Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.208
      1  1.208        ad /*	$NetBSD: kern_synch.c,v 1.208 2007/11/29 15:41:07 ad Exp $	*/
      2   1.63   thorpej 
      3   1.63   thorpej /*-
      4  1.174        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5   1.63   thorpej  * All rights reserved.
      6   1.63   thorpej  *
      7   1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  1.188      yamt  * Daniel Sieger.
     11   1.63   thorpej  *
     12   1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13   1.63   thorpej  * modification, are permitted provided that the following conditions
     14   1.63   thorpej  * are met:
     15   1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16   1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17   1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19   1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20   1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     21   1.63   thorpej  *    must display the following acknowledgement:
     22   1.63   thorpej  *	This product includes software developed by the NetBSD
     23   1.63   thorpej  *	Foundation, Inc. and its contributors.
     24   1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25   1.63   thorpej  *    contributors may be used to endorse or promote products derived
     26   1.63   thorpej  *    from this software without specific prior written permission.
     27   1.63   thorpej  *
     28   1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29   1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30   1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31   1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32   1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33   1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34   1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35   1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36   1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37   1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38   1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     39   1.63   thorpej  */
     40   1.26       cgd 
     41   1.26       cgd /*-
     42   1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43   1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     44   1.26       cgd  * (c) UNIX System Laboratories, Inc.
     45   1.26       cgd  * All or some portions of this file are derived from material licensed
     46   1.26       cgd  * to the University of California by American Telephone and Telegraph
     47   1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48   1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     49   1.26       cgd  *
     50   1.26       cgd  * Redistribution and use in source and binary forms, with or without
     51   1.26       cgd  * modification, are permitted provided that the following conditions
     52   1.26       cgd  * are met:
     53   1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     54   1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     55   1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     56   1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     57   1.26       cgd  *    documentation and/or other materials provided with the distribution.
     58  1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     59   1.26       cgd  *    may be used to endorse or promote products derived from this software
     60   1.26       cgd  *    without specific prior written permission.
     61   1.26       cgd  *
     62   1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63   1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64   1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65   1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66   1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67   1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68   1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69   1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70   1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71   1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72   1.26       cgd  * SUCH DAMAGE.
     73   1.26       cgd  *
     74   1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75   1.26       cgd  */
     76  1.106     lukem 
     77  1.106     lukem #include <sys/cdefs.h>
     78  1.208        ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.208 2007/11/29 15:41:07 ad Exp $");
     79   1.48       mrg 
     80  1.109      yamt #include "opt_kstack.h"
     81   1.82   thorpej #include "opt_lockdebug.h"
     82   1.83   thorpej #include "opt_multiprocessor.h"
     83  1.110    briggs #include "opt_perfctrs.h"
     84   1.26       cgd 
     85  1.174        ad #define	__MUTEX_PRIVATE
     86  1.174        ad 
     87   1.26       cgd #include <sys/param.h>
     88   1.26       cgd #include <sys/systm.h>
     89   1.26       cgd #include <sys/proc.h>
     90   1.26       cgd #include <sys/kernel.h>
     91  1.111    briggs #if defined(PERFCTRS)
     92  1.110    briggs #include <sys/pmc.h>
     93  1.111    briggs #endif
     94  1.188      yamt #include <sys/cpu.h>
     95   1.26       cgd #include <sys/resourcevar.h>
     96   1.55      ross #include <sys/sched.h>
     97  1.179       dsl #include <sys/syscall_stats.h>
     98  1.174        ad #include <sys/sleepq.h>
     99  1.174        ad #include <sys/lockdebug.h>
    100  1.190        ad #include <sys/evcnt.h>
    101  1.199        ad #include <sys/intr.h>
    102  1.207        ad #include <sys/lwpctl.h>
    103   1.47       mrg 
    104   1.47       mrg #include <uvm/uvm_extern.h>
    105   1.47       mrg 
    106  1.190        ad callout_t sched_pstats_ch;
    107  1.188      yamt unsigned int sched_pstats_ticks;
    108   1.34  christos 
    109  1.190        ad kcondvar_t	lbolt;			/* once a second sleep address */
    110   1.26       cgd 
    111  1.188      yamt static void	sched_unsleep(struct lwp *);
    112  1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    113  1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    114  1.122   thorpej 
    115  1.174        ad syncobj_t sleep_syncobj = {
    116  1.174        ad 	SOBJ_SLEEPQ_SORTED,
    117  1.174        ad 	sleepq_unsleep,
    118  1.184      yamt 	sleepq_changepri,
    119  1.184      yamt 	sleepq_lendpri,
    120  1.184      yamt 	syncobj_noowner,
    121  1.174        ad };
    122  1.174        ad 
    123  1.174        ad syncobj_t sched_syncobj = {
    124  1.174        ad 	SOBJ_SLEEPQ_SORTED,
    125  1.174        ad 	sched_unsleep,
    126  1.184      yamt 	sched_changepri,
    127  1.184      yamt 	sched_lendpri,
    128  1.184      yamt 	syncobj_noowner,
    129  1.174        ad };
    130  1.122   thorpej 
    131   1.26       cgd /*
    132  1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    133  1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    134  1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    135  1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    136  1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    137  1.174        ad  * it can be made higher to block network software interrupts after panics.
    138   1.26       cgd  */
    139  1.174        ad int	safepri;
    140   1.26       cgd 
    141   1.26       cgd /*
    142  1.174        ad  * OBSOLETE INTERFACE
    143  1.174        ad  *
    144   1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    145   1.26       cgd  * performed on the specified identifier.  The process will then be made
    146  1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    147  1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    148   1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    149   1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    150   1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    151   1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    152   1.26       cgd  * call should be interrupted by the signal (return EINTR).
    153   1.77   thorpej  *
    154  1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    155  1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    156  1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    157  1.174        ad  * return.
    158   1.26       cgd  */
    159   1.26       cgd int
    160  1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    161  1.174        ad 	volatile struct simplelock *interlock)
    162   1.26       cgd {
    163  1.122   thorpej 	struct lwp *l = curlwp;
    164  1.174        ad 	sleepq_t *sq;
    165  1.188      yamt 	int error;
    166   1.26       cgd 
    167  1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    168  1.204        ad 
    169  1.174        ad 	if (sleepq_dontsleep(l)) {
    170  1.174        ad 		(void)sleepq_abort(NULL, 0);
    171  1.174        ad 		if ((priority & PNORELOCK) != 0)
    172   1.77   thorpej 			simple_unlock(interlock);
    173  1.174        ad 		return 0;
    174   1.26       cgd 	}
    175   1.78  sommerfe 
    176  1.204        ad 	l->l_kpriority = true;
    177  1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    178  1.174        ad 	sleepq_enter(sq, l);
    179  1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    180   1.42       cgd 
    181  1.174        ad 	if (interlock != NULL) {
    182  1.204        ad 		KASSERT(simple_lock_held(interlock));
    183  1.174        ad 		simple_unlock(interlock);
    184  1.150       chs 	}
    185  1.150       chs 
    186  1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    187  1.126        pk 
    188  1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    189  1.126        pk 		simple_lock(interlock);
    190  1.174        ad 
    191  1.174        ad 	return error;
    192   1.26       cgd }
    193   1.26       cgd 
    194  1.187        ad int
    195  1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    196  1.187        ad 	kmutex_t *mtx)
    197  1.187        ad {
    198  1.187        ad 	struct lwp *l = curlwp;
    199  1.187        ad 	sleepq_t *sq;
    200  1.188      yamt 	int error;
    201  1.187        ad 
    202  1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    203  1.204        ad 
    204  1.187        ad 	if (sleepq_dontsleep(l)) {
    205  1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    206  1.187        ad 		return 0;
    207  1.187        ad 	}
    208  1.187        ad 
    209  1.204        ad 	l->l_kpriority = true;
    210  1.187        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    211  1.187        ad 	sleepq_enter(sq, l);
    212  1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    213  1.187        ad 	mutex_exit(mtx);
    214  1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    215  1.187        ad 
    216  1.187        ad 	if ((priority & PNORELOCK) == 0)
    217  1.187        ad 		mutex_enter(mtx);
    218  1.187        ad 
    219  1.187        ad 	return error;
    220  1.187        ad }
    221  1.187        ad 
    222   1.26       cgd /*
    223  1.174        ad  * General sleep call for situations where a wake-up is not expected.
    224   1.26       cgd  */
    225  1.174        ad int
    226  1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    227   1.26       cgd {
    228  1.174        ad 	struct lwp *l = curlwp;
    229  1.174        ad 	sleepq_t *sq;
    230  1.174        ad 	int error;
    231   1.26       cgd 
    232  1.174        ad 	if (sleepq_dontsleep(l))
    233  1.174        ad 		return sleepq_abort(NULL, 0);
    234   1.26       cgd 
    235  1.174        ad 	if (mtx != NULL)
    236  1.174        ad 		mutex_exit(mtx);
    237  1.204        ad 	l->l_kpriority = true;
    238  1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    239  1.174        ad 	sleepq_enter(sq, l);
    240  1.204        ad 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    241  1.188      yamt 	error = sleepq_block(timo, intr);
    242  1.174        ad 	if (mtx != NULL)
    243  1.174        ad 		mutex_enter(mtx);
    244   1.83   thorpej 
    245  1.174        ad 	return error;
    246  1.139        cl }
    247  1.139        cl 
    248   1.26       cgd /*
    249  1.174        ad  * OBSOLETE INTERFACE
    250  1.174        ad  *
    251   1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    252   1.26       cgd  */
    253   1.26       cgd void
    254  1.174        ad wakeup(wchan_t ident)
    255   1.26       cgd {
    256  1.174        ad 	sleepq_t *sq;
    257   1.83   thorpej 
    258  1.174        ad 	if (cold)
    259  1.174        ad 		return;
    260   1.83   thorpej 
    261  1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    262  1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    263   1.63   thorpej }
    264   1.63   thorpej 
    265   1.63   thorpej /*
    266  1.174        ad  * OBSOLETE INTERFACE
    267  1.174        ad  *
    268   1.63   thorpej  * Make the highest priority process first in line on the specified
    269   1.63   thorpej  * identifier runnable.
    270   1.63   thorpej  */
    271  1.174        ad void
    272  1.174        ad wakeup_one(wchan_t ident)
    273   1.63   thorpej {
    274  1.174        ad 	sleepq_t *sq;
    275   1.63   thorpej 
    276  1.174        ad 	if (cold)
    277  1.174        ad 		return;
    278  1.188      yamt 
    279  1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    280  1.174        ad 	sleepq_wake(sq, ident, 1);
    281  1.174        ad }
    282   1.63   thorpej 
    283  1.117  gmcgarry 
    284  1.117  gmcgarry /*
    285  1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    286  1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    287  1.198        ad  * current process explicitly requests it (eg sched_yield(2)).
    288  1.117  gmcgarry  */
    289  1.117  gmcgarry void
    290  1.117  gmcgarry yield(void)
    291  1.117  gmcgarry {
    292  1.122   thorpej 	struct lwp *l = curlwp;
    293  1.117  gmcgarry 
    294  1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    295  1.174        ad 	lwp_lock(l);
    296  1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    297  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    298  1.204        ad 	l->l_kpriority = false;
    299  1.204        ad 	if (l->l_class == SCHED_OTHER) {
    300  1.204        ad 		/*
    301  1.204        ad 		 * Only for timeshared threads.  It will be reset
    302  1.204        ad 		 * by the scheduler in due course.
    303  1.204        ad 		 */
    304  1.204        ad 		l->l_priority = 0;
    305  1.204        ad 	}
    306  1.188      yamt 	(void)mi_switch(l);
    307  1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    308   1.69   thorpej }
    309   1.69   thorpej 
    310   1.69   thorpej /*
    311   1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    312  1.156    rpaulo  * and performs an involuntary context switch.
    313   1.69   thorpej  */
    314   1.69   thorpej void
    315  1.174        ad preempt(void)
    316   1.69   thorpej {
    317  1.122   thorpej 	struct lwp *l = curlwp;
    318   1.69   thorpej 
    319  1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    320  1.174        ad 	lwp_lock(l);
    321  1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    322  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    323  1.204        ad 	l->l_kpriority = false;
    324  1.174        ad 	l->l_nivcsw++;
    325  1.188      yamt 	(void)mi_switch(l);
    326  1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    327   1.69   thorpej }
    328   1.69   thorpej 
    329   1.69   thorpej /*
    330  1.188      yamt  * Compute the amount of time during which the current lwp was running.
    331  1.130   nathanw  *
    332  1.188      yamt  * - update l_rtime unless it's an idle lwp.
    333  1.188      yamt  */
    334  1.188      yamt 
    335  1.199        ad void
    336  1.199        ad updatertime(lwp_t *l, const struct timeval *tv)
    337  1.188      yamt {
    338  1.188      yamt 	long s, u;
    339  1.188      yamt 
    340  1.199        ad 	if ((l->l_flag & LW_IDLE) != 0)
    341  1.188      yamt 		return;
    342  1.188      yamt 
    343  1.199        ad 	u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
    344  1.199        ad 	s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
    345  1.188      yamt 	if (u < 0) {
    346  1.188      yamt 		u += 1000000;
    347  1.188      yamt 		s--;
    348  1.188      yamt 	} else if (u >= 1000000) {
    349  1.188      yamt 		u -= 1000000;
    350  1.188      yamt 		s++;
    351  1.188      yamt 	}
    352  1.188      yamt 	l->l_rtime.tv_usec = u;
    353  1.188      yamt 	l->l_rtime.tv_sec = s;
    354  1.188      yamt }
    355  1.188      yamt 
    356  1.188      yamt /*
    357  1.188      yamt  * The machine independent parts of context switch.
    358  1.188      yamt  *
    359  1.188      yamt  * Returns 1 if another LWP was actually run.
    360   1.26       cgd  */
    361  1.122   thorpej int
    362  1.199        ad mi_switch(lwp_t *l)
    363   1.26       cgd {
    364   1.76   thorpej 	struct schedstate_percpu *spc;
    365  1.188      yamt 	struct lwp *newl;
    366  1.174        ad 	int retval, oldspl;
    367  1.196        ad 	struct cpu_info *ci;
    368  1.199        ad 	struct timeval tv;
    369  1.199        ad 	bool returning;
    370   1.26       cgd 
    371  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    372  1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    373  1.174        ad 
    374  1.174        ad #ifdef KSTACK_CHECK_MAGIC
    375  1.174        ad 	kstack_check_magic(l);
    376  1.174        ad #endif
    377   1.83   thorpej 
    378  1.199        ad 	microtime(&tv);
    379  1.199        ad 
    380   1.90  sommerfe 	/*
    381  1.174        ad 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    382  1.174        ad 	 * are after is the run time and that's guarenteed to have been last
    383  1.174        ad 	 * updated by this CPU.
    384   1.90  sommerfe 	 */
    385  1.196        ad 	ci = l->l_cpu;
    386  1.196        ad 	KDASSERT(ci == curcpu());
    387   1.26       cgd 
    388  1.190        ad 	/*
    389  1.190        ad 	 * Process is about to yield the CPU; clear the appropriate
    390  1.190        ad 	 * scheduling flags.
    391  1.190        ad 	 */
    392  1.196        ad 	spc = &ci->ci_schedstate;
    393  1.199        ad 	returning = false;
    394  1.190        ad 	newl = NULL;
    395  1.190        ad 
    396  1.199        ad 	/*
    397  1.199        ad 	 * If we have been asked to switch to a specific LWP, then there
    398  1.199        ad 	 * is no need to inspect the run queues.  If a soft interrupt is
    399  1.199        ad 	 * blocking, then return to the interrupted thread without adjusting
    400  1.199        ad 	 * VM context or its start time: neither have been changed in order
    401  1.199        ad 	 * to take the interrupt.
    402  1.199        ad 	 */
    403  1.190        ad 	if (l->l_switchto != NULL) {
    404  1.204        ad 		if ((l->l_pflag & LP_INTR) != 0) {
    405  1.199        ad 			returning = true;
    406  1.199        ad 			softint_block(l);
    407  1.199        ad 			if ((l->l_flag & LW_TIMEINTR) != 0)
    408  1.199        ad 				updatertime(l, &tv);
    409  1.199        ad 		}
    410  1.190        ad 		newl = l->l_switchto;
    411  1.190        ad 		l->l_switchto = NULL;
    412  1.190        ad 	}
    413  1.204        ad #ifndef __HAVE_FAST_SOFTINTS
    414  1.204        ad 	else if (ci->ci_data.cpu_softints != 0) {
    415  1.204        ad 		/* There are pending soft interrupts, so pick one. */
    416  1.204        ad 		newl = softint_picklwp();
    417  1.204        ad 		newl->l_stat = LSONPROC;
    418  1.204        ad 		newl->l_flag |= LW_RUNNING;
    419  1.204        ad 	}
    420  1.204        ad #endif	/* !__HAVE_FAST_SOFTINTS */
    421  1.190        ad 
    422  1.180       dsl 	/* Count time spent in current system call */
    423  1.199        ad 	if (!returning) {
    424  1.199        ad 		SYSCALL_TIME_SLEEP(l);
    425  1.180       dsl 
    426  1.199        ad 		/*
    427  1.199        ad 		 * XXXSMP If we are using h/w performance counters,
    428  1.199        ad 		 * save context.
    429  1.199        ad 		 */
    430  1.174        ad #if PERFCTRS
    431  1.199        ad 		if (PMC_ENABLED(l->l_proc)) {
    432  1.199        ad 			pmc_save_context(l->l_proc);
    433  1.199        ad 		}
    434  1.199        ad #endif
    435  1.199        ad 		updatertime(l, &tv);
    436  1.174        ad 	}
    437  1.113  gmcgarry 
    438  1.113  gmcgarry 	/*
    439  1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    440  1.113  gmcgarry 	 */
    441  1.188      yamt 	mutex_spin_enter(spc->spc_mutex);
    442  1.174        ad 	KASSERT(l->l_stat != LSRUN);
    443  1.204        ad 	if (l->l_stat == LSONPROC && l != newl) {
    444  1.188      yamt 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    445  1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    446  1.188      yamt 			l->l_stat = LSRUN;
    447  1.188      yamt 			lwp_setlock(l, spc->spc_mutex);
    448  1.188      yamt 			sched_enqueue(l, true);
    449  1.188      yamt 		} else
    450  1.188      yamt 			l->l_stat = LSIDL;
    451  1.174        ad 	}
    452  1.174        ad 
    453  1.174        ad 	/*
    454  1.201     rmind 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    455  1.188      yamt 	 * If no LWP is runnable, switch to the idle LWP.
    456  1.201     rmind 	 * Note that spc_lwplock might not necessary be held.
    457  1.174        ad 	 */
    458  1.190        ad 	if (newl == NULL) {
    459  1.190        ad 		newl = sched_nextlwp();
    460  1.190        ad 		if (newl != NULL) {
    461  1.190        ad 			sched_dequeue(newl);
    462  1.190        ad 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    463  1.190        ad 			newl->l_stat = LSONPROC;
    464  1.196        ad 			newl->l_cpu = ci;
    465  1.190        ad 			newl->l_flag |= LW_RUNNING;
    466  1.190        ad 			lwp_setlock(newl, &spc->spc_lwplock);
    467  1.190        ad 		} else {
    468  1.196        ad 			newl = ci->ci_data.cpu_idlelwp;
    469  1.190        ad 			newl->l_stat = LSONPROC;
    470  1.190        ad 			newl->l_flag |= LW_RUNNING;
    471  1.190        ad 		}
    472  1.204        ad 		/*
    473  1.204        ad 		 * Only clear want_resched if there are no
    474  1.204        ad 		 * pending (slow) software interrupts.
    475  1.204        ad 		 */
    476  1.204        ad 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    477  1.199        ad 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    478  1.204        ad 		spc->spc_curpriority = lwp_eprio(newl);
    479  1.199        ad 	}
    480  1.199        ad 
    481  1.204        ad 	/* Items that must be updated with the CPU locked. */
    482  1.199        ad 	if (!returning) {
    483  1.204        ad 		/* Update the new LWP's start time. */
    484  1.199        ad 		newl->l_stime = tv;
    485  1.204        ad 
    486  1.199        ad 		/*
    487  1.204        ad 		 * ci_curlwp changes when a fast soft interrupt occurs.
    488  1.204        ad 		 * We use cpu_onproc to keep track of which kernel or
    489  1.204        ad 		 * user thread is running 'underneath' the software
    490  1.204        ad 		 * interrupt.  This is important for time accounting,
    491  1.204        ad 		 * itimers and forcing user threads to preempt (aston).
    492  1.199        ad 		 */
    493  1.204        ad 		ci->ci_data.cpu_onproc = newl;
    494  1.188      yamt 	}
    495  1.188      yamt 
    496  1.188      yamt 	if (l != newl) {
    497  1.188      yamt 		struct lwp *prevlwp;
    498  1.174        ad 
    499  1.188      yamt 		/*
    500  1.188      yamt 		 * If the old LWP has been moved to a run queue above,
    501  1.188      yamt 		 * drop the general purpose LWP lock: it's now locked
    502  1.188      yamt 		 * by the scheduler lock.
    503  1.188      yamt 		 *
    504  1.188      yamt 		 * Otherwise, drop the scheduler lock.  We're done with
    505  1.188      yamt 		 * the run queues for now.
    506  1.188      yamt 		 */
    507  1.188      yamt 		if (l->l_mutex == spc->spc_mutex) {
    508  1.188      yamt 			mutex_spin_exit(&spc->spc_lwplock);
    509  1.188      yamt 		} else {
    510  1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    511  1.188      yamt 		}
    512  1.188      yamt 
    513  1.188      yamt 		/* Unlocked, but for statistics only. */
    514  1.188      yamt 		uvmexp.swtch++;
    515  1.188      yamt 
    516  1.199        ad 		/*
    517  1.199        ad 		 * Save old VM context, unless a soft interrupt
    518  1.199        ad 		 * handler is blocking.
    519  1.199        ad 		 */
    520  1.199        ad 		if (!returning)
    521  1.199        ad 			pmap_deactivate(l);
    522  1.188      yamt 
    523  1.207        ad 		/* Update status for lwpctl, if present. */
    524  1.207        ad 	        if (l->l_lwpctl != NULL)
    525  1.207        ad 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    526  1.207        ad 
    527  1.188      yamt 		/* Switch to the new LWP.. */
    528  1.188      yamt 		l->l_ncsw++;
    529  1.188      yamt 		l->l_flag &= ~LW_RUNNING;
    530  1.196        ad 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    531  1.204        ad 		prevlwp = cpu_switchto(l, newl, returning);
    532  1.207        ad 		ci = curcpu();
    533  1.207        ad 
    534  1.188      yamt 		/*
    535  1.188      yamt 		 * .. we have switched away and are now back so we must
    536  1.188      yamt 		 * be the new curlwp.  prevlwp is who we replaced.
    537  1.188      yamt 		 */
    538  1.188      yamt 		if (prevlwp != NULL) {
    539  1.207        ad 			ci->ci_mtx_oldspl = oldspl;
    540  1.188      yamt 			lwp_unlock(prevlwp);
    541  1.188      yamt 		} else {
    542  1.188      yamt 			splx(oldspl);
    543  1.188      yamt 		}
    544  1.174        ad 
    545  1.188      yamt 		/* Restore VM context. */
    546  1.188      yamt 		pmap_activate(l);
    547  1.188      yamt 		retval = 1;
    548  1.207        ad 
    549  1.207        ad 		/* Update status for lwpctl, if present. */
    550  1.207        ad 	        if (l->l_lwpctl != NULL)
    551  1.207        ad 			l->l_lwpctl->lc_curcpu = (short)ci->ci_data.cpu_index;
    552  1.188      yamt 	} else {
    553  1.188      yamt 		/* Nothing to do - just unlock and return. */
    554  1.188      yamt 		mutex_spin_exit(spc->spc_mutex);
    555  1.188      yamt 		lwp_unlock(l);
    556  1.122   thorpej 		retval = 0;
    557  1.122   thorpej 	}
    558  1.110    briggs 
    559  1.188      yamt 	KASSERT(l == curlwp);
    560  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    561  1.207        ad 	KASSERT(l->l_cpu == ci);
    562  1.188      yamt 
    563  1.110    briggs 	/*
    564  1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    565   1.26       cgd 	 */
    566  1.114  gmcgarry #if PERFCTRS
    567  1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    568  1.175  christos 		pmc_restore_context(l->l_proc);
    569  1.166  christos 	}
    570  1.114  gmcgarry #endif
    571  1.110    briggs 
    572  1.110    briggs 	/*
    573   1.76   thorpej 	 * We're running again; record our new start time.  We might
    574  1.174        ad 	 * be running on a new CPU now, so don't use the cached
    575   1.76   thorpej 	 * schedstate_percpu pointer.
    576   1.76   thorpej 	 */
    577  1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    578  1.195        ad 	KASSERT(curlwp == l);
    579  1.207        ad 	KDASSERT(l->l_cpu == ci);
    580  1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    581  1.169      yamt 
    582  1.122   thorpej 	return retval;
    583   1.26       cgd }
    584   1.26       cgd 
    585   1.26       cgd /*
    586  1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    587  1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    588  1.174        ad  *
    589  1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    590   1.26       cgd  */
    591   1.26       cgd void
    592  1.122   thorpej setrunnable(struct lwp *l)
    593   1.26       cgd {
    594  1.122   thorpej 	struct proc *p = l->l_proc;
    595  1.205        ad 	struct cpu_info *ci;
    596  1.174        ad 	sigset_t *ss;
    597   1.26       cgd 
    598  1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    599  1.183        ad 	KASSERT(mutex_owned(&p->p_smutex));
    600  1.183        ad 	KASSERT(lwp_locked(l, NULL));
    601  1.205        ad 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    602   1.83   thorpej 
    603  1.122   thorpej 	switch (l->l_stat) {
    604  1.122   thorpej 	case LSSTOP:
    605   1.33   mycroft 		/*
    606   1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    607   1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    608   1.33   mycroft 		 */
    609  1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    610  1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    611  1.174        ad 				ss = &l->l_sigpend.sp_set;
    612  1.174        ad 			else
    613  1.174        ad 				ss = &p->p_sigpend.sp_set;
    614  1.174        ad 			sigaddset(ss, p->p_xstat);
    615  1.174        ad 			signotify(l);
    616   1.53   mycroft 		}
    617  1.174        ad 		p->p_nrlwps++;
    618   1.26       cgd 		break;
    619  1.174        ad 	case LSSUSPENDED:
    620  1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    621  1.174        ad 		p->p_nrlwps++;
    622  1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    623  1.122   thorpej 		break;
    624  1.174        ad 	case LSSLEEP:
    625  1.174        ad 		KASSERT(l->l_wchan != NULL);
    626   1.26       cgd 		break;
    627  1.174        ad 	default:
    628  1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    629   1.26       cgd 	}
    630  1.139        cl 
    631  1.174        ad 	/*
    632  1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    633  1.174        ad 	 * again.  If not, mark it as still sleeping.
    634  1.174        ad 	 */
    635  1.174        ad 	if (l->l_wchan != NULL) {
    636  1.174        ad 		l->l_stat = LSSLEEP;
    637  1.183        ad 		/* lwp_unsleep() will release the lock. */
    638  1.183        ad 		lwp_unsleep(l);
    639  1.174        ad 		return;
    640  1.174        ad 	}
    641  1.139        cl 
    642  1.174        ad 	/*
    643  1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    644  1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    645  1.174        ad 	 */
    646  1.188      yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    647  1.174        ad 		l->l_stat = LSONPROC;
    648  1.174        ad 		l->l_slptime = 0;
    649  1.174        ad 		lwp_unlock(l);
    650  1.174        ad 		return;
    651  1.174        ad 	}
    652  1.122   thorpej 
    653  1.174        ad 	/*
    654  1.205        ad 	 * Look for a CPU to run.
    655  1.205        ad 	 * Set the LWP runnable.
    656  1.174        ad 	 */
    657  1.205        ad 	ci = sched_takecpu(l);
    658  1.205        ad 	l->l_cpu = ci;
    659  1.206        ad 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    660  1.206        ad 		lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    661  1.206        ad 		lwp_lock(l);
    662  1.206        ad 	}
    663  1.188      yamt 	sched_setrunnable(l);
    664  1.174        ad 	l->l_stat = LSRUN;
    665  1.122   thorpej 	l->l_slptime = 0;
    666  1.174        ad 
    667  1.205        ad 	/*
    668  1.205        ad 	 * If thread is swapped out - wake the swapper to bring it back in.
    669  1.205        ad 	 * Otherwise, enter it into a run queue.
    670  1.205        ad 	 */
    671  1.178     pavel 	if (l->l_flag & LW_INMEM) {
    672  1.188      yamt 		sched_enqueue(l, false);
    673  1.188      yamt 		resched_cpu(l);
    674  1.174        ad 		lwp_unlock(l);
    675  1.174        ad 	} else {
    676  1.174        ad 		lwp_unlock(l);
    677  1.177        ad 		uvm_kick_scheduler();
    678  1.174        ad 	}
    679   1.26       cgd }
    680   1.26       cgd 
    681   1.26       cgd /*
    682  1.174        ad  * suspendsched:
    683  1.174        ad  *
    684  1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    685  1.174        ad  */
    686   1.94    bouyer void
    687  1.174        ad suspendsched(void)
    688   1.94    bouyer {
    689  1.174        ad 	CPU_INFO_ITERATOR cii;
    690  1.174        ad 	struct cpu_info *ci;
    691  1.122   thorpej 	struct lwp *l;
    692  1.174        ad 	struct proc *p;
    693   1.94    bouyer 
    694   1.94    bouyer 	/*
    695  1.174        ad 	 * We do this by process in order not to violate the locking rules.
    696   1.94    bouyer 	 */
    697  1.204        ad 	mutex_enter(&proclist_lock);
    698  1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    699  1.174        ad 		mutex_enter(&p->p_smutex);
    700  1.174        ad 
    701  1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    702  1.174        ad 			mutex_exit(&p->p_smutex);
    703   1.94    bouyer 			continue;
    704  1.174        ad 		}
    705  1.174        ad 
    706  1.174        ad 		p->p_stat = SSTOP;
    707  1.174        ad 
    708  1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    709  1.174        ad 			if (l == curlwp)
    710  1.174        ad 				continue;
    711  1.174        ad 
    712  1.174        ad 			lwp_lock(l);
    713  1.122   thorpej 
    714   1.97     enami 			/*
    715  1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    716  1.174        ad 			 * when it tries to return to user mode.  We want to
    717  1.174        ad 			 * try and get to get as many LWPs as possible to
    718  1.174        ad 			 * the user / kernel boundary, so that they will
    719  1.174        ad 			 * release any locks that they hold.
    720   1.97     enami 			 */
    721  1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    722  1.174        ad 
    723  1.174        ad 			if (l->l_stat == LSSLEEP &&
    724  1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    725  1.174        ad 				/* setrunnable() will release the lock. */
    726  1.174        ad 				setrunnable(l);
    727  1.174        ad 				continue;
    728  1.174        ad 			}
    729  1.174        ad 
    730  1.174        ad 			lwp_unlock(l);
    731   1.94    bouyer 		}
    732  1.174        ad 
    733  1.174        ad 		mutex_exit(&p->p_smutex);
    734   1.94    bouyer 	}
    735  1.204        ad 	mutex_exit(&proclist_lock);
    736  1.174        ad 
    737  1.174        ad 	/*
    738  1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    739  1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    740  1.174        ad 	 */
    741  1.204        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    742  1.204        ad 		spc_lock(ci);
    743  1.204        ad 		cpu_need_resched(ci, RESCHED_IMMED);
    744  1.204        ad 		spc_unlock(ci);
    745  1.204        ad 	}
    746  1.174        ad }
    747  1.174        ad 
    748  1.174        ad /*
    749  1.174        ad  * sched_kpri:
    750  1.174        ad  *
    751  1.174        ad  *	Scale a priority level to a kernel priority level, usually
    752  1.174        ad  *	for an LWP that is about to sleep.
    753  1.174        ad  */
    754  1.185      yamt pri_t
    755  1.174        ad sched_kpri(struct lwp *l)
    756  1.174        ad {
    757  1.204        ad 	pri_t pri;
    758  1.204        ad 
    759  1.204        ad #ifndef __HAVE_FAST_SOFTINTS
    760  1.174        ad 	/*
    761  1.204        ad 	 * Hack: if a user thread is being used to run a soft
    762  1.204        ad 	 * interrupt, we need to boost the priority here.
    763  1.204        ad 	 */
    764  1.204        ad 	if ((l->l_pflag & LP_INTR) != 0 && l->l_priority < PRI_KERNEL_RT)
    765  1.204        ad 		return softint_kpri(l);
    766  1.204        ad #endif
    767  1.174        ad 
    768  1.204        ad 	/*
    769  1.204        ad 	 * Scale user priorities (0 -> 63) up to kernel priorities
    770  1.204        ad 	 * in the range (64 -> 95).  This makes assumptions about
    771  1.204        ad 	 * the priority space and so should be kept in sync with
    772  1.204        ad 	 * param.h.
    773  1.204        ad 	 */
    774  1.204        ad 	if ((pri = l->l_priority) >= PRI_KERNEL)
    775  1.204        ad 		return pri;
    776  1.204        ad 	return (pri >> 1) + PRI_KERNEL;
    777  1.174        ad }
    778  1.174        ad 
    779  1.174        ad /*
    780  1.174        ad  * sched_unsleep:
    781  1.174        ad  *
    782  1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    783  1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    784  1.174        ad  *	it's not a valid action for running or idle LWPs.
    785  1.174        ad  */
    786  1.188      yamt static void
    787  1.174        ad sched_unsleep(struct lwp *l)
    788  1.174        ad {
    789  1.174        ad 
    790  1.174        ad 	lwp_unlock(l);
    791  1.174        ad 	panic("sched_unsleep");
    792  1.174        ad }
    793  1.174        ad 
    794  1.204        ad void
    795  1.188      yamt resched_cpu(struct lwp *l)
    796  1.188      yamt {
    797  1.188      yamt 	struct cpu_info *ci;
    798  1.188      yamt 
    799  1.188      yamt 	/*
    800  1.188      yamt 	 * XXXSMP
    801  1.188      yamt 	 * Since l->l_cpu persists across a context switch,
    802  1.188      yamt 	 * this gives us *very weak* processor affinity, in
    803  1.188      yamt 	 * that we notify the CPU on which the process last
    804  1.188      yamt 	 * ran that it should try to switch.
    805  1.188      yamt 	 *
    806  1.188      yamt 	 * This does not guarantee that the process will run on
    807  1.188      yamt 	 * that processor next, because another processor might
    808  1.188      yamt 	 * grab it the next time it performs a context switch.
    809  1.188      yamt 	 *
    810  1.188      yamt 	 * This also does not handle the case where its last
    811  1.188      yamt 	 * CPU is running a higher-priority process, but every
    812  1.188      yamt 	 * other CPU is running a lower-priority process.  There
    813  1.188      yamt 	 * are ways to handle this situation, but they're not
    814  1.188      yamt 	 * currently very pretty, and we also need to weigh the
    815  1.188      yamt 	 * cost of moving a process from one CPU to another.
    816  1.188      yamt 	 */
    817  1.204        ad 	ci = l->l_cpu;
    818  1.204        ad 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
    819  1.188      yamt 		cpu_need_resched(ci, 0);
    820  1.188      yamt }
    821  1.188      yamt 
    822  1.188      yamt static void
    823  1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
    824  1.174        ad {
    825  1.174        ad 
    826  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    827  1.174        ad 
    828  1.204        ad 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    829  1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    830  1.204        ad 		sched_dequeue(l);
    831  1.204        ad 		l->l_priority = pri;
    832  1.204        ad 		sched_enqueue(l, false);
    833  1.204        ad 	} else {
    834  1.174        ad 		l->l_priority = pri;
    835  1.157      yamt 	}
    836  1.188      yamt 	resched_cpu(l);
    837  1.184      yamt }
    838  1.184      yamt 
    839  1.188      yamt static void
    840  1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
    841  1.184      yamt {
    842  1.184      yamt 
    843  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    844  1.184      yamt 
    845  1.204        ad 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    846  1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    847  1.204        ad 		sched_dequeue(l);
    848  1.204        ad 		l->l_inheritedprio = pri;
    849  1.204        ad 		sched_enqueue(l, false);
    850  1.204        ad 	} else {
    851  1.184      yamt 		l->l_inheritedprio = pri;
    852  1.184      yamt 	}
    853  1.188      yamt 	resched_cpu(l);
    854  1.184      yamt }
    855  1.184      yamt 
    856  1.184      yamt struct lwp *
    857  1.184      yamt syncobj_noowner(wchan_t wchan)
    858  1.184      yamt {
    859  1.184      yamt 
    860  1.184      yamt 	return NULL;
    861  1.151      yamt }
    862  1.151      yamt 
    863  1.113  gmcgarry 
    864  1.188      yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    865  1.188      yamt fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    866  1.115  nisimura 
    867  1.130   nathanw /*
    868  1.188      yamt  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    869  1.188      yamt  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    870  1.188      yamt  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    871  1.188      yamt  *
    872  1.188      yamt  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    873  1.188      yamt  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    874  1.188      yamt  *
    875  1.188      yamt  * If you dont want to bother with the faster/more-accurate formula, you
    876  1.188      yamt  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    877  1.188      yamt  * (more general) method of calculating the %age of CPU used by a process.
    878  1.134      matt  */
    879  1.188      yamt #define	CCPU_SHIFT	(FSHIFT + 1)
    880  1.134      matt 
    881  1.134      matt /*
    882  1.188      yamt  * sched_pstats:
    883  1.188      yamt  *
    884  1.188      yamt  * Update process statistics and check CPU resource allocation.
    885  1.188      yamt  * Call scheduler-specific hook to eventually adjust process/LWP
    886  1.188      yamt  * priorities.
    887  1.130   nathanw  */
    888  1.188      yamt /* ARGSUSED */
    889  1.113  gmcgarry void
    890  1.188      yamt sched_pstats(void *arg)
    891  1.113  gmcgarry {
    892  1.188      yamt 	struct rlimit *rlim;
    893  1.188      yamt 	struct lwp *l;
    894  1.188      yamt 	struct proc *p;
    895  1.204        ad 	int sig, clkhz;
    896  1.188      yamt 	long runtm;
    897  1.113  gmcgarry 
    898  1.188      yamt 	sched_pstats_ticks++;
    899  1.174        ad 
    900  1.188      yamt 	mutex_enter(&proclist_mutex);
    901  1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
    902  1.188      yamt 		/*
    903  1.188      yamt 		 * Increment time in/out of memory and sleep time (if
    904  1.188      yamt 		 * sleeping).  We ignore overflow; with 16-bit int's
    905  1.188      yamt 		 * (remember them?) overflow takes 45 days.
    906  1.188      yamt 		 */
    907  1.188      yamt 		mutex_enter(&p->p_smutex);
    908  1.188      yamt 		mutex_spin_enter(&p->p_stmutex);
    909  1.188      yamt 		runtm = p->p_rtime.tv_sec;
    910  1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    911  1.188      yamt 			if ((l->l_flag & LW_IDLE) != 0)
    912  1.188      yamt 				continue;
    913  1.188      yamt 			lwp_lock(l);
    914  1.188      yamt 			runtm += l->l_rtime.tv_sec;
    915  1.188      yamt 			l->l_swtime++;
    916  1.200     rmind 			sched_pstats_hook(l);
    917  1.188      yamt 			lwp_unlock(l);
    918  1.113  gmcgarry 
    919  1.188      yamt 			/*
    920  1.188      yamt 			 * p_pctcpu is only for ps.
    921  1.188      yamt 			 */
    922  1.188      yamt 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    923  1.188      yamt 			if (l->l_slptime < 1) {
    924  1.188      yamt 				clkhz = stathz != 0 ? stathz : hz;
    925  1.188      yamt #if	(FSHIFT >= CCPU_SHIFT)
    926  1.188      yamt 				l->l_pctcpu += (clkhz == 100) ?
    927  1.188      yamt 				    ((fixpt_t)l->l_cpticks) <<
    928  1.188      yamt 				        (FSHIFT - CCPU_SHIFT) :
    929  1.188      yamt 				    100 * (((fixpt_t) p->p_cpticks)
    930  1.188      yamt 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    931  1.188      yamt #else
    932  1.188      yamt 				l->l_pctcpu += ((FSCALE - ccpu) *
    933  1.188      yamt 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    934  1.146      matt #endif
    935  1.188      yamt 				l->l_cpticks = 0;
    936  1.188      yamt 			}
    937  1.188      yamt 		}
    938  1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    939  1.188      yamt 		mutex_spin_exit(&p->p_stmutex);
    940  1.174        ad 
    941  1.188      yamt 		/*
    942  1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
    943  1.188      yamt 		 * If over max, kill it.
    944  1.188      yamt 		 */
    945  1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
    946  1.188      yamt 		sig = 0;
    947  1.188      yamt 		if (runtm >= rlim->rlim_cur) {
    948  1.188      yamt 			if (runtm >= rlim->rlim_max)
    949  1.188      yamt 				sig = SIGKILL;
    950  1.188      yamt 			else {
    951  1.188      yamt 				sig = SIGXCPU;
    952  1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
    953  1.188      yamt 					rlim->rlim_cur += 5;
    954  1.188      yamt 			}
    955  1.188      yamt 		}
    956  1.188      yamt 		mutex_exit(&p->p_smutex);
    957  1.188      yamt 		if (sig) {
    958  1.188      yamt 			psignal(p, sig);
    959  1.188      yamt 		}
    960  1.174        ad 	}
    961  1.188      yamt 	mutex_exit(&proclist_mutex);
    962  1.188      yamt 	uvm_meter();
    963  1.191        ad 	cv_wakeup(&lbolt);
    964  1.188      yamt 	callout_schedule(&sched_pstats_ch, hz);
    965  1.113  gmcgarry }
    966  1.190        ad 
    967  1.190        ad void
    968  1.190        ad sched_init(void)
    969  1.190        ad {
    970  1.190        ad 
    971  1.208        ad 	cv_init(&lbolt, "lbolt");
    972  1.190        ad 	callout_init(&sched_pstats_ch, 0);
    973  1.190        ad 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    974  1.190        ad 	sched_setup();
    975  1.190        ad 	sched_pstats(NULL);
    976  1.190        ad }
    977