocation.
930 1.188 yamt * If over max, kill it.
931 1.188 yamt */
932 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
933 1.188 yamt sig = 0;
934 1.188 yamt if (runtm >= rlim->rlim_cur) {
935 1.188 yamt if (runtm >= rlim->rlim_max)
936 1.188 yamt sig = SIGKILL;
937 1.188 yamt else {
938 1.188 yamt sig = SIGXCPU;
939 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
940 1.188 yamt rlim->rlim_cur += 5;
941 1.188 yamt }
942 1.188 yamt }
943 1.188 yamt mutex_exit(&p->p_smutex);
944 1.188 yamt if (sig) {
945 1.188 yamt psignal(p, sig);
946 1.188 yamt }
947 1.174 ad }
948 1.188 yamt mutex_exit(&proclist_mutex);
949 1.188 yamt uvm_meter();
950 1.191 ad cv_wakeup(&lbolt);
951 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
952 1.113 gmcgarry }
953 1.190 ad
954 1.190 ad void
955 1.190 ad sched_init(void)
956 1.190 ad {
957 1.190 ad
958 1.190 ad cv_init(&lbolt, "lbolt");
959 1.190 ad callout_init(&sched_pstats_ch, 0);
960 1.190 ad callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
961 1.190 ad sched_setup();
962 1.190 ad sched_pstats(NULL);
963 1.190 ad }
964