kern_synch.c revision 1.207 1 1.207 ad /* $NetBSD: kern_synch.c,v 1.207 2007/11/12 23:11:59 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.174 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
21 1.63 thorpej * must display the following acknowledgement:
22 1.63 thorpej * This product includes software developed by the NetBSD
23 1.63 thorpej * Foundation, Inc. and its contributors.
24 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.63 thorpej * contributors may be used to endorse or promote products derived
26 1.63 thorpej * from this software without specific prior written permission.
27 1.63 thorpej *
28 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
39 1.63 thorpej */
40 1.26 cgd
41 1.26 cgd /*-
42 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.26 cgd * The Regents of the University of California. All rights reserved.
44 1.26 cgd * (c) UNIX System Laboratories, Inc.
45 1.26 cgd * All or some portions of this file are derived from material licensed
46 1.26 cgd * to the University of California by American Telephone and Telegraph
47 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.26 cgd * the permission of UNIX System Laboratories, Inc.
49 1.26 cgd *
50 1.26 cgd * Redistribution and use in source and binary forms, with or without
51 1.26 cgd * modification, are permitted provided that the following conditions
52 1.26 cgd * are met:
53 1.26 cgd * 1. Redistributions of source code must retain the above copyright
54 1.26 cgd * notice, this list of conditions and the following disclaimer.
55 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
56 1.26 cgd * notice, this list of conditions and the following disclaimer in the
57 1.26 cgd * documentation and/or other materials provided with the distribution.
58 1.136 agc * 3. Neither the name of the University nor the names of its contributors
59 1.26 cgd * may be used to endorse or promote products derived from this software
60 1.26 cgd * without specific prior written permission.
61 1.26 cgd *
62 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.26 cgd * SUCH DAMAGE.
73 1.26 cgd *
74 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.26 cgd */
76 1.106 lukem
77 1.106 lukem #include <sys/cdefs.h>
78 1.207 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.207 2007/11/12 23:11:59 ad Exp $");
79 1.48 mrg
80 1.109 yamt #include "opt_kstack.h"
81 1.82 thorpej #include "opt_lockdebug.h"
82 1.83 thorpej #include "opt_multiprocessor.h"
83 1.110 briggs #include "opt_perfctrs.h"
84 1.26 cgd
85 1.174 ad #define __MUTEX_PRIVATE
86 1.174 ad
87 1.26 cgd #include <sys/param.h>
88 1.26 cgd #include <sys/systm.h>
89 1.26 cgd #include <sys/proc.h>
90 1.26 cgd #include <sys/kernel.h>
91 1.111 briggs #if defined(PERFCTRS)
92 1.110 briggs #include <sys/pmc.h>
93 1.111 briggs #endif
94 1.188 yamt #include <sys/cpu.h>
95 1.26 cgd #include <sys/resourcevar.h>
96 1.55 ross #include <sys/sched.h>
97 1.179 dsl #include <sys/syscall_stats.h>
98 1.174 ad #include <sys/sleepq.h>
99 1.174 ad #include <sys/lockdebug.h>
100 1.190 ad #include <sys/evcnt.h>
101 1.199 ad #include <sys/intr.h>
102 1.207 ad #include <sys/lwpctl.h>
103 1.47 mrg
104 1.47 mrg #include <uvm/uvm_extern.h>
105 1.47 mrg
106 1.190 ad callout_t sched_pstats_ch;
107 1.188 yamt unsigned int sched_pstats_ticks;
108 1.34 christos
109 1.190 ad kcondvar_t lbolt; /* once a second sleep address */
110 1.26 cgd
111 1.188 yamt static void sched_unsleep(struct lwp *);
112 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
113 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
114 1.122 thorpej
115 1.174 ad syncobj_t sleep_syncobj = {
116 1.174 ad SOBJ_SLEEPQ_SORTED,
117 1.174 ad sleepq_unsleep,
118 1.184 yamt sleepq_changepri,
119 1.184 yamt sleepq_lendpri,
120 1.184 yamt syncobj_noowner,
121 1.174 ad };
122 1.174 ad
123 1.174 ad syncobj_t sched_syncobj = {
124 1.174 ad SOBJ_SLEEPQ_SORTED,
125 1.174 ad sched_unsleep,
126 1.184 yamt sched_changepri,
127 1.184 yamt sched_lendpri,
128 1.184 yamt syncobj_noowner,
129 1.174 ad };
130 1.122 thorpej
131 1.26 cgd /*
132 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
133 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
134 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
135 1.174 ad * maintained in the machine-dependent layers. This priority will typically
136 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
137 1.174 ad * it can be made higher to block network software interrupts after panics.
138 1.26 cgd */
139 1.174 ad int safepri;
140 1.26 cgd
141 1.26 cgd /*
142 1.174 ad * OBSOLETE INTERFACE
143 1.174 ad *
144 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
145 1.26 cgd * performed on the specified identifier. The process will then be made
146 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
147 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
148 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
149 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
150 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
151 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
152 1.26 cgd * call should be interrupted by the signal (return EINTR).
153 1.77 thorpej *
154 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
155 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
156 1.174 ad * is specified, in which case the interlock will always be unlocked upon
157 1.174 ad * return.
158 1.26 cgd */
159 1.26 cgd int
160 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
161 1.174 ad volatile struct simplelock *interlock)
162 1.26 cgd {
163 1.122 thorpej struct lwp *l = curlwp;
164 1.174 ad sleepq_t *sq;
165 1.188 yamt int error;
166 1.26 cgd
167 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
168 1.204 ad
169 1.174 ad if (sleepq_dontsleep(l)) {
170 1.174 ad (void)sleepq_abort(NULL, 0);
171 1.174 ad if ((priority & PNORELOCK) != 0)
172 1.77 thorpej simple_unlock(interlock);
173 1.174 ad return 0;
174 1.26 cgd }
175 1.78 sommerfe
176 1.204 ad l->l_kpriority = true;
177 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
178 1.174 ad sleepq_enter(sq, l);
179 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
180 1.42 cgd
181 1.174 ad if (interlock != NULL) {
182 1.204 ad KASSERT(simple_lock_held(interlock));
183 1.174 ad simple_unlock(interlock);
184 1.150 chs }
185 1.150 chs
186 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
187 1.126 pk
188 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
189 1.126 pk simple_lock(interlock);
190 1.174 ad
191 1.174 ad return error;
192 1.26 cgd }
193 1.26 cgd
194 1.187 ad int
195 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
196 1.187 ad kmutex_t *mtx)
197 1.187 ad {
198 1.187 ad struct lwp *l = curlwp;
199 1.187 ad sleepq_t *sq;
200 1.188 yamt int error;
201 1.187 ad
202 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
203 1.204 ad
204 1.187 ad if (sleepq_dontsleep(l)) {
205 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
206 1.187 ad return 0;
207 1.187 ad }
208 1.187 ad
209 1.204 ad l->l_kpriority = true;
210 1.187 ad sq = sleeptab_lookup(&sleeptab, ident);
211 1.187 ad sleepq_enter(sq, l);
212 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
213 1.187 ad mutex_exit(mtx);
214 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
215 1.187 ad
216 1.187 ad if ((priority & PNORELOCK) == 0)
217 1.187 ad mutex_enter(mtx);
218 1.187 ad
219 1.187 ad return error;
220 1.187 ad }
221 1.187 ad
222 1.26 cgd /*
223 1.174 ad * General sleep call for situations where a wake-up is not expected.
224 1.26 cgd */
225 1.174 ad int
226 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
227 1.26 cgd {
228 1.174 ad struct lwp *l = curlwp;
229 1.174 ad sleepq_t *sq;
230 1.174 ad int error;
231 1.26 cgd
232 1.174 ad if (sleepq_dontsleep(l))
233 1.174 ad return sleepq_abort(NULL, 0);
234 1.26 cgd
235 1.174 ad if (mtx != NULL)
236 1.174 ad mutex_exit(mtx);
237 1.204 ad l->l_kpriority = true;
238 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
239 1.174 ad sleepq_enter(sq, l);
240 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
241 1.188 yamt error = sleepq_block(timo, intr);
242 1.174 ad if (mtx != NULL)
243 1.174 ad mutex_enter(mtx);
244 1.83 thorpej
245 1.174 ad return error;
246 1.139 cl }
247 1.139 cl
248 1.26 cgd /*
249 1.174 ad * OBSOLETE INTERFACE
250 1.174 ad *
251 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
252 1.26 cgd */
253 1.26 cgd void
254 1.174 ad wakeup(wchan_t ident)
255 1.26 cgd {
256 1.174 ad sleepq_t *sq;
257 1.83 thorpej
258 1.174 ad if (cold)
259 1.174 ad return;
260 1.83 thorpej
261 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
262 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
263 1.63 thorpej }
264 1.63 thorpej
265 1.63 thorpej /*
266 1.174 ad * OBSOLETE INTERFACE
267 1.174 ad *
268 1.63 thorpej * Make the highest priority process first in line on the specified
269 1.63 thorpej * identifier runnable.
270 1.63 thorpej */
271 1.174 ad void
272 1.174 ad wakeup_one(wchan_t ident)
273 1.63 thorpej {
274 1.174 ad sleepq_t *sq;
275 1.63 thorpej
276 1.174 ad if (cold)
277 1.174 ad return;
278 1.188 yamt
279 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
280 1.174 ad sleepq_wake(sq, ident, 1);
281 1.174 ad }
282 1.63 thorpej
283 1.117 gmcgarry
284 1.117 gmcgarry /*
285 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
286 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
287 1.198 ad * current process explicitly requests it (eg sched_yield(2)).
288 1.117 gmcgarry */
289 1.117 gmcgarry void
290 1.117 gmcgarry yield(void)
291 1.117 gmcgarry {
292 1.122 thorpej struct lwp *l = curlwp;
293 1.117 gmcgarry
294 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
295 1.174 ad lwp_lock(l);
296 1.188 yamt KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
297 1.188 yamt KASSERT(l->l_stat == LSONPROC);
298 1.204 ad l->l_kpriority = false;
299 1.204 ad if (l->l_class == SCHED_OTHER) {
300 1.204 ad /*
301 1.204 ad * Only for timeshared threads. It will be reset
302 1.204 ad * by the scheduler in due course.
303 1.204 ad */
304 1.204 ad l->l_priority = 0;
305 1.204 ad }
306 1.188 yamt (void)mi_switch(l);
307 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
308 1.69 thorpej }
309 1.69 thorpej
310 1.69 thorpej /*
311 1.69 thorpej * General preemption call. Puts the current process back on its run queue
312 1.156 rpaulo * and performs an involuntary context switch.
313 1.69 thorpej */
314 1.69 thorpej void
315 1.174 ad preempt(void)
316 1.69 thorpej {
317 1.122 thorpej struct lwp *l = curlwp;
318 1.69 thorpej
319 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
320 1.174 ad lwp_lock(l);
321 1.188 yamt KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
322 1.188 yamt KASSERT(l->l_stat == LSONPROC);
323 1.204 ad l->l_kpriority = false;
324 1.174 ad l->l_nivcsw++;
325 1.188 yamt (void)mi_switch(l);
326 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
327 1.69 thorpej }
328 1.69 thorpej
329 1.69 thorpej /*
330 1.188 yamt * Compute the amount of time during which the current lwp was running.
331 1.130 nathanw *
332 1.188 yamt * - update l_rtime unless it's an idle lwp.
333 1.188 yamt */
334 1.188 yamt
335 1.199 ad void
336 1.199 ad updatertime(lwp_t *l, const struct timeval *tv)
337 1.188 yamt {
338 1.188 yamt long s, u;
339 1.188 yamt
340 1.199 ad if ((l->l_flag & LW_IDLE) != 0)
341 1.188 yamt return;
342 1.188 yamt
343 1.199 ad u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
344 1.199 ad s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
345 1.188 yamt if (u < 0) {
346 1.188 yamt u += 1000000;
347 1.188 yamt s--;
348 1.188 yamt } else if (u >= 1000000) {
349 1.188 yamt u -= 1000000;
350 1.188 yamt s++;
351 1.188 yamt }
352 1.188 yamt l->l_rtime.tv_usec = u;
353 1.188 yamt l->l_rtime.tv_sec = s;
354 1.188 yamt }
355 1.188 yamt
356 1.188 yamt /*
357 1.188 yamt * The machine independent parts of context switch.
358 1.188 yamt *
359 1.188 yamt * Returns 1 if another LWP was actually run.
360 1.26 cgd */
361 1.122 thorpej int
362 1.199 ad mi_switch(lwp_t *l)
363 1.26 cgd {
364 1.76 thorpej struct schedstate_percpu *spc;
365 1.188 yamt struct lwp *newl;
366 1.174 ad int retval, oldspl;
367 1.196 ad struct cpu_info *ci;
368 1.199 ad struct timeval tv;
369 1.199 ad bool returning;
370 1.26 cgd
371 1.188 yamt KASSERT(lwp_locked(l, NULL));
372 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
373 1.174 ad
374 1.174 ad #ifdef KSTACK_CHECK_MAGIC
375 1.174 ad kstack_check_magic(l);
376 1.174 ad #endif
377 1.83 thorpej
378 1.199 ad microtime(&tv);
379 1.199 ad
380 1.90 sommerfe /*
381 1.174 ad * It's safe to read the per CPU schedstate unlocked here, as all we
382 1.174 ad * are after is the run time and that's guarenteed to have been last
383 1.174 ad * updated by this CPU.
384 1.90 sommerfe */
385 1.196 ad ci = l->l_cpu;
386 1.196 ad KDASSERT(ci == curcpu());
387 1.26 cgd
388 1.190 ad /*
389 1.190 ad * Process is about to yield the CPU; clear the appropriate
390 1.190 ad * scheduling flags.
391 1.190 ad */
392 1.196 ad spc = &ci->ci_schedstate;
393 1.199 ad returning = false;
394 1.190 ad newl = NULL;
395 1.190 ad
396 1.199 ad /*
397 1.199 ad * If we have been asked to switch to a specific LWP, then there
398 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
399 1.199 ad * blocking, then return to the interrupted thread without adjusting
400 1.199 ad * VM context or its start time: neither have been changed in order
401 1.199 ad * to take the interrupt.
402 1.199 ad */
403 1.190 ad if (l->l_switchto != NULL) {
404 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
405 1.199 ad returning = true;
406 1.199 ad softint_block(l);
407 1.199 ad if ((l->l_flag & LW_TIMEINTR) != 0)
408 1.199 ad updatertime(l, &tv);
409 1.199 ad }
410 1.190 ad newl = l->l_switchto;
411 1.190 ad l->l_switchto = NULL;
412 1.190 ad }
413 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
414 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
415 1.204 ad /* There are pending soft interrupts, so pick one. */
416 1.204 ad newl = softint_picklwp();
417 1.204 ad newl->l_stat = LSONPROC;
418 1.204 ad newl->l_flag |= LW_RUNNING;
419 1.204 ad }
420 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
421 1.190 ad
422 1.180 dsl /* Count time spent in current system call */
423 1.199 ad if (!returning) {
424 1.199 ad SYSCALL_TIME_SLEEP(l);
425 1.180 dsl
426 1.199 ad /*
427 1.199 ad * XXXSMP If we are using h/w performance counters,
428 1.199 ad * save context.
429 1.199 ad */
430 1.174 ad #if PERFCTRS
431 1.199 ad if (PMC_ENABLED(l->l_proc)) {
432 1.199 ad pmc_save_context(l->l_proc);
433 1.199 ad }
434 1.199 ad #endif
435 1.199 ad updatertime(l, &tv);
436 1.174 ad }
437 1.113 gmcgarry
438 1.113 gmcgarry /*
439 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
440 1.113 gmcgarry */
441 1.188 yamt mutex_spin_enter(spc->spc_mutex);
442 1.174 ad KASSERT(l->l_stat != LSRUN);
443 1.204 ad if (l->l_stat == LSONPROC && l != newl) {
444 1.188 yamt KASSERT(lwp_locked(l, &spc->spc_lwplock));
445 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
446 1.188 yamt l->l_stat = LSRUN;
447 1.188 yamt lwp_setlock(l, spc->spc_mutex);
448 1.188 yamt sched_enqueue(l, true);
449 1.188 yamt } else
450 1.188 yamt l->l_stat = LSIDL;
451 1.174 ad }
452 1.174 ad
453 1.174 ad /*
454 1.201 rmind * Let sched_nextlwp() select the LWP to run the CPU next.
455 1.188 yamt * If no LWP is runnable, switch to the idle LWP.
456 1.201 rmind * Note that spc_lwplock might not necessary be held.
457 1.174 ad */
458 1.190 ad if (newl == NULL) {
459 1.190 ad newl = sched_nextlwp();
460 1.190 ad if (newl != NULL) {
461 1.190 ad sched_dequeue(newl);
462 1.190 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
463 1.190 ad newl->l_stat = LSONPROC;
464 1.196 ad newl->l_cpu = ci;
465 1.190 ad newl->l_flag |= LW_RUNNING;
466 1.190 ad lwp_setlock(newl, &spc->spc_lwplock);
467 1.190 ad } else {
468 1.196 ad newl = ci->ci_data.cpu_idlelwp;
469 1.190 ad newl->l_stat = LSONPROC;
470 1.190 ad newl->l_flag |= LW_RUNNING;
471 1.190 ad }
472 1.204 ad /*
473 1.204 ad * Only clear want_resched if there are no
474 1.204 ad * pending (slow) software interrupts.
475 1.204 ad */
476 1.204 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
477 1.199 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
478 1.204 ad spc->spc_curpriority = lwp_eprio(newl);
479 1.199 ad }
480 1.199 ad
481 1.204 ad /* Items that must be updated with the CPU locked. */
482 1.199 ad if (!returning) {
483 1.204 ad /* Update the new LWP's start time. */
484 1.199 ad newl->l_stime = tv;
485 1.204 ad
486 1.199 ad /*
487 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
488 1.204 ad * We use cpu_onproc to keep track of which kernel or
489 1.204 ad * user thread is running 'underneath' the software
490 1.204 ad * interrupt. This is important for time accounting,
491 1.204 ad * itimers and forcing user threads to preempt (aston).
492 1.199 ad */
493 1.204 ad ci->ci_data.cpu_onproc = newl;
494 1.188 yamt }
495 1.188 yamt
496 1.188 yamt if (l != newl) {
497 1.188 yamt struct lwp *prevlwp;
498 1.174 ad
499 1.188 yamt /*
500 1.188 yamt * If the old LWP has been moved to a run queue above,
501 1.188 yamt * drop the general purpose LWP lock: it's now locked
502 1.188 yamt * by the scheduler lock.
503 1.188 yamt *
504 1.188 yamt * Otherwise, drop the scheduler lock. We're done with
505 1.188 yamt * the run queues for now.
506 1.188 yamt */
507 1.188 yamt if (l->l_mutex == spc->spc_mutex) {
508 1.188 yamt mutex_spin_exit(&spc->spc_lwplock);
509 1.188 yamt } else {
510 1.188 yamt mutex_spin_exit(spc->spc_mutex);
511 1.188 yamt }
512 1.188 yamt
513 1.188 yamt /* Unlocked, but for statistics only. */
514 1.188 yamt uvmexp.swtch++;
515 1.188 yamt
516 1.199 ad /*
517 1.199 ad * Save old VM context, unless a soft interrupt
518 1.199 ad * handler is blocking.
519 1.199 ad */
520 1.199 ad if (!returning)
521 1.199 ad pmap_deactivate(l);
522 1.188 yamt
523 1.207 ad /* Update status for lwpctl, if present. */
524 1.207 ad if (l->l_lwpctl != NULL)
525 1.207 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
526 1.207 ad
527 1.188 yamt /* Switch to the new LWP.. */
528 1.188 yamt l->l_ncsw++;
529 1.188 yamt l->l_flag &= ~LW_RUNNING;
530 1.196 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
531 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
532 1.207 ad ci = curcpu();
533 1.207 ad
534 1.188 yamt /*
535 1.188 yamt * .. we have switched away and are now back so we must
536 1.188 yamt * be the new curlwp. prevlwp is who we replaced.
537 1.188 yamt */
538 1.188 yamt if (prevlwp != NULL) {
539 1.207 ad ci->ci_mtx_oldspl = oldspl;
540 1.188 yamt lwp_unlock(prevlwp);
541 1.188 yamt } else {
542 1.188 yamt splx(oldspl);
543 1.188 yamt }
544 1.174 ad
545 1.188 yamt /* Restore VM context. */
546 1.188 yamt pmap_activate(l);
547 1.188 yamt retval = 1;
548 1.207 ad
549 1.207 ad /* Update status for lwpctl, if present. */
550 1.207 ad if (l->l_lwpctl != NULL)
551 1.207 ad l->l_lwpctl->lc_curcpu = (short)ci->ci_data.cpu_index;
552 1.188 yamt } else {
553 1.188 yamt /* Nothing to do - just unlock and return. */
554 1.188 yamt mutex_spin_exit(spc->spc_mutex);
555 1.188 yamt lwp_unlock(l);
556 1.122 thorpej retval = 0;
557 1.122 thorpej }
558 1.110 briggs
559 1.188 yamt KASSERT(l == curlwp);
560 1.188 yamt KASSERT(l->l_stat == LSONPROC);
561 1.207 ad KASSERT(l->l_cpu == ci);
562 1.188 yamt
563 1.110 briggs /*
564 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
565 1.26 cgd */
566 1.114 gmcgarry #if PERFCTRS
567 1.175 christos if (PMC_ENABLED(l->l_proc)) {
568 1.175 christos pmc_restore_context(l->l_proc);
569 1.166 christos }
570 1.114 gmcgarry #endif
571 1.110 briggs
572 1.110 briggs /*
573 1.76 thorpej * We're running again; record our new start time. We might
574 1.174 ad * be running on a new CPU now, so don't use the cached
575 1.76 thorpej * schedstate_percpu pointer.
576 1.76 thorpej */
577 1.180 dsl SYSCALL_TIME_WAKEUP(l);
578 1.195 ad KASSERT(curlwp == l);
579 1.207 ad KDASSERT(l->l_cpu == ci);
580 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
581 1.169 yamt
582 1.122 thorpej return retval;
583 1.26 cgd }
584 1.26 cgd
585 1.26 cgd /*
586 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
587 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
588 1.174 ad *
589 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
590 1.26 cgd */
591 1.26 cgd void
592 1.122 thorpej setrunnable(struct lwp *l)
593 1.26 cgd {
594 1.122 thorpej struct proc *p = l->l_proc;
595 1.205 ad struct cpu_info *ci;
596 1.174 ad sigset_t *ss;
597 1.26 cgd
598 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
599 1.183 ad KASSERT(mutex_owned(&p->p_smutex));
600 1.183 ad KASSERT(lwp_locked(l, NULL));
601 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
602 1.83 thorpej
603 1.122 thorpej switch (l->l_stat) {
604 1.122 thorpej case LSSTOP:
605 1.33 mycroft /*
606 1.33 mycroft * If we're being traced (possibly because someone attached us
607 1.33 mycroft * while we were stopped), check for a signal from the debugger.
608 1.33 mycroft */
609 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
610 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
611 1.174 ad ss = &l->l_sigpend.sp_set;
612 1.174 ad else
613 1.174 ad ss = &p->p_sigpend.sp_set;
614 1.174 ad sigaddset(ss, p->p_xstat);
615 1.174 ad signotify(l);
616 1.53 mycroft }
617 1.174 ad p->p_nrlwps++;
618 1.26 cgd break;
619 1.174 ad case LSSUSPENDED:
620 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
621 1.174 ad p->p_nrlwps++;
622 1.192 rmind cv_broadcast(&p->p_lwpcv);
623 1.122 thorpej break;
624 1.174 ad case LSSLEEP:
625 1.174 ad KASSERT(l->l_wchan != NULL);
626 1.26 cgd break;
627 1.174 ad default:
628 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
629 1.26 cgd }
630 1.139 cl
631 1.174 ad /*
632 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
633 1.174 ad * again. If not, mark it as still sleeping.
634 1.174 ad */
635 1.174 ad if (l->l_wchan != NULL) {
636 1.174 ad l->l_stat = LSSLEEP;
637 1.183 ad /* lwp_unsleep() will release the lock. */
638 1.183 ad lwp_unsleep(l);
639 1.174 ad return;
640 1.174 ad }
641 1.139 cl
642 1.174 ad /*
643 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
644 1.174 ad * about to call mi_switch(), in which case it will yield.
645 1.174 ad */
646 1.188 yamt if ((l->l_flag & LW_RUNNING) != 0) {
647 1.174 ad l->l_stat = LSONPROC;
648 1.174 ad l->l_slptime = 0;
649 1.174 ad lwp_unlock(l);
650 1.174 ad return;
651 1.174 ad }
652 1.122 thorpej
653 1.174 ad /*
654 1.205 ad * Look for a CPU to run.
655 1.205 ad * Set the LWP runnable.
656 1.174 ad */
657 1.205 ad ci = sched_takecpu(l);
658 1.205 ad l->l_cpu = ci;
659 1.206 ad if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
660 1.206 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
661 1.206 ad lwp_lock(l);
662 1.206 ad }
663 1.188 yamt sched_setrunnable(l);
664 1.174 ad l->l_stat = LSRUN;
665 1.122 thorpej l->l_slptime = 0;
666 1.174 ad
667 1.205 ad /*
668 1.205 ad * If thread is swapped out - wake the swapper to bring it back in.
669 1.205 ad * Otherwise, enter it into a run queue.
670 1.205 ad */
671 1.178 pavel if (l->l_flag & LW_INMEM) {
672 1.188 yamt sched_enqueue(l, false);
673 1.188 yamt resched_cpu(l);
674 1.174 ad lwp_unlock(l);
675 1.174 ad } else {
676 1.174 ad lwp_unlock(l);
677 1.177 ad uvm_kick_scheduler();
678 1.174 ad }
679 1.26 cgd }
680 1.26 cgd
681 1.26 cgd /*
682 1.174 ad * suspendsched:
683 1.174 ad *
684 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
685 1.174 ad */
686 1.94 bouyer void
687 1.174 ad suspendsched(void)
688 1.94 bouyer {
689 1.174 ad CPU_INFO_ITERATOR cii;
690 1.174 ad struct cpu_info *ci;
691 1.122 thorpej struct lwp *l;
692 1.174 ad struct proc *p;
693 1.94 bouyer
694 1.94 bouyer /*
695 1.174 ad * We do this by process in order not to violate the locking rules.
696 1.94 bouyer */
697 1.204 ad mutex_enter(&proclist_lock);
698 1.174 ad PROCLIST_FOREACH(p, &allproc) {
699 1.174 ad mutex_enter(&p->p_smutex);
700 1.174 ad
701 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
702 1.174 ad mutex_exit(&p->p_smutex);
703 1.94 bouyer continue;
704 1.174 ad }
705 1.174 ad
706 1.174 ad p->p_stat = SSTOP;
707 1.174 ad
708 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
709 1.174 ad if (l == curlwp)
710 1.174 ad continue;
711 1.174 ad
712 1.174 ad lwp_lock(l);
713 1.122 thorpej
714 1.97 enami /*
715 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
716 1.174 ad * when it tries to return to user mode. We want to
717 1.174 ad * try and get to get as many LWPs as possible to
718 1.174 ad * the user / kernel boundary, so that they will
719 1.174 ad * release any locks that they hold.
720 1.97 enami */
721 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
722 1.174 ad
723 1.174 ad if (l->l_stat == LSSLEEP &&
724 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
725 1.174 ad /* setrunnable() will release the lock. */
726 1.174 ad setrunnable(l);
727 1.174 ad continue;
728 1.174 ad }
729 1.174 ad
730 1.174 ad lwp_unlock(l);
731 1.94 bouyer }
732 1.174 ad
733 1.174 ad mutex_exit(&p->p_smutex);
734 1.94 bouyer }
735 1.204 ad mutex_exit(&proclist_lock);
736 1.174 ad
737 1.174 ad /*
738 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
739 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
740 1.174 ad */
741 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
742 1.204 ad spc_lock(ci);
743 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
744 1.204 ad spc_unlock(ci);
745 1.204 ad }
746 1.174 ad }
747 1.174 ad
748 1.174 ad /*
749 1.174 ad * sched_kpri:
750 1.174 ad *
751 1.174 ad * Scale a priority level to a kernel priority level, usually
752 1.174 ad * for an LWP that is about to sleep.
753 1.174 ad */
754 1.185 yamt pri_t
755 1.174 ad sched_kpri(struct lwp *l)
756 1.174 ad {
757 1.204 ad pri_t pri;
758 1.204 ad
759 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
760 1.174 ad /*
761 1.204 ad * Hack: if a user thread is being used to run a soft
762 1.204 ad * interrupt, we need to boost the priority here.
763 1.204 ad */
764 1.204 ad if ((l->l_pflag & LP_INTR) != 0 && l->l_priority < PRI_KERNEL_RT)
765 1.204 ad return softint_kpri(l);
766 1.204 ad #endif
767 1.174 ad
768 1.204 ad /*
769 1.204 ad * Scale user priorities (0 -> 63) up to kernel priorities
770 1.204 ad * in the range (64 -> 95). This makes assumptions about
771 1.204 ad * the priority space and so should be kept in sync with
772 1.204 ad * param.h.
773 1.204 ad */
774 1.204 ad if ((pri = l->l_priority) >= PRI_KERNEL)
775 1.204 ad return pri;
776 1.204 ad return (pri >> 1) + PRI_KERNEL;
777 1.174 ad }
778 1.174 ad
779 1.174 ad /*
780 1.174 ad * sched_unsleep:
781 1.174 ad *
782 1.174 ad * The is called when the LWP has not been awoken normally but instead
783 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
784 1.174 ad * it's not a valid action for running or idle LWPs.
785 1.174 ad */
786 1.188 yamt static void
787 1.174 ad sched_unsleep(struct lwp *l)
788 1.174 ad {
789 1.174 ad
790 1.174 ad lwp_unlock(l);
791 1.174 ad panic("sched_unsleep");
792 1.174 ad }
793 1.174 ad
794 1.204 ad void
795 1.188 yamt resched_cpu(struct lwp *l)
796 1.188 yamt {
797 1.188 yamt struct cpu_info *ci;
798 1.188 yamt
799 1.188 yamt /*
800 1.188 yamt * XXXSMP
801 1.188 yamt * Since l->l_cpu persists across a context switch,
802 1.188 yamt * this gives us *very weak* processor affinity, in
803 1.188 yamt * that we notify the CPU on which the process last
804 1.188 yamt * ran that it should try to switch.
805 1.188 yamt *
806 1.188 yamt * This does not guarantee that the process will run on
807 1.188 yamt * that processor next, because another processor might
808 1.188 yamt * grab it the next time it performs a context switch.
809 1.188 yamt *
810 1.188 yamt * This also does not handle the case where its last
811 1.188 yamt * CPU is running a higher-priority process, but every
812 1.188 yamt * other CPU is running a lower-priority process. There
813 1.188 yamt * are ways to handle this situation, but they're not
814 1.188 yamt * currently very pretty, and we also need to weigh the
815 1.188 yamt * cost of moving a process from one CPU to another.
816 1.188 yamt */
817 1.204 ad ci = l->l_cpu;
818 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
819 1.188 yamt cpu_need_resched(ci, 0);
820 1.188 yamt }
821 1.188 yamt
822 1.188 yamt static void
823 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
824 1.174 ad {
825 1.174 ad
826 1.188 yamt KASSERT(lwp_locked(l, NULL));
827 1.174 ad
828 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
829 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
830 1.204 ad sched_dequeue(l);
831 1.204 ad l->l_priority = pri;
832 1.204 ad sched_enqueue(l, false);
833 1.204 ad } else {
834 1.174 ad l->l_priority = pri;
835 1.157 yamt }
836 1.188 yamt resched_cpu(l);
837 1.184 yamt }
838 1.184 yamt
839 1.188 yamt static void
840 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
841 1.184 yamt {
842 1.184 yamt
843 1.188 yamt KASSERT(lwp_locked(l, NULL));
844 1.184 yamt
845 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
846 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
847 1.204 ad sched_dequeue(l);
848 1.204 ad l->l_inheritedprio = pri;
849 1.204 ad sched_enqueue(l, false);
850 1.204 ad } else {
851 1.184 yamt l->l_inheritedprio = pri;
852 1.184 yamt }
853 1.188 yamt resched_cpu(l);
854 1.184 yamt }
855 1.184 yamt
856 1.184 yamt struct lwp *
857 1.184 yamt syncobj_noowner(wchan_t wchan)
858 1.184 yamt {
859 1.184 yamt
860 1.184 yamt return NULL;
861 1.151 yamt }
862 1.151 yamt
863 1.113 gmcgarry
864 1.188 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
865 1.188 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
866 1.115 nisimura
867 1.130 nathanw /*
868 1.188 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
869 1.188 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
870 1.188 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
871 1.188 yamt *
872 1.188 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
873 1.188 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
874 1.188 yamt *
875 1.188 yamt * If you dont want to bother with the faster/more-accurate formula, you
876 1.188 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
877 1.188 yamt * (more general) method of calculating the %age of CPU used by a process.
878 1.134 matt */
879 1.188 yamt #define CCPU_SHIFT (FSHIFT + 1)
880 1.134 matt
881 1.134 matt /*
882 1.188 yamt * sched_pstats:
883 1.188 yamt *
884 1.188 yamt * Update process statistics and check CPU resource allocation.
885 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
886 1.188 yamt * priorities.
887 1.130 nathanw */
888 1.188 yamt /* ARGSUSED */
889 1.113 gmcgarry void
890 1.188 yamt sched_pstats(void *arg)
891 1.113 gmcgarry {
892 1.188 yamt struct rlimit *rlim;
893 1.188 yamt struct lwp *l;
894 1.188 yamt struct proc *p;
895 1.204 ad int sig, clkhz;
896 1.188 yamt long runtm;
897 1.113 gmcgarry
898 1.188 yamt sched_pstats_ticks++;
899 1.174 ad
900 1.188 yamt mutex_enter(&proclist_mutex);
901 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
902 1.188 yamt /*
903 1.188 yamt * Increment time in/out of memory and sleep time (if
904 1.188 yamt * sleeping). We ignore overflow; with 16-bit int's
905 1.188 yamt * (remember them?) overflow takes 45 days.
906 1.188 yamt */
907 1.188 yamt mutex_enter(&p->p_smutex);
908 1.188 yamt mutex_spin_enter(&p->p_stmutex);
909 1.188 yamt runtm = p->p_rtime.tv_sec;
910 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
911 1.188 yamt if ((l->l_flag & LW_IDLE) != 0)
912 1.188 yamt continue;
913 1.188 yamt lwp_lock(l);
914 1.188 yamt runtm += l->l_rtime.tv_sec;
915 1.188 yamt l->l_swtime++;
916 1.200 rmind sched_pstats_hook(l);
917 1.188 yamt lwp_unlock(l);
918 1.113 gmcgarry
919 1.188 yamt /*
920 1.188 yamt * p_pctcpu is only for ps.
921 1.188 yamt */
922 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
923 1.188 yamt if (l->l_slptime < 1) {
924 1.188 yamt clkhz = stathz != 0 ? stathz : hz;
925 1.188 yamt #if (FSHIFT >= CCPU_SHIFT)
926 1.188 yamt l->l_pctcpu += (clkhz == 100) ?
927 1.188 yamt ((fixpt_t)l->l_cpticks) <<
928 1.188 yamt (FSHIFT - CCPU_SHIFT) :
929 1.188 yamt 100 * (((fixpt_t) p->p_cpticks)
930 1.188 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
931 1.188 yamt #else
932 1.188 yamt l->l_pctcpu += ((FSCALE - ccpu) *
933 1.188 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
934 1.146 matt #endif
935 1.188 yamt l->l_cpticks = 0;
936 1.188 yamt }
937 1.188 yamt }
938 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
939 1.188 yamt mutex_spin_exit(&p->p_stmutex);
940 1.174 ad
941 1.188 yamt /*
942 1.188 yamt * Check if the process exceeds its CPU resource allocation.
943 1.188 yamt * If over max, kill it.
944 1.188 yamt */
945 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
946 1.188 yamt sig = 0;
947 1.188 yamt if (runtm >= rlim->rlim_cur) {
948 1.188 yamt if (runtm >= rlim->rlim_max)
949 1.188 yamt sig = SIGKILL;
950 1.188 yamt else {
951 1.188 yamt sig = SIGXCPU;
952 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
953 1.188 yamt rlim->rlim_cur += 5;
954 1.188 yamt }
955 1.188 yamt }
956 1.188 yamt mutex_exit(&p->p_smutex);
957 1.188 yamt if (sig) {
958 1.188 yamt psignal(p, sig);
959 1.188 yamt }
960 1.174 ad }
961 1.188 yamt mutex_exit(&proclist_mutex);
962 1.188 yamt uvm_meter();
963 1.191 ad cv_wakeup(&lbolt);
964 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
965 1.113 gmcgarry }
966 1.190 ad
967 1.190 ad void
968 1.190 ad sched_init(void)
969 1.190 ad {
970 1.190 ad
971 1.190 ad callout_init(&sched_pstats_ch, 0);
972 1.190 ad callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
973 1.190 ad sched_setup();
974 1.190 ad sched_pstats(NULL);
975 1.190 ad }
976