kern_synch.c revision 1.205 1 1.205 ad /* $NetBSD: kern_synch.c,v 1.205 2007/11/06 17:57:46 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.174 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
21 1.63 thorpej * must display the following acknowledgement:
22 1.63 thorpej * This product includes software developed by the NetBSD
23 1.63 thorpej * Foundation, Inc. and its contributors.
24 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.63 thorpej * contributors may be used to endorse or promote products derived
26 1.63 thorpej * from this software without specific prior written permission.
27 1.63 thorpej *
28 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
39 1.63 thorpej */
40 1.26 cgd
41 1.26 cgd /*-
42 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.26 cgd * The Regents of the University of California. All rights reserved.
44 1.26 cgd * (c) UNIX System Laboratories, Inc.
45 1.26 cgd * All or some portions of this file are derived from material licensed
46 1.26 cgd * to the University of California by American Telephone and Telegraph
47 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.26 cgd * the permission of UNIX System Laboratories, Inc.
49 1.26 cgd *
50 1.26 cgd * Redistribution and use in source and binary forms, with or without
51 1.26 cgd * modification, are permitted provided that the following conditions
52 1.26 cgd * are met:
53 1.26 cgd * 1. Redistributions of source code must retain the above copyright
54 1.26 cgd * notice, this list of conditions and the following disclaimer.
55 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
56 1.26 cgd * notice, this list of conditions and the following disclaimer in the
57 1.26 cgd * documentation and/or other materials provided with the distribution.
58 1.136 agc * 3. Neither the name of the University nor the names of its contributors
59 1.26 cgd * may be used to endorse or promote products derived from this software
60 1.26 cgd * without specific prior written permission.
61 1.26 cgd *
62 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.26 cgd * SUCH DAMAGE.
73 1.26 cgd *
74 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.26 cgd */
76 1.106 lukem
77 1.106 lukem #include <sys/cdefs.h>
78 1.205 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.205 2007/11/06 17:57:46 ad Exp $");
79 1.48 mrg
80 1.109 yamt #include "opt_kstack.h"
81 1.82 thorpej #include "opt_lockdebug.h"
82 1.83 thorpej #include "opt_multiprocessor.h"
83 1.110 briggs #include "opt_perfctrs.h"
84 1.26 cgd
85 1.174 ad #define __MUTEX_PRIVATE
86 1.174 ad
87 1.26 cgd #include <sys/param.h>
88 1.26 cgd #include <sys/systm.h>
89 1.26 cgd #include <sys/proc.h>
90 1.26 cgd #include <sys/kernel.h>
91 1.111 briggs #if defined(PERFCTRS)
92 1.110 briggs #include <sys/pmc.h>
93 1.111 briggs #endif
94 1.188 yamt #include <sys/cpu.h>
95 1.26 cgd #include <sys/resourcevar.h>
96 1.55 ross #include <sys/sched.h>
97 1.179 dsl #include <sys/syscall_stats.h>
98 1.174 ad #include <sys/sleepq.h>
99 1.174 ad #include <sys/lockdebug.h>
100 1.190 ad #include <sys/evcnt.h>
101 1.199 ad #include <sys/intr.h>
102 1.47 mrg
103 1.47 mrg #include <uvm/uvm_extern.h>
104 1.47 mrg
105 1.190 ad callout_t sched_pstats_ch;
106 1.188 yamt unsigned int sched_pstats_ticks;
107 1.34 christos
108 1.190 ad kcondvar_t lbolt; /* once a second sleep address */
109 1.26 cgd
110 1.188 yamt static void sched_unsleep(struct lwp *);
111 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
112 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
113 1.122 thorpej
114 1.174 ad syncobj_t sleep_syncobj = {
115 1.174 ad SOBJ_SLEEPQ_SORTED,
116 1.174 ad sleepq_unsleep,
117 1.184 yamt sleepq_changepri,
118 1.184 yamt sleepq_lendpri,
119 1.184 yamt syncobj_noowner,
120 1.174 ad };
121 1.174 ad
122 1.174 ad syncobj_t sched_syncobj = {
123 1.174 ad SOBJ_SLEEPQ_SORTED,
124 1.174 ad sched_unsleep,
125 1.184 yamt sched_changepri,
126 1.184 yamt sched_lendpri,
127 1.184 yamt syncobj_noowner,
128 1.174 ad };
129 1.122 thorpej
130 1.26 cgd /*
131 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
132 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
133 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
134 1.174 ad * maintained in the machine-dependent layers. This priority will typically
135 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
136 1.174 ad * it can be made higher to block network software interrupts after panics.
137 1.26 cgd */
138 1.174 ad int safepri;
139 1.26 cgd
140 1.26 cgd /*
141 1.174 ad * OBSOLETE INTERFACE
142 1.174 ad *
143 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
144 1.26 cgd * performed on the specified identifier. The process will then be made
145 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
146 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
147 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
148 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
149 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
150 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
151 1.26 cgd * call should be interrupted by the signal (return EINTR).
152 1.77 thorpej *
153 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
154 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
155 1.174 ad * is specified, in which case the interlock will always be unlocked upon
156 1.174 ad * return.
157 1.26 cgd */
158 1.26 cgd int
159 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
160 1.174 ad volatile struct simplelock *interlock)
161 1.26 cgd {
162 1.122 thorpej struct lwp *l = curlwp;
163 1.174 ad sleepq_t *sq;
164 1.188 yamt int error;
165 1.26 cgd
166 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
167 1.204 ad
168 1.174 ad if (sleepq_dontsleep(l)) {
169 1.174 ad (void)sleepq_abort(NULL, 0);
170 1.174 ad if ((priority & PNORELOCK) != 0)
171 1.77 thorpej simple_unlock(interlock);
172 1.174 ad return 0;
173 1.26 cgd }
174 1.78 sommerfe
175 1.204 ad l->l_kpriority = true;
176 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
177 1.174 ad sleepq_enter(sq, l);
178 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
179 1.42 cgd
180 1.174 ad if (interlock != NULL) {
181 1.204 ad KASSERT(simple_lock_held(interlock));
182 1.174 ad simple_unlock(interlock);
183 1.150 chs }
184 1.150 chs
185 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
186 1.126 pk
187 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
188 1.126 pk simple_lock(interlock);
189 1.174 ad
190 1.174 ad return error;
191 1.26 cgd }
192 1.26 cgd
193 1.187 ad int
194 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
195 1.187 ad kmutex_t *mtx)
196 1.187 ad {
197 1.187 ad struct lwp *l = curlwp;
198 1.187 ad sleepq_t *sq;
199 1.188 yamt int error;
200 1.187 ad
201 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
202 1.204 ad
203 1.187 ad if (sleepq_dontsleep(l)) {
204 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
205 1.187 ad return 0;
206 1.187 ad }
207 1.187 ad
208 1.204 ad l->l_kpriority = true;
209 1.187 ad sq = sleeptab_lookup(&sleeptab, ident);
210 1.187 ad sleepq_enter(sq, l);
211 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
212 1.187 ad mutex_exit(mtx);
213 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
214 1.187 ad
215 1.187 ad if ((priority & PNORELOCK) == 0)
216 1.187 ad mutex_enter(mtx);
217 1.187 ad
218 1.187 ad return error;
219 1.187 ad }
220 1.187 ad
221 1.26 cgd /*
222 1.174 ad * General sleep call for situations where a wake-up is not expected.
223 1.26 cgd */
224 1.174 ad int
225 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
226 1.26 cgd {
227 1.174 ad struct lwp *l = curlwp;
228 1.174 ad sleepq_t *sq;
229 1.174 ad int error;
230 1.26 cgd
231 1.174 ad if (sleepq_dontsleep(l))
232 1.174 ad return sleepq_abort(NULL, 0);
233 1.26 cgd
234 1.174 ad if (mtx != NULL)
235 1.174 ad mutex_exit(mtx);
236 1.204 ad l->l_kpriority = true;
237 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
238 1.174 ad sleepq_enter(sq, l);
239 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
240 1.188 yamt error = sleepq_block(timo, intr);
241 1.174 ad if (mtx != NULL)
242 1.174 ad mutex_enter(mtx);
243 1.83 thorpej
244 1.174 ad return error;
245 1.139 cl }
246 1.139 cl
247 1.26 cgd /*
248 1.174 ad * OBSOLETE INTERFACE
249 1.174 ad *
250 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
251 1.26 cgd */
252 1.26 cgd void
253 1.174 ad wakeup(wchan_t ident)
254 1.26 cgd {
255 1.174 ad sleepq_t *sq;
256 1.83 thorpej
257 1.174 ad if (cold)
258 1.174 ad return;
259 1.83 thorpej
260 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
261 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
262 1.63 thorpej }
263 1.63 thorpej
264 1.63 thorpej /*
265 1.174 ad * OBSOLETE INTERFACE
266 1.174 ad *
267 1.63 thorpej * Make the highest priority process first in line on the specified
268 1.63 thorpej * identifier runnable.
269 1.63 thorpej */
270 1.174 ad void
271 1.174 ad wakeup_one(wchan_t ident)
272 1.63 thorpej {
273 1.174 ad sleepq_t *sq;
274 1.63 thorpej
275 1.174 ad if (cold)
276 1.174 ad return;
277 1.188 yamt
278 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
279 1.174 ad sleepq_wake(sq, ident, 1);
280 1.174 ad }
281 1.63 thorpej
282 1.117 gmcgarry
283 1.117 gmcgarry /*
284 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
285 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
286 1.198 ad * current process explicitly requests it (eg sched_yield(2)).
287 1.117 gmcgarry */
288 1.117 gmcgarry void
289 1.117 gmcgarry yield(void)
290 1.117 gmcgarry {
291 1.122 thorpej struct lwp *l = curlwp;
292 1.117 gmcgarry
293 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
294 1.174 ad lwp_lock(l);
295 1.188 yamt KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
296 1.188 yamt KASSERT(l->l_stat == LSONPROC);
297 1.204 ad l->l_kpriority = false;
298 1.204 ad if (l->l_class == SCHED_OTHER) {
299 1.204 ad /*
300 1.204 ad * Only for timeshared threads. It will be reset
301 1.204 ad * by the scheduler in due course.
302 1.204 ad */
303 1.204 ad l->l_priority = 0;
304 1.204 ad }
305 1.188 yamt (void)mi_switch(l);
306 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
307 1.69 thorpej }
308 1.69 thorpej
309 1.69 thorpej /*
310 1.69 thorpej * General preemption call. Puts the current process back on its run queue
311 1.156 rpaulo * and performs an involuntary context switch.
312 1.69 thorpej */
313 1.69 thorpej void
314 1.174 ad preempt(void)
315 1.69 thorpej {
316 1.122 thorpej struct lwp *l = curlwp;
317 1.69 thorpej
318 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
319 1.174 ad lwp_lock(l);
320 1.188 yamt KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
321 1.188 yamt KASSERT(l->l_stat == LSONPROC);
322 1.204 ad l->l_kpriority = false;
323 1.174 ad l->l_nivcsw++;
324 1.188 yamt (void)mi_switch(l);
325 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
326 1.69 thorpej }
327 1.69 thorpej
328 1.69 thorpej /*
329 1.188 yamt * Compute the amount of time during which the current lwp was running.
330 1.130 nathanw *
331 1.188 yamt * - update l_rtime unless it's an idle lwp.
332 1.188 yamt */
333 1.188 yamt
334 1.199 ad void
335 1.199 ad updatertime(lwp_t *l, const struct timeval *tv)
336 1.188 yamt {
337 1.188 yamt long s, u;
338 1.188 yamt
339 1.199 ad if ((l->l_flag & LW_IDLE) != 0)
340 1.188 yamt return;
341 1.188 yamt
342 1.199 ad u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
343 1.199 ad s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
344 1.188 yamt if (u < 0) {
345 1.188 yamt u += 1000000;
346 1.188 yamt s--;
347 1.188 yamt } else if (u >= 1000000) {
348 1.188 yamt u -= 1000000;
349 1.188 yamt s++;
350 1.188 yamt }
351 1.188 yamt l->l_rtime.tv_usec = u;
352 1.188 yamt l->l_rtime.tv_sec = s;
353 1.188 yamt }
354 1.188 yamt
355 1.188 yamt /*
356 1.188 yamt * The machine independent parts of context switch.
357 1.188 yamt *
358 1.188 yamt * Returns 1 if another LWP was actually run.
359 1.26 cgd */
360 1.122 thorpej int
361 1.199 ad mi_switch(lwp_t *l)
362 1.26 cgd {
363 1.76 thorpej struct schedstate_percpu *spc;
364 1.188 yamt struct lwp *newl;
365 1.174 ad int retval, oldspl;
366 1.196 ad struct cpu_info *ci;
367 1.199 ad struct timeval tv;
368 1.199 ad bool returning;
369 1.26 cgd
370 1.188 yamt KASSERT(lwp_locked(l, NULL));
371 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
372 1.174 ad
373 1.174 ad #ifdef KSTACK_CHECK_MAGIC
374 1.174 ad kstack_check_magic(l);
375 1.174 ad #endif
376 1.83 thorpej
377 1.199 ad microtime(&tv);
378 1.199 ad
379 1.90 sommerfe /*
380 1.174 ad * It's safe to read the per CPU schedstate unlocked here, as all we
381 1.174 ad * are after is the run time and that's guarenteed to have been last
382 1.174 ad * updated by this CPU.
383 1.90 sommerfe */
384 1.196 ad ci = l->l_cpu;
385 1.196 ad KDASSERT(ci == curcpu());
386 1.26 cgd
387 1.190 ad /*
388 1.190 ad * Process is about to yield the CPU; clear the appropriate
389 1.190 ad * scheduling flags.
390 1.190 ad */
391 1.196 ad spc = &ci->ci_schedstate;
392 1.199 ad returning = false;
393 1.190 ad newl = NULL;
394 1.190 ad
395 1.199 ad /*
396 1.199 ad * If we have been asked to switch to a specific LWP, then there
397 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
398 1.199 ad * blocking, then return to the interrupted thread without adjusting
399 1.199 ad * VM context or its start time: neither have been changed in order
400 1.199 ad * to take the interrupt.
401 1.199 ad */
402 1.190 ad if (l->l_switchto != NULL) {
403 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
404 1.199 ad returning = true;
405 1.199 ad softint_block(l);
406 1.199 ad if ((l->l_flag & LW_TIMEINTR) != 0)
407 1.199 ad updatertime(l, &tv);
408 1.199 ad }
409 1.190 ad newl = l->l_switchto;
410 1.190 ad l->l_switchto = NULL;
411 1.190 ad }
412 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
413 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
414 1.204 ad /* There are pending soft interrupts, so pick one. */
415 1.204 ad newl = softint_picklwp();
416 1.204 ad newl->l_stat = LSONPROC;
417 1.204 ad newl->l_flag |= LW_RUNNING;
418 1.204 ad }
419 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
420 1.190 ad
421 1.180 dsl /* Count time spent in current system call */
422 1.199 ad if (!returning) {
423 1.199 ad SYSCALL_TIME_SLEEP(l);
424 1.180 dsl
425 1.199 ad /*
426 1.199 ad * XXXSMP If we are using h/w performance counters,
427 1.199 ad * save context.
428 1.199 ad */
429 1.174 ad #if PERFCTRS
430 1.199 ad if (PMC_ENABLED(l->l_proc)) {
431 1.199 ad pmc_save_context(l->l_proc);
432 1.199 ad }
433 1.199 ad #endif
434 1.199 ad updatertime(l, &tv);
435 1.174 ad }
436 1.113 gmcgarry
437 1.113 gmcgarry /*
438 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
439 1.113 gmcgarry */
440 1.188 yamt mutex_spin_enter(spc->spc_mutex);
441 1.174 ad KASSERT(l->l_stat != LSRUN);
442 1.204 ad if (l->l_stat == LSONPROC && l != newl) {
443 1.188 yamt KASSERT(lwp_locked(l, &spc->spc_lwplock));
444 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
445 1.188 yamt l->l_stat = LSRUN;
446 1.188 yamt lwp_setlock(l, spc->spc_mutex);
447 1.188 yamt sched_enqueue(l, true);
448 1.188 yamt } else
449 1.188 yamt l->l_stat = LSIDL;
450 1.174 ad }
451 1.174 ad
452 1.174 ad /*
453 1.201 rmind * Let sched_nextlwp() select the LWP to run the CPU next.
454 1.188 yamt * If no LWP is runnable, switch to the idle LWP.
455 1.201 rmind * Note that spc_lwplock might not necessary be held.
456 1.174 ad */
457 1.190 ad if (newl == NULL) {
458 1.190 ad newl = sched_nextlwp();
459 1.190 ad if (newl != NULL) {
460 1.190 ad sched_dequeue(newl);
461 1.190 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
462 1.190 ad newl->l_stat = LSONPROC;
463 1.196 ad newl->l_cpu = ci;
464 1.190 ad newl->l_flag |= LW_RUNNING;
465 1.190 ad lwp_setlock(newl, &spc->spc_lwplock);
466 1.190 ad } else {
467 1.196 ad newl = ci->ci_data.cpu_idlelwp;
468 1.190 ad newl->l_stat = LSONPROC;
469 1.190 ad newl->l_flag |= LW_RUNNING;
470 1.190 ad }
471 1.204 ad /*
472 1.204 ad * Only clear want_resched if there are no
473 1.204 ad * pending (slow) software interrupts.
474 1.204 ad */
475 1.204 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
476 1.199 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
477 1.204 ad spc->spc_curpriority = lwp_eprio(newl);
478 1.199 ad }
479 1.199 ad
480 1.204 ad /* Items that must be updated with the CPU locked. */
481 1.199 ad if (!returning) {
482 1.204 ad /* Update the new LWP's start time. */
483 1.199 ad newl->l_stime = tv;
484 1.204 ad
485 1.199 ad /*
486 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
487 1.204 ad * We use cpu_onproc to keep track of which kernel or
488 1.204 ad * user thread is running 'underneath' the software
489 1.204 ad * interrupt. This is important for time accounting,
490 1.204 ad * itimers and forcing user threads to preempt (aston).
491 1.199 ad */
492 1.204 ad ci->ci_data.cpu_onproc = newl;
493 1.188 yamt }
494 1.188 yamt
495 1.188 yamt if (l != newl) {
496 1.188 yamt struct lwp *prevlwp;
497 1.174 ad
498 1.188 yamt /*
499 1.188 yamt * If the old LWP has been moved to a run queue above,
500 1.188 yamt * drop the general purpose LWP lock: it's now locked
501 1.188 yamt * by the scheduler lock.
502 1.188 yamt *
503 1.188 yamt * Otherwise, drop the scheduler lock. We're done with
504 1.188 yamt * the run queues for now.
505 1.188 yamt */
506 1.188 yamt if (l->l_mutex == spc->spc_mutex) {
507 1.188 yamt mutex_spin_exit(&spc->spc_lwplock);
508 1.188 yamt } else {
509 1.188 yamt mutex_spin_exit(spc->spc_mutex);
510 1.188 yamt }
511 1.188 yamt
512 1.188 yamt /* Unlocked, but for statistics only. */
513 1.188 yamt uvmexp.swtch++;
514 1.188 yamt
515 1.199 ad /*
516 1.199 ad * Save old VM context, unless a soft interrupt
517 1.199 ad * handler is blocking.
518 1.199 ad */
519 1.199 ad if (!returning)
520 1.199 ad pmap_deactivate(l);
521 1.188 yamt
522 1.188 yamt /* Switch to the new LWP.. */
523 1.188 yamt l->l_ncsw++;
524 1.188 yamt l->l_flag &= ~LW_RUNNING;
525 1.196 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
526 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
527 1.188 yamt /*
528 1.188 yamt * .. we have switched away and are now back so we must
529 1.188 yamt * be the new curlwp. prevlwp is who we replaced.
530 1.188 yamt */
531 1.188 yamt if (prevlwp != NULL) {
532 1.188 yamt curcpu()->ci_mtx_oldspl = oldspl;
533 1.188 yamt lwp_unlock(prevlwp);
534 1.188 yamt } else {
535 1.188 yamt splx(oldspl);
536 1.188 yamt }
537 1.174 ad
538 1.188 yamt /* Restore VM context. */
539 1.188 yamt pmap_activate(l);
540 1.188 yamt retval = 1;
541 1.188 yamt } else {
542 1.188 yamt /* Nothing to do - just unlock and return. */
543 1.188 yamt mutex_spin_exit(spc->spc_mutex);
544 1.188 yamt lwp_unlock(l);
545 1.122 thorpej retval = 0;
546 1.122 thorpej }
547 1.110 briggs
548 1.188 yamt KASSERT(l == curlwp);
549 1.188 yamt KASSERT(l->l_stat == LSONPROC);
550 1.199 ad KASSERT(l->l_cpu == curcpu());
551 1.188 yamt
552 1.110 briggs /*
553 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
554 1.26 cgd */
555 1.114 gmcgarry #if PERFCTRS
556 1.175 christos if (PMC_ENABLED(l->l_proc)) {
557 1.175 christos pmc_restore_context(l->l_proc);
558 1.166 christos }
559 1.114 gmcgarry #endif
560 1.110 briggs
561 1.110 briggs /*
562 1.76 thorpej * We're running again; record our new start time. We might
563 1.174 ad * be running on a new CPU now, so don't use the cached
564 1.76 thorpej * schedstate_percpu pointer.
565 1.76 thorpej */
566 1.180 dsl SYSCALL_TIME_WAKEUP(l);
567 1.195 ad KASSERT(curlwp == l);
568 1.197 ad KDASSERT(l->l_cpu == curcpu());
569 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
570 1.169 yamt
571 1.122 thorpej return retval;
572 1.26 cgd }
573 1.26 cgd
574 1.26 cgd /*
575 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
576 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
577 1.174 ad *
578 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
579 1.26 cgd */
580 1.26 cgd void
581 1.122 thorpej setrunnable(struct lwp *l)
582 1.26 cgd {
583 1.122 thorpej struct proc *p = l->l_proc;
584 1.205 ad struct cpu_info *ci;
585 1.174 ad sigset_t *ss;
586 1.26 cgd
587 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
588 1.183 ad KASSERT(mutex_owned(&p->p_smutex));
589 1.183 ad KASSERT(lwp_locked(l, NULL));
590 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
591 1.83 thorpej
592 1.122 thorpej switch (l->l_stat) {
593 1.122 thorpej case LSSTOP:
594 1.33 mycroft /*
595 1.33 mycroft * If we're being traced (possibly because someone attached us
596 1.33 mycroft * while we were stopped), check for a signal from the debugger.
597 1.33 mycroft */
598 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
599 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
600 1.174 ad ss = &l->l_sigpend.sp_set;
601 1.174 ad else
602 1.174 ad ss = &p->p_sigpend.sp_set;
603 1.174 ad sigaddset(ss, p->p_xstat);
604 1.174 ad signotify(l);
605 1.53 mycroft }
606 1.174 ad p->p_nrlwps++;
607 1.26 cgd break;
608 1.174 ad case LSSUSPENDED:
609 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
610 1.174 ad p->p_nrlwps++;
611 1.192 rmind cv_broadcast(&p->p_lwpcv);
612 1.122 thorpej break;
613 1.174 ad case LSSLEEP:
614 1.174 ad KASSERT(l->l_wchan != NULL);
615 1.26 cgd break;
616 1.174 ad default:
617 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
618 1.26 cgd }
619 1.139 cl
620 1.174 ad /*
621 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
622 1.174 ad * again. If not, mark it as still sleeping.
623 1.174 ad */
624 1.174 ad if (l->l_wchan != NULL) {
625 1.174 ad l->l_stat = LSSLEEP;
626 1.183 ad /* lwp_unsleep() will release the lock. */
627 1.183 ad lwp_unsleep(l);
628 1.174 ad return;
629 1.174 ad }
630 1.139 cl
631 1.174 ad /*
632 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
633 1.174 ad * about to call mi_switch(), in which case it will yield.
634 1.174 ad */
635 1.188 yamt if ((l->l_flag & LW_RUNNING) != 0) {
636 1.174 ad l->l_stat = LSONPROC;
637 1.174 ad l->l_slptime = 0;
638 1.174 ad lwp_unlock(l);
639 1.174 ad return;
640 1.174 ad }
641 1.122 thorpej
642 1.174 ad /*
643 1.205 ad * Look for a CPU to run.
644 1.205 ad * Set the LWP runnable.
645 1.174 ad */
646 1.205 ad ci = sched_takecpu(l);
647 1.205 ad ci = l->l_cpu;
648 1.205 ad spc_lock(ci);
649 1.205 ad l->l_cpu = ci;
650 1.205 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
651 1.189 ad
652 1.188 yamt sched_setrunnable(l);
653 1.174 ad l->l_stat = LSRUN;
654 1.122 thorpej l->l_slptime = 0;
655 1.174 ad
656 1.205 ad /*
657 1.205 ad * If thread is swapped out - wake the swapper to bring it back in.
658 1.205 ad * Otherwise, enter it into a run queue.
659 1.205 ad */
660 1.178 pavel if (l->l_flag & LW_INMEM) {
661 1.188 yamt sched_enqueue(l, false);
662 1.188 yamt resched_cpu(l);
663 1.174 ad lwp_unlock(l);
664 1.174 ad } else {
665 1.174 ad lwp_unlock(l);
666 1.177 ad uvm_kick_scheduler();
667 1.174 ad }
668 1.26 cgd }
669 1.26 cgd
670 1.26 cgd /*
671 1.174 ad * suspendsched:
672 1.174 ad *
673 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
674 1.174 ad */
675 1.94 bouyer void
676 1.174 ad suspendsched(void)
677 1.94 bouyer {
678 1.174 ad CPU_INFO_ITERATOR cii;
679 1.174 ad struct cpu_info *ci;
680 1.122 thorpej struct lwp *l;
681 1.174 ad struct proc *p;
682 1.94 bouyer
683 1.94 bouyer /*
684 1.174 ad * We do this by process in order not to violate the locking rules.
685 1.94 bouyer */
686 1.204 ad mutex_enter(&proclist_lock);
687 1.174 ad PROCLIST_FOREACH(p, &allproc) {
688 1.174 ad mutex_enter(&p->p_smutex);
689 1.174 ad
690 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
691 1.174 ad mutex_exit(&p->p_smutex);
692 1.94 bouyer continue;
693 1.174 ad }
694 1.174 ad
695 1.174 ad p->p_stat = SSTOP;
696 1.174 ad
697 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
698 1.174 ad if (l == curlwp)
699 1.174 ad continue;
700 1.174 ad
701 1.174 ad lwp_lock(l);
702 1.122 thorpej
703 1.97 enami /*
704 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
705 1.174 ad * when it tries to return to user mode. We want to
706 1.174 ad * try and get to get as many LWPs as possible to
707 1.174 ad * the user / kernel boundary, so that they will
708 1.174 ad * release any locks that they hold.
709 1.97 enami */
710 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
711 1.174 ad
712 1.174 ad if (l->l_stat == LSSLEEP &&
713 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
714 1.174 ad /* setrunnable() will release the lock. */
715 1.174 ad setrunnable(l);
716 1.174 ad continue;
717 1.174 ad }
718 1.174 ad
719 1.174 ad lwp_unlock(l);
720 1.94 bouyer }
721 1.174 ad
722 1.174 ad mutex_exit(&p->p_smutex);
723 1.94 bouyer }
724 1.204 ad mutex_exit(&proclist_lock);
725 1.174 ad
726 1.174 ad /*
727 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
728 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
729 1.174 ad */
730 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
731 1.204 ad spc_lock(ci);
732 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
733 1.204 ad spc_unlock(ci);
734 1.204 ad }
735 1.174 ad }
736 1.174 ad
737 1.174 ad /*
738 1.174 ad * sched_kpri:
739 1.174 ad *
740 1.174 ad * Scale a priority level to a kernel priority level, usually
741 1.174 ad * for an LWP that is about to sleep.
742 1.174 ad */
743 1.185 yamt pri_t
744 1.174 ad sched_kpri(struct lwp *l)
745 1.174 ad {
746 1.204 ad pri_t pri;
747 1.204 ad
748 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
749 1.174 ad /*
750 1.204 ad * Hack: if a user thread is being used to run a soft
751 1.204 ad * interrupt, we need to boost the priority here.
752 1.204 ad */
753 1.204 ad if ((l->l_pflag & LP_INTR) != 0 && l->l_priority < PRI_KERNEL_RT)
754 1.204 ad return softint_kpri(l);
755 1.204 ad #endif
756 1.174 ad
757 1.204 ad /*
758 1.204 ad * Scale user priorities (0 -> 63) up to kernel priorities
759 1.204 ad * in the range (64 -> 95). This makes assumptions about
760 1.204 ad * the priority space and so should be kept in sync with
761 1.204 ad * param.h.
762 1.204 ad */
763 1.204 ad if ((pri = l->l_priority) >= PRI_KERNEL)
764 1.204 ad return pri;
765 1.204 ad return (pri >> 1) + PRI_KERNEL;
766 1.174 ad }
767 1.174 ad
768 1.174 ad /*
769 1.174 ad * sched_unsleep:
770 1.174 ad *
771 1.174 ad * The is called when the LWP has not been awoken normally but instead
772 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
773 1.174 ad * it's not a valid action for running or idle LWPs.
774 1.174 ad */
775 1.188 yamt static void
776 1.174 ad sched_unsleep(struct lwp *l)
777 1.174 ad {
778 1.174 ad
779 1.174 ad lwp_unlock(l);
780 1.174 ad panic("sched_unsleep");
781 1.174 ad }
782 1.174 ad
783 1.204 ad void
784 1.188 yamt resched_cpu(struct lwp *l)
785 1.188 yamt {
786 1.188 yamt struct cpu_info *ci;
787 1.188 yamt
788 1.188 yamt /*
789 1.188 yamt * XXXSMP
790 1.188 yamt * Since l->l_cpu persists across a context switch,
791 1.188 yamt * this gives us *very weak* processor affinity, in
792 1.188 yamt * that we notify the CPU on which the process last
793 1.188 yamt * ran that it should try to switch.
794 1.188 yamt *
795 1.188 yamt * This does not guarantee that the process will run on
796 1.188 yamt * that processor next, because another processor might
797 1.188 yamt * grab it the next time it performs a context switch.
798 1.188 yamt *
799 1.188 yamt * This also does not handle the case where its last
800 1.188 yamt * CPU is running a higher-priority process, but every
801 1.188 yamt * other CPU is running a lower-priority process. There
802 1.188 yamt * are ways to handle this situation, but they're not
803 1.188 yamt * currently very pretty, and we also need to weigh the
804 1.188 yamt * cost of moving a process from one CPU to another.
805 1.188 yamt */
806 1.204 ad ci = l->l_cpu;
807 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
808 1.188 yamt cpu_need_resched(ci, 0);
809 1.188 yamt }
810 1.188 yamt
811 1.188 yamt static void
812 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
813 1.174 ad {
814 1.174 ad
815 1.188 yamt KASSERT(lwp_locked(l, NULL));
816 1.174 ad
817 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
818 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
819 1.204 ad sched_dequeue(l);
820 1.204 ad l->l_priority = pri;
821 1.204 ad sched_enqueue(l, false);
822 1.204 ad } else {
823 1.174 ad l->l_priority = pri;
824 1.157 yamt }
825 1.188 yamt resched_cpu(l);
826 1.184 yamt }
827 1.184 yamt
828 1.188 yamt static void
829 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
830 1.184 yamt {
831 1.184 yamt
832 1.188 yamt KASSERT(lwp_locked(l, NULL));
833 1.184 yamt
834 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
835 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
836 1.204 ad sched_dequeue(l);
837 1.204 ad l->l_inheritedprio = pri;
838 1.204 ad sched_enqueue(l, false);
839 1.204 ad } else {
840 1.184 yamt l->l_inheritedprio = pri;
841 1.184 yamt }
842 1.188 yamt resched_cpu(l);
843 1.184 yamt }
844 1.184 yamt
845 1.184 yamt struct lwp *
846 1.184 yamt syncobj_noowner(wchan_t wchan)
847 1.184 yamt {
848 1.184 yamt
849 1.184 yamt return NULL;
850 1.151 yamt }
851 1.151 yamt
852 1.113 gmcgarry
853 1.188 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
854 1.188 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
855 1.115 nisimura
856 1.130 nathanw /*
857 1.188 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
858 1.188 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
859 1.188 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
860 1.188 yamt *
861 1.188 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
862 1.188 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
863 1.188 yamt *
864 1.188 yamt * If you dont want to bother with the faster/more-accurate formula, you
865 1.188 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
866 1.188 yamt * (more general) method of calculating the %age of CPU used by a process.
867 1.134 matt */
868 1.188 yamt #define CCPU_SHIFT (FSHIFT + 1)
869 1.134 matt
870 1.134 matt /*
871 1.188 yamt * sched_pstats:
872 1.188 yamt *
873 1.188 yamt * Update process statistics and check CPU resource allocation.
874 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
875 1.188 yamt * priorities.
876 1.130 nathanw */
877 1.188 yamt /* ARGSUSED */
878 1.113 gmcgarry void
879 1.188 yamt sched_pstats(void *arg)
880 1.113 gmcgarry {
881 1.188 yamt struct rlimit *rlim;
882 1.188 yamt struct lwp *l;
883 1.188 yamt struct proc *p;
884 1.204 ad int sig, clkhz;
885 1.188 yamt long runtm;
886 1.113 gmcgarry
887 1.188 yamt sched_pstats_ticks++;
888 1.174 ad
889 1.188 yamt mutex_enter(&proclist_mutex);
890 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
891 1.188 yamt /*
892 1.188 yamt * Increment time in/out of memory and sleep time (if
893 1.188 yamt * sleeping). We ignore overflow; with 16-bit int's
894 1.188 yamt * (remember them?) overflow takes 45 days.
895 1.188 yamt */
896 1.188 yamt mutex_enter(&p->p_smutex);
897 1.188 yamt mutex_spin_enter(&p->p_stmutex);
898 1.188 yamt runtm = p->p_rtime.tv_sec;
899 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
900 1.188 yamt if ((l->l_flag & LW_IDLE) != 0)
901 1.188 yamt continue;
902 1.188 yamt lwp_lock(l);
903 1.188 yamt runtm += l->l_rtime.tv_sec;
904 1.188 yamt l->l_swtime++;
905 1.200 rmind sched_pstats_hook(l);
906 1.188 yamt lwp_unlock(l);
907 1.113 gmcgarry
908 1.188 yamt /*
909 1.188 yamt * p_pctcpu is only for ps.
910 1.188 yamt */
911 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
912 1.188 yamt if (l->l_slptime < 1) {
913 1.188 yamt clkhz = stathz != 0 ? stathz : hz;
914 1.188 yamt #if (FSHIFT >= CCPU_SHIFT)
915 1.188 yamt l->l_pctcpu += (clkhz == 100) ?
916 1.188 yamt ((fixpt_t)l->l_cpticks) <<
917 1.188 yamt (FSHIFT - CCPU_SHIFT) :
918 1.188 yamt 100 * (((fixpt_t) p->p_cpticks)
919 1.188 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
920 1.188 yamt #else
921 1.188 yamt l->l_pctcpu += ((FSCALE - ccpu) *
922 1.188 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
923 1.146 matt #endif
924 1.188 yamt l->l_cpticks = 0;
925 1.188 yamt }
926 1.188 yamt }
927 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
928 1.188 yamt mutex_spin_exit(&p->p_stmutex);
929 1.174 ad
930 1.188 yamt /*
931 1.188 yamt * Check if the process exceeds its CPU resource allocation.
932 1.188 yamt * If over max, kill it.
933 1.188 yamt */
934 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
935 1.188 yamt sig = 0;
936 1.188 yamt if (runtm >= rlim->rlim_cur) {
937 1.188 yamt if (runtm >= rlim->rlim_max)
938 1.188 yamt sig = SIGKILL;
939 1.188 yamt else {
940 1.188 yamt sig = SIGXCPU;
941 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
942 1.188 yamt rlim->rlim_cur += 5;
943 1.188 yamt }
944 1.188 yamt }
945 1.188 yamt mutex_exit(&p->p_smutex);
946 1.188 yamt if (sig) {
947 1.188 yamt psignal(p, sig);
948 1.188 yamt }
949 1.174 ad }
950 1.188 yamt mutex_exit(&proclist_mutex);
951 1.188 yamt uvm_meter();
952 1.191 ad cv_wakeup(&lbolt);
953 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
954 1.113 gmcgarry }
955 1.190 ad
956 1.190 ad void
957 1.190 ad sched_init(void)
958 1.190 ad {
959 1.190 ad
960 1.190 ad callout_init(&sched_pstats_ch, 0);
961 1.190 ad callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
962 1.190 ad sched_setup();
963 1.190 ad sched_pstats(NULL);
964 1.190 ad }
965