kern_synch.c revision 1.221 1 1.221 ad /* $NetBSD: kern_synch.c,v 1.221 2008/03/17 16:54:51 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.218 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
21 1.63 thorpej * must display the following acknowledgement:
22 1.63 thorpej * This product includes software developed by the NetBSD
23 1.63 thorpej * Foundation, Inc. and its contributors.
24 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.63 thorpej * contributors may be used to endorse or promote products derived
26 1.63 thorpej * from this software without specific prior written permission.
27 1.63 thorpej *
28 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
39 1.63 thorpej */
40 1.26 cgd
41 1.26 cgd /*-
42 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.26 cgd * The Regents of the University of California. All rights reserved.
44 1.26 cgd * (c) UNIX System Laboratories, Inc.
45 1.26 cgd * All or some portions of this file are derived from material licensed
46 1.26 cgd * to the University of California by American Telephone and Telegraph
47 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.26 cgd * the permission of UNIX System Laboratories, Inc.
49 1.26 cgd *
50 1.26 cgd * Redistribution and use in source and binary forms, with or without
51 1.26 cgd * modification, are permitted provided that the following conditions
52 1.26 cgd * are met:
53 1.26 cgd * 1. Redistributions of source code must retain the above copyright
54 1.26 cgd * notice, this list of conditions and the following disclaimer.
55 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
56 1.26 cgd * notice, this list of conditions and the following disclaimer in the
57 1.26 cgd * documentation and/or other materials provided with the distribution.
58 1.136 agc * 3. Neither the name of the University nor the names of its contributors
59 1.26 cgd * may be used to endorse or promote products derived from this software
60 1.26 cgd * without specific prior written permission.
61 1.26 cgd *
62 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.26 cgd * SUCH DAMAGE.
73 1.26 cgd *
74 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.26 cgd */
76 1.106 lukem
77 1.106 lukem #include <sys/cdefs.h>
78 1.221 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.221 2008/03/17 16:54:51 ad Exp $");
79 1.48 mrg
80 1.109 yamt #include "opt_kstack.h"
81 1.82 thorpej #include "opt_lockdebug.h"
82 1.83 thorpej #include "opt_multiprocessor.h"
83 1.110 briggs #include "opt_perfctrs.h"
84 1.26 cgd
85 1.174 ad #define __MUTEX_PRIVATE
86 1.174 ad
87 1.26 cgd #include <sys/param.h>
88 1.26 cgd #include <sys/systm.h>
89 1.26 cgd #include <sys/proc.h>
90 1.26 cgd #include <sys/kernel.h>
91 1.111 briggs #if defined(PERFCTRS)
92 1.110 briggs #include <sys/pmc.h>
93 1.111 briggs #endif
94 1.188 yamt #include <sys/cpu.h>
95 1.26 cgd #include <sys/resourcevar.h>
96 1.55 ross #include <sys/sched.h>
97 1.179 dsl #include <sys/syscall_stats.h>
98 1.174 ad #include <sys/sleepq.h>
99 1.174 ad #include <sys/lockdebug.h>
100 1.190 ad #include <sys/evcnt.h>
101 1.199 ad #include <sys/intr.h>
102 1.207 ad #include <sys/lwpctl.h>
103 1.209 ad #include <sys/atomic.h>
104 1.215 ad #include <sys/simplelock.h>
105 1.47 mrg
106 1.47 mrg #include <uvm/uvm_extern.h>
107 1.47 mrg
108 1.190 ad callout_t sched_pstats_ch;
109 1.188 yamt unsigned int sched_pstats_ticks;
110 1.34 christos
111 1.190 ad kcondvar_t lbolt; /* once a second sleep address */
112 1.26 cgd
113 1.221 ad static u_int sched_unsleep(struct lwp *, bool);
114 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
115 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
116 1.122 thorpej
117 1.174 ad syncobj_t sleep_syncobj = {
118 1.174 ad SOBJ_SLEEPQ_SORTED,
119 1.174 ad sleepq_unsleep,
120 1.184 yamt sleepq_changepri,
121 1.184 yamt sleepq_lendpri,
122 1.184 yamt syncobj_noowner,
123 1.174 ad };
124 1.174 ad
125 1.174 ad syncobj_t sched_syncobj = {
126 1.174 ad SOBJ_SLEEPQ_SORTED,
127 1.174 ad sched_unsleep,
128 1.184 yamt sched_changepri,
129 1.184 yamt sched_lendpri,
130 1.184 yamt syncobj_noowner,
131 1.174 ad };
132 1.122 thorpej
133 1.26 cgd /*
134 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
135 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
136 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
137 1.174 ad * maintained in the machine-dependent layers. This priority will typically
138 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
139 1.174 ad * it can be made higher to block network software interrupts after panics.
140 1.26 cgd */
141 1.174 ad int safepri;
142 1.26 cgd
143 1.26 cgd /*
144 1.174 ad * OBSOLETE INTERFACE
145 1.174 ad *
146 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
147 1.26 cgd * performed on the specified identifier. The process will then be made
148 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
149 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
150 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
151 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
152 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
153 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
154 1.26 cgd * call should be interrupted by the signal (return EINTR).
155 1.77 thorpej *
156 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
157 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
158 1.174 ad * is specified, in which case the interlock will always be unlocked upon
159 1.174 ad * return.
160 1.26 cgd */
161 1.26 cgd int
162 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
163 1.174 ad volatile struct simplelock *interlock)
164 1.26 cgd {
165 1.122 thorpej struct lwp *l = curlwp;
166 1.174 ad sleepq_t *sq;
167 1.188 yamt int error;
168 1.26 cgd
169 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
170 1.204 ad
171 1.174 ad if (sleepq_dontsleep(l)) {
172 1.174 ad (void)sleepq_abort(NULL, 0);
173 1.174 ad if ((priority & PNORELOCK) != 0)
174 1.77 thorpej simple_unlock(interlock);
175 1.174 ad return 0;
176 1.26 cgd }
177 1.78 sommerfe
178 1.204 ad l->l_kpriority = true;
179 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
180 1.174 ad sleepq_enter(sq, l);
181 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
182 1.42 cgd
183 1.174 ad if (interlock != NULL) {
184 1.204 ad KASSERT(simple_lock_held(interlock));
185 1.174 ad simple_unlock(interlock);
186 1.150 chs }
187 1.150 chs
188 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
189 1.126 pk
190 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
191 1.126 pk simple_lock(interlock);
192 1.174 ad
193 1.174 ad return error;
194 1.26 cgd }
195 1.26 cgd
196 1.187 ad int
197 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
198 1.187 ad kmutex_t *mtx)
199 1.187 ad {
200 1.187 ad struct lwp *l = curlwp;
201 1.187 ad sleepq_t *sq;
202 1.188 yamt int error;
203 1.187 ad
204 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
205 1.204 ad
206 1.187 ad if (sleepq_dontsleep(l)) {
207 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
208 1.187 ad return 0;
209 1.187 ad }
210 1.187 ad
211 1.204 ad l->l_kpriority = true;
212 1.187 ad sq = sleeptab_lookup(&sleeptab, ident);
213 1.187 ad sleepq_enter(sq, l);
214 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
215 1.187 ad mutex_exit(mtx);
216 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
217 1.187 ad
218 1.187 ad if ((priority & PNORELOCK) == 0)
219 1.187 ad mutex_enter(mtx);
220 1.187 ad
221 1.187 ad return error;
222 1.187 ad }
223 1.187 ad
224 1.26 cgd /*
225 1.174 ad * General sleep call for situations where a wake-up is not expected.
226 1.26 cgd */
227 1.174 ad int
228 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
229 1.26 cgd {
230 1.174 ad struct lwp *l = curlwp;
231 1.174 ad sleepq_t *sq;
232 1.174 ad int error;
233 1.26 cgd
234 1.174 ad if (sleepq_dontsleep(l))
235 1.174 ad return sleepq_abort(NULL, 0);
236 1.26 cgd
237 1.174 ad if (mtx != NULL)
238 1.174 ad mutex_exit(mtx);
239 1.204 ad l->l_kpriority = true;
240 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
241 1.174 ad sleepq_enter(sq, l);
242 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
243 1.188 yamt error = sleepq_block(timo, intr);
244 1.174 ad if (mtx != NULL)
245 1.174 ad mutex_enter(mtx);
246 1.83 thorpej
247 1.174 ad return error;
248 1.139 cl }
249 1.139 cl
250 1.26 cgd /*
251 1.174 ad * OBSOLETE INTERFACE
252 1.174 ad *
253 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
254 1.26 cgd */
255 1.26 cgd void
256 1.174 ad wakeup(wchan_t ident)
257 1.26 cgd {
258 1.174 ad sleepq_t *sq;
259 1.83 thorpej
260 1.174 ad if (cold)
261 1.174 ad return;
262 1.83 thorpej
263 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
264 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
265 1.63 thorpej }
266 1.63 thorpej
267 1.63 thorpej /*
268 1.174 ad * OBSOLETE INTERFACE
269 1.174 ad *
270 1.63 thorpej * Make the highest priority process first in line on the specified
271 1.63 thorpej * identifier runnable.
272 1.63 thorpej */
273 1.174 ad void
274 1.174 ad wakeup_one(wchan_t ident)
275 1.63 thorpej {
276 1.174 ad sleepq_t *sq;
277 1.63 thorpej
278 1.174 ad if (cold)
279 1.174 ad return;
280 1.188 yamt
281 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
282 1.174 ad sleepq_wake(sq, ident, 1);
283 1.174 ad }
284 1.63 thorpej
285 1.117 gmcgarry
286 1.117 gmcgarry /*
287 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
288 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
289 1.198 ad * current process explicitly requests it (eg sched_yield(2)).
290 1.117 gmcgarry */
291 1.117 gmcgarry void
292 1.117 gmcgarry yield(void)
293 1.117 gmcgarry {
294 1.122 thorpej struct lwp *l = curlwp;
295 1.117 gmcgarry
296 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
297 1.174 ad lwp_lock(l);
298 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
299 1.188 yamt KASSERT(l->l_stat == LSONPROC);
300 1.204 ad l->l_kpriority = false;
301 1.204 ad if (l->l_class == SCHED_OTHER) {
302 1.204 ad /*
303 1.204 ad * Only for timeshared threads. It will be reset
304 1.204 ad * by the scheduler in due course.
305 1.204 ad */
306 1.204 ad l->l_priority = 0;
307 1.204 ad }
308 1.188 yamt (void)mi_switch(l);
309 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
310 1.69 thorpej }
311 1.69 thorpej
312 1.69 thorpej /*
313 1.69 thorpej * General preemption call. Puts the current process back on its run queue
314 1.156 rpaulo * and performs an involuntary context switch.
315 1.69 thorpej */
316 1.69 thorpej void
317 1.174 ad preempt(void)
318 1.69 thorpej {
319 1.122 thorpej struct lwp *l = curlwp;
320 1.69 thorpej
321 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
322 1.174 ad lwp_lock(l);
323 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
324 1.188 yamt KASSERT(l->l_stat == LSONPROC);
325 1.204 ad l->l_kpriority = false;
326 1.174 ad l->l_nivcsw++;
327 1.188 yamt (void)mi_switch(l);
328 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
329 1.69 thorpej }
330 1.69 thorpej
331 1.69 thorpej /*
332 1.188 yamt * Compute the amount of time during which the current lwp was running.
333 1.130 nathanw *
334 1.188 yamt * - update l_rtime unless it's an idle lwp.
335 1.188 yamt */
336 1.188 yamt
337 1.199 ad void
338 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
339 1.188 yamt {
340 1.188 yamt
341 1.199 ad if ((l->l_flag & LW_IDLE) != 0)
342 1.188 yamt return;
343 1.188 yamt
344 1.212 yamt /* rtime += now - stime */
345 1.212 yamt bintime_add(&l->l_rtime, now);
346 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
347 1.188 yamt }
348 1.188 yamt
349 1.188 yamt /*
350 1.188 yamt * The machine independent parts of context switch.
351 1.188 yamt *
352 1.188 yamt * Returns 1 if another LWP was actually run.
353 1.26 cgd */
354 1.122 thorpej int
355 1.199 ad mi_switch(lwp_t *l)
356 1.26 cgd {
357 1.216 rmind struct cpu_info *ci, *tci = NULL;
358 1.76 thorpej struct schedstate_percpu *spc;
359 1.188 yamt struct lwp *newl;
360 1.174 ad int retval, oldspl;
361 1.212 yamt struct bintime bt;
362 1.199 ad bool returning;
363 1.26 cgd
364 1.188 yamt KASSERT(lwp_locked(l, NULL));
365 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
366 1.174 ad
367 1.174 ad #ifdef KSTACK_CHECK_MAGIC
368 1.174 ad kstack_check_magic(l);
369 1.174 ad #endif
370 1.83 thorpej
371 1.212 yamt binuptime(&bt);
372 1.199 ad
373 1.209 ad KDASSERT(l->l_cpu == curcpu());
374 1.196 ad ci = l->l_cpu;
375 1.196 ad spc = &ci->ci_schedstate;
376 1.199 ad returning = false;
377 1.190 ad newl = NULL;
378 1.190 ad
379 1.199 ad /*
380 1.199 ad * If we have been asked to switch to a specific LWP, then there
381 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
382 1.199 ad * blocking, then return to the interrupted thread without adjusting
383 1.199 ad * VM context or its start time: neither have been changed in order
384 1.199 ad * to take the interrupt.
385 1.199 ad */
386 1.190 ad if (l->l_switchto != NULL) {
387 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
388 1.199 ad returning = true;
389 1.199 ad softint_block(l);
390 1.199 ad if ((l->l_flag & LW_TIMEINTR) != 0)
391 1.212 yamt updatertime(l, &bt);
392 1.199 ad }
393 1.190 ad newl = l->l_switchto;
394 1.190 ad l->l_switchto = NULL;
395 1.190 ad }
396 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
397 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
398 1.204 ad /* There are pending soft interrupts, so pick one. */
399 1.204 ad newl = softint_picklwp();
400 1.204 ad newl->l_stat = LSONPROC;
401 1.204 ad newl->l_flag |= LW_RUNNING;
402 1.204 ad }
403 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
404 1.190 ad
405 1.180 dsl /* Count time spent in current system call */
406 1.199 ad if (!returning) {
407 1.199 ad SYSCALL_TIME_SLEEP(l);
408 1.180 dsl
409 1.199 ad /*
410 1.199 ad * XXXSMP If we are using h/w performance counters,
411 1.199 ad * save context.
412 1.199 ad */
413 1.174 ad #if PERFCTRS
414 1.199 ad if (PMC_ENABLED(l->l_proc)) {
415 1.199 ad pmc_save_context(l->l_proc);
416 1.199 ad }
417 1.199 ad #endif
418 1.212 yamt updatertime(l, &bt);
419 1.174 ad }
420 1.113 gmcgarry
421 1.113 gmcgarry /*
422 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
423 1.113 gmcgarry */
424 1.174 ad KASSERT(l->l_stat != LSRUN);
425 1.216 rmind if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
426 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
427 1.216 rmind
428 1.220 rmind if (l->l_target_cpu == l->l_cpu) {
429 1.220 rmind l->l_target_cpu = NULL;
430 1.220 rmind } else {
431 1.220 rmind tci = l->l_target_cpu;
432 1.220 rmind }
433 1.220 rmind
434 1.216 rmind if (__predict_false(tci != NULL)) {
435 1.216 rmind /* Double-lock the runqueues */
436 1.216 rmind spc_dlock(ci, tci);
437 1.216 rmind } else {
438 1.216 rmind /* Lock the runqueue */
439 1.216 rmind spc_lock(ci);
440 1.216 rmind }
441 1.216 rmind
442 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
443 1.188 yamt l->l_stat = LSRUN;
444 1.216 rmind if (__predict_false(tci != NULL)) {
445 1.216 rmind /*
446 1.216 rmind * Set the new CPU, lock and unset the
447 1.216 rmind * l_target_cpu - thread will be enqueued
448 1.216 rmind * to the runqueue of target CPU.
449 1.216 rmind */
450 1.216 rmind l->l_cpu = tci;
451 1.216 rmind lwp_setlock(l, tci->ci_schedstate.spc_mutex);
452 1.216 rmind l->l_target_cpu = NULL;
453 1.216 rmind } else {
454 1.216 rmind lwp_setlock(l, spc->spc_mutex);
455 1.216 rmind }
456 1.188 yamt sched_enqueue(l, true);
457 1.216 rmind } else {
458 1.216 rmind KASSERT(tci == NULL);
459 1.188 yamt l->l_stat = LSIDL;
460 1.216 rmind }
461 1.216 rmind } else {
462 1.216 rmind /* Lock the runqueue */
463 1.216 rmind spc_lock(ci);
464 1.174 ad }
465 1.174 ad
466 1.174 ad /*
467 1.201 rmind * Let sched_nextlwp() select the LWP to run the CPU next.
468 1.209 ad * If no LWP is runnable, select the idle LWP.
469 1.209 ad *
470 1.209 ad * Note that spc_lwplock might not necessary be held, and
471 1.209 ad * new thread would be unlocked after setting the LWP-lock.
472 1.174 ad */
473 1.190 ad if (newl == NULL) {
474 1.190 ad newl = sched_nextlwp();
475 1.190 ad if (newl != NULL) {
476 1.190 ad sched_dequeue(newl);
477 1.190 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
478 1.190 ad newl->l_stat = LSONPROC;
479 1.196 ad newl->l_cpu = ci;
480 1.190 ad newl->l_flag |= LW_RUNNING;
481 1.217 ad lwp_setlock(newl, spc->spc_lwplock);
482 1.190 ad } else {
483 1.196 ad newl = ci->ci_data.cpu_idlelwp;
484 1.190 ad newl->l_stat = LSONPROC;
485 1.190 ad newl->l_flag |= LW_RUNNING;
486 1.190 ad }
487 1.204 ad /*
488 1.204 ad * Only clear want_resched if there are no
489 1.204 ad * pending (slow) software interrupts.
490 1.204 ad */
491 1.204 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
492 1.199 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
493 1.204 ad spc->spc_curpriority = lwp_eprio(newl);
494 1.199 ad }
495 1.199 ad
496 1.204 ad /* Items that must be updated with the CPU locked. */
497 1.199 ad if (!returning) {
498 1.204 ad /* Update the new LWP's start time. */
499 1.212 yamt newl->l_stime = bt;
500 1.204 ad
501 1.199 ad /*
502 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
503 1.204 ad * We use cpu_onproc to keep track of which kernel or
504 1.204 ad * user thread is running 'underneath' the software
505 1.204 ad * interrupt. This is important for time accounting,
506 1.204 ad * itimers and forcing user threads to preempt (aston).
507 1.199 ad */
508 1.204 ad ci->ci_data.cpu_onproc = newl;
509 1.188 yamt }
510 1.188 yamt
511 1.188 yamt if (l != newl) {
512 1.188 yamt struct lwp *prevlwp;
513 1.174 ad
514 1.209 ad /* Release all locks, but leave the current LWP locked */
515 1.216 rmind if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
516 1.216 rmind /*
517 1.216 rmind * In case of migration, drop the local runqueue
518 1.216 rmind * lock, thread is on other runqueue now.
519 1.216 rmind */
520 1.216 rmind if (__predict_false(tci != NULL))
521 1.216 rmind spc_unlock(ci);
522 1.209 ad /*
523 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
524 1.209 ad * to the run queue (it is now locked by spc_mutex).
525 1.209 ad */
526 1.217 ad mutex_spin_exit(spc->spc_lwplock);
527 1.188 yamt } else {
528 1.209 ad /*
529 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
530 1.209 ad * run queues.
531 1.209 ad */
532 1.188 yamt mutex_spin_exit(spc->spc_mutex);
533 1.216 rmind KASSERT(tci == NULL);
534 1.188 yamt }
535 1.188 yamt
536 1.209 ad /*
537 1.209 ad * Mark that context switch is going to be perfomed
538 1.209 ad * for this LWP, to protect it from being switched
539 1.209 ad * to on another CPU.
540 1.209 ad */
541 1.209 ad KASSERT(l->l_ctxswtch == 0);
542 1.209 ad l->l_ctxswtch = 1;
543 1.209 ad l->l_ncsw++;
544 1.209 ad l->l_flag &= ~LW_RUNNING;
545 1.209 ad
546 1.209 ad /*
547 1.209 ad * Increase the count of spin-mutexes before the release
548 1.209 ad * of the last lock - we must remain at IPL_SCHED during
549 1.209 ad * the context switch.
550 1.209 ad */
551 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
552 1.209 ad ci->ci_mtx_count--;
553 1.209 ad lwp_unlock(l);
554 1.209 ad
555 1.218 ad /* Count the context switch on this CPU. */
556 1.218 ad ci->ci_data.cpu_nswtch++;
557 1.188 yamt
558 1.209 ad /* Update status for lwpctl, if present. */
559 1.209 ad if (l->l_lwpctl != NULL)
560 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
561 1.209 ad
562 1.199 ad /*
563 1.199 ad * Save old VM context, unless a soft interrupt
564 1.199 ad * handler is blocking.
565 1.199 ad */
566 1.199 ad if (!returning)
567 1.199 ad pmap_deactivate(l);
568 1.188 yamt
569 1.209 ad /*
570 1.209 ad * We may need to spin-wait for if 'newl' is still
571 1.209 ad * context switching on another CPU.
572 1.209 ad */
573 1.209 ad if (newl->l_ctxswtch != 0) {
574 1.209 ad u_int count;
575 1.209 ad count = SPINLOCK_BACKOFF_MIN;
576 1.209 ad while (newl->l_ctxswtch)
577 1.209 ad SPINLOCK_BACKOFF(count);
578 1.209 ad }
579 1.207 ad
580 1.188 yamt /* Switch to the new LWP.. */
581 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
582 1.207 ad ci = curcpu();
583 1.207 ad
584 1.188 yamt /*
585 1.209 ad * Switched away - we have new curlwp.
586 1.209 ad * Restore VM context and IPL.
587 1.188 yamt */
588 1.209 ad pmap_activate(l);
589 1.188 yamt if (prevlwp != NULL) {
590 1.209 ad /* Normalize the count of the spin-mutexes */
591 1.209 ad ci->ci_mtx_count++;
592 1.209 ad /* Unmark the state of context switch */
593 1.209 ad membar_exit();
594 1.209 ad prevlwp->l_ctxswtch = 0;
595 1.188 yamt }
596 1.209 ad splx(oldspl);
597 1.209 ad
598 1.209 ad /* Update status for lwpctl, if present. */
599 1.219 ad if (l->l_lwpctl != NULL) {
600 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
601 1.219 ad l->l_lwpctl->lc_pctr++;
602 1.219 ad }
603 1.174 ad
604 1.188 yamt retval = 1;
605 1.188 yamt } else {
606 1.188 yamt /* Nothing to do - just unlock and return. */
607 1.216 rmind KASSERT(tci == NULL);
608 1.216 rmind spc_unlock(ci);
609 1.188 yamt lwp_unlock(l);
610 1.122 thorpej retval = 0;
611 1.122 thorpej }
612 1.110 briggs
613 1.188 yamt KASSERT(l == curlwp);
614 1.188 yamt KASSERT(l->l_stat == LSONPROC);
615 1.207 ad KASSERT(l->l_cpu == ci);
616 1.188 yamt
617 1.110 briggs /*
618 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
619 1.26 cgd */
620 1.114 gmcgarry #if PERFCTRS
621 1.175 christos if (PMC_ENABLED(l->l_proc)) {
622 1.175 christos pmc_restore_context(l->l_proc);
623 1.166 christos }
624 1.114 gmcgarry #endif
625 1.180 dsl SYSCALL_TIME_WAKEUP(l);
626 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
627 1.169 yamt
628 1.122 thorpej return retval;
629 1.26 cgd }
630 1.26 cgd
631 1.26 cgd /*
632 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
633 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
634 1.174 ad *
635 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
636 1.26 cgd */
637 1.26 cgd void
638 1.122 thorpej setrunnable(struct lwp *l)
639 1.26 cgd {
640 1.122 thorpej struct proc *p = l->l_proc;
641 1.205 ad struct cpu_info *ci;
642 1.174 ad sigset_t *ss;
643 1.26 cgd
644 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
645 1.183 ad KASSERT(mutex_owned(&p->p_smutex));
646 1.183 ad KASSERT(lwp_locked(l, NULL));
647 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
648 1.83 thorpej
649 1.122 thorpej switch (l->l_stat) {
650 1.122 thorpej case LSSTOP:
651 1.33 mycroft /*
652 1.33 mycroft * If we're being traced (possibly because someone attached us
653 1.33 mycroft * while we were stopped), check for a signal from the debugger.
654 1.33 mycroft */
655 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
656 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
657 1.174 ad ss = &l->l_sigpend.sp_set;
658 1.174 ad else
659 1.174 ad ss = &p->p_sigpend.sp_set;
660 1.174 ad sigaddset(ss, p->p_xstat);
661 1.174 ad signotify(l);
662 1.53 mycroft }
663 1.174 ad p->p_nrlwps++;
664 1.26 cgd break;
665 1.174 ad case LSSUSPENDED:
666 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
667 1.174 ad p->p_nrlwps++;
668 1.192 rmind cv_broadcast(&p->p_lwpcv);
669 1.122 thorpej break;
670 1.174 ad case LSSLEEP:
671 1.174 ad KASSERT(l->l_wchan != NULL);
672 1.26 cgd break;
673 1.174 ad default:
674 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
675 1.26 cgd }
676 1.139 cl
677 1.174 ad /*
678 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
679 1.174 ad * again. If not, mark it as still sleeping.
680 1.174 ad */
681 1.174 ad if (l->l_wchan != NULL) {
682 1.174 ad l->l_stat = LSSLEEP;
683 1.183 ad /* lwp_unsleep() will release the lock. */
684 1.221 ad lwp_unsleep(l, true);
685 1.174 ad return;
686 1.174 ad }
687 1.139 cl
688 1.174 ad /*
689 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
690 1.174 ad * about to call mi_switch(), in which case it will yield.
691 1.174 ad */
692 1.188 yamt if ((l->l_flag & LW_RUNNING) != 0) {
693 1.174 ad l->l_stat = LSONPROC;
694 1.174 ad l->l_slptime = 0;
695 1.174 ad lwp_unlock(l);
696 1.174 ad return;
697 1.174 ad }
698 1.122 thorpej
699 1.174 ad /*
700 1.205 ad * Look for a CPU to run.
701 1.205 ad * Set the LWP runnable.
702 1.174 ad */
703 1.205 ad ci = sched_takecpu(l);
704 1.205 ad l->l_cpu = ci;
705 1.206 ad if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
706 1.206 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
707 1.206 ad lwp_lock(l);
708 1.206 ad }
709 1.188 yamt sched_setrunnable(l);
710 1.174 ad l->l_stat = LSRUN;
711 1.122 thorpej l->l_slptime = 0;
712 1.174 ad
713 1.205 ad /*
714 1.205 ad * If thread is swapped out - wake the swapper to bring it back in.
715 1.205 ad * Otherwise, enter it into a run queue.
716 1.205 ad */
717 1.178 pavel if (l->l_flag & LW_INMEM) {
718 1.188 yamt sched_enqueue(l, false);
719 1.188 yamt resched_cpu(l);
720 1.174 ad lwp_unlock(l);
721 1.174 ad } else {
722 1.174 ad lwp_unlock(l);
723 1.177 ad uvm_kick_scheduler();
724 1.174 ad }
725 1.26 cgd }
726 1.26 cgd
727 1.26 cgd /*
728 1.174 ad * suspendsched:
729 1.174 ad *
730 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
731 1.174 ad */
732 1.94 bouyer void
733 1.174 ad suspendsched(void)
734 1.94 bouyer {
735 1.174 ad CPU_INFO_ITERATOR cii;
736 1.174 ad struct cpu_info *ci;
737 1.122 thorpej struct lwp *l;
738 1.174 ad struct proc *p;
739 1.94 bouyer
740 1.94 bouyer /*
741 1.174 ad * We do this by process in order not to violate the locking rules.
742 1.94 bouyer */
743 1.204 ad mutex_enter(&proclist_lock);
744 1.174 ad PROCLIST_FOREACH(p, &allproc) {
745 1.174 ad mutex_enter(&p->p_smutex);
746 1.174 ad
747 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
748 1.174 ad mutex_exit(&p->p_smutex);
749 1.94 bouyer continue;
750 1.174 ad }
751 1.174 ad
752 1.174 ad p->p_stat = SSTOP;
753 1.174 ad
754 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
755 1.174 ad if (l == curlwp)
756 1.174 ad continue;
757 1.174 ad
758 1.174 ad lwp_lock(l);
759 1.122 thorpej
760 1.97 enami /*
761 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
762 1.174 ad * when it tries to return to user mode. We want to
763 1.174 ad * try and get to get as many LWPs as possible to
764 1.174 ad * the user / kernel boundary, so that they will
765 1.174 ad * release any locks that they hold.
766 1.97 enami */
767 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
768 1.174 ad
769 1.174 ad if (l->l_stat == LSSLEEP &&
770 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
771 1.174 ad /* setrunnable() will release the lock. */
772 1.174 ad setrunnable(l);
773 1.174 ad continue;
774 1.174 ad }
775 1.174 ad
776 1.174 ad lwp_unlock(l);
777 1.94 bouyer }
778 1.174 ad
779 1.174 ad mutex_exit(&p->p_smutex);
780 1.94 bouyer }
781 1.204 ad mutex_exit(&proclist_lock);
782 1.174 ad
783 1.174 ad /*
784 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
785 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
786 1.174 ad */
787 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
788 1.204 ad spc_lock(ci);
789 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
790 1.204 ad spc_unlock(ci);
791 1.204 ad }
792 1.174 ad }
793 1.174 ad
794 1.174 ad /*
795 1.174 ad * sched_unsleep:
796 1.174 ad *
797 1.174 ad * The is called when the LWP has not been awoken normally but instead
798 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
799 1.174 ad * it's not a valid action for running or idle LWPs.
800 1.174 ad */
801 1.221 ad static u_int
802 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
803 1.174 ad {
804 1.174 ad
805 1.174 ad lwp_unlock(l);
806 1.174 ad panic("sched_unsleep");
807 1.174 ad }
808 1.174 ad
809 1.204 ad void
810 1.188 yamt resched_cpu(struct lwp *l)
811 1.188 yamt {
812 1.188 yamt struct cpu_info *ci;
813 1.188 yamt
814 1.188 yamt /*
815 1.188 yamt * XXXSMP
816 1.188 yamt * Since l->l_cpu persists across a context switch,
817 1.188 yamt * this gives us *very weak* processor affinity, in
818 1.188 yamt * that we notify the CPU on which the process last
819 1.188 yamt * ran that it should try to switch.
820 1.188 yamt *
821 1.188 yamt * This does not guarantee that the process will run on
822 1.188 yamt * that processor next, because another processor might
823 1.188 yamt * grab it the next time it performs a context switch.
824 1.188 yamt *
825 1.188 yamt * This also does not handle the case where its last
826 1.188 yamt * CPU is running a higher-priority process, but every
827 1.188 yamt * other CPU is running a lower-priority process. There
828 1.188 yamt * are ways to handle this situation, but they're not
829 1.188 yamt * currently very pretty, and we also need to weigh the
830 1.188 yamt * cost of moving a process from one CPU to another.
831 1.188 yamt */
832 1.204 ad ci = l->l_cpu;
833 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
834 1.188 yamt cpu_need_resched(ci, 0);
835 1.188 yamt }
836 1.188 yamt
837 1.188 yamt static void
838 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
839 1.174 ad {
840 1.174 ad
841 1.188 yamt KASSERT(lwp_locked(l, NULL));
842 1.174 ad
843 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
844 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
845 1.204 ad sched_dequeue(l);
846 1.204 ad l->l_priority = pri;
847 1.204 ad sched_enqueue(l, false);
848 1.204 ad } else {
849 1.174 ad l->l_priority = pri;
850 1.157 yamt }
851 1.188 yamt resched_cpu(l);
852 1.184 yamt }
853 1.184 yamt
854 1.188 yamt static void
855 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
856 1.184 yamt {
857 1.184 yamt
858 1.188 yamt KASSERT(lwp_locked(l, NULL));
859 1.184 yamt
860 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
861 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
862 1.204 ad sched_dequeue(l);
863 1.204 ad l->l_inheritedprio = pri;
864 1.204 ad sched_enqueue(l, false);
865 1.204 ad } else {
866 1.184 yamt l->l_inheritedprio = pri;
867 1.184 yamt }
868 1.188 yamt resched_cpu(l);
869 1.184 yamt }
870 1.184 yamt
871 1.184 yamt struct lwp *
872 1.184 yamt syncobj_noowner(wchan_t wchan)
873 1.184 yamt {
874 1.184 yamt
875 1.184 yamt return NULL;
876 1.151 yamt }
877 1.151 yamt
878 1.113 gmcgarry
879 1.188 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
880 1.188 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
881 1.115 nisimura
882 1.130 nathanw /*
883 1.188 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
884 1.188 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
885 1.188 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
886 1.188 yamt *
887 1.188 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
888 1.188 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
889 1.188 yamt *
890 1.188 yamt * If you dont want to bother with the faster/more-accurate formula, you
891 1.188 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
892 1.188 yamt * (more general) method of calculating the %age of CPU used by a process.
893 1.134 matt */
894 1.188 yamt #define CCPU_SHIFT (FSHIFT + 1)
895 1.134 matt
896 1.134 matt /*
897 1.188 yamt * sched_pstats:
898 1.188 yamt *
899 1.188 yamt * Update process statistics and check CPU resource allocation.
900 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
901 1.188 yamt * priorities.
902 1.130 nathanw */
903 1.188 yamt /* ARGSUSED */
904 1.113 gmcgarry void
905 1.188 yamt sched_pstats(void *arg)
906 1.113 gmcgarry {
907 1.188 yamt struct rlimit *rlim;
908 1.188 yamt struct lwp *l;
909 1.188 yamt struct proc *p;
910 1.204 ad int sig, clkhz;
911 1.188 yamt long runtm;
912 1.113 gmcgarry
913 1.188 yamt sched_pstats_ticks++;
914 1.174 ad
915 1.211 ad mutex_enter(&proclist_lock);
916 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
917 1.188 yamt /*
918 1.188 yamt * Increment time in/out of memory and sleep time (if
919 1.188 yamt * sleeping). We ignore overflow; with 16-bit int's
920 1.188 yamt * (remember them?) overflow takes 45 days.
921 1.188 yamt */
922 1.188 yamt mutex_enter(&p->p_smutex);
923 1.188 yamt mutex_spin_enter(&p->p_stmutex);
924 1.212 yamt runtm = p->p_rtime.sec;
925 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
926 1.188 yamt if ((l->l_flag & LW_IDLE) != 0)
927 1.188 yamt continue;
928 1.188 yamt lwp_lock(l);
929 1.212 yamt runtm += l->l_rtime.sec;
930 1.188 yamt l->l_swtime++;
931 1.200 rmind sched_pstats_hook(l);
932 1.188 yamt lwp_unlock(l);
933 1.113 gmcgarry
934 1.188 yamt /*
935 1.188 yamt * p_pctcpu is only for ps.
936 1.188 yamt */
937 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
938 1.188 yamt if (l->l_slptime < 1) {
939 1.188 yamt clkhz = stathz != 0 ? stathz : hz;
940 1.188 yamt #if (FSHIFT >= CCPU_SHIFT)
941 1.188 yamt l->l_pctcpu += (clkhz == 100) ?
942 1.188 yamt ((fixpt_t)l->l_cpticks) <<
943 1.188 yamt (FSHIFT - CCPU_SHIFT) :
944 1.188 yamt 100 * (((fixpt_t) p->p_cpticks)
945 1.188 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
946 1.188 yamt #else
947 1.188 yamt l->l_pctcpu += ((FSCALE - ccpu) *
948 1.188 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
949 1.146 matt #endif
950 1.188 yamt l->l_cpticks = 0;
951 1.188 yamt }
952 1.188 yamt }
953 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
954 1.188 yamt mutex_spin_exit(&p->p_stmutex);
955 1.174 ad
956 1.188 yamt /*
957 1.188 yamt * Check if the process exceeds its CPU resource allocation.
958 1.188 yamt * If over max, kill it.
959 1.188 yamt */
960 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
961 1.188 yamt sig = 0;
962 1.188 yamt if (runtm >= rlim->rlim_cur) {
963 1.188 yamt if (runtm >= rlim->rlim_max)
964 1.188 yamt sig = SIGKILL;
965 1.188 yamt else {
966 1.188 yamt sig = SIGXCPU;
967 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
968 1.188 yamt rlim->rlim_cur += 5;
969 1.188 yamt }
970 1.188 yamt }
971 1.188 yamt mutex_exit(&p->p_smutex);
972 1.188 yamt if (sig) {
973 1.213 ad mutex_enter(&proclist_mutex);
974 1.188 yamt psignal(p, sig);
975 1.213 ad mutex_exit(&proclist_mutex);
976 1.188 yamt }
977 1.174 ad }
978 1.211 ad mutex_exit(&proclist_lock);
979 1.188 yamt uvm_meter();
980 1.191 ad cv_wakeup(&lbolt);
981 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
982 1.113 gmcgarry }
983 1.190 ad
984 1.190 ad void
985 1.190 ad sched_init(void)
986 1.190 ad {
987 1.190 ad
988 1.208 ad cv_init(&lbolt, "lbolt");
989 1.214 ad callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
990 1.190 ad callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
991 1.190 ad sched_setup();
992 1.190 ad sched_pstats(NULL);
993 1.190 ad }
994