Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.203.2.1
      1  1.203.2.1       mjf /*	$NetBSD: kern_synch.c,v 1.203.2.1 2007/11/19 00:48:43 mjf Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4      1.174        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5       1.63   thorpej  * All rights reserved.
      6       1.63   thorpej  *
      7       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9      1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10      1.188      yamt  * Daniel Sieger.
     11       1.63   thorpej  *
     12       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13       1.63   thorpej  * modification, are permitted provided that the following conditions
     14       1.63   thorpej  * are met:
     15       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20       1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     21       1.63   thorpej  *    must display the following acknowledgement:
     22       1.63   thorpej  *	This product includes software developed by the NetBSD
     23       1.63   thorpej  *	Foundation, Inc. and its contributors.
     24       1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25       1.63   thorpej  *    contributors may be used to endorse or promote products derived
     26       1.63   thorpej  *    from this software without specific prior written permission.
     27       1.63   thorpej  *
     28       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     39       1.63   thorpej  */
     40       1.26       cgd 
     41       1.26       cgd /*-
     42       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     44       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     45       1.26       cgd  * All or some portions of this file are derived from material licensed
     46       1.26       cgd  * to the University of California by American Telephone and Telegraph
     47       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     49       1.26       cgd  *
     50       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     51       1.26       cgd  * modification, are permitted provided that the following conditions
     52       1.26       cgd  * are met:
     53       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     54       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     55       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     56       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     57       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     58      1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     59       1.26       cgd  *    may be used to endorse or promote products derived from this software
     60       1.26       cgd  *    without specific prior written permission.
     61       1.26       cgd  *
     62       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72       1.26       cgd  * SUCH DAMAGE.
     73       1.26       cgd  *
     74       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75       1.26       cgd  */
     76      1.106     lukem 
     77      1.106     lukem #include <sys/cdefs.h>
     78  1.203.2.1       mjf __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.203.2.1 2007/11/19 00:48:43 mjf Exp $");
     79       1.48       mrg 
     80      1.109      yamt #include "opt_kstack.h"
     81       1.82   thorpej #include "opt_lockdebug.h"
     82       1.83   thorpej #include "opt_multiprocessor.h"
     83      1.110    briggs #include "opt_perfctrs.h"
     84       1.26       cgd 
     85      1.174        ad #define	__MUTEX_PRIVATE
     86      1.174        ad 
     87       1.26       cgd #include <sys/param.h>
     88       1.26       cgd #include <sys/systm.h>
     89       1.26       cgd #include <sys/proc.h>
     90       1.26       cgd #include <sys/kernel.h>
     91      1.111    briggs #if defined(PERFCTRS)
     92      1.110    briggs #include <sys/pmc.h>
     93      1.111    briggs #endif
     94      1.188      yamt #include <sys/cpu.h>
     95       1.26       cgd #include <sys/resourcevar.h>
     96       1.55      ross #include <sys/sched.h>
     97      1.179       dsl #include <sys/syscall_stats.h>
     98      1.174        ad #include <sys/sleepq.h>
     99      1.174        ad #include <sys/lockdebug.h>
    100      1.190        ad #include <sys/evcnt.h>
    101      1.199        ad #include <sys/intr.h>
    102  1.203.2.1       mjf #include <sys/lwpctl.h>
    103       1.47       mrg 
    104       1.47       mrg #include <uvm/uvm_extern.h>
    105       1.47       mrg 
    106      1.190        ad callout_t sched_pstats_ch;
    107      1.188      yamt unsigned int sched_pstats_ticks;
    108       1.34  christos 
    109      1.190        ad kcondvar_t	lbolt;			/* once a second sleep address */
    110       1.26       cgd 
    111      1.188      yamt static void	sched_unsleep(struct lwp *);
    112      1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    113      1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    114      1.122   thorpej 
    115      1.174        ad syncobj_t sleep_syncobj = {
    116      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    117      1.174        ad 	sleepq_unsleep,
    118      1.184      yamt 	sleepq_changepri,
    119      1.184      yamt 	sleepq_lendpri,
    120      1.184      yamt 	syncobj_noowner,
    121      1.174        ad };
    122      1.174        ad 
    123      1.174        ad syncobj_t sched_syncobj = {
    124      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    125      1.174        ad 	sched_unsleep,
    126      1.184      yamt 	sched_changepri,
    127      1.184      yamt 	sched_lendpri,
    128      1.184      yamt 	syncobj_noowner,
    129      1.174        ad };
    130      1.122   thorpej 
    131       1.26       cgd /*
    132      1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    133      1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    134      1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    135      1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    136      1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    137      1.174        ad  * it can be made higher to block network software interrupts after panics.
    138       1.26       cgd  */
    139      1.174        ad int	safepri;
    140       1.26       cgd 
    141       1.26       cgd /*
    142      1.174        ad  * OBSOLETE INTERFACE
    143      1.174        ad  *
    144       1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    145       1.26       cgd  * performed on the specified identifier.  The process will then be made
    146      1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    147      1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    148       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    149       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    150       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    151       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    152       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    153       1.77   thorpej  *
    154      1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    155      1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    156      1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    157      1.174        ad  * return.
    158       1.26       cgd  */
    159       1.26       cgd int
    160      1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    161      1.174        ad 	volatile struct simplelock *interlock)
    162       1.26       cgd {
    163      1.122   thorpej 	struct lwp *l = curlwp;
    164      1.174        ad 	sleepq_t *sq;
    165      1.188      yamt 	int error;
    166       1.26       cgd 
    167  1.203.2.1       mjf 	KASSERT((l->l_pflag & LP_INTR) == 0);
    168  1.203.2.1       mjf 
    169      1.174        ad 	if (sleepq_dontsleep(l)) {
    170      1.174        ad 		(void)sleepq_abort(NULL, 0);
    171      1.174        ad 		if ((priority & PNORELOCK) != 0)
    172       1.77   thorpej 			simple_unlock(interlock);
    173      1.174        ad 		return 0;
    174       1.26       cgd 	}
    175       1.78  sommerfe 
    176  1.203.2.1       mjf 	l->l_kpriority = true;
    177      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    178      1.174        ad 	sleepq_enter(sq, l);
    179  1.203.2.1       mjf 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    180       1.42       cgd 
    181      1.174        ad 	if (interlock != NULL) {
    182  1.203.2.1       mjf 		KASSERT(simple_lock_held(interlock));
    183      1.174        ad 		simple_unlock(interlock);
    184      1.150       chs 	}
    185      1.150       chs 
    186      1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    187      1.126        pk 
    188      1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    189      1.126        pk 		simple_lock(interlock);
    190      1.174        ad 
    191      1.174        ad 	return error;
    192       1.26       cgd }
    193       1.26       cgd 
    194      1.187        ad int
    195      1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    196      1.187        ad 	kmutex_t *mtx)
    197      1.187        ad {
    198      1.187        ad 	struct lwp *l = curlwp;
    199      1.187        ad 	sleepq_t *sq;
    200      1.188      yamt 	int error;
    201      1.187        ad 
    202  1.203.2.1       mjf 	KASSERT((l->l_pflag & LP_INTR) == 0);
    203  1.203.2.1       mjf 
    204      1.187        ad 	if (sleepq_dontsleep(l)) {
    205      1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    206      1.187        ad 		return 0;
    207      1.187        ad 	}
    208      1.187        ad 
    209  1.203.2.1       mjf 	l->l_kpriority = true;
    210      1.187        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    211      1.187        ad 	sleepq_enter(sq, l);
    212  1.203.2.1       mjf 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    213      1.187        ad 	mutex_exit(mtx);
    214      1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    215      1.187        ad 
    216      1.187        ad 	if ((priority & PNORELOCK) == 0)
    217      1.187        ad 		mutex_enter(mtx);
    218      1.187        ad 
    219      1.187        ad 	return error;
    220      1.187        ad }
    221      1.187        ad 
    222       1.26       cgd /*
    223      1.174        ad  * General sleep call for situations where a wake-up is not expected.
    224       1.26       cgd  */
    225      1.174        ad int
    226      1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    227       1.26       cgd {
    228      1.174        ad 	struct lwp *l = curlwp;
    229      1.174        ad 	sleepq_t *sq;
    230      1.174        ad 	int error;
    231       1.26       cgd 
    232      1.174        ad 	if (sleepq_dontsleep(l))
    233      1.174        ad 		return sleepq_abort(NULL, 0);
    234       1.26       cgd 
    235      1.174        ad 	if (mtx != NULL)
    236      1.174        ad 		mutex_exit(mtx);
    237  1.203.2.1       mjf 	l->l_kpriority = true;
    238      1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    239      1.174        ad 	sleepq_enter(sq, l);
    240  1.203.2.1       mjf 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    241      1.188      yamt 	error = sleepq_block(timo, intr);
    242      1.174        ad 	if (mtx != NULL)
    243      1.174        ad 		mutex_enter(mtx);
    244       1.83   thorpej 
    245      1.174        ad 	return error;
    246      1.139        cl }
    247      1.139        cl 
    248       1.26       cgd /*
    249      1.174        ad  * OBSOLETE INTERFACE
    250      1.174        ad  *
    251       1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    252       1.26       cgd  */
    253       1.26       cgd void
    254      1.174        ad wakeup(wchan_t ident)
    255       1.26       cgd {
    256      1.174        ad 	sleepq_t *sq;
    257       1.83   thorpej 
    258      1.174        ad 	if (cold)
    259      1.174        ad 		return;
    260       1.83   thorpej 
    261      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    262      1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    263       1.63   thorpej }
    264       1.63   thorpej 
    265       1.63   thorpej /*
    266      1.174        ad  * OBSOLETE INTERFACE
    267      1.174        ad  *
    268       1.63   thorpej  * Make the highest priority process first in line on the specified
    269       1.63   thorpej  * identifier runnable.
    270       1.63   thorpej  */
    271      1.174        ad void
    272      1.174        ad wakeup_one(wchan_t ident)
    273       1.63   thorpej {
    274      1.174        ad 	sleepq_t *sq;
    275       1.63   thorpej 
    276      1.174        ad 	if (cold)
    277      1.174        ad 		return;
    278      1.188      yamt 
    279      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    280      1.174        ad 	sleepq_wake(sq, ident, 1);
    281      1.174        ad }
    282       1.63   thorpej 
    283      1.117  gmcgarry 
    284      1.117  gmcgarry /*
    285      1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    286      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    287      1.198        ad  * current process explicitly requests it (eg sched_yield(2)).
    288      1.117  gmcgarry  */
    289      1.117  gmcgarry void
    290      1.117  gmcgarry yield(void)
    291      1.117  gmcgarry {
    292      1.122   thorpej 	struct lwp *l = curlwp;
    293      1.117  gmcgarry 
    294      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    295      1.174        ad 	lwp_lock(l);
    296      1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    297      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    298  1.203.2.1       mjf 	l->l_kpriority = false;
    299  1.203.2.1       mjf 	if (l->l_class == SCHED_OTHER) {
    300  1.203.2.1       mjf 		/*
    301  1.203.2.1       mjf 		 * Only for timeshared threads.  It will be reset
    302  1.203.2.1       mjf 		 * by the scheduler in due course.
    303  1.203.2.1       mjf 		 */
    304  1.203.2.1       mjf 		l->l_priority = 0;
    305  1.203.2.1       mjf 	}
    306      1.188      yamt 	(void)mi_switch(l);
    307      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    308       1.69   thorpej }
    309       1.69   thorpej 
    310       1.69   thorpej /*
    311       1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    312      1.156    rpaulo  * and performs an involuntary context switch.
    313       1.69   thorpej  */
    314       1.69   thorpej void
    315      1.174        ad preempt(void)
    316       1.69   thorpej {
    317      1.122   thorpej 	struct lwp *l = curlwp;
    318       1.69   thorpej 
    319      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    320      1.174        ad 	lwp_lock(l);
    321      1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    322      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    323  1.203.2.1       mjf 	l->l_kpriority = false;
    324      1.174        ad 	l->l_nivcsw++;
    325      1.188      yamt 	(void)mi_switch(l);
    326      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    327       1.69   thorpej }
    328       1.69   thorpej 
    329       1.69   thorpej /*
    330      1.188      yamt  * Compute the amount of time during which the current lwp was running.
    331      1.130   nathanw  *
    332      1.188      yamt  * - update l_rtime unless it's an idle lwp.
    333      1.188      yamt  */
    334      1.188      yamt 
    335      1.199        ad void
    336      1.199        ad updatertime(lwp_t *l, const struct timeval *tv)
    337      1.188      yamt {
    338      1.188      yamt 	long s, u;
    339      1.188      yamt 
    340      1.199        ad 	if ((l->l_flag & LW_IDLE) != 0)
    341      1.188      yamt 		return;
    342      1.188      yamt 
    343      1.199        ad 	u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
    344      1.199        ad 	s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
    345      1.188      yamt 	if (u < 0) {
    346      1.188      yamt 		u += 1000000;
    347      1.188      yamt 		s--;
    348      1.188      yamt 	} else if (u >= 1000000) {
    349      1.188      yamt 		u -= 1000000;
    350      1.188      yamt 		s++;
    351      1.188      yamt 	}
    352      1.188      yamt 	l->l_rtime.tv_usec = u;
    353      1.188      yamt 	l->l_rtime.tv_sec = s;
    354      1.188      yamt }
    355      1.188      yamt 
    356      1.188      yamt /*
    357      1.188      yamt  * The machine independent parts of context switch.
    358      1.188      yamt  *
    359      1.188      yamt  * Returns 1 if another LWP was actually run.
    360       1.26       cgd  */
    361      1.122   thorpej int
    362      1.199        ad mi_switch(lwp_t *l)
    363       1.26       cgd {
    364       1.76   thorpej 	struct schedstate_percpu *spc;
    365      1.188      yamt 	struct lwp *newl;
    366      1.174        ad 	int retval, oldspl;
    367      1.196        ad 	struct cpu_info *ci;
    368      1.199        ad 	struct timeval tv;
    369      1.199        ad 	bool returning;
    370       1.26       cgd 
    371      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    372      1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    373      1.174        ad 
    374      1.174        ad #ifdef KSTACK_CHECK_MAGIC
    375      1.174        ad 	kstack_check_magic(l);
    376      1.174        ad #endif
    377       1.83   thorpej 
    378      1.199        ad 	microtime(&tv);
    379      1.199        ad 
    380       1.90  sommerfe 	/*
    381      1.174        ad 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    382      1.174        ad 	 * are after is the run time and that's guarenteed to have been last
    383      1.174        ad 	 * updated by this CPU.
    384       1.90  sommerfe 	 */
    385      1.196        ad 	ci = l->l_cpu;
    386      1.196        ad 	KDASSERT(ci == curcpu());
    387       1.26       cgd 
    388      1.190        ad 	/*
    389      1.190        ad 	 * Process is about to yield the CPU; clear the appropriate
    390      1.190        ad 	 * scheduling flags.
    391      1.190        ad 	 */
    392      1.196        ad 	spc = &ci->ci_schedstate;
    393      1.199        ad 	returning = false;
    394      1.190        ad 	newl = NULL;
    395      1.190        ad 
    396      1.199        ad 	/*
    397      1.199        ad 	 * If we have been asked to switch to a specific LWP, then there
    398      1.199        ad 	 * is no need to inspect the run queues.  If a soft interrupt is
    399      1.199        ad 	 * blocking, then return to the interrupted thread without adjusting
    400      1.199        ad 	 * VM context or its start time: neither have been changed in order
    401      1.199        ad 	 * to take the interrupt.
    402      1.199        ad 	 */
    403      1.190        ad 	if (l->l_switchto != NULL) {
    404  1.203.2.1       mjf 		if ((l->l_pflag & LP_INTR) != 0) {
    405      1.199        ad 			returning = true;
    406      1.199        ad 			softint_block(l);
    407      1.199        ad 			if ((l->l_flag & LW_TIMEINTR) != 0)
    408      1.199        ad 				updatertime(l, &tv);
    409      1.199        ad 		}
    410      1.190        ad 		newl = l->l_switchto;
    411      1.190        ad 		l->l_switchto = NULL;
    412      1.190        ad 	}
    413  1.203.2.1       mjf #ifndef __HAVE_FAST_SOFTINTS
    414  1.203.2.1       mjf 	else if (ci->ci_data.cpu_softints != 0) {
    415  1.203.2.1       mjf 		/* There are pending soft interrupts, so pick one. */
    416  1.203.2.1       mjf 		newl = softint_picklwp();
    417  1.203.2.1       mjf 		newl->l_stat = LSONPROC;
    418  1.203.2.1       mjf 		newl->l_flag |= LW_RUNNING;
    419  1.203.2.1       mjf 	}
    420  1.203.2.1       mjf #endif	/* !__HAVE_FAST_SOFTINTS */
    421      1.190        ad 
    422      1.180       dsl 	/* Count time spent in current system call */
    423      1.199        ad 	if (!returning) {
    424      1.199        ad 		SYSCALL_TIME_SLEEP(l);
    425      1.180       dsl 
    426      1.199        ad 		/*
    427      1.199        ad 		 * XXXSMP If we are using h/w performance counters,
    428      1.199        ad 		 * save context.
    429      1.199        ad 		 */
    430      1.174        ad #if PERFCTRS
    431      1.199        ad 		if (PMC_ENABLED(l->l_proc)) {
    432      1.199        ad 			pmc_save_context(l->l_proc);
    433      1.199        ad 		}
    434      1.199        ad #endif
    435      1.199        ad 		updatertime(l, &tv);
    436      1.174        ad 	}
    437      1.113  gmcgarry 
    438      1.113  gmcgarry 	/*
    439      1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    440      1.113  gmcgarry 	 */
    441      1.188      yamt 	mutex_spin_enter(spc->spc_mutex);
    442      1.174        ad 	KASSERT(l->l_stat != LSRUN);
    443  1.203.2.1       mjf 	if (l->l_stat == LSONPROC && l != newl) {
    444      1.188      yamt 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    445      1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    446      1.188      yamt 			l->l_stat = LSRUN;
    447      1.188      yamt 			lwp_setlock(l, spc->spc_mutex);
    448      1.188      yamt 			sched_enqueue(l, true);
    449      1.188      yamt 		} else
    450      1.188      yamt 			l->l_stat = LSIDL;
    451      1.174        ad 	}
    452      1.174        ad 
    453      1.174        ad 	/*
    454      1.201     rmind 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    455      1.188      yamt 	 * If no LWP is runnable, switch to the idle LWP.
    456      1.201     rmind 	 * Note that spc_lwplock might not necessary be held.
    457      1.174        ad 	 */
    458      1.190        ad 	if (newl == NULL) {
    459      1.190        ad 		newl = sched_nextlwp();
    460      1.190        ad 		if (newl != NULL) {
    461      1.190        ad 			sched_dequeue(newl);
    462      1.190        ad 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    463      1.190        ad 			newl->l_stat = LSONPROC;
    464      1.196        ad 			newl->l_cpu = ci;
    465      1.190        ad 			newl->l_flag |= LW_RUNNING;
    466      1.190        ad 			lwp_setlock(newl, &spc->spc_lwplock);
    467      1.190        ad 		} else {
    468      1.196        ad 			newl = ci->ci_data.cpu_idlelwp;
    469      1.190        ad 			newl->l_stat = LSONPROC;
    470      1.190        ad 			newl->l_flag |= LW_RUNNING;
    471      1.190        ad 		}
    472  1.203.2.1       mjf 		/*
    473  1.203.2.1       mjf 		 * Only clear want_resched if there are no
    474  1.203.2.1       mjf 		 * pending (slow) software interrupts.
    475  1.203.2.1       mjf 		 */
    476  1.203.2.1       mjf 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    477      1.199        ad 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    478  1.203.2.1       mjf 		spc->spc_curpriority = lwp_eprio(newl);
    479      1.199        ad 	}
    480      1.199        ad 
    481  1.203.2.1       mjf 	/* Items that must be updated with the CPU locked. */
    482      1.199        ad 	if (!returning) {
    483  1.203.2.1       mjf 		/* Update the new LWP's start time. */
    484      1.199        ad 		newl->l_stime = tv;
    485  1.203.2.1       mjf 
    486      1.199        ad 		/*
    487  1.203.2.1       mjf 		 * ci_curlwp changes when a fast soft interrupt occurs.
    488  1.203.2.1       mjf 		 * We use cpu_onproc to keep track of which kernel or
    489  1.203.2.1       mjf 		 * user thread is running 'underneath' the software
    490  1.203.2.1       mjf 		 * interrupt.  This is important for time accounting,
    491  1.203.2.1       mjf 		 * itimers and forcing user threads to preempt (aston).
    492      1.199        ad 		 */
    493  1.203.2.1       mjf 		ci->ci_data.cpu_onproc = newl;
    494      1.188      yamt 	}
    495      1.188      yamt 
    496      1.188      yamt 	if (l != newl) {
    497      1.188      yamt 		struct lwp *prevlwp;
    498      1.174        ad 
    499      1.188      yamt 		/*
    500      1.188      yamt 		 * If the old LWP has been moved to a run queue above,
    501      1.188      yamt 		 * drop the general purpose LWP lock: it's now locked
    502      1.188      yamt 		 * by the scheduler lock.
    503      1.188      yamt 		 *
    504      1.188      yamt 		 * Otherwise, drop the scheduler lock.  We're done with
    505      1.188      yamt 		 * the run queues for now.
    506      1.188      yamt 		 */
    507      1.188      yamt 		if (l->l_mutex == spc->spc_mutex) {
    508      1.188      yamt 			mutex_spin_exit(&spc->spc_lwplock);
    509      1.188      yamt 		} else {
    510      1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    511      1.188      yamt 		}
    512      1.188      yamt 
    513      1.188      yamt 		/* Unlocked, but for statistics only. */
    514      1.188      yamt 		uvmexp.swtch++;
    515      1.188      yamt 
    516      1.199        ad 		/*
    517      1.199        ad 		 * Save old VM context, unless a soft interrupt
    518      1.199        ad 		 * handler is blocking.
    519      1.199        ad 		 */
    520      1.199        ad 		if (!returning)
    521      1.199        ad 			pmap_deactivate(l);
    522      1.188      yamt 
    523  1.203.2.1       mjf 		/* Update status for lwpctl, if present. */
    524  1.203.2.1       mjf 	        if (l->l_lwpctl != NULL)
    525  1.203.2.1       mjf 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    526  1.203.2.1       mjf 
    527      1.188      yamt 		/* Switch to the new LWP.. */
    528      1.188      yamt 		l->l_ncsw++;
    529      1.188      yamt 		l->l_flag &= ~LW_RUNNING;
    530      1.196        ad 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    531  1.203.2.1       mjf 		prevlwp = cpu_switchto(l, newl, returning);
    532  1.203.2.1       mjf 		ci = curcpu();
    533      1.174        ad 
    534      1.188      yamt 		/*
    535      1.188      yamt 		 * .. we have switched away and are now back so we must
    536      1.188      yamt 		 * be the new curlwp.  prevlwp is who we replaced.
    537      1.188      yamt 		 */
    538      1.188      yamt 		if (prevlwp != NULL) {
    539  1.203.2.1       mjf 			ci->ci_mtx_oldspl = oldspl;
    540      1.188      yamt 			lwp_unlock(prevlwp);
    541      1.188      yamt 		} else {
    542      1.188      yamt 			splx(oldspl);
    543      1.188      yamt 		}
    544      1.174        ad 
    545      1.188      yamt 		/* Restore VM context. */
    546      1.188      yamt 		pmap_activate(l);
    547      1.188      yamt 		retval = 1;
    548  1.203.2.1       mjf 
    549  1.203.2.1       mjf 		/* Update status for lwpctl, if present. */
    550  1.203.2.1       mjf 	        if (l->l_lwpctl != NULL)
    551  1.203.2.1       mjf 			l->l_lwpctl->lc_curcpu = (short)ci->ci_data.cpu_index;
    552      1.188      yamt 	} else {
    553      1.188      yamt 		/* Nothing to do - just unlock and return. */
    554      1.188      yamt 		mutex_spin_exit(spc->spc_mutex);
    555      1.188      yamt 		lwp_unlock(l);
    556      1.122   thorpej 		retval = 0;
    557      1.122   thorpej 	}
    558      1.110    briggs 
    559      1.188      yamt 	KASSERT(l == curlwp);
    560      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    561  1.203.2.1       mjf 	KASSERT(l->l_cpu == ci);
    562      1.188      yamt 
    563      1.110    briggs 	/*
    564      1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    565       1.26       cgd 	 */
    566      1.114  gmcgarry #if PERFCTRS
    567      1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    568      1.175  christos 		pmc_restore_context(l->l_proc);
    569      1.166  christos 	}
    570      1.114  gmcgarry #endif
    571      1.110    briggs 
    572      1.110    briggs 	/*
    573       1.76   thorpej 	 * We're running again; record our new start time.  We might
    574      1.174        ad 	 * be running on a new CPU now, so don't use the cached
    575       1.76   thorpej 	 * schedstate_percpu pointer.
    576       1.76   thorpej 	 */
    577      1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    578      1.195        ad 	KASSERT(curlwp == l);
    579  1.203.2.1       mjf 	KDASSERT(l->l_cpu == ci);
    580      1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    581      1.169      yamt 
    582      1.122   thorpej 	return retval;
    583       1.26       cgd }
    584       1.26       cgd 
    585       1.26       cgd /*
    586      1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    587      1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    588      1.174        ad  *
    589      1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    590       1.26       cgd  */
    591       1.26       cgd void
    592      1.122   thorpej setrunnable(struct lwp *l)
    593       1.26       cgd {
    594      1.122   thorpej 	struct proc *p = l->l_proc;
    595      1.203     rmind 	struct cpu_info *ci;
    596      1.174        ad 	sigset_t *ss;
    597       1.26       cgd 
    598      1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    599      1.183        ad 	KASSERT(mutex_owned(&p->p_smutex));
    600      1.183        ad 	KASSERT(lwp_locked(l, NULL));
    601      1.203     rmind 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    602       1.83   thorpej 
    603      1.122   thorpej 	switch (l->l_stat) {
    604      1.122   thorpej 	case LSSTOP:
    605       1.33   mycroft 		/*
    606       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    607       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    608       1.33   mycroft 		 */
    609      1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    610      1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    611      1.174        ad 				ss = &l->l_sigpend.sp_set;
    612      1.174        ad 			else
    613      1.174        ad 				ss = &p->p_sigpend.sp_set;
    614      1.174        ad 			sigaddset(ss, p->p_xstat);
    615      1.174        ad 			signotify(l);
    616       1.53   mycroft 		}
    617      1.174        ad 		p->p_nrlwps++;
    618       1.26       cgd 		break;
    619      1.174        ad 	case LSSUSPENDED:
    620      1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    621      1.174        ad 		p->p_nrlwps++;
    622      1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    623      1.122   thorpej 		break;
    624      1.174        ad 	case LSSLEEP:
    625      1.174        ad 		KASSERT(l->l_wchan != NULL);
    626       1.26       cgd 		break;
    627      1.174        ad 	default:
    628      1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    629       1.26       cgd 	}
    630      1.139        cl 
    631      1.174        ad 	/*
    632      1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    633      1.174        ad 	 * again.  If not, mark it as still sleeping.
    634      1.174        ad 	 */
    635      1.174        ad 	if (l->l_wchan != NULL) {
    636      1.174        ad 		l->l_stat = LSSLEEP;
    637      1.183        ad 		/* lwp_unsleep() will release the lock. */
    638      1.183        ad 		lwp_unsleep(l);
    639      1.174        ad 		return;
    640      1.174        ad 	}
    641      1.139        cl 
    642      1.174        ad 	/*
    643      1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    644      1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    645      1.174        ad 	 */
    646      1.188      yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    647      1.174        ad 		l->l_stat = LSONPROC;
    648      1.174        ad 		l->l_slptime = 0;
    649      1.174        ad 		lwp_unlock(l);
    650      1.174        ad 		return;
    651      1.174        ad 	}
    652      1.122   thorpej 
    653      1.174        ad 	/*
    654      1.203     rmind 	 * Look for a CPU to run.
    655      1.203     rmind 	 * Set the LWP runnable.
    656      1.174        ad 	 */
    657      1.203     rmind 	ci = sched_takecpu(l);
    658      1.203     rmind 	l->l_cpu = ci;
    659  1.203.2.1       mjf 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    660  1.203.2.1       mjf 		lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    661  1.203.2.1       mjf 		lwp_lock(l);
    662  1.203.2.1       mjf 	}
    663      1.188      yamt 	sched_setrunnable(l);
    664      1.174        ad 	l->l_stat = LSRUN;
    665      1.122   thorpej 	l->l_slptime = 0;
    666      1.174        ad 
    667      1.203     rmind 	/*
    668      1.203     rmind 	 * If thread is swapped out - wake the swapper to bring it back in.
    669      1.203     rmind 	 * Otherwise, enter it into a run queue.
    670      1.203     rmind 	 */
    671      1.178     pavel 	if (l->l_flag & LW_INMEM) {
    672      1.188      yamt 		sched_enqueue(l, false);
    673      1.188      yamt 		resched_cpu(l);
    674      1.174        ad 		lwp_unlock(l);
    675      1.174        ad 	} else {
    676      1.174        ad 		lwp_unlock(l);
    677      1.177        ad 		uvm_kick_scheduler();
    678      1.174        ad 	}
    679       1.26       cgd }
    680       1.26       cgd 
    681       1.26       cgd /*
    682      1.174        ad  * suspendsched:
    683      1.174        ad  *
    684      1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    685      1.174        ad  */
    686       1.94    bouyer void
    687      1.174        ad suspendsched(void)
    688       1.94    bouyer {
    689      1.174        ad 	CPU_INFO_ITERATOR cii;
    690      1.174        ad 	struct cpu_info *ci;
    691      1.122   thorpej 	struct lwp *l;
    692      1.174        ad 	struct proc *p;
    693       1.94    bouyer 
    694       1.94    bouyer 	/*
    695      1.174        ad 	 * We do this by process in order not to violate the locking rules.
    696       1.94    bouyer 	 */
    697  1.203.2.1       mjf 	mutex_enter(&proclist_lock);
    698      1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    699      1.174        ad 		mutex_enter(&p->p_smutex);
    700      1.174        ad 
    701      1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    702      1.174        ad 			mutex_exit(&p->p_smutex);
    703       1.94    bouyer 			continue;
    704      1.174        ad 		}
    705      1.174        ad 
    706      1.174        ad 		p->p_stat = SSTOP;
    707      1.174        ad 
    708      1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    709      1.174        ad 			if (l == curlwp)
    710      1.174        ad 				continue;
    711      1.174        ad 
    712      1.174        ad 			lwp_lock(l);
    713      1.122   thorpej 
    714       1.97     enami 			/*
    715      1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    716      1.174        ad 			 * when it tries to return to user mode.  We want to
    717      1.174        ad 			 * try and get to get as many LWPs as possible to
    718      1.174        ad 			 * the user / kernel boundary, so that they will
    719      1.174        ad 			 * release any locks that they hold.
    720       1.97     enami 			 */
    721      1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    722      1.174        ad 
    723      1.174        ad 			if (l->l_stat == LSSLEEP &&
    724      1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    725      1.174        ad 				/* setrunnable() will release the lock. */
    726      1.174        ad 				setrunnable(l);
    727      1.174        ad 				continue;
    728      1.174        ad 			}
    729      1.174        ad 
    730      1.174        ad 			lwp_unlock(l);
    731       1.94    bouyer 		}
    732      1.174        ad 
    733      1.174        ad 		mutex_exit(&p->p_smutex);
    734       1.94    bouyer 	}
    735  1.203.2.1       mjf 	mutex_exit(&proclist_lock);
    736      1.174        ad 
    737      1.174        ad 	/*
    738      1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    739      1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    740      1.174        ad 	 */
    741  1.203.2.1       mjf 	for (CPU_INFO_FOREACH(cii, ci)) {
    742  1.203.2.1       mjf 		spc_lock(ci);
    743  1.203.2.1       mjf 		cpu_need_resched(ci, RESCHED_IMMED);
    744  1.203.2.1       mjf 		spc_unlock(ci);
    745  1.203.2.1       mjf 	}
    746      1.174        ad }
    747      1.174        ad 
    748      1.174        ad /*
    749      1.174        ad  * sched_kpri:
    750      1.174        ad  *
    751      1.174        ad  *	Scale a priority level to a kernel priority level, usually
    752      1.174        ad  *	for an LWP that is about to sleep.
    753      1.174        ad  */
    754      1.185      yamt pri_t
    755      1.174        ad sched_kpri(struct lwp *l)
    756      1.174        ad {
    757  1.203.2.1       mjf 	pri_t pri;
    758  1.203.2.1       mjf 
    759  1.203.2.1       mjf #ifndef __HAVE_FAST_SOFTINTS
    760      1.174        ad 	/*
    761  1.203.2.1       mjf 	 * Hack: if a user thread is being used to run a soft
    762  1.203.2.1       mjf 	 * interrupt, we need to boost the priority here.
    763  1.203.2.1       mjf 	 */
    764  1.203.2.1       mjf 	if ((l->l_pflag & LP_INTR) != 0 && l->l_priority < PRI_KERNEL_RT)
    765  1.203.2.1       mjf 		return softint_kpri(l);
    766  1.203.2.1       mjf #endif
    767      1.174        ad 
    768  1.203.2.1       mjf 	/*
    769  1.203.2.1       mjf 	 * Scale user priorities (0 -> 63) up to kernel priorities
    770  1.203.2.1       mjf 	 * in the range (64 -> 95).  This makes assumptions about
    771  1.203.2.1       mjf 	 * the priority space and so should be kept in sync with
    772  1.203.2.1       mjf 	 * param.h.
    773  1.203.2.1       mjf 	 */
    774  1.203.2.1       mjf 	if ((pri = l->l_priority) >= PRI_KERNEL)
    775  1.203.2.1       mjf 		return pri;
    776  1.203.2.1       mjf 	return (pri >> 1) + PRI_KERNEL;
    777      1.174        ad }
    778      1.174        ad 
    779      1.174        ad /*
    780      1.174        ad  * sched_unsleep:
    781      1.174        ad  *
    782      1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    783      1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    784      1.174        ad  *	it's not a valid action for running or idle LWPs.
    785      1.174        ad  */
    786      1.188      yamt static void
    787      1.174        ad sched_unsleep(struct lwp *l)
    788      1.174        ad {
    789      1.174        ad 
    790      1.174        ad 	lwp_unlock(l);
    791      1.174        ad 	panic("sched_unsleep");
    792      1.174        ad }
    793      1.174        ad 
    794  1.203.2.1       mjf void
    795      1.188      yamt resched_cpu(struct lwp *l)
    796      1.188      yamt {
    797      1.188      yamt 	struct cpu_info *ci;
    798      1.188      yamt 
    799      1.188      yamt 	/*
    800      1.188      yamt 	 * XXXSMP
    801      1.188      yamt 	 * Since l->l_cpu persists across a context switch,
    802      1.188      yamt 	 * this gives us *very weak* processor affinity, in
    803      1.188      yamt 	 * that we notify the CPU on which the process last
    804      1.188      yamt 	 * ran that it should try to switch.
    805      1.188      yamt 	 *
    806      1.188      yamt 	 * This does not guarantee that the process will run on
    807      1.188      yamt 	 * that processor next, because another processor might
    808      1.188      yamt 	 * grab it the next time it performs a context switch.
    809      1.188      yamt 	 *
    810      1.188      yamt 	 * This also does not handle the case where its last
    811      1.188      yamt 	 * CPU is running a higher-priority process, but every
    812      1.188      yamt 	 * other CPU is running a lower-priority process.  There
    813      1.188      yamt 	 * are ways to handle this situation, but they're not
    814      1.188      yamt 	 * currently very pretty, and we also need to weigh the
    815      1.188      yamt 	 * cost of moving a process from one CPU to another.
    816      1.188      yamt 	 */
    817  1.203.2.1       mjf 	ci = l->l_cpu;
    818  1.203.2.1       mjf 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
    819      1.188      yamt 		cpu_need_resched(ci, 0);
    820      1.188      yamt }
    821      1.188      yamt 
    822      1.188      yamt static void
    823      1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
    824      1.174        ad {
    825      1.174        ad 
    826      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    827      1.174        ad 
    828  1.203.2.1       mjf 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    829  1.203.2.1       mjf 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    830  1.203.2.1       mjf 		sched_dequeue(l);
    831  1.203.2.1       mjf 		l->l_priority = pri;
    832  1.203.2.1       mjf 		sched_enqueue(l, false);
    833  1.203.2.1       mjf 	} else {
    834      1.174        ad 		l->l_priority = pri;
    835      1.157      yamt 	}
    836      1.188      yamt 	resched_cpu(l);
    837      1.184      yamt }
    838      1.184      yamt 
    839      1.188      yamt static void
    840      1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
    841      1.184      yamt {
    842      1.184      yamt 
    843      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    844      1.184      yamt 
    845  1.203.2.1       mjf 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    846  1.203.2.1       mjf 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    847  1.203.2.1       mjf 		sched_dequeue(l);
    848  1.203.2.1       mjf 		l->l_inheritedprio = pri;
    849  1.203.2.1       mjf 		sched_enqueue(l, false);
    850  1.203.2.1       mjf 	} else {
    851      1.184      yamt 		l->l_inheritedprio = pri;
    852      1.184      yamt 	}
    853      1.188      yamt 	resched_cpu(l);
    854      1.184      yamt }
    855      1.184      yamt 
    856      1.184      yamt struct lwp *
    857      1.184      yamt syncobj_noowner(wchan_t wchan)
    858      1.184      yamt {
    859      1.184      yamt 
    860      1.184      yamt 	return NULL;
    861      1.151      yamt }
    862      1.151      yamt 
    863      1.113  gmcgarry 
    864      1.188      yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    865      1.188      yamt fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    866      1.115  nisimura 
    867      1.130   nathanw /*
    868      1.188      yamt  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    869      1.188      yamt  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    870      1.188      yamt  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    871      1.188      yamt  *
    872      1.188      yamt  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    873      1.188      yamt  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    874      1.188      yamt  *
    875      1.188      yamt  * If you dont want to bother with the faster/more-accurate formula, you
    876      1.188      yamt  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    877      1.188      yamt  * (more general) method of calculating the %age of CPU used by a process.
    878      1.134      matt  */
    879      1.188      yamt #define	CCPU_SHIFT	(FSHIFT + 1)
    880      1.134      matt 
    881      1.134      matt /*
    882      1.188      yamt  * sched_pstats:
    883      1.188      yamt  *
    884      1.188      yamt  * Update process statistics and check CPU resource allocation.
    885      1.188      yamt  * Call scheduler-specific hook to eventually adjust process/LWP
    886      1.188      yamt  * priorities.
    887      1.130   nathanw  */
    888      1.188      yamt /* ARGSUSED */
    889      1.113  gmcgarry void
    890      1.188      yamt sched_pstats(void *arg)
    891      1.113  gmcgarry {
    892      1.188      yamt 	struct rlimit *rlim;
    893      1.188      yamt 	struct lwp *l;
    894      1.188      yamt 	struct proc *p;
    895  1.203.2.1       mjf 	int sig, clkhz;
    896      1.188      yamt 	long runtm;
    897      1.113  gmcgarry 
    898      1.188      yamt 	sched_pstats_ticks++;
    899      1.174        ad 
    900      1.188      yamt 	mutex_enter(&proclist_mutex);
    901      1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
    902      1.188      yamt 		/*
    903      1.188      yamt 		 * Increment time in/out of memory and sleep time (if
    904      1.188      yamt 		 * sleeping).  We ignore overflow; with 16-bit int's
    905      1.188      yamt 		 * (remember them?) overflow takes 45 days.
    906      1.188      yamt 		 */
    907      1.188      yamt 		mutex_enter(&p->p_smutex);
    908      1.188      yamt 		mutex_spin_enter(&p->p_stmutex);
    909      1.188      yamt 		runtm = p->p_rtime.tv_sec;
    910      1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    911      1.188      yamt 			if ((l->l_flag & LW_IDLE) != 0)
    912      1.188      yamt 				continue;
    913      1.188      yamt 			lwp_lock(l);
    914      1.188      yamt 			runtm += l->l_rtime.tv_sec;
    915      1.188      yamt 			l->l_swtime++;
    916      1.200     rmind 			sched_pstats_hook(l);
    917      1.188      yamt 			lwp_unlock(l);
    918      1.113  gmcgarry 
    919      1.188      yamt 			/*
    920      1.188      yamt 			 * p_pctcpu is only for ps.
    921      1.188      yamt 			 */
    922      1.188      yamt 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    923      1.188      yamt 			if (l->l_slptime < 1) {
    924      1.188      yamt 				clkhz = stathz != 0 ? stathz : hz;
    925      1.188      yamt #if	(FSHIFT >= CCPU_SHIFT)
    926      1.188      yamt 				l->l_pctcpu += (clkhz == 100) ?
    927      1.188      yamt 				    ((fixpt_t)l->l_cpticks) <<
    928      1.188      yamt 				        (FSHIFT - CCPU_SHIFT) :
    929      1.188      yamt 				    100 * (((fixpt_t) p->p_cpticks)
    930      1.188      yamt 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    931      1.188      yamt #else
    932      1.188      yamt 				l->l_pctcpu += ((FSCALE - ccpu) *
    933      1.188      yamt 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    934      1.146      matt #endif
    935      1.188      yamt 				l->l_cpticks = 0;
    936      1.188      yamt 			}
    937      1.188      yamt 		}
    938      1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    939      1.188      yamt 		mutex_spin_exit(&p->p_stmutex);
    940      1.174        ad 
    941      1.188      yamt 		/*
    942      1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
    943      1.188      yamt 		 * If over max, kill it.
    944      1.188      yamt 		 */
    945      1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
    946      1.188      yamt 		sig = 0;
    947      1.188      yamt 		if (runtm >= rlim->rlim_cur) {
    948      1.188      yamt 			if (runtm >= rlim->rlim_max)
    949      1.188      yamt 				sig = SIGKILL;
    950      1.188      yamt 			else {
    951      1.188      yamt 				sig = SIGXCPU;
    952      1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
    953      1.188      yamt 					rlim->rlim_cur += 5;
    954      1.188      yamt 			}
    955      1.188      yamt 		}
    956      1.188      yamt 		mutex_exit(&p->p_smutex);
    957      1.188      yamt 		if (sig) {
    958      1.188      yamt 			psignal(p, sig);
    959      1.188      yamt 		}
    960      1.174        ad 	}
    961      1.188      yamt 	mutex_exit(&proclist_mutex);
    962      1.188      yamt 	uvm_meter();
    963      1.191        ad 	cv_wakeup(&lbolt);
    964      1.188      yamt 	callout_schedule(&sched_pstats_ch, hz);
    965      1.113  gmcgarry }
    966      1.190        ad 
    967      1.190        ad void
    968      1.190        ad sched_init(void)
    969      1.190        ad {
    970      1.190        ad 
    971      1.190        ad 	callout_init(&sched_pstats_ch, 0);
    972      1.190        ad 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    973      1.190        ad 	sched_setup();
    974      1.190        ad 	sched_pstats(NULL);
    975      1.190        ad }
    976