Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.209
      1  1.209        ad /*	$NetBSD: kern_synch.c,v 1.209 2007/12/02 14:55:32 ad Exp $	*/
      2   1.63   thorpej 
      3   1.63   thorpej /*-
      4  1.174        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5   1.63   thorpej  * All rights reserved.
      6   1.63   thorpej  *
      7   1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  1.188      yamt  * Daniel Sieger.
     11   1.63   thorpej  *
     12   1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13   1.63   thorpej  * modification, are permitted provided that the following conditions
     14   1.63   thorpej  * are met:
     15   1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16   1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17   1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19   1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20   1.63   thorpej  * 3. All advertising materials mentioning features or use of this software
     21   1.63   thorpej  *    must display the following acknowledgement:
     22   1.63   thorpej  *	This product includes software developed by the NetBSD
     23   1.63   thorpej  *	Foundation, Inc. and its contributors.
     24   1.63   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25   1.63   thorpej  *    contributors may be used to endorse or promote products derived
     26   1.63   thorpej  *    from this software without specific prior written permission.
     27   1.63   thorpej  *
     28   1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29   1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30   1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31   1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32   1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33   1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34   1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35   1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36   1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37   1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38   1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     39   1.63   thorpej  */
     40   1.26       cgd 
     41   1.26       cgd /*-
     42   1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43   1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     44   1.26       cgd  * (c) UNIX System Laboratories, Inc.
     45   1.26       cgd  * All or some portions of this file are derived from material licensed
     46   1.26       cgd  * to the University of California by American Telephone and Telegraph
     47   1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48   1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     49   1.26       cgd  *
     50   1.26       cgd  * Redistribution and use in source and binary forms, with or without
     51   1.26       cgd  * modification, are permitted provided that the following conditions
     52   1.26       cgd  * are met:
     53   1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     54   1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     55   1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     56   1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     57   1.26       cgd  *    documentation and/or other materials provided with the distribution.
     58  1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     59   1.26       cgd  *    may be used to endorse or promote products derived from this software
     60   1.26       cgd  *    without specific prior written permission.
     61   1.26       cgd  *
     62   1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63   1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64   1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65   1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66   1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67   1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68   1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69   1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70   1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71   1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72   1.26       cgd  * SUCH DAMAGE.
     73   1.26       cgd  *
     74   1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75   1.26       cgd  */
     76  1.106     lukem 
     77  1.106     lukem #include <sys/cdefs.h>
     78  1.209        ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.209 2007/12/02 14:55:32 ad Exp $");
     79   1.48       mrg 
     80  1.109      yamt #include "opt_kstack.h"
     81   1.82   thorpej #include "opt_lockdebug.h"
     82   1.83   thorpej #include "opt_multiprocessor.h"
     83  1.110    briggs #include "opt_perfctrs.h"
     84   1.26       cgd 
     85  1.174        ad #define	__MUTEX_PRIVATE
     86  1.174        ad 
     87   1.26       cgd #include <sys/param.h>
     88   1.26       cgd #include <sys/systm.h>
     89   1.26       cgd #include <sys/proc.h>
     90   1.26       cgd #include <sys/kernel.h>
     91  1.111    briggs #if defined(PERFCTRS)
     92  1.110    briggs #include <sys/pmc.h>
     93  1.111    briggs #endif
     94  1.188      yamt #include <sys/cpu.h>
     95   1.26       cgd #include <sys/resourcevar.h>
     96   1.55      ross #include <sys/sched.h>
     97  1.179       dsl #include <sys/syscall_stats.h>
     98  1.174        ad #include <sys/sleepq.h>
     99  1.174        ad #include <sys/lockdebug.h>
    100  1.190        ad #include <sys/evcnt.h>
    101  1.199        ad #include <sys/intr.h>
    102  1.207        ad #include <sys/lwpctl.h>
    103  1.209        ad #include <sys/atomic.h>
    104   1.47       mrg 
    105   1.47       mrg #include <uvm/uvm_extern.h>
    106   1.47       mrg 
    107  1.190        ad callout_t sched_pstats_ch;
    108  1.188      yamt unsigned int sched_pstats_ticks;
    109   1.34  christos 
    110  1.190        ad kcondvar_t	lbolt;			/* once a second sleep address */
    111   1.26       cgd 
    112  1.188      yamt static void	sched_unsleep(struct lwp *);
    113  1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    114  1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    115  1.122   thorpej 
    116  1.174        ad syncobj_t sleep_syncobj = {
    117  1.174        ad 	SOBJ_SLEEPQ_SORTED,
    118  1.174        ad 	sleepq_unsleep,
    119  1.184      yamt 	sleepq_changepri,
    120  1.184      yamt 	sleepq_lendpri,
    121  1.184      yamt 	syncobj_noowner,
    122  1.174        ad };
    123  1.174        ad 
    124  1.174        ad syncobj_t sched_syncobj = {
    125  1.174        ad 	SOBJ_SLEEPQ_SORTED,
    126  1.174        ad 	sched_unsleep,
    127  1.184      yamt 	sched_changepri,
    128  1.184      yamt 	sched_lendpri,
    129  1.184      yamt 	syncobj_noowner,
    130  1.174        ad };
    131  1.122   thorpej 
    132   1.26       cgd /*
    133  1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    134  1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    135  1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    136  1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    137  1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    138  1.174        ad  * it can be made higher to block network software interrupts after panics.
    139   1.26       cgd  */
    140  1.174        ad int	safepri;
    141   1.26       cgd 
    142   1.26       cgd /*
    143  1.174        ad  * OBSOLETE INTERFACE
    144  1.174        ad  *
    145   1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    146   1.26       cgd  * performed on the specified identifier.  The process will then be made
    147  1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    148  1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    149   1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    150   1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    151   1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    152   1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    153   1.26       cgd  * call should be interrupted by the signal (return EINTR).
    154   1.77   thorpej  *
    155  1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    156  1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    157  1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    158  1.174        ad  * return.
    159   1.26       cgd  */
    160   1.26       cgd int
    161  1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    162  1.174        ad 	volatile struct simplelock *interlock)
    163   1.26       cgd {
    164  1.122   thorpej 	struct lwp *l = curlwp;
    165  1.174        ad 	sleepq_t *sq;
    166  1.188      yamt 	int error;
    167   1.26       cgd 
    168  1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    169  1.204        ad 
    170  1.174        ad 	if (sleepq_dontsleep(l)) {
    171  1.174        ad 		(void)sleepq_abort(NULL, 0);
    172  1.174        ad 		if ((priority & PNORELOCK) != 0)
    173   1.77   thorpej 			simple_unlock(interlock);
    174  1.174        ad 		return 0;
    175   1.26       cgd 	}
    176   1.78  sommerfe 
    177  1.204        ad 	l->l_kpriority = true;
    178  1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    179  1.174        ad 	sleepq_enter(sq, l);
    180  1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    181   1.42       cgd 
    182  1.174        ad 	if (interlock != NULL) {
    183  1.204        ad 		KASSERT(simple_lock_held(interlock));
    184  1.174        ad 		simple_unlock(interlock);
    185  1.150       chs 	}
    186  1.150       chs 
    187  1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    188  1.126        pk 
    189  1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    190  1.126        pk 		simple_lock(interlock);
    191  1.174        ad 
    192  1.174        ad 	return error;
    193   1.26       cgd }
    194   1.26       cgd 
    195  1.187        ad int
    196  1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    197  1.187        ad 	kmutex_t *mtx)
    198  1.187        ad {
    199  1.187        ad 	struct lwp *l = curlwp;
    200  1.187        ad 	sleepq_t *sq;
    201  1.188      yamt 	int error;
    202  1.187        ad 
    203  1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    204  1.204        ad 
    205  1.187        ad 	if (sleepq_dontsleep(l)) {
    206  1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    207  1.187        ad 		return 0;
    208  1.187        ad 	}
    209  1.187        ad 
    210  1.204        ad 	l->l_kpriority = true;
    211  1.187        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    212  1.187        ad 	sleepq_enter(sq, l);
    213  1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    214  1.187        ad 	mutex_exit(mtx);
    215  1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    216  1.187        ad 
    217  1.187        ad 	if ((priority & PNORELOCK) == 0)
    218  1.187        ad 		mutex_enter(mtx);
    219  1.187        ad 
    220  1.187        ad 	return error;
    221  1.187        ad }
    222  1.187        ad 
    223   1.26       cgd /*
    224  1.174        ad  * General sleep call for situations where a wake-up is not expected.
    225   1.26       cgd  */
    226  1.174        ad int
    227  1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    228   1.26       cgd {
    229  1.174        ad 	struct lwp *l = curlwp;
    230  1.174        ad 	sleepq_t *sq;
    231  1.174        ad 	int error;
    232   1.26       cgd 
    233  1.174        ad 	if (sleepq_dontsleep(l))
    234  1.174        ad 		return sleepq_abort(NULL, 0);
    235   1.26       cgd 
    236  1.174        ad 	if (mtx != NULL)
    237  1.174        ad 		mutex_exit(mtx);
    238  1.204        ad 	l->l_kpriority = true;
    239  1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    240  1.174        ad 	sleepq_enter(sq, l);
    241  1.204        ad 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    242  1.188      yamt 	error = sleepq_block(timo, intr);
    243  1.174        ad 	if (mtx != NULL)
    244  1.174        ad 		mutex_enter(mtx);
    245   1.83   thorpej 
    246  1.174        ad 	return error;
    247  1.139        cl }
    248  1.139        cl 
    249   1.26       cgd /*
    250  1.174        ad  * OBSOLETE INTERFACE
    251  1.174        ad  *
    252   1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    253   1.26       cgd  */
    254   1.26       cgd void
    255  1.174        ad wakeup(wchan_t ident)
    256   1.26       cgd {
    257  1.174        ad 	sleepq_t *sq;
    258   1.83   thorpej 
    259  1.174        ad 	if (cold)
    260  1.174        ad 		return;
    261   1.83   thorpej 
    262  1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    263  1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    264   1.63   thorpej }
    265   1.63   thorpej 
    266   1.63   thorpej /*
    267  1.174        ad  * OBSOLETE INTERFACE
    268  1.174        ad  *
    269   1.63   thorpej  * Make the highest priority process first in line on the specified
    270   1.63   thorpej  * identifier runnable.
    271   1.63   thorpej  */
    272  1.174        ad void
    273  1.174        ad wakeup_one(wchan_t ident)
    274   1.63   thorpej {
    275  1.174        ad 	sleepq_t *sq;
    276   1.63   thorpej 
    277  1.174        ad 	if (cold)
    278  1.174        ad 		return;
    279  1.188      yamt 
    280  1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    281  1.174        ad 	sleepq_wake(sq, ident, 1);
    282  1.174        ad }
    283   1.63   thorpej 
    284  1.117  gmcgarry 
    285  1.117  gmcgarry /*
    286  1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    287  1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    288  1.198        ad  * current process explicitly requests it (eg sched_yield(2)).
    289  1.117  gmcgarry  */
    290  1.117  gmcgarry void
    291  1.117  gmcgarry yield(void)
    292  1.117  gmcgarry {
    293  1.122   thorpej 	struct lwp *l = curlwp;
    294  1.117  gmcgarry 
    295  1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    296  1.174        ad 	lwp_lock(l);
    297  1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    298  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    299  1.204        ad 	l->l_kpriority = false;
    300  1.204        ad 	if (l->l_class == SCHED_OTHER) {
    301  1.204        ad 		/*
    302  1.204        ad 		 * Only for timeshared threads.  It will be reset
    303  1.204        ad 		 * by the scheduler in due course.
    304  1.204        ad 		 */
    305  1.204        ad 		l->l_priority = 0;
    306  1.204        ad 	}
    307  1.188      yamt 	(void)mi_switch(l);
    308  1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    309   1.69   thorpej }
    310   1.69   thorpej 
    311   1.69   thorpej /*
    312   1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    313  1.156    rpaulo  * and performs an involuntary context switch.
    314   1.69   thorpej  */
    315   1.69   thorpej void
    316  1.174        ad preempt(void)
    317   1.69   thorpej {
    318  1.122   thorpej 	struct lwp *l = curlwp;
    319   1.69   thorpej 
    320  1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    321  1.174        ad 	lwp_lock(l);
    322  1.188      yamt 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    323  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    324  1.204        ad 	l->l_kpriority = false;
    325  1.174        ad 	l->l_nivcsw++;
    326  1.188      yamt 	(void)mi_switch(l);
    327  1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    328   1.69   thorpej }
    329   1.69   thorpej 
    330   1.69   thorpej /*
    331  1.188      yamt  * Compute the amount of time during which the current lwp was running.
    332  1.130   nathanw  *
    333  1.188      yamt  * - update l_rtime unless it's an idle lwp.
    334  1.188      yamt  */
    335  1.188      yamt 
    336  1.199        ad void
    337  1.199        ad updatertime(lwp_t *l, const struct timeval *tv)
    338  1.188      yamt {
    339  1.188      yamt 	long s, u;
    340  1.188      yamt 
    341  1.199        ad 	if ((l->l_flag & LW_IDLE) != 0)
    342  1.188      yamt 		return;
    343  1.188      yamt 
    344  1.199        ad 	u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
    345  1.199        ad 	s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
    346  1.188      yamt 	if (u < 0) {
    347  1.188      yamt 		u += 1000000;
    348  1.188      yamt 		s--;
    349  1.188      yamt 	} else if (u >= 1000000) {
    350  1.188      yamt 		u -= 1000000;
    351  1.188      yamt 		s++;
    352  1.188      yamt 	}
    353  1.188      yamt 	l->l_rtime.tv_usec = u;
    354  1.188      yamt 	l->l_rtime.tv_sec = s;
    355  1.188      yamt }
    356  1.188      yamt 
    357  1.188      yamt /*
    358  1.188      yamt  * The machine independent parts of context switch.
    359  1.188      yamt  *
    360  1.188      yamt  * Returns 1 if another LWP was actually run.
    361   1.26       cgd  */
    362  1.122   thorpej int
    363  1.199        ad mi_switch(lwp_t *l)
    364   1.26       cgd {
    365   1.76   thorpej 	struct schedstate_percpu *spc;
    366  1.188      yamt 	struct lwp *newl;
    367  1.174        ad 	int retval, oldspl;
    368  1.196        ad 	struct cpu_info *ci;
    369  1.199        ad 	struct timeval tv;
    370  1.199        ad 	bool returning;
    371   1.26       cgd 
    372  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    373  1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    374  1.174        ad 
    375  1.174        ad #ifdef KSTACK_CHECK_MAGIC
    376  1.174        ad 	kstack_check_magic(l);
    377  1.174        ad #endif
    378   1.83   thorpej 
    379  1.199        ad 	microtime(&tv);
    380  1.199        ad 
    381  1.209        ad 	KDASSERT(l->l_cpu == curcpu());
    382  1.196        ad 	ci = l->l_cpu;
    383  1.196        ad 	spc = &ci->ci_schedstate;
    384  1.199        ad 	returning = false;
    385  1.190        ad 	newl = NULL;
    386  1.190        ad 
    387  1.199        ad 	/*
    388  1.199        ad 	 * If we have been asked to switch to a specific LWP, then there
    389  1.199        ad 	 * is no need to inspect the run queues.  If a soft interrupt is
    390  1.199        ad 	 * blocking, then return to the interrupted thread without adjusting
    391  1.199        ad 	 * VM context or its start time: neither have been changed in order
    392  1.199        ad 	 * to take the interrupt.
    393  1.199        ad 	 */
    394  1.190        ad 	if (l->l_switchto != NULL) {
    395  1.204        ad 		if ((l->l_pflag & LP_INTR) != 0) {
    396  1.199        ad 			returning = true;
    397  1.199        ad 			softint_block(l);
    398  1.199        ad 			if ((l->l_flag & LW_TIMEINTR) != 0)
    399  1.199        ad 				updatertime(l, &tv);
    400  1.199        ad 		}
    401  1.190        ad 		newl = l->l_switchto;
    402  1.190        ad 		l->l_switchto = NULL;
    403  1.190        ad 	}
    404  1.204        ad #ifndef __HAVE_FAST_SOFTINTS
    405  1.204        ad 	else if (ci->ci_data.cpu_softints != 0) {
    406  1.204        ad 		/* There are pending soft interrupts, so pick one. */
    407  1.204        ad 		newl = softint_picklwp();
    408  1.204        ad 		newl->l_stat = LSONPROC;
    409  1.204        ad 		newl->l_flag |= LW_RUNNING;
    410  1.204        ad 	}
    411  1.204        ad #endif	/* !__HAVE_FAST_SOFTINTS */
    412  1.190        ad 
    413  1.180       dsl 	/* Count time spent in current system call */
    414  1.199        ad 	if (!returning) {
    415  1.199        ad 		SYSCALL_TIME_SLEEP(l);
    416  1.180       dsl 
    417  1.199        ad 		/*
    418  1.199        ad 		 * XXXSMP If we are using h/w performance counters,
    419  1.199        ad 		 * save context.
    420  1.199        ad 		 */
    421  1.174        ad #if PERFCTRS
    422  1.199        ad 		if (PMC_ENABLED(l->l_proc)) {
    423  1.199        ad 			pmc_save_context(l->l_proc);
    424  1.199        ad 		}
    425  1.199        ad #endif
    426  1.199        ad 		updatertime(l, &tv);
    427  1.174        ad 	}
    428  1.113  gmcgarry 
    429  1.113  gmcgarry 	/*
    430  1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    431  1.113  gmcgarry 	 */
    432  1.188      yamt 	mutex_spin_enter(spc->spc_mutex);
    433  1.174        ad 	KASSERT(l->l_stat != LSRUN);
    434  1.204        ad 	if (l->l_stat == LSONPROC && l != newl) {
    435  1.188      yamt 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    436  1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    437  1.188      yamt 			l->l_stat = LSRUN;
    438  1.188      yamt 			lwp_setlock(l, spc->spc_mutex);
    439  1.188      yamt 			sched_enqueue(l, true);
    440  1.188      yamt 		} else
    441  1.188      yamt 			l->l_stat = LSIDL;
    442  1.174        ad 	}
    443  1.174        ad 
    444  1.174        ad 	/*
    445  1.201     rmind 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    446  1.209        ad 	 * If no LWP is runnable, select the idle LWP.
    447  1.209        ad 	 *
    448  1.209        ad 	 * Note that spc_lwplock might not necessary be held, and
    449  1.209        ad 	 * new thread would be unlocked after setting the LWP-lock.
    450  1.174        ad 	 */
    451  1.190        ad 	if (newl == NULL) {
    452  1.190        ad 		newl = sched_nextlwp();
    453  1.190        ad 		if (newl != NULL) {
    454  1.190        ad 			sched_dequeue(newl);
    455  1.190        ad 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    456  1.190        ad 			newl->l_stat = LSONPROC;
    457  1.196        ad 			newl->l_cpu = ci;
    458  1.190        ad 			newl->l_flag |= LW_RUNNING;
    459  1.190        ad 			lwp_setlock(newl, &spc->spc_lwplock);
    460  1.190        ad 		} else {
    461  1.196        ad 			newl = ci->ci_data.cpu_idlelwp;
    462  1.190        ad 			newl->l_stat = LSONPROC;
    463  1.190        ad 			newl->l_flag |= LW_RUNNING;
    464  1.190        ad 		}
    465  1.204        ad 		/*
    466  1.204        ad 		 * Only clear want_resched if there are no
    467  1.204        ad 		 * pending (slow) software interrupts.
    468  1.204        ad 		 */
    469  1.204        ad 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    470  1.199        ad 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    471  1.204        ad 		spc->spc_curpriority = lwp_eprio(newl);
    472  1.199        ad 	}
    473  1.199        ad 
    474  1.204        ad 	/* Items that must be updated with the CPU locked. */
    475  1.199        ad 	if (!returning) {
    476  1.204        ad 		/* Update the new LWP's start time. */
    477  1.199        ad 		newl->l_stime = tv;
    478  1.204        ad 
    479  1.199        ad 		/*
    480  1.204        ad 		 * ci_curlwp changes when a fast soft interrupt occurs.
    481  1.204        ad 		 * We use cpu_onproc to keep track of which kernel or
    482  1.204        ad 		 * user thread is running 'underneath' the software
    483  1.204        ad 		 * interrupt.  This is important for time accounting,
    484  1.204        ad 		 * itimers and forcing user threads to preempt (aston).
    485  1.199        ad 		 */
    486  1.204        ad 		ci->ci_data.cpu_onproc = newl;
    487  1.188      yamt 	}
    488  1.188      yamt 
    489  1.188      yamt 	if (l != newl) {
    490  1.188      yamt 		struct lwp *prevlwp;
    491  1.174        ad 
    492  1.209        ad 		/* Release all locks, but leave the current LWP locked */
    493  1.188      yamt 		if (l->l_mutex == spc->spc_mutex) {
    494  1.209        ad 			/*
    495  1.209        ad 			 * Drop spc_lwplock, if the current LWP has been moved
    496  1.209        ad 			 * to the run queue (it is now locked by spc_mutex).
    497  1.209        ad 			 */
    498  1.188      yamt 			mutex_spin_exit(&spc->spc_lwplock);
    499  1.188      yamt 		} else {
    500  1.209        ad 			/*
    501  1.209        ad 			 * Otherwise, drop the spc_mutex, we are done with the
    502  1.209        ad 			 * run queues.
    503  1.209        ad 			 */
    504  1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    505  1.188      yamt 		}
    506  1.188      yamt 
    507  1.209        ad 		/*
    508  1.209        ad 		 * Mark that context switch is going to be perfomed
    509  1.209        ad 		 * for this LWP, to protect it from being switched
    510  1.209        ad 		 * to on another CPU.
    511  1.209        ad 		 */
    512  1.209        ad 		KASSERT(l->l_ctxswtch == 0);
    513  1.209        ad 		l->l_ctxswtch = 1;
    514  1.209        ad 		l->l_ncsw++;
    515  1.209        ad 		l->l_flag &= ~LW_RUNNING;
    516  1.209        ad 
    517  1.209        ad 		/*
    518  1.209        ad 		 * Increase the count of spin-mutexes before the release
    519  1.209        ad 		 * of the last lock - we must remain at IPL_SCHED during
    520  1.209        ad 		 * the context switch.
    521  1.209        ad 		 */
    522  1.209        ad 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    523  1.209        ad 		ci->ci_mtx_count--;
    524  1.209        ad 		lwp_unlock(l);
    525  1.209        ad 
    526  1.188      yamt 		/* Unlocked, but for statistics only. */
    527  1.188      yamt 		uvmexp.swtch++;
    528  1.188      yamt 
    529  1.209        ad 		/* Update status for lwpctl, if present. */
    530  1.209        ad 		if (l->l_lwpctl != NULL)
    531  1.209        ad 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    532  1.209        ad 
    533  1.199        ad 		/*
    534  1.199        ad 		 * Save old VM context, unless a soft interrupt
    535  1.199        ad 		 * handler is blocking.
    536  1.199        ad 		 */
    537  1.199        ad 		if (!returning)
    538  1.199        ad 			pmap_deactivate(l);
    539  1.188      yamt 
    540  1.209        ad 		/*
    541  1.209        ad 		 * We may need to spin-wait for if 'newl' is still
    542  1.209        ad 		 * context switching on another CPU.
    543  1.209        ad 		 */
    544  1.209        ad 		if (newl->l_ctxswtch != 0) {
    545  1.209        ad 			u_int count;
    546  1.209        ad 			count = SPINLOCK_BACKOFF_MIN;
    547  1.209        ad 			while (newl->l_ctxswtch)
    548  1.209        ad 				SPINLOCK_BACKOFF(count);
    549  1.209        ad 		}
    550  1.207        ad 
    551  1.188      yamt 		/* Switch to the new LWP.. */
    552  1.204        ad 		prevlwp = cpu_switchto(l, newl, returning);
    553  1.207        ad 		ci = curcpu();
    554  1.207        ad 
    555  1.188      yamt 		/*
    556  1.209        ad 		 * Switched away - we have new curlwp.
    557  1.209        ad 		 * Restore VM context and IPL.
    558  1.188      yamt 		 */
    559  1.209        ad 		pmap_activate(l);
    560  1.188      yamt 		if (prevlwp != NULL) {
    561  1.209        ad 			/* Normalize the count of the spin-mutexes */
    562  1.209        ad 			ci->ci_mtx_count++;
    563  1.209        ad 			/* Unmark the state of context switch */
    564  1.209        ad 			membar_exit();
    565  1.209        ad 			prevlwp->l_ctxswtch = 0;
    566  1.188      yamt 		}
    567  1.209        ad 		splx(oldspl);
    568  1.209        ad 
    569  1.209        ad 		/* Update status for lwpctl, if present. */
    570  1.209        ad 		if (l->l_lwpctl != NULL)
    571  1.209        ad 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    572  1.174        ad 
    573  1.188      yamt 		retval = 1;
    574  1.188      yamt 	} else {
    575  1.188      yamt 		/* Nothing to do - just unlock and return. */
    576  1.188      yamt 		mutex_spin_exit(spc->spc_mutex);
    577  1.188      yamt 		lwp_unlock(l);
    578  1.122   thorpej 		retval = 0;
    579  1.122   thorpej 	}
    580  1.110    briggs 
    581  1.188      yamt 	KASSERT(l == curlwp);
    582  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    583  1.207        ad 	KASSERT(l->l_cpu == ci);
    584  1.188      yamt 
    585  1.110    briggs 	/*
    586  1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    587   1.26       cgd 	 */
    588  1.114  gmcgarry #if PERFCTRS
    589  1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    590  1.175  christos 		pmc_restore_context(l->l_proc);
    591  1.166  christos 	}
    592  1.114  gmcgarry #endif
    593  1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    594  1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    595  1.169      yamt 
    596  1.122   thorpej 	return retval;
    597   1.26       cgd }
    598   1.26       cgd 
    599   1.26       cgd /*
    600  1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    601  1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    602  1.174        ad  *
    603  1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    604   1.26       cgd  */
    605   1.26       cgd void
    606  1.122   thorpej setrunnable(struct lwp *l)
    607   1.26       cgd {
    608  1.122   thorpej 	struct proc *p = l->l_proc;
    609  1.205        ad 	struct cpu_info *ci;
    610  1.174        ad 	sigset_t *ss;
    611   1.26       cgd 
    612  1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    613  1.183        ad 	KASSERT(mutex_owned(&p->p_smutex));
    614  1.183        ad 	KASSERT(lwp_locked(l, NULL));
    615  1.205        ad 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    616   1.83   thorpej 
    617  1.122   thorpej 	switch (l->l_stat) {
    618  1.122   thorpej 	case LSSTOP:
    619   1.33   mycroft 		/*
    620   1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    621   1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    622   1.33   mycroft 		 */
    623  1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    624  1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    625  1.174        ad 				ss = &l->l_sigpend.sp_set;
    626  1.174        ad 			else
    627  1.174        ad 				ss = &p->p_sigpend.sp_set;
    628  1.174        ad 			sigaddset(ss, p->p_xstat);
    629  1.174        ad 			signotify(l);
    630   1.53   mycroft 		}
    631  1.174        ad 		p->p_nrlwps++;
    632   1.26       cgd 		break;
    633  1.174        ad 	case LSSUSPENDED:
    634  1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    635  1.174        ad 		p->p_nrlwps++;
    636  1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    637  1.122   thorpej 		break;
    638  1.174        ad 	case LSSLEEP:
    639  1.174        ad 		KASSERT(l->l_wchan != NULL);
    640   1.26       cgd 		break;
    641  1.174        ad 	default:
    642  1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    643   1.26       cgd 	}
    644  1.139        cl 
    645  1.174        ad 	/*
    646  1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    647  1.174        ad 	 * again.  If not, mark it as still sleeping.
    648  1.174        ad 	 */
    649  1.174        ad 	if (l->l_wchan != NULL) {
    650  1.174        ad 		l->l_stat = LSSLEEP;
    651  1.183        ad 		/* lwp_unsleep() will release the lock. */
    652  1.183        ad 		lwp_unsleep(l);
    653  1.174        ad 		return;
    654  1.174        ad 	}
    655  1.139        cl 
    656  1.174        ad 	/*
    657  1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    658  1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    659  1.174        ad 	 */
    660  1.188      yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    661  1.174        ad 		l->l_stat = LSONPROC;
    662  1.174        ad 		l->l_slptime = 0;
    663  1.174        ad 		lwp_unlock(l);
    664  1.174        ad 		return;
    665  1.174        ad 	}
    666  1.122   thorpej 
    667  1.174        ad 	/*
    668  1.205        ad 	 * Look for a CPU to run.
    669  1.205        ad 	 * Set the LWP runnable.
    670  1.174        ad 	 */
    671  1.205        ad 	ci = sched_takecpu(l);
    672  1.205        ad 	l->l_cpu = ci;
    673  1.206        ad 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    674  1.206        ad 		lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    675  1.206        ad 		lwp_lock(l);
    676  1.206        ad 	}
    677  1.188      yamt 	sched_setrunnable(l);
    678  1.174        ad 	l->l_stat = LSRUN;
    679  1.122   thorpej 	l->l_slptime = 0;
    680  1.174        ad 
    681  1.205        ad 	/*
    682  1.205        ad 	 * If thread is swapped out - wake the swapper to bring it back in.
    683  1.205        ad 	 * Otherwise, enter it into a run queue.
    684  1.205        ad 	 */
    685  1.178     pavel 	if (l->l_flag & LW_INMEM) {
    686  1.188      yamt 		sched_enqueue(l, false);
    687  1.188      yamt 		resched_cpu(l);
    688  1.174        ad 		lwp_unlock(l);
    689  1.174        ad 	} else {
    690  1.174        ad 		lwp_unlock(l);
    691  1.177        ad 		uvm_kick_scheduler();
    692  1.174        ad 	}
    693   1.26       cgd }
    694   1.26       cgd 
    695   1.26       cgd /*
    696  1.174        ad  * suspendsched:
    697  1.174        ad  *
    698  1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    699  1.174        ad  */
    700   1.94    bouyer void
    701  1.174        ad suspendsched(void)
    702   1.94    bouyer {
    703  1.174        ad 	CPU_INFO_ITERATOR cii;
    704  1.174        ad 	struct cpu_info *ci;
    705  1.122   thorpej 	struct lwp *l;
    706  1.174        ad 	struct proc *p;
    707   1.94    bouyer 
    708   1.94    bouyer 	/*
    709  1.174        ad 	 * We do this by process in order not to violate the locking rules.
    710   1.94    bouyer 	 */
    711  1.204        ad 	mutex_enter(&proclist_lock);
    712  1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    713  1.174        ad 		mutex_enter(&p->p_smutex);
    714  1.174        ad 
    715  1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    716  1.174        ad 			mutex_exit(&p->p_smutex);
    717   1.94    bouyer 			continue;
    718  1.174        ad 		}
    719  1.174        ad 
    720  1.174        ad 		p->p_stat = SSTOP;
    721  1.174        ad 
    722  1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    723  1.174        ad 			if (l == curlwp)
    724  1.174        ad 				continue;
    725  1.174        ad 
    726  1.174        ad 			lwp_lock(l);
    727  1.122   thorpej 
    728   1.97     enami 			/*
    729  1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    730  1.174        ad 			 * when it tries to return to user mode.  We want to
    731  1.174        ad 			 * try and get to get as many LWPs as possible to
    732  1.174        ad 			 * the user / kernel boundary, so that they will
    733  1.174        ad 			 * release any locks that they hold.
    734   1.97     enami 			 */
    735  1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    736  1.174        ad 
    737  1.174        ad 			if (l->l_stat == LSSLEEP &&
    738  1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    739  1.174        ad 				/* setrunnable() will release the lock. */
    740  1.174        ad 				setrunnable(l);
    741  1.174        ad 				continue;
    742  1.174        ad 			}
    743  1.174        ad 
    744  1.174        ad 			lwp_unlock(l);
    745   1.94    bouyer 		}
    746  1.174        ad 
    747  1.174        ad 		mutex_exit(&p->p_smutex);
    748   1.94    bouyer 	}
    749  1.204        ad 	mutex_exit(&proclist_lock);
    750  1.174        ad 
    751  1.174        ad 	/*
    752  1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    753  1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    754  1.174        ad 	 */
    755  1.204        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    756  1.204        ad 		spc_lock(ci);
    757  1.204        ad 		cpu_need_resched(ci, RESCHED_IMMED);
    758  1.204        ad 		spc_unlock(ci);
    759  1.204        ad 	}
    760  1.174        ad }
    761  1.174        ad 
    762  1.174        ad /*
    763  1.174        ad  * sched_kpri:
    764  1.174        ad  *
    765  1.174        ad  *	Scale a priority level to a kernel priority level, usually
    766  1.174        ad  *	for an LWP that is about to sleep.
    767  1.174        ad  */
    768  1.185      yamt pri_t
    769  1.174        ad sched_kpri(struct lwp *l)
    770  1.174        ad {
    771  1.204        ad 	pri_t pri;
    772  1.204        ad 
    773  1.204        ad #ifndef __HAVE_FAST_SOFTINTS
    774  1.174        ad 	/*
    775  1.204        ad 	 * Hack: if a user thread is being used to run a soft
    776  1.204        ad 	 * interrupt, we need to boost the priority here.
    777  1.204        ad 	 */
    778  1.204        ad 	if ((l->l_pflag & LP_INTR) != 0 && l->l_priority < PRI_KERNEL_RT)
    779  1.204        ad 		return softint_kpri(l);
    780  1.204        ad #endif
    781  1.174        ad 
    782  1.204        ad 	/*
    783  1.204        ad 	 * Scale user priorities (0 -> 63) up to kernel priorities
    784  1.204        ad 	 * in the range (64 -> 95).  This makes assumptions about
    785  1.204        ad 	 * the priority space and so should be kept in sync with
    786  1.204        ad 	 * param.h.
    787  1.204        ad 	 */
    788  1.204        ad 	if ((pri = l->l_priority) >= PRI_KERNEL)
    789  1.204        ad 		return pri;
    790  1.204        ad 	return (pri >> 1) + PRI_KERNEL;
    791  1.174        ad }
    792  1.174        ad 
    793  1.174        ad /*
    794  1.174        ad  * sched_unsleep:
    795  1.174        ad  *
    796  1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    797  1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    798  1.174        ad  *	it's not a valid action for running or idle LWPs.
    799  1.174        ad  */
    800  1.188      yamt static void
    801  1.174        ad sched_unsleep(struct lwp *l)
    802  1.174        ad {
    803  1.174        ad 
    804  1.174        ad 	lwp_unlock(l);
    805  1.174        ad 	panic("sched_unsleep");
    806  1.174        ad }
    807  1.174        ad 
    808  1.204        ad void
    809  1.188      yamt resched_cpu(struct lwp *l)
    810  1.188      yamt {
    811  1.188      yamt 	struct cpu_info *ci;
    812  1.188      yamt 
    813  1.188      yamt 	/*
    814  1.188      yamt 	 * XXXSMP
    815  1.188      yamt 	 * Since l->l_cpu persists across a context switch,
    816  1.188      yamt 	 * this gives us *very weak* processor affinity, in
    817  1.188      yamt 	 * that we notify the CPU on which the process last
    818  1.188      yamt 	 * ran that it should try to switch.
    819  1.188      yamt 	 *
    820  1.188      yamt 	 * This does not guarantee that the process will run on
    821  1.188      yamt 	 * that processor next, because another processor might
    822  1.188      yamt 	 * grab it the next time it performs a context switch.
    823  1.188      yamt 	 *
    824  1.188      yamt 	 * This also does not handle the case where its last
    825  1.188      yamt 	 * CPU is running a higher-priority process, but every
    826  1.188      yamt 	 * other CPU is running a lower-priority process.  There
    827  1.188      yamt 	 * are ways to handle this situation, but they're not
    828  1.188      yamt 	 * currently very pretty, and we also need to weigh the
    829  1.188      yamt 	 * cost of moving a process from one CPU to another.
    830  1.188      yamt 	 */
    831  1.204        ad 	ci = l->l_cpu;
    832  1.204        ad 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
    833  1.188      yamt 		cpu_need_resched(ci, 0);
    834  1.188      yamt }
    835  1.188      yamt 
    836  1.188      yamt static void
    837  1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
    838  1.174        ad {
    839  1.174        ad 
    840  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    841  1.174        ad 
    842  1.204        ad 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    843  1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    844  1.204        ad 		sched_dequeue(l);
    845  1.204        ad 		l->l_priority = pri;
    846  1.204        ad 		sched_enqueue(l, false);
    847  1.204        ad 	} else {
    848  1.174        ad 		l->l_priority = pri;
    849  1.157      yamt 	}
    850  1.188      yamt 	resched_cpu(l);
    851  1.184      yamt }
    852  1.184      yamt 
    853  1.188      yamt static void
    854  1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
    855  1.184      yamt {
    856  1.184      yamt 
    857  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    858  1.184      yamt 
    859  1.204        ad 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    860  1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    861  1.204        ad 		sched_dequeue(l);
    862  1.204        ad 		l->l_inheritedprio = pri;
    863  1.204        ad 		sched_enqueue(l, false);
    864  1.204        ad 	} else {
    865  1.184      yamt 		l->l_inheritedprio = pri;
    866  1.184      yamt 	}
    867  1.188      yamt 	resched_cpu(l);
    868  1.184      yamt }
    869  1.184      yamt 
    870  1.184      yamt struct lwp *
    871  1.184      yamt syncobj_noowner(wchan_t wchan)
    872  1.184      yamt {
    873  1.184      yamt 
    874  1.184      yamt 	return NULL;
    875  1.151      yamt }
    876  1.151      yamt 
    877  1.113  gmcgarry 
    878  1.188      yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    879  1.188      yamt fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    880  1.115  nisimura 
    881  1.130   nathanw /*
    882  1.188      yamt  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    883  1.188      yamt  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    884  1.188      yamt  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    885  1.188      yamt  *
    886  1.188      yamt  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    887  1.188      yamt  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    888  1.188      yamt  *
    889  1.188      yamt  * If you dont want to bother with the faster/more-accurate formula, you
    890  1.188      yamt  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    891  1.188      yamt  * (more general) method of calculating the %age of CPU used by a process.
    892  1.134      matt  */
    893  1.188      yamt #define	CCPU_SHIFT	(FSHIFT + 1)
    894  1.134      matt 
    895  1.134      matt /*
    896  1.188      yamt  * sched_pstats:
    897  1.188      yamt  *
    898  1.188      yamt  * Update process statistics and check CPU resource allocation.
    899  1.188      yamt  * Call scheduler-specific hook to eventually adjust process/LWP
    900  1.188      yamt  * priorities.
    901  1.130   nathanw  */
    902  1.188      yamt /* ARGSUSED */
    903  1.113  gmcgarry void
    904  1.188      yamt sched_pstats(void *arg)
    905  1.113  gmcgarry {
    906  1.188      yamt 	struct rlimit *rlim;
    907  1.188      yamt 	struct lwp *l;
    908  1.188      yamt 	struct proc *p;
    909  1.204        ad 	int sig, clkhz;
    910  1.188      yamt 	long runtm;
    911  1.113  gmcgarry 
    912  1.188      yamt 	sched_pstats_ticks++;
    913  1.174        ad 
    914  1.188      yamt 	mutex_enter(&proclist_mutex);
    915  1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
    916  1.188      yamt 		/*
    917  1.188      yamt 		 * Increment time in/out of memory and sleep time (if
    918  1.188      yamt 		 * sleeping).  We ignore overflow; with 16-bit int's
    919  1.188      yamt 		 * (remember them?) overflow takes 45 days.
    920  1.188      yamt 		 */
    921  1.188      yamt 		mutex_enter(&p->p_smutex);
    922  1.188      yamt 		mutex_spin_enter(&p->p_stmutex);
    923  1.188      yamt 		runtm = p->p_rtime.tv_sec;
    924  1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    925  1.188      yamt 			if ((l->l_flag & LW_IDLE) != 0)
    926  1.188      yamt 				continue;
    927  1.188      yamt 			lwp_lock(l);
    928  1.188      yamt 			runtm += l->l_rtime.tv_sec;
    929  1.188      yamt 			l->l_swtime++;
    930  1.200     rmind 			sched_pstats_hook(l);
    931  1.188      yamt 			lwp_unlock(l);
    932  1.113  gmcgarry 
    933  1.188      yamt 			/*
    934  1.188      yamt 			 * p_pctcpu is only for ps.
    935  1.188      yamt 			 */
    936  1.188      yamt 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    937  1.188      yamt 			if (l->l_slptime < 1) {
    938  1.188      yamt 				clkhz = stathz != 0 ? stathz : hz;
    939  1.188      yamt #if	(FSHIFT >= CCPU_SHIFT)
    940  1.188      yamt 				l->l_pctcpu += (clkhz == 100) ?
    941  1.188      yamt 				    ((fixpt_t)l->l_cpticks) <<
    942  1.188      yamt 				        (FSHIFT - CCPU_SHIFT) :
    943  1.188      yamt 				    100 * (((fixpt_t) p->p_cpticks)
    944  1.188      yamt 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    945  1.188      yamt #else
    946  1.188      yamt 				l->l_pctcpu += ((FSCALE - ccpu) *
    947  1.188      yamt 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    948  1.146      matt #endif
    949  1.188      yamt 				l->l_cpticks = 0;
    950  1.188      yamt 			}
    951  1.188      yamt 		}
    952  1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    953  1.188      yamt 		mutex_spin_exit(&p->p_stmutex);
    954  1.174        ad 
    955  1.188      yamt 		/*
    956  1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
    957  1.188      yamt 		 * If over max, kill it.
    958  1.188      yamt 		 */
    959  1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
    960  1.188      yamt 		sig = 0;
    961  1.188      yamt 		if (runtm >= rlim->rlim_cur) {
    962  1.188      yamt 			if (runtm >= rlim->rlim_max)
    963  1.188      yamt 				sig = SIGKILL;
    964  1.188      yamt 			else {
    965  1.188      yamt 				sig = SIGXCPU;
    966  1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
    967  1.188      yamt 					rlim->rlim_cur += 5;
    968  1.188      yamt 			}
    969  1.188      yamt 		}
    970  1.188      yamt 		mutex_exit(&p->p_smutex);
    971  1.188      yamt 		if (sig) {
    972  1.188      yamt 			psignal(p, sig);
    973  1.188      yamt 		}
    974  1.174        ad 	}
    975  1.188      yamt 	mutex_exit(&proclist_mutex);
    976  1.188      yamt 	uvm_meter();
    977  1.191        ad 	cv_wakeup(&lbolt);
    978  1.188      yamt 	callout_schedule(&sched_pstats_ch, hz);
    979  1.113  gmcgarry }
    980  1.190        ad 
    981  1.190        ad void
    982  1.190        ad sched_init(void)
    983  1.190        ad {
    984  1.190        ad 
    985  1.208        ad 	cv_init(&lbolt, "lbolt");
    986  1.190        ad 	callout_init(&sched_pstats_ch, 0);
    987  1.190        ad 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    988  1.190        ad 	sched_setup();
    989  1.190        ad 	sched_pstats(NULL);
    990  1.190        ad }
    991