kern_synch.c revision 1.209 1 1.209 ad /* $NetBSD: kern_synch.c,v 1.209 2007/12/02 14:55:32 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.174 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
21 1.63 thorpej * must display the following acknowledgement:
22 1.63 thorpej * This product includes software developed by the NetBSD
23 1.63 thorpej * Foundation, Inc. and its contributors.
24 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.63 thorpej * contributors may be used to endorse or promote products derived
26 1.63 thorpej * from this software without specific prior written permission.
27 1.63 thorpej *
28 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
39 1.63 thorpej */
40 1.26 cgd
41 1.26 cgd /*-
42 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.26 cgd * The Regents of the University of California. All rights reserved.
44 1.26 cgd * (c) UNIX System Laboratories, Inc.
45 1.26 cgd * All or some portions of this file are derived from material licensed
46 1.26 cgd * to the University of California by American Telephone and Telegraph
47 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.26 cgd * the permission of UNIX System Laboratories, Inc.
49 1.26 cgd *
50 1.26 cgd * Redistribution and use in source and binary forms, with or without
51 1.26 cgd * modification, are permitted provided that the following conditions
52 1.26 cgd * are met:
53 1.26 cgd * 1. Redistributions of source code must retain the above copyright
54 1.26 cgd * notice, this list of conditions and the following disclaimer.
55 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
56 1.26 cgd * notice, this list of conditions and the following disclaimer in the
57 1.26 cgd * documentation and/or other materials provided with the distribution.
58 1.136 agc * 3. Neither the name of the University nor the names of its contributors
59 1.26 cgd * may be used to endorse or promote products derived from this software
60 1.26 cgd * without specific prior written permission.
61 1.26 cgd *
62 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.26 cgd * SUCH DAMAGE.
73 1.26 cgd *
74 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.26 cgd */
76 1.106 lukem
77 1.106 lukem #include <sys/cdefs.h>
78 1.209 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.209 2007/12/02 14:55:32 ad Exp $");
79 1.48 mrg
80 1.109 yamt #include "opt_kstack.h"
81 1.82 thorpej #include "opt_lockdebug.h"
82 1.83 thorpej #include "opt_multiprocessor.h"
83 1.110 briggs #include "opt_perfctrs.h"
84 1.26 cgd
85 1.174 ad #define __MUTEX_PRIVATE
86 1.174 ad
87 1.26 cgd #include <sys/param.h>
88 1.26 cgd #include <sys/systm.h>
89 1.26 cgd #include <sys/proc.h>
90 1.26 cgd #include <sys/kernel.h>
91 1.111 briggs #if defined(PERFCTRS)
92 1.110 briggs #include <sys/pmc.h>
93 1.111 briggs #endif
94 1.188 yamt #include <sys/cpu.h>
95 1.26 cgd #include <sys/resourcevar.h>
96 1.55 ross #include <sys/sched.h>
97 1.179 dsl #include <sys/syscall_stats.h>
98 1.174 ad #include <sys/sleepq.h>
99 1.174 ad #include <sys/lockdebug.h>
100 1.190 ad #include <sys/evcnt.h>
101 1.199 ad #include <sys/intr.h>
102 1.207 ad #include <sys/lwpctl.h>
103 1.209 ad #include <sys/atomic.h>
104 1.47 mrg
105 1.47 mrg #include <uvm/uvm_extern.h>
106 1.47 mrg
107 1.190 ad callout_t sched_pstats_ch;
108 1.188 yamt unsigned int sched_pstats_ticks;
109 1.34 christos
110 1.190 ad kcondvar_t lbolt; /* once a second sleep address */
111 1.26 cgd
112 1.188 yamt static void sched_unsleep(struct lwp *);
113 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
114 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
115 1.122 thorpej
116 1.174 ad syncobj_t sleep_syncobj = {
117 1.174 ad SOBJ_SLEEPQ_SORTED,
118 1.174 ad sleepq_unsleep,
119 1.184 yamt sleepq_changepri,
120 1.184 yamt sleepq_lendpri,
121 1.184 yamt syncobj_noowner,
122 1.174 ad };
123 1.174 ad
124 1.174 ad syncobj_t sched_syncobj = {
125 1.174 ad SOBJ_SLEEPQ_SORTED,
126 1.174 ad sched_unsleep,
127 1.184 yamt sched_changepri,
128 1.184 yamt sched_lendpri,
129 1.184 yamt syncobj_noowner,
130 1.174 ad };
131 1.122 thorpej
132 1.26 cgd /*
133 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
134 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
135 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
136 1.174 ad * maintained in the machine-dependent layers. This priority will typically
137 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
138 1.174 ad * it can be made higher to block network software interrupts after panics.
139 1.26 cgd */
140 1.174 ad int safepri;
141 1.26 cgd
142 1.26 cgd /*
143 1.174 ad * OBSOLETE INTERFACE
144 1.174 ad *
145 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
146 1.26 cgd * performed on the specified identifier. The process will then be made
147 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
148 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
149 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
150 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
151 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
152 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
153 1.26 cgd * call should be interrupted by the signal (return EINTR).
154 1.77 thorpej *
155 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
156 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
157 1.174 ad * is specified, in which case the interlock will always be unlocked upon
158 1.174 ad * return.
159 1.26 cgd */
160 1.26 cgd int
161 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
162 1.174 ad volatile struct simplelock *interlock)
163 1.26 cgd {
164 1.122 thorpej struct lwp *l = curlwp;
165 1.174 ad sleepq_t *sq;
166 1.188 yamt int error;
167 1.26 cgd
168 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
169 1.204 ad
170 1.174 ad if (sleepq_dontsleep(l)) {
171 1.174 ad (void)sleepq_abort(NULL, 0);
172 1.174 ad if ((priority & PNORELOCK) != 0)
173 1.77 thorpej simple_unlock(interlock);
174 1.174 ad return 0;
175 1.26 cgd }
176 1.78 sommerfe
177 1.204 ad l->l_kpriority = true;
178 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
179 1.174 ad sleepq_enter(sq, l);
180 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
181 1.42 cgd
182 1.174 ad if (interlock != NULL) {
183 1.204 ad KASSERT(simple_lock_held(interlock));
184 1.174 ad simple_unlock(interlock);
185 1.150 chs }
186 1.150 chs
187 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
188 1.126 pk
189 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
190 1.126 pk simple_lock(interlock);
191 1.174 ad
192 1.174 ad return error;
193 1.26 cgd }
194 1.26 cgd
195 1.187 ad int
196 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
197 1.187 ad kmutex_t *mtx)
198 1.187 ad {
199 1.187 ad struct lwp *l = curlwp;
200 1.187 ad sleepq_t *sq;
201 1.188 yamt int error;
202 1.187 ad
203 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
204 1.204 ad
205 1.187 ad if (sleepq_dontsleep(l)) {
206 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
207 1.187 ad return 0;
208 1.187 ad }
209 1.187 ad
210 1.204 ad l->l_kpriority = true;
211 1.187 ad sq = sleeptab_lookup(&sleeptab, ident);
212 1.187 ad sleepq_enter(sq, l);
213 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
214 1.187 ad mutex_exit(mtx);
215 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
216 1.187 ad
217 1.187 ad if ((priority & PNORELOCK) == 0)
218 1.187 ad mutex_enter(mtx);
219 1.187 ad
220 1.187 ad return error;
221 1.187 ad }
222 1.187 ad
223 1.26 cgd /*
224 1.174 ad * General sleep call for situations where a wake-up is not expected.
225 1.26 cgd */
226 1.174 ad int
227 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
228 1.26 cgd {
229 1.174 ad struct lwp *l = curlwp;
230 1.174 ad sleepq_t *sq;
231 1.174 ad int error;
232 1.26 cgd
233 1.174 ad if (sleepq_dontsleep(l))
234 1.174 ad return sleepq_abort(NULL, 0);
235 1.26 cgd
236 1.174 ad if (mtx != NULL)
237 1.174 ad mutex_exit(mtx);
238 1.204 ad l->l_kpriority = true;
239 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
240 1.174 ad sleepq_enter(sq, l);
241 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
242 1.188 yamt error = sleepq_block(timo, intr);
243 1.174 ad if (mtx != NULL)
244 1.174 ad mutex_enter(mtx);
245 1.83 thorpej
246 1.174 ad return error;
247 1.139 cl }
248 1.139 cl
249 1.26 cgd /*
250 1.174 ad * OBSOLETE INTERFACE
251 1.174 ad *
252 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
253 1.26 cgd */
254 1.26 cgd void
255 1.174 ad wakeup(wchan_t ident)
256 1.26 cgd {
257 1.174 ad sleepq_t *sq;
258 1.83 thorpej
259 1.174 ad if (cold)
260 1.174 ad return;
261 1.83 thorpej
262 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
263 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
264 1.63 thorpej }
265 1.63 thorpej
266 1.63 thorpej /*
267 1.174 ad * OBSOLETE INTERFACE
268 1.174 ad *
269 1.63 thorpej * Make the highest priority process first in line on the specified
270 1.63 thorpej * identifier runnable.
271 1.63 thorpej */
272 1.174 ad void
273 1.174 ad wakeup_one(wchan_t ident)
274 1.63 thorpej {
275 1.174 ad sleepq_t *sq;
276 1.63 thorpej
277 1.174 ad if (cold)
278 1.174 ad return;
279 1.188 yamt
280 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
281 1.174 ad sleepq_wake(sq, ident, 1);
282 1.174 ad }
283 1.63 thorpej
284 1.117 gmcgarry
285 1.117 gmcgarry /*
286 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
287 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
288 1.198 ad * current process explicitly requests it (eg sched_yield(2)).
289 1.117 gmcgarry */
290 1.117 gmcgarry void
291 1.117 gmcgarry yield(void)
292 1.117 gmcgarry {
293 1.122 thorpej struct lwp *l = curlwp;
294 1.117 gmcgarry
295 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
296 1.174 ad lwp_lock(l);
297 1.188 yamt KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
298 1.188 yamt KASSERT(l->l_stat == LSONPROC);
299 1.204 ad l->l_kpriority = false;
300 1.204 ad if (l->l_class == SCHED_OTHER) {
301 1.204 ad /*
302 1.204 ad * Only for timeshared threads. It will be reset
303 1.204 ad * by the scheduler in due course.
304 1.204 ad */
305 1.204 ad l->l_priority = 0;
306 1.204 ad }
307 1.188 yamt (void)mi_switch(l);
308 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
309 1.69 thorpej }
310 1.69 thorpej
311 1.69 thorpej /*
312 1.69 thorpej * General preemption call. Puts the current process back on its run queue
313 1.156 rpaulo * and performs an involuntary context switch.
314 1.69 thorpej */
315 1.69 thorpej void
316 1.174 ad preempt(void)
317 1.69 thorpej {
318 1.122 thorpej struct lwp *l = curlwp;
319 1.69 thorpej
320 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
321 1.174 ad lwp_lock(l);
322 1.188 yamt KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
323 1.188 yamt KASSERT(l->l_stat == LSONPROC);
324 1.204 ad l->l_kpriority = false;
325 1.174 ad l->l_nivcsw++;
326 1.188 yamt (void)mi_switch(l);
327 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
328 1.69 thorpej }
329 1.69 thorpej
330 1.69 thorpej /*
331 1.188 yamt * Compute the amount of time during which the current lwp was running.
332 1.130 nathanw *
333 1.188 yamt * - update l_rtime unless it's an idle lwp.
334 1.188 yamt */
335 1.188 yamt
336 1.199 ad void
337 1.199 ad updatertime(lwp_t *l, const struct timeval *tv)
338 1.188 yamt {
339 1.188 yamt long s, u;
340 1.188 yamt
341 1.199 ad if ((l->l_flag & LW_IDLE) != 0)
342 1.188 yamt return;
343 1.188 yamt
344 1.199 ad u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
345 1.199 ad s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
346 1.188 yamt if (u < 0) {
347 1.188 yamt u += 1000000;
348 1.188 yamt s--;
349 1.188 yamt } else if (u >= 1000000) {
350 1.188 yamt u -= 1000000;
351 1.188 yamt s++;
352 1.188 yamt }
353 1.188 yamt l->l_rtime.tv_usec = u;
354 1.188 yamt l->l_rtime.tv_sec = s;
355 1.188 yamt }
356 1.188 yamt
357 1.188 yamt /*
358 1.188 yamt * The machine independent parts of context switch.
359 1.188 yamt *
360 1.188 yamt * Returns 1 if another LWP was actually run.
361 1.26 cgd */
362 1.122 thorpej int
363 1.199 ad mi_switch(lwp_t *l)
364 1.26 cgd {
365 1.76 thorpej struct schedstate_percpu *spc;
366 1.188 yamt struct lwp *newl;
367 1.174 ad int retval, oldspl;
368 1.196 ad struct cpu_info *ci;
369 1.199 ad struct timeval tv;
370 1.199 ad bool returning;
371 1.26 cgd
372 1.188 yamt KASSERT(lwp_locked(l, NULL));
373 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
374 1.174 ad
375 1.174 ad #ifdef KSTACK_CHECK_MAGIC
376 1.174 ad kstack_check_magic(l);
377 1.174 ad #endif
378 1.83 thorpej
379 1.199 ad microtime(&tv);
380 1.199 ad
381 1.209 ad KDASSERT(l->l_cpu == curcpu());
382 1.196 ad ci = l->l_cpu;
383 1.196 ad spc = &ci->ci_schedstate;
384 1.199 ad returning = false;
385 1.190 ad newl = NULL;
386 1.190 ad
387 1.199 ad /*
388 1.199 ad * If we have been asked to switch to a specific LWP, then there
389 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
390 1.199 ad * blocking, then return to the interrupted thread without adjusting
391 1.199 ad * VM context or its start time: neither have been changed in order
392 1.199 ad * to take the interrupt.
393 1.199 ad */
394 1.190 ad if (l->l_switchto != NULL) {
395 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
396 1.199 ad returning = true;
397 1.199 ad softint_block(l);
398 1.199 ad if ((l->l_flag & LW_TIMEINTR) != 0)
399 1.199 ad updatertime(l, &tv);
400 1.199 ad }
401 1.190 ad newl = l->l_switchto;
402 1.190 ad l->l_switchto = NULL;
403 1.190 ad }
404 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
405 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
406 1.204 ad /* There are pending soft interrupts, so pick one. */
407 1.204 ad newl = softint_picklwp();
408 1.204 ad newl->l_stat = LSONPROC;
409 1.204 ad newl->l_flag |= LW_RUNNING;
410 1.204 ad }
411 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
412 1.190 ad
413 1.180 dsl /* Count time spent in current system call */
414 1.199 ad if (!returning) {
415 1.199 ad SYSCALL_TIME_SLEEP(l);
416 1.180 dsl
417 1.199 ad /*
418 1.199 ad * XXXSMP If we are using h/w performance counters,
419 1.199 ad * save context.
420 1.199 ad */
421 1.174 ad #if PERFCTRS
422 1.199 ad if (PMC_ENABLED(l->l_proc)) {
423 1.199 ad pmc_save_context(l->l_proc);
424 1.199 ad }
425 1.199 ad #endif
426 1.199 ad updatertime(l, &tv);
427 1.174 ad }
428 1.113 gmcgarry
429 1.113 gmcgarry /*
430 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
431 1.113 gmcgarry */
432 1.188 yamt mutex_spin_enter(spc->spc_mutex);
433 1.174 ad KASSERT(l->l_stat != LSRUN);
434 1.204 ad if (l->l_stat == LSONPROC && l != newl) {
435 1.188 yamt KASSERT(lwp_locked(l, &spc->spc_lwplock));
436 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
437 1.188 yamt l->l_stat = LSRUN;
438 1.188 yamt lwp_setlock(l, spc->spc_mutex);
439 1.188 yamt sched_enqueue(l, true);
440 1.188 yamt } else
441 1.188 yamt l->l_stat = LSIDL;
442 1.174 ad }
443 1.174 ad
444 1.174 ad /*
445 1.201 rmind * Let sched_nextlwp() select the LWP to run the CPU next.
446 1.209 ad * If no LWP is runnable, select the idle LWP.
447 1.209 ad *
448 1.209 ad * Note that spc_lwplock might not necessary be held, and
449 1.209 ad * new thread would be unlocked after setting the LWP-lock.
450 1.174 ad */
451 1.190 ad if (newl == NULL) {
452 1.190 ad newl = sched_nextlwp();
453 1.190 ad if (newl != NULL) {
454 1.190 ad sched_dequeue(newl);
455 1.190 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
456 1.190 ad newl->l_stat = LSONPROC;
457 1.196 ad newl->l_cpu = ci;
458 1.190 ad newl->l_flag |= LW_RUNNING;
459 1.190 ad lwp_setlock(newl, &spc->spc_lwplock);
460 1.190 ad } else {
461 1.196 ad newl = ci->ci_data.cpu_idlelwp;
462 1.190 ad newl->l_stat = LSONPROC;
463 1.190 ad newl->l_flag |= LW_RUNNING;
464 1.190 ad }
465 1.204 ad /*
466 1.204 ad * Only clear want_resched if there are no
467 1.204 ad * pending (slow) software interrupts.
468 1.204 ad */
469 1.204 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
470 1.199 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
471 1.204 ad spc->spc_curpriority = lwp_eprio(newl);
472 1.199 ad }
473 1.199 ad
474 1.204 ad /* Items that must be updated with the CPU locked. */
475 1.199 ad if (!returning) {
476 1.204 ad /* Update the new LWP's start time. */
477 1.199 ad newl->l_stime = tv;
478 1.204 ad
479 1.199 ad /*
480 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
481 1.204 ad * We use cpu_onproc to keep track of which kernel or
482 1.204 ad * user thread is running 'underneath' the software
483 1.204 ad * interrupt. This is important for time accounting,
484 1.204 ad * itimers and forcing user threads to preempt (aston).
485 1.199 ad */
486 1.204 ad ci->ci_data.cpu_onproc = newl;
487 1.188 yamt }
488 1.188 yamt
489 1.188 yamt if (l != newl) {
490 1.188 yamt struct lwp *prevlwp;
491 1.174 ad
492 1.209 ad /* Release all locks, but leave the current LWP locked */
493 1.188 yamt if (l->l_mutex == spc->spc_mutex) {
494 1.209 ad /*
495 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
496 1.209 ad * to the run queue (it is now locked by spc_mutex).
497 1.209 ad */
498 1.188 yamt mutex_spin_exit(&spc->spc_lwplock);
499 1.188 yamt } else {
500 1.209 ad /*
501 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
502 1.209 ad * run queues.
503 1.209 ad */
504 1.188 yamt mutex_spin_exit(spc->spc_mutex);
505 1.188 yamt }
506 1.188 yamt
507 1.209 ad /*
508 1.209 ad * Mark that context switch is going to be perfomed
509 1.209 ad * for this LWP, to protect it from being switched
510 1.209 ad * to on another CPU.
511 1.209 ad */
512 1.209 ad KASSERT(l->l_ctxswtch == 0);
513 1.209 ad l->l_ctxswtch = 1;
514 1.209 ad l->l_ncsw++;
515 1.209 ad l->l_flag &= ~LW_RUNNING;
516 1.209 ad
517 1.209 ad /*
518 1.209 ad * Increase the count of spin-mutexes before the release
519 1.209 ad * of the last lock - we must remain at IPL_SCHED during
520 1.209 ad * the context switch.
521 1.209 ad */
522 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
523 1.209 ad ci->ci_mtx_count--;
524 1.209 ad lwp_unlock(l);
525 1.209 ad
526 1.188 yamt /* Unlocked, but for statistics only. */
527 1.188 yamt uvmexp.swtch++;
528 1.188 yamt
529 1.209 ad /* Update status for lwpctl, if present. */
530 1.209 ad if (l->l_lwpctl != NULL)
531 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
532 1.209 ad
533 1.199 ad /*
534 1.199 ad * Save old VM context, unless a soft interrupt
535 1.199 ad * handler is blocking.
536 1.199 ad */
537 1.199 ad if (!returning)
538 1.199 ad pmap_deactivate(l);
539 1.188 yamt
540 1.209 ad /*
541 1.209 ad * We may need to spin-wait for if 'newl' is still
542 1.209 ad * context switching on another CPU.
543 1.209 ad */
544 1.209 ad if (newl->l_ctxswtch != 0) {
545 1.209 ad u_int count;
546 1.209 ad count = SPINLOCK_BACKOFF_MIN;
547 1.209 ad while (newl->l_ctxswtch)
548 1.209 ad SPINLOCK_BACKOFF(count);
549 1.209 ad }
550 1.207 ad
551 1.188 yamt /* Switch to the new LWP.. */
552 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
553 1.207 ad ci = curcpu();
554 1.207 ad
555 1.188 yamt /*
556 1.209 ad * Switched away - we have new curlwp.
557 1.209 ad * Restore VM context and IPL.
558 1.188 yamt */
559 1.209 ad pmap_activate(l);
560 1.188 yamt if (prevlwp != NULL) {
561 1.209 ad /* Normalize the count of the spin-mutexes */
562 1.209 ad ci->ci_mtx_count++;
563 1.209 ad /* Unmark the state of context switch */
564 1.209 ad membar_exit();
565 1.209 ad prevlwp->l_ctxswtch = 0;
566 1.188 yamt }
567 1.209 ad splx(oldspl);
568 1.209 ad
569 1.209 ad /* Update status for lwpctl, if present. */
570 1.209 ad if (l->l_lwpctl != NULL)
571 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
572 1.174 ad
573 1.188 yamt retval = 1;
574 1.188 yamt } else {
575 1.188 yamt /* Nothing to do - just unlock and return. */
576 1.188 yamt mutex_spin_exit(spc->spc_mutex);
577 1.188 yamt lwp_unlock(l);
578 1.122 thorpej retval = 0;
579 1.122 thorpej }
580 1.110 briggs
581 1.188 yamt KASSERT(l == curlwp);
582 1.188 yamt KASSERT(l->l_stat == LSONPROC);
583 1.207 ad KASSERT(l->l_cpu == ci);
584 1.188 yamt
585 1.110 briggs /*
586 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
587 1.26 cgd */
588 1.114 gmcgarry #if PERFCTRS
589 1.175 christos if (PMC_ENABLED(l->l_proc)) {
590 1.175 christos pmc_restore_context(l->l_proc);
591 1.166 christos }
592 1.114 gmcgarry #endif
593 1.180 dsl SYSCALL_TIME_WAKEUP(l);
594 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
595 1.169 yamt
596 1.122 thorpej return retval;
597 1.26 cgd }
598 1.26 cgd
599 1.26 cgd /*
600 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
601 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
602 1.174 ad *
603 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
604 1.26 cgd */
605 1.26 cgd void
606 1.122 thorpej setrunnable(struct lwp *l)
607 1.26 cgd {
608 1.122 thorpej struct proc *p = l->l_proc;
609 1.205 ad struct cpu_info *ci;
610 1.174 ad sigset_t *ss;
611 1.26 cgd
612 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
613 1.183 ad KASSERT(mutex_owned(&p->p_smutex));
614 1.183 ad KASSERT(lwp_locked(l, NULL));
615 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
616 1.83 thorpej
617 1.122 thorpej switch (l->l_stat) {
618 1.122 thorpej case LSSTOP:
619 1.33 mycroft /*
620 1.33 mycroft * If we're being traced (possibly because someone attached us
621 1.33 mycroft * while we were stopped), check for a signal from the debugger.
622 1.33 mycroft */
623 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
624 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
625 1.174 ad ss = &l->l_sigpend.sp_set;
626 1.174 ad else
627 1.174 ad ss = &p->p_sigpend.sp_set;
628 1.174 ad sigaddset(ss, p->p_xstat);
629 1.174 ad signotify(l);
630 1.53 mycroft }
631 1.174 ad p->p_nrlwps++;
632 1.26 cgd break;
633 1.174 ad case LSSUSPENDED:
634 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
635 1.174 ad p->p_nrlwps++;
636 1.192 rmind cv_broadcast(&p->p_lwpcv);
637 1.122 thorpej break;
638 1.174 ad case LSSLEEP:
639 1.174 ad KASSERT(l->l_wchan != NULL);
640 1.26 cgd break;
641 1.174 ad default:
642 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
643 1.26 cgd }
644 1.139 cl
645 1.174 ad /*
646 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
647 1.174 ad * again. If not, mark it as still sleeping.
648 1.174 ad */
649 1.174 ad if (l->l_wchan != NULL) {
650 1.174 ad l->l_stat = LSSLEEP;
651 1.183 ad /* lwp_unsleep() will release the lock. */
652 1.183 ad lwp_unsleep(l);
653 1.174 ad return;
654 1.174 ad }
655 1.139 cl
656 1.174 ad /*
657 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
658 1.174 ad * about to call mi_switch(), in which case it will yield.
659 1.174 ad */
660 1.188 yamt if ((l->l_flag & LW_RUNNING) != 0) {
661 1.174 ad l->l_stat = LSONPROC;
662 1.174 ad l->l_slptime = 0;
663 1.174 ad lwp_unlock(l);
664 1.174 ad return;
665 1.174 ad }
666 1.122 thorpej
667 1.174 ad /*
668 1.205 ad * Look for a CPU to run.
669 1.205 ad * Set the LWP runnable.
670 1.174 ad */
671 1.205 ad ci = sched_takecpu(l);
672 1.205 ad l->l_cpu = ci;
673 1.206 ad if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
674 1.206 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
675 1.206 ad lwp_lock(l);
676 1.206 ad }
677 1.188 yamt sched_setrunnable(l);
678 1.174 ad l->l_stat = LSRUN;
679 1.122 thorpej l->l_slptime = 0;
680 1.174 ad
681 1.205 ad /*
682 1.205 ad * If thread is swapped out - wake the swapper to bring it back in.
683 1.205 ad * Otherwise, enter it into a run queue.
684 1.205 ad */
685 1.178 pavel if (l->l_flag & LW_INMEM) {
686 1.188 yamt sched_enqueue(l, false);
687 1.188 yamt resched_cpu(l);
688 1.174 ad lwp_unlock(l);
689 1.174 ad } else {
690 1.174 ad lwp_unlock(l);
691 1.177 ad uvm_kick_scheduler();
692 1.174 ad }
693 1.26 cgd }
694 1.26 cgd
695 1.26 cgd /*
696 1.174 ad * suspendsched:
697 1.174 ad *
698 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
699 1.174 ad */
700 1.94 bouyer void
701 1.174 ad suspendsched(void)
702 1.94 bouyer {
703 1.174 ad CPU_INFO_ITERATOR cii;
704 1.174 ad struct cpu_info *ci;
705 1.122 thorpej struct lwp *l;
706 1.174 ad struct proc *p;
707 1.94 bouyer
708 1.94 bouyer /*
709 1.174 ad * We do this by process in order not to violate the locking rules.
710 1.94 bouyer */
711 1.204 ad mutex_enter(&proclist_lock);
712 1.174 ad PROCLIST_FOREACH(p, &allproc) {
713 1.174 ad mutex_enter(&p->p_smutex);
714 1.174 ad
715 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
716 1.174 ad mutex_exit(&p->p_smutex);
717 1.94 bouyer continue;
718 1.174 ad }
719 1.174 ad
720 1.174 ad p->p_stat = SSTOP;
721 1.174 ad
722 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
723 1.174 ad if (l == curlwp)
724 1.174 ad continue;
725 1.174 ad
726 1.174 ad lwp_lock(l);
727 1.122 thorpej
728 1.97 enami /*
729 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
730 1.174 ad * when it tries to return to user mode. We want to
731 1.174 ad * try and get to get as many LWPs as possible to
732 1.174 ad * the user / kernel boundary, so that they will
733 1.174 ad * release any locks that they hold.
734 1.97 enami */
735 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
736 1.174 ad
737 1.174 ad if (l->l_stat == LSSLEEP &&
738 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
739 1.174 ad /* setrunnable() will release the lock. */
740 1.174 ad setrunnable(l);
741 1.174 ad continue;
742 1.174 ad }
743 1.174 ad
744 1.174 ad lwp_unlock(l);
745 1.94 bouyer }
746 1.174 ad
747 1.174 ad mutex_exit(&p->p_smutex);
748 1.94 bouyer }
749 1.204 ad mutex_exit(&proclist_lock);
750 1.174 ad
751 1.174 ad /*
752 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
753 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
754 1.174 ad */
755 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
756 1.204 ad spc_lock(ci);
757 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
758 1.204 ad spc_unlock(ci);
759 1.204 ad }
760 1.174 ad }
761 1.174 ad
762 1.174 ad /*
763 1.174 ad * sched_kpri:
764 1.174 ad *
765 1.174 ad * Scale a priority level to a kernel priority level, usually
766 1.174 ad * for an LWP that is about to sleep.
767 1.174 ad */
768 1.185 yamt pri_t
769 1.174 ad sched_kpri(struct lwp *l)
770 1.174 ad {
771 1.204 ad pri_t pri;
772 1.204 ad
773 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
774 1.174 ad /*
775 1.204 ad * Hack: if a user thread is being used to run a soft
776 1.204 ad * interrupt, we need to boost the priority here.
777 1.204 ad */
778 1.204 ad if ((l->l_pflag & LP_INTR) != 0 && l->l_priority < PRI_KERNEL_RT)
779 1.204 ad return softint_kpri(l);
780 1.204 ad #endif
781 1.174 ad
782 1.204 ad /*
783 1.204 ad * Scale user priorities (0 -> 63) up to kernel priorities
784 1.204 ad * in the range (64 -> 95). This makes assumptions about
785 1.204 ad * the priority space and so should be kept in sync with
786 1.204 ad * param.h.
787 1.204 ad */
788 1.204 ad if ((pri = l->l_priority) >= PRI_KERNEL)
789 1.204 ad return pri;
790 1.204 ad return (pri >> 1) + PRI_KERNEL;
791 1.174 ad }
792 1.174 ad
793 1.174 ad /*
794 1.174 ad * sched_unsleep:
795 1.174 ad *
796 1.174 ad * The is called when the LWP has not been awoken normally but instead
797 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
798 1.174 ad * it's not a valid action for running or idle LWPs.
799 1.174 ad */
800 1.188 yamt static void
801 1.174 ad sched_unsleep(struct lwp *l)
802 1.174 ad {
803 1.174 ad
804 1.174 ad lwp_unlock(l);
805 1.174 ad panic("sched_unsleep");
806 1.174 ad }
807 1.174 ad
808 1.204 ad void
809 1.188 yamt resched_cpu(struct lwp *l)
810 1.188 yamt {
811 1.188 yamt struct cpu_info *ci;
812 1.188 yamt
813 1.188 yamt /*
814 1.188 yamt * XXXSMP
815 1.188 yamt * Since l->l_cpu persists across a context switch,
816 1.188 yamt * this gives us *very weak* processor affinity, in
817 1.188 yamt * that we notify the CPU on which the process last
818 1.188 yamt * ran that it should try to switch.
819 1.188 yamt *
820 1.188 yamt * This does not guarantee that the process will run on
821 1.188 yamt * that processor next, because another processor might
822 1.188 yamt * grab it the next time it performs a context switch.
823 1.188 yamt *
824 1.188 yamt * This also does not handle the case where its last
825 1.188 yamt * CPU is running a higher-priority process, but every
826 1.188 yamt * other CPU is running a lower-priority process. There
827 1.188 yamt * are ways to handle this situation, but they're not
828 1.188 yamt * currently very pretty, and we also need to weigh the
829 1.188 yamt * cost of moving a process from one CPU to another.
830 1.188 yamt */
831 1.204 ad ci = l->l_cpu;
832 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
833 1.188 yamt cpu_need_resched(ci, 0);
834 1.188 yamt }
835 1.188 yamt
836 1.188 yamt static void
837 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
838 1.174 ad {
839 1.174 ad
840 1.188 yamt KASSERT(lwp_locked(l, NULL));
841 1.174 ad
842 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
843 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
844 1.204 ad sched_dequeue(l);
845 1.204 ad l->l_priority = pri;
846 1.204 ad sched_enqueue(l, false);
847 1.204 ad } else {
848 1.174 ad l->l_priority = pri;
849 1.157 yamt }
850 1.188 yamt resched_cpu(l);
851 1.184 yamt }
852 1.184 yamt
853 1.188 yamt static void
854 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
855 1.184 yamt {
856 1.184 yamt
857 1.188 yamt KASSERT(lwp_locked(l, NULL));
858 1.184 yamt
859 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
860 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
861 1.204 ad sched_dequeue(l);
862 1.204 ad l->l_inheritedprio = pri;
863 1.204 ad sched_enqueue(l, false);
864 1.204 ad } else {
865 1.184 yamt l->l_inheritedprio = pri;
866 1.184 yamt }
867 1.188 yamt resched_cpu(l);
868 1.184 yamt }
869 1.184 yamt
870 1.184 yamt struct lwp *
871 1.184 yamt syncobj_noowner(wchan_t wchan)
872 1.184 yamt {
873 1.184 yamt
874 1.184 yamt return NULL;
875 1.151 yamt }
876 1.151 yamt
877 1.113 gmcgarry
878 1.188 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
879 1.188 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
880 1.115 nisimura
881 1.130 nathanw /*
882 1.188 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
883 1.188 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
884 1.188 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
885 1.188 yamt *
886 1.188 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
887 1.188 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
888 1.188 yamt *
889 1.188 yamt * If you dont want to bother with the faster/more-accurate formula, you
890 1.188 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
891 1.188 yamt * (more general) method of calculating the %age of CPU used by a process.
892 1.134 matt */
893 1.188 yamt #define CCPU_SHIFT (FSHIFT + 1)
894 1.134 matt
895 1.134 matt /*
896 1.188 yamt * sched_pstats:
897 1.188 yamt *
898 1.188 yamt * Update process statistics and check CPU resource allocation.
899 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
900 1.188 yamt * priorities.
901 1.130 nathanw */
902 1.188 yamt /* ARGSUSED */
903 1.113 gmcgarry void
904 1.188 yamt sched_pstats(void *arg)
905 1.113 gmcgarry {
906 1.188 yamt struct rlimit *rlim;
907 1.188 yamt struct lwp *l;
908 1.188 yamt struct proc *p;
909 1.204 ad int sig, clkhz;
910 1.188 yamt long runtm;
911 1.113 gmcgarry
912 1.188 yamt sched_pstats_ticks++;
913 1.174 ad
914 1.188 yamt mutex_enter(&proclist_mutex);
915 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
916 1.188 yamt /*
917 1.188 yamt * Increment time in/out of memory and sleep time (if
918 1.188 yamt * sleeping). We ignore overflow; with 16-bit int's
919 1.188 yamt * (remember them?) overflow takes 45 days.
920 1.188 yamt */
921 1.188 yamt mutex_enter(&p->p_smutex);
922 1.188 yamt mutex_spin_enter(&p->p_stmutex);
923 1.188 yamt runtm = p->p_rtime.tv_sec;
924 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
925 1.188 yamt if ((l->l_flag & LW_IDLE) != 0)
926 1.188 yamt continue;
927 1.188 yamt lwp_lock(l);
928 1.188 yamt runtm += l->l_rtime.tv_sec;
929 1.188 yamt l->l_swtime++;
930 1.200 rmind sched_pstats_hook(l);
931 1.188 yamt lwp_unlock(l);
932 1.113 gmcgarry
933 1.188 yamt /*
934 1.188 yamt * p_pctcpu is only for ps.
935 1.188 yamt */
936 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
937 1.188 yamt if (l->l_slptime < 1) {
938 1.188 yamt clkhz = stathz != 0 ? stathz : hz;
939 1.188 yamt #if (FSHIFT >= CCPU_SHIFT)
940 1.188 yamt l->l_pctcpu += (clkhz == 100) ?
941 1.188 yamt ((fixpt_t)l->l_cpticks) <<
942 1.188 yamt (FSHIFT - CCPU_SHIFT) :
943 1.188 yamt 100 * (((fixpt_t) p->p_cpticks)
944 1.188 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
945 1.188 yamt #else
946 1.188 yamt l->l_pctcpu += ((FSCALE - ccpu) *
947 1.188 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
948 1.146 matt #endif
949 1.188 yamt l->l_cpticks = 0;
950 1.188 yamt }
951 1.188 yamt }
952 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
953 1.188 yamt mutex_spin_exit(&p->p_stmutex);
954 1.174 ad
955 1.188 yamt /*
956 1.188 yamt * Check if the process exceeds its CPU resource allocation.
957 1.188 yamt * If over max, kill it.
958 1.188 yamt */
959 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
960 1.188 yamt sig = 0;
961 1.188 yamt if (runtm >= rlim->rlim_cur) {
962 1.188 yamt if (runtm >= rlim->rlim_max)
963 1.188 yamt sig = SIGKILL;
964 1.188 yamt else {
965 1.188 yamt sig = SIGXCPU;
966 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
967 1.188 yamt rlim->rlim_cur += 5;
968 1.188 yamt }
969 1.188 yamt }
970 1.188 yamt mutex_exit(&p->p_smutex);
971 1.188 yamt if (sig) {
972 1.188 yamt psignal(p, sig);
973 1.188 yamt }
974 1.174 ad }
975 1.188 yamt mutex_exit(&proclist_mutex);
976 1.188 yamt uvm_meter();
977 1.191 ad cv_wakeup(&lbolt);
978 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
979 1.113 gmcgarry }
980 1.190 ad
981 1.190 ad void
982 1.190 ad sched_init(void)
983 1.190 ad {
984 1.190 ad
985 1.208 ad cv_init(&lbolt, "lbolt");
986 1.190 ad callout_init(&sched_pstats_ch, 0);
987 1.190 ad callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
988 1.190 ad sched_setup();
989 1.190 ad sched_pstats(NULL);
990 1.190 ad }
991