Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.227.2.1
      1  1.227.2.1      yamt /*	$NetBSD: kern_synch.c,v 1.227.2.1 2008/05/18 12:35:09 yamt Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4      1.218        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.63   thorpej  * All rights reserved.
      6       1.63   thorpej  *
      7       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9      1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10      1.188      yamt  * Daniel Sieger.
     11       1.63   thorpej  *
     12       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13       1.63   thorpej  * modification, are permitted provided that the following conditions
     14       1.63   thorpej  * are met:
     15       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20       1.63   thorpej  *
     21       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     32       1.63   thorpej  */
     33       1.26       cgd 
     34       1.26       cgd /*-
     35       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     37       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     38       1.26       cgd  * All or some portions of this file are derived from material licensed
     39       1.26       cgd  * to the University of California by American Telephone and Telegraph
     40       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     42       1.26       cgd  *
     43       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     44       1.26       cgd  * modification, are permitted provided that the following conditions
     45       1.26       cgd  * are met:
     46       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     47       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     48       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     50       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     51      1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     52       1.26       cgd  *    may be used to endorse or promote products derived from this software
     53       1.26       cgd  *    without specific prior written permission.
     54       1.26       cgd  *
     55       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65       1.26       cgd  * SUCH DAMAGE.
     66       1.26       cgd  *
     67       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68       1.26       cgd  */
     69      1.106     lukem 
     70      1.106     lukem #include <sys/cdefs.h>
     71  1.227.2.1      yamt __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.227.2.1 2008/05/18 12:35:09 yamt Exp $");
     72       1.48       mrg 
     73      1.109      yamt #include "opt_kstack.h"
     74       1.82   thorpej #include "opt_lockdebug.h"
     75       1.83   thorpej #include "opt_multiprocessor.h"
     76      1.110    briggs #include "opt_perfctrs.h"
     77       1.26       cgd 
     78      1.174        ad #define	__MUTEX_PRIVATE
     79      1.174        ad 
     80       1.26       cgd #include <sys/param.h>
     81       1.26       cgd #include <sys/systm.h>
     82       1.26       cgd #include <sys/proc.h>
     83       1.26       cgd #include <sys/kernel.h>
     84      1.111    briggs #if defined(PERFCTRS)
     85      1.110    briggs #include <sys/pmc.h>
     86      1.111    briggs #endif
     87      1.188      yamt #include <sys/cpu.h>
     88       1.26       cgd #include <sys/resourcevar.h>
     89       1.55      ross #include <sys/sched.h>
     90      1.179       dsl #include <sys/syscall_stats.h>
     91      1.174        ad #include <sys/sleepq.h>
     92      1.174        ad #include <sys/lockdebug.h>
     93      1.190        ad #include <sys/evcnt.h>
     94      1.199        ad #include <sys/intr.h>
     95      1.207        ad #include <sys/lwpctl.h>
     96      1.209        ad #include <sys/atomic.h>
     97      1.215        ad #include <sys/simplelock.h>
     98       1.47       mrg 
     99       1.47       mrg #include <uvm/uvm_extern.h>
    100       1.47       mrg 
    101  1.227.2.1      yamt #include <dev/lockstat.h>
    102       1.26       cgd 
    103      1.221        ad static u_int	sched_unsleep(struct lwp *, bool);
    104      1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    105      1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    106      1.122   thorpej 
    107      1.174        ad syncobj_t sleep_syncobj = {
    108      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    109      1.174        ad 	sleepq_unsleep,
    110      1.184      yamt 	sleepq_changepri,
    111      1.184      yamt 	sleepq_lendpri,
    112      1.184      yamt 	syncobj_noowner,
    113      1.174        ad };
    114      1.174        ad 
    115      1.174        ad syncobj_t sched_syncobj = {
    116      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    117      1.174        ad 	sched_unsleep,
    118      1.184      yamt 	sched_changepri,
    119      1.184      yamt 	sched_lendpri,
    120      1.184      yamt 	syncobj_noowner,
    121      1.174        ad };
    122      1.122   thorpej 
    123      1.223        ad callout_t 	sched_pstats_ch;
    124      1.223        ad unsigned	sched_pstats_ticks;
    125      1.223        ad kcondvar_t	lbolt;			/* once a second sleep address */
    126      1.223        ad 
    127  1.227.2.1      yamt /* Preemption event counters */
    128  1.227.2.1      yamt static struct evcnt kpreempt_ev_crit;
    129  1.227.2.1      yamt static struct evcnt kpreempt_ev_klock;
    130  1.227.2.1      yamt static struct evcnt kpreempt_ev_ipl;
    131  1.227.2.1      yamt static struct evcnt kpreempt_ev_immed;
    132      1.223        ad 
    133       1.26       cgd /*
    134      1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    135      1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    136      1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    137      1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    138      1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    139      1.174        ad  * it can be made higher to block network software interrupts after panics.
    140       1.26       cgd  */
    141      1.174        ad int	safepri;
    142       1.26       cgd 
    143  1.227.2.1      yamt void
    144  1.227.2.1      yamt sched_init(void)
    145  1.227.2.1      yamt {
    146  1.227.2.1      yamt 
    147  1.227.2.1      yamt 	cv_init(&lbolt, "lbolt");
    148  1.227.2.1      yamt 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    149  1.227.2.1      yamt 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    150  1.227.2.1      yamt 
    151  1.227.2.1      yamt 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    152  1.227.2.1      yamt 	   "kpreempt", "defer: critical section");
    153  1.227.2.1      yamt 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    154  1.227.2.1      yamt 	   "kpreempt", "defer: kernel_lock");
    155  1.227.2.1      yamt 	evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
    156  1.227.2.1      yamt 	   "kpreempt", "defer: IPL");
    157  1.227.2.1      yamt 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    158  1.227.2.1      yamt 	   "kpreempt", "immediate");
    159  1.227.2.1      yamt 
    160  1.227.2.1      yamt 	sched_pstats(NULL);
    161  1.227.2.1      yamt }
    162  1.227.2.1      yamt 
    163       1.26       cgd /*
    164      1.174        ad  * OBSOLETE INTERFACE
    165      1.174        ad  *
    166       1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    167       1.26       cgd  * performed on the specified identifier.  The process will then be made
    168      1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    169      1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    170       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    171       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    172       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    173       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    174       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    175       1.77   thorpej  *
    176      1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    177      1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    178      1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    179      1.174        ad  * return.
    180       1.26       cgd  */
    181       1.26       cgd int
    182      1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    183      1.174        ad 	volatile struct simplelock *interlock)
    184       1.26       cgd {
    185      1.122   thorpej 	struct lwp *l = curlwp;
    186      1.174        ad 	sleepq_t *sq;
    187      1.188      yamt 	int error;
    188       1.26       cgd 
    189      1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    190      1.204        ad 
    191      1.174        ad 	if (sleepq_dontsleep(l)) {
    192      1.174        ad 		(void)sleepq_abort(NULL, 0);
    193      1.174        ad 		if ((priority & PNORELOCK) != 0)
    194       1.77   thorpej 			simple_unlock(interlock);
    195      1.174        ad 		return 0;
    196       1.26       cgd 	}
    197       1.78  sommerfe 
    198      1.204        ad 	l->l_kpriority = true;
    199      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    200      1.174        ad 	sleepq_enter(sq, l);
    201      1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    202       1.42       cgd 
    203      1.174        ad 	if (interlock != NULL) {
    204      1.204        ad 		KASSERT(simple_lock_held(interlock));
    205      1.174        ad 		simple_unlock(interlock);
    206      1.150       chs 	}
    207      1.150       chs 
    208      1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    209      1.126        pk 
    210      1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    211      1.126        pk 		simple_lock(interlock);
    212      1.174        ad 
    213      1.174        ad 	return error;
    214       1.26       cgd }
    215       1.26       cgd 
    216      1.187        ad int
    217      1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    218      1.187        ad 	kmutex_t *mtx)
    219      1.187        ad {
    220      1.187        ad 	struct lwp *l = curlwp;
    221      1.187        ad 	sleepq_t *sq;
    222      1.188      yamt 	int error;
    223      1.187        ad 
    224      1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    225      1.204        ad 
    226      1.187        ad 	if (sleepq_dontsleep(l)) {
    227      1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    228      1.187        ad 		return 0;
    229      1.187        ad 	}
    230      1.187        ad 
    231      1.204        ad 	l->l_kpriority = true;
    232      1.187        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    233      1.187        ad 	sleepq_enter(sq, l);
    234      1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    235      1.187        ad 	mutex_exit(mtx);
    236      1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    237      1.187        ad 
    238      1.187        ad 	if ((priority & PNORELOCK) == 0)
    239      1.187        ad 		mutex_enter(mtx);
    240      1.187        ad 
    241      1.187        ad 	return error;
    242      1.187        ad }
    243      1.187        ad 
    244       1.26       cgd /*
    245      1.174        ad  * General sleep call for situations where a wake-up is not expected.
    246       1.26       cgd  */
    247      1.174        ad int
    248      1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    249       1.26       cgd {
    250      1.174        ad 	struct lwp *l = curlwp;
    251      1.174        ad 	sleepq_t *sq;
    252      1.174        ad 	int error;
    253       1.26       cgd 
    254      1.174        ad 	if (sleepq_dontsleep(l))
    255      1.174        ad 		return sleepq_abort(NULL, 0);
    256       1.26       cgd 
    257      1.174        ad 	if (mtx != NULL)
    258      1.174        ad 		mutex_exit(mtx);
    259      1.204        ad 	l->l_kpriority = true;
    260      1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    261      1.174        ad 	sleepq_enter(sq, l);
    262      1.204        ad 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    263      1.188      yamt 	error = sleepq_block(timo, intr);
    264      1.174        ad 	if (mtx != NULL)
    265      1.174        ad 		mutex_enter(mtx);
    266       1.83   thorpej 
    267      1.174        ad 	return error;
    268      1.139        cl }
    269      1.139        cl 
    270       1.26       cgd /*
    271      1.174        ad  * OBSOLETE INTERFACE
    272      1.174        ad  *
    273       1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    274       1.26       cgd  */
    275       1.26       cgd void
    276      1.174        ad wakeup(wchan_t ident)
    277       1.26       cgd {
    278      1.174        ad 	sleepq_t *sq;
    279       1.83   thorpej 
    280      1.174        ad 	if (cold)
    281      1.174        ad 		return;
    282       1.83   thorpej 
    283      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    284      1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    285       1.63   thorpej }
    286       1.63   thorpej 
    287       1.63   thorpej /*
    288      1.174        ad  * OBSOLETE INTERFACE
    289      1.174        ad  *
    290       1.63   thorpej  * Make the highest priority process first in line on the specified
    291       1.63   thorpej  * identifier runnable.
    292       1.63   thorpej  */
    293      1.174        ad void
    294      1.174        ad wakeup_one(wchan_t ident)
    295       1.63   thorpej {
    296      1.174        ad 	sleepq_t *sq;
    297       1.63   thorpej 
    298      1.174        ad 	if (cold)
    299      1.174        ad 		return;
    300      1.188      yamt 
    301      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    302      1.174        ad 	sleepq_wake(sq, ident, 1);
    303      1.174        ad }
    304       1.63   thorpej 
    305      1.117  gmcgarry 
    306      1.117  gmcgarry /*
    307      1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    308      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    309      1.198        ad  * current process explicitly requests it (eg sched_yield(2)).
    310      1.117  gmcgarry  */
    311      1.117  gmcgarry void
    312      1.117  gmcgarry yield(void)
    313      1.117  gmcgarry {
    314      1.122   thorpej 	struct lwp *l = curlwp;
    315      1.117  gmcgarry 
    316      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    317      1.174        ad 	lwp_lock(l);
    318      1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    319      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    320      1.204        ad 	l->l_kpriority = false;
    321      1.188      yamt 	(void)mi_switch(l);
    322      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    323       1.69   thorpej }
    324       1.69   thorpej 
    325       1.69   thorpej /*
    326       1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    327      1.156    rpaulo  * and performs an involuntary context switch.
    328       1.69   thorpej  */
    329       1.69   thorpej void
    330      1.174        ad preempt(void)
    331       1.69   thorpej {
    332      1.122   thorpej 	struct lwp *l = curlwp;
    333       1.69   thorpej 
    334      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    335      1.174        ad 	lwp_lock(l);
    336      1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    337      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    338      1.204        ad 	l->l_kpriority = false;
    339      1.174        ad 	l->l_nivcsw++;
    340      1.188      yamt 	(void)mi_switch(l);
    341      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    342       1.69   thorpej }
    343       1.69   thorpej 
    344       1.69   thorpej /*
    345  1.227.2.1      yamt  * Handle a request made by another agent to preempt the current LWP
    346  1.227.2.1      yamt  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    347  1.227.2.1      yamt  *
    348  1.227.2.1      yamt  * Character addresses for lockstat only.
    349  1.227.2.1      yamt  */
    350  1.227.2.1      yamt static char	in_critical_section;
    351  1.227.2.1      yamt static char	kernel_lock_held;
    352  1.227.2.1      yamt static char	spl_raised;
    353  1.227.2.1      yamt static char	is_softint;
    354  1.227.2.1      yamt 
    355  1.227.2.1      yamt bool
    356  1.227.2.1      yamt kpreempt(uintptr_t where)
    357  1.227.2.1      yamt {
    358  1.227.2.1      yamt 	uintptr_t failed;
    359  1.227.2.1      yamt 	lwp_t *l;
    360  1.227.2.1      yamt 	int s, dop;
    361  1.227.2.1      yamt 
    362  1.227.2.1      yamt 	l = curlwp;
    363  1.227.2.1      yamt 	failed = 0;
    364  1.227.2.1      yamt 	while ((dop = l->l_dopreempt) != 0) {
    365  1.227.2.1      yamt 		if (l->l_stat != LSONPROC) {
    366  1.227.2.1      yamt 			/*
    367  1.227.2.1      yamt 			 * About to block (or die), let it happen.
    368  1.227.2.1      yamt 			 * Doesn't really count as "preemption has
    369  1.227.2.1      yamt 			 * been blocked", since we're going to
    370  1.227.2.1      yamt 			 * context switch.
    371  1.227.2.1      yamt 			 */
    372  1.227.2.1      yamt 			l->l_dopreempt = 0;
    373  1.227.2.1      yamt 			return true;
    374  1.227.2.1      yamt 		}
    375  1.227.2.1      yamt 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    376  1.227.2.1      yamt 			/* Can't preempt idle loop, don't count as failure. */
    377  1.227.2.1      yamt 		    	l->l_dopreempt = 0;
    378  1.227.2.1      yamt 		    	return true;
    379  1.227.2.1      yamt 		}
    380  1.227.2.1      yamt 		if (__predict_false(l->l_nopreempt != 0)) {
    381  1.227.2.1      yamt 			/* LWP holds preemption disabled, explicitly. */
    382  1.227.2.1      yamt 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    383  1.227.2.1      yamt 				kpreempt_ev_crit.ev_count++;
    384  1.227.2.1      yamt 			}
    385  1.227.2.1      yamt 			failed = (uintptr_t)&in_critical_section;
    386  1.227.2.1      yamt 			break;
    387  1.227.2.1      yamt 		}
    388  1.227.2.1      yamt 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    389  1.227.2.1      yamt 		    	/* Can't preempt soft interrupts yet. */
    390  1.227.2.1      yamt 		    	l->l_dopreempt = 0;
    391  1.227.2.1      yamt 		    	failed = (uintptr_t)&is_softint;
    392  1.227.2.1      yamt 		    	break;
    393  1.227.2.1      yamt 		}
    394  1.227.2.1      yamt 		s = splsched();
    395  1.227.2.1      yamt 		if (__predict_false(l->l_blcnt != 0 ||
    396  1.227.2.1      yamt 		    curcpu()->ci_biglock_wanted != NULL)) {
    397  1.227.2.1      yamt 			/* Hold or want kernel_lock, code is not MT safe. */
    398  1.227.2.1      yamt 			splx(s);
    399  1.227.2.1      yamt 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    400  1.227.2.1      yamt 				kpreempt_ev_klock.ev_count++;
    401  1.227.2.1      yamt 			}
    402  1.227.2.1      yamt 			failed = (uintptr_t)&kernel_lock_held;
    403  1.227.2.1      yamt 			break;
    404  1.227.2.1      yamt 		}
    405  1.227.2.1      yamt 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    406  1.227.2.1      yamt 			/*
    407  1.227.2.1      yamt 			 * It may be that the IPL is too high.
    408  1.227.2.1      yamt 			 * kpreempt_enter() can schedule an
    409  1.227.2.1      yamt 			 * interrupt to retry later.
    410  1.227.2.1      yamt 			 */
    411  1.227.2.1      yamt 			splx(s);
    412  1.227.2.1      yamt 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    413  1.227.2.1      yamt 				kpreempt_ev_ipl.ev_count++;
    414  1.227.2.1      yamt 			}
    415  1.227.2.1      yamt 			failed = (uintptr_t)&spl_raised;
    416  1.227.2.1      yamt 			break;
    417  1.227.2.1      yamt 		}
    418  1.227.2.1      yamt 		/* Do it! */
    419  1.227.2.1      yamt 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    420  1.227.2.1      yamt 			kpreempt_ev_immed.ev_count++;
    421  1.227.2.1      yamt 		}
    422  1.227.2.1      yamt 		lwp_lock(l);
    423  1.227.2.1      yamt 		mi_switch(l);
    424  1.227.2.1      yamt 		l->l_nopreempt++;
    425  1.227.2.1      yamt 		splx(s);
    426  1.227.2.1      yamt 
    427  1.227.2.1      yamt 		/* Take care of any MD cleanup. */
    428  1.227.2.1      yamt 		cpu_kpreempt_exit(where);
    429  1.227.2.1      yamt 		l->l_nopreempt--;
    430  1.227.2.1      yamt 	}
    431  1.227.2.1      yamt 
    432  1.227.2.1      yamt 	/* Record preemption failure for reporting via lockstat. */
    433  1.227.2.1      yamt 	if (__predict_false(failed)) {
    434  1.227.2.1      yamt 		int lsflag = 0;
    435  1.227.2.1      yamt 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    436  1.227.2.1      yamt 		LOCKSTAT_ENTER(lsflag);
    437  1.227.2.1      yamt 		/* Might recurse, make it atomic. */
    438  1.227.2.1      yamt 		if (__predict_false(lsflag)) {
    439  1.227.2.1      yamt 			if (where == 0) {
    440  1.227.2.1      yamt 				where = (uintptr_t)__builtin_return_address(0);
    441  1.227.2.1      yamt 			}
    442  1.227.2.1      yamt 			if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
    443  1.227.2.1      yamt 			    NULL, (void *)where) == NULL) {
    444  1.227.2.1      yamt 				LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    445  1.227.2.1      yamt 				l->l_pfaillock = failed;
    446  1.227.2.1      yamt 			}
    447  1.227.2.1      yamt 		}
    448  1.227.2.1      yamt 		LOCKSTAT_EXIT(lsflag);
    449  1.227.2.1      yamt 	}
    450  1.227.2.1      yamt 
    451  1.227.2.1      yamt 	return failed;
    452  1.227.2.1      yamt }
    453  1.227.2.1      yamt 
    454  1.227.2.1      yamt /*
    455  1.227.2.1      yamt  * Return true if preemption is explicitly disabled.
    456  1.227.2.1      yamt  */
    457  1.227.2.1      yamt bool
    458  1.227.2.1      yamt kpreempt_disabled(void)
    459  1.227.2.1      yamt {
    460  1.227.2.1      yamt 	lwp_t *l;
    461  1.227.2.1      yamt 
    462  1.227.2.1      yamt 	l = curlwp;
    463  1.227.2.1      yamt 
    464  1.227.2.1      yamt 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    465  1.227.2.1      yamt 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    466  1.227.2.1      yamt }
    467  1.227.2.1      yamt 
    468  1.227.2.1      yamt /*
    469  1.227.2.1      yamt  * Disable kernel preemption.
    470  1.227.2.1      yamt  */
    471  1.227.2.1      yamt void
    472  1.227.2.1      yamt kpreempt_disable(void)
    473  1.227.2.1      yamt {
    474  1.227.2.1      yamt 
    475  1.227.2.1      yamt 	KPREEMPT_DISABLE(curlwp);
    476  1.227.2.1      yamt }
    477  1.227.2.1      yamt 
    478  1.227.2.1      yamt /*
    479  1.227.2.1      yamt  * Reenable kernel preemption.
    480  1.227.2.1      yamt  */
    481  1.227.2.1      yamt void
    482  1.227.2.1      yamt kpreempt_enable(void)
    483  1.227.2.1      yamt {
    484  1.227.2.1      yamt 
    485  1.227.2.1      yamt 	KPREEMPT_ENABLE(curlwp);
    486  1.227.2.1      yamt }
    487  1.227.2.1      yamt 
    488  1.227.2.1      yamt /*
    489      1.188      yamt  * Compute the amount of time during which the current lwp was running.
    490      1.130   nathanw  *
    491      1.188      yamt  * - update l_rtime unless it's an idle lwp.
    492      1.188      yamt  */
    493      1.188      yamt 
    494      1.199        ad void
    495      1.212      yamt updatertime(lwp_t *l, const struct bintime *now)
    496      1.188      yamt {
    497      1.188      yamt 
    498      1.199        ad 	if ((l->l_flag & LW_IDLE) != 0)
    499      1.188      yamt 		return;
    500      1.188      yamt 
    501      1.212      yamt 	/* rtime += now - stime */
    502      1.212      yamt 	bintime_add(&l->l_rtime, now);
    503      1.212      yamt 	bintime_sub(&l->l_rtime, &l->l_stime);
    504      1.188      yamt }
    505      1.188      yamt 
    506      1.188      yamt /*
    507      1.188      yamt  * The machine independent parts of context switch.
    508      1.188      yamt  *
    509      1.188      yamt  * Returns 1 if another LWP was actually run.
    510       1.26       cgd  */
    511      1.122   thorpej int
    512      1.199        ad mi_switch(lwp_t *l)
    513       1.26       cgd {
    514      1.216     rmind 	struct cpu_info *ci, *tci = NULL;
    515       1.76   thorpej 	struct schedstate_percpu *spc;
    516      1.188      yamt 	struct lwp *newl;
    517      1.174        ad 	int retval, oldspl;
    518      1.212      yamt 	struct bintime bt;
    519      1.199        ad 	bool returning;
    520       1.26       cgd 
    521      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    522  1.227.2.1      yamt 	KASSERT(kpreempt_disabled());
    523      1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    524      1.174        ad 
    525      1.174        ad #ifdef KSTACK_CHECK_MAGIC
    526      1.174        ad 	kstack_check_magic(l);
    527      1.174        ad #endif
    528       1.83   thorpej 
    529      1.212      yamt 	binuptime(&bt);
    530      1.199        ad 
    531  1.227.2.1      yamt 	KASSERT(l->l_cpu == curcpu());
    532      1.196        ad 	ci = l->l_cpu;
    533      1.196        ad 	spc = &ci->ci_schedstate;
    534      1.199        ad 	returning = false;
    535      1.190        ad 	newl = NULL;
    536      1.190        ad 
    537      1.199        ad 	/*
    538      1.199        ad 	 * If we have been asked to switch to a specific LWP, then there
    539      1.199        ad 	 * is no need to inspect the run queues.  If a soft interrupt is
    540      1.199        ad 	 * blocking, then return to the interrupted thread without adjusting
    541      1.199        ad 	 * VM context or its start time: neither have been changed in order
    542      1.199        ad 	 * to take the interrupt.
    543      1.199        ad 	 */
    544      1.190        ad 	if (l->l_switchto != NULL) {
    545      1.204        ad 		if ((l->l_pflag & LP_INTR) != 0) {
    546      1.199        ad 			returning = true;
    547      1.199        ad 			softint_block(l);
    548      1.199        ad 			if ((l->l_flag & LW_TIMEINTR) != 0)
    549      1.212      yamt 				updatertime(l, &bt);
    550      1.199        ad 		}
    551      1.190        ad 		newl = l->l_switchto;
    552      1.190        ad 		l->l_switchto = NULL;
    553      1.190        ad 	}
    554      1.204        ad #ifndef __HAVE_FAST_SOFTINTS
    555      1.204        ad 	else if (ci->ci_data.cpu_softints != 0) {
    556      1.204        ad 		/* There are pending soft interrupts, so pick one. */
    557      1.204        ad 		newl = softint_picklwp();
    558      1.204        ad 		newl->l_stat = LSONPROC;
    559      1.204        ad 		newl->l_flag |= LW_RUNNING;
    560      1.204        ad 	}
    561      1.204        ad #endif	/* !__HAVE_FAST_SOFTINTS */
    562      1.190        ad 
    563      1.180       dsl 	/* Count time spent in current system call */
    564      1.199        ad 	if (!returning) {
    565      1.199        ad 		SYSCALL_TIME_SLEEP(l);
    566      1.180       dsl 
    567      1.199        ad 		/*
    568      1.199        ad 		 * XXXSMP If we are using h/w performance counters,
    569      1.199        ad 		 * save context.
    570      1.199        ad 		 */
    571      1.174        ad #if PERFCTRS
    572      1.199        ad 		if (PMC_ENABLED(l->l_proc)) {
    573      1.199        ad 			pmc_save_context(l->l_proc);
    574      1.199        ad 		}
    575      1.199        ad #endif
    576      1.212      yamt 		updatertime(l, &bt);
    577      1.174        ad 	}
    578      1.113  gmcgarry 
    579      1.113  gmcgarry 	/*
    580      1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    581      1.113  gmcgarry 	 */
    582      1.174        ad 	KASSERT(l->l_stat != LSRUN);
    583      1.216     rmind 	if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
    584      1.217        ad 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    585      1.216     rmind 
    586      1.220     rmind 		if (l->l_target_cpu == l->l_cpu) {
    587      1.220     rmind 			l->l_target_cpu = NULL;
    588      1.220     rmind 		} else {
    589      1.220     rmind 			tci = l->l_target_cpu;
    590      1.220     rmind 		}
    591      1.220     rmind 
    592      1.216     rmind 		if (__predict_false(tci != NULL)) {
    593      1.216     rmind 			/* Double-lock the runqueues */
    594      1.216     rmind 			spc_dlock(ci, tci);
    595      1.216     rmind 		} else {
    596      1.216     rmind 			/* Lock the runqueue */
    597      1.216     rmind 			spc_lock(ci);
    598      1.216     rmind 		}
    599      1.216     rmind 
    600      1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    601      1.188      yamt 			l->l_stat = LSRUN;
    602      1.216     rmind 			if (__predict_false(tci != NULL)) {
    603      1.216     rmind 				/*
    604      1.216     rmind 				 * Set the new CPU, lock and unset the
    605      1.216     rmind 				 * l_target_cpu - thread will be enqueued
    606      1.216     rmind 				 * to the runqueue of target CPU.
    607      1.216     rmind 				 */
    608      1.216     rmind 				l->l_cpu = tci;
    609      1.216     rmind 				lwp_setlock(l, tci->ci_schedstate.spc_mutex);
    610      1.216     rmind 				l->l_target_cpu = NULL;
    611      1.216     rmind 			} else {
    612      1.216     rmind 				lwp_setlock(l, spc->spc_mutex);
    613      1.216     rmind 			}
    614      1.188      yamt 			sched_enqueue(l, true);
    615      1.216     rmind 		} else {
    616      1.216     rmind 			KASSERT(tci == NULL);
    617      1.188      yamt 			l->l_stat = LSIDL;
    618      1.216     rmind 		}
    619      1.216     rmind 	} else {
    620      1.216     rmind 		/* Lock the runqueue */
    621      1.216     rmind 		spc_lock(ci);
    622      1.174        ad 	}
    623      1.174        ad 
    624      1.174        ad 	/*
    625      1.201     rmind 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    626      1.209        ad 	 * If no LWP is runnable, select the idle LWP.
    627      1.209        ad 	 *
    628      1.209        ad 	 * Note that spc_lwplock might not necessary be held, and
    629      1.209        ad 	 * new thread would be unlocked after setting the LWP-lock.
    630      1.174        ad 	 */
    631      1.190        ad 	if (newl == NULL) {
    632      1.190        ad 		newl = sched_nextlwp();
    633      1.190        ad 		if (newl != NULL) {
    634      1.190        ad 			sched_dequeue(newl);
    635      1.190        ad 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    636      1.190        ad 			newl->l_stat = LSONPROC;
    637      1.196        ad 			newl->l_cpu = ci;
    638      1.190        ad 			newl->l_flag |= LW_RUNNING;
    639      1.217        ad 			lwp_setlock(newl, spc->spc_lwplock);
    640      1.190        ad 		} else {
    641      1.196        ad 			newl = ci->ci_data.cpu_idlelwp;
    642      1.190        ad 			newl->l_stat = LSONPROC;
    643      1.190        ad 			newl->l_flag |= LW_RUNNING;
    644      1.190        ad 		}
    645      1.204        ad 		/*
    646      1.204        ad 		 * Only clear want_resched if there are no
    647      1.204        ad 		 * pending (slow) software interrupts.
    648      1.204        ad 		 */
    649      1.204        ad 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    650      1.199        ad 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    651      1.204        ad 		spc->spc_curpriority = lwp_eprio(newl);
    652      1.199        ad 	}
    653      1.199        ad 
    654      1.204        ad 	/* Items that must be updated with the CPU locked. */
    655      1.199        ad 	if (!returning) {
    656      1.204        ad 		/* Update the new LWP's start time. */
    657      1.212      yamt 		newl->l_stime = bt;
    658      1.204        ad 
    659      1.199        ad 		/*
    660      1.204        ad 		 * ci_curlwp changes when a fast soft interrupt occurs.
    661      1.204        ad 		 * We use cpu_onproc to keep track of which kernel or
    662      1.204        ad 		 * user thread is running 'underneath' the software
    663      1.204        ad 		 * interrupt.  This is important for time accounting,
    664      1.204        ad 		 * itimers and forcing user threads to preempt (aston).
    665      1.199        ad 		 */
    666      1.204        ad 		ci->ci_data.cpu_onproc = newl;
    667      1.188      yamt 	}
    668      1.188      yamt 
    669  1.227.2.1      yamt 	/*
    670  1.227.2.1      yamt 	 * Preemption related tasks.  Must be done with the current
    671  1.227.2.1      yamt 	 * CPU locked.
    672  1.227.2.1      yamt 	 */
    673  1.227.2.1      yamt 	cpu_did_resched(l);
    674  1.227.2.1      yamt 	l->l_dopreempt = 0;
    675  1.227.2.1      yamt 	if (__predict_false(l->l_pfailaddr != 0)) {
    676  1.227.2.1      yamt 		LOCKSTAT_FLAG(lsflag);
    677  1.227.2.1      yamt 		LOCKSTAT_ENTER(lsflag);
    678  1.227.2.1      yamt 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    679  1.227.2.1      yamt 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    680  1.227.2.1      yamt 		    1, l->l_pfailtime, l->l_pfailaddr);
    681  1.227.2.1      yamt 		LOCKSTAT_EXIT(lsflag);
    682  1.227.2.1      yamt 		l->l_pfailtime = 0;
    683  1.227.2.1      yamt 		l->l_pfaillock = 0;
    684  1.227.2.1      yamt 		l->l_pfailaddr = 0;
    685  1.227.2.1      yamt 	}
    686  1.227.2.1      yamt 
    687      1.188      yamt 	if (l != newl) {
    688      1.188      yamt 		struct lwp *prevlwp;
    689      1.174        ad 
    690      1.209        ad 		/* Release all locks, but leave the current LWP locked */
    691      1.216     rmind 		if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
    692      1.216     rmind 			/*
    693      1.216     rmind 			 * In case of migration, drop the local runqueue
    694      1.216     rmind 			 * lock, thread is on other runqueue now.
    695      1.216     rmind 			 */
    696      1.216     rmind 			if (__predict_false(tci != NULL))
    697      1.216     rmind 				spc_unlock(ci);
    698      1.209        ad 			/*
    699      1.209        ad 			 * Drop spc_lwplock, if the current LWP has been moved
    700      1.209        ad 			 * to the run queue (it is now locked by spc_mutex).
    701      1.209        ad 			 */
    702      1.217        ad 			mutex_spin_exit(spc->spc_lwplock);
    703      1.188      yamt 		} else {
    704      1.209        ad 			/*
    705      1.209        ad 			 * Otherwise, drop the spc_mutex, we are done with the
    706      1.209        ad 			 * run queues.
    707      1.209        ad 			 */
    708      1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    709      1.216     rmind 			KASSERT(tci == NULL);
    710      1.188      yamt 		}
    711      1.188      yamt 
    712      1.209        ad 		/*
    713      1.209        ad 		 * Mark that context switch is going to be perfomed
    714      1.209        ad 		 * for this LWP, to protect it from being switched
    715      1.209        ad 		 * to on another CPU.
    716      1.209        ad 		 */
    717      1.209        ad 		KASSERT(l->l_ctxswtch == 0);
    718      1.209        ad 		l->l_ctxswtch = 1;
    719      1.209        ad 		l->l_ncsw++;
    720      1.209        ad 		l->l_flag &= ~LW_RUNNING;
    721      1.209        ad 
    722      1.209        ad 		/*
    723      1.209        ad 		 * Increase the count of spin-mutexes before the release
    724      1.209        ad 		 * of the last lock - we must remain at IPL_SCHED during
    725      1.209        ad 		 * the context switch.
    726      1.209        ad 		 */
    727      1.209        ad 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    728      1.209        ad 		ci->ci_mtx_count--;
    729      1.209        ad 		lwp_unlock(l);
    730      1.209        ad 
    731      1.218        ad 		/* Count the context switch on this CPU. */
    732      1.218        ad 		ci->ci_data.cpu_nswtch++;
    733      1.188      yamt 
    734      1.209        ad 		/* Update status for lwpctl, if present. */
    735      1.209        ad 		if (l->l_lwpctl != NULL)
    736      1.209        ad 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    737      1.209        ad 
    738      1.199        ad 		/*
    739      1.199        ad 		 * Save old VM context, unless a soft interrupt
    740      1.199        ad 		 * handler is blocking.
    741      1.199        ad 		 */
    742      1.199        ad 		if (!returning)
    743      1.199        ad 			pmap_deactivate(l);
    744      1.188      yamt 
    745      1.209        ad 		/*
    746      1.209        ad 		 * We may need to spin-wait for if 'newl' is still
    747      1.209        ad 		 * context switching on another CPU.
    748      1.209        ad 		 */
    749      1.209        ad 		if (newl->l_ctxswtch != 0) {
    750      1.209        ad 			u_int count;
    751      1.209        ad 			count = SPINLOCK_BACKOFF_MIN;
    752      1.209        ad 			while (newl->l_ctxswtch)
    753      1.209        ad 				SPINLOCK_BACKOFF(count);
    754      1.209        ad 		}
    755      1.207        ad 
    756      1.188      yamt 		/* Switch to the new LWP.. */
    757      1.204        ad 		prevlwp = cpu_switchto(l, newl, returning);
    758      1.207        ad 		ci = curcpu();
    759      1.207        ad 
    760      1.188      yamt 		/*
    761      1.209        ad 		 * Switched away - we have new curlwp.
    762      1.209        ad 		 * Restore VM context and IPL.
    763      1.188      yamt 		 */
    764      1.209        ad 		pmap_activate(l);
    765      1.188      yamt 		if (prevlwp != NULL) {
    766      1.209        ad 			/* Normalize the count of the spin-mutexes */
    767      1.209        ad 			ci->ci_mtx_count++;
    768      1.209        ad 			/* Unmark the state of context switch */
    769      1.209        ad 			membar_exit();
    770      1.209        ad 			prevlwp->l_ctxswtch = 0;
    771      1.188      yamt 		}
    772      1.209        ad 
    773      1.209        ad 		/* Update status for lwpctl, if present. */
    774      1.219        ad 		if (l->l_lwpctl != NULL) {
    775      1.209        ad 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    776      1.219        ad 			l->l_lwpctl->lc_pctr++;
    777      1.219        ad 		}
    778      1.174        ad 
    779  1.227.2.1      yamt 		KASSERT(l->l_cpu == ci);
    780  1.227.2.1      yamt 		splx(oldspl);
    781      1.188      yamt 		retval = 1;
    782      1.188      yamt 	} else {
    783      1.188      yamt 		/* Nothing to do - just unlock and return. */
    784      1.216     rmind 		KASSERT(tci == NULL);
    785      1.216     rmind 		spc_unlock(ci);
    786      1.188      yamt 		lwp_unlock(l);
    787      1.122   thorpej 		retval = 0;
    788      1.122   thorpej 	}
    789      1.110    briggs 
    790      1.188      yamt 	KASSERT(l == curlwp);
    791      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    792      1.188      yamt 
    793      1.110    briggs 	/*
    794      1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    795  1.227.2.1      yamt 	 * XXXSMP preemption problem.
    796       1.26       cgd 	 */
    797      1.114  gmcgarry #if PERFCTRS
    798      1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    799      1.175  christos 		pmc_restore_context(l->l_proc);
    800      1.166  christos 	}
    801      1.114  gmcgarry #endif
    802      1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    803      1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    804      1.169      yamt 
    805      1.122   thorpej 	return retval;
    806       1.26       cgd }
    807       1.26       cgd 
    808       1.26       cgd /*
    809      1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    810      1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    811      1.174        ad  *
    812      1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    813       1.26       cgd  */
    814       1.26       cgd void
    815      1.122   thorpej setrunnable(struct lwp *l)
    816       1.26       cgd {
    817      1.122   thorpej 	struct proc *p = l->l_proc;
    818      1.205        ad 	struct cpu_info *ci;
    819      1.174        ad 	sigset_t *ss;
    820       1.26       cgd 
    821      1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    822  1.227.2.1      yamt 	KASSERT(mutex_owned(p->p_lock));
    823      1.183        ad 	KASSERT(lwp_locked(l, NULL));
    824      1.205        ad 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    825       1.83   thorpej 
    826      1.122   thorpej 	switch (l->l_stat) {
    827      1.122   thorpej 	case LSSTOP:
    828       1.33   mycroft 		/*
    829       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    830       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    831       1.33   mycroft 		 */
    832      1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    833      1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    834      1.174        ad 				ss = &l->l_sigpend.sp_set;
    835      1.174        ad 			else
    836      1.174        ad 				ss = &p->p_sigpend.sp_set;
    837      1.174        ad 			sigaddset(ss, p->p_xstat);
    838      1.174        ad 			signotify(l);
    839       1.53   mycroft 		}
    840      1.174        ad 		p->p_nrlwps++;
    841       1.26       cgd 		break;
    842      1.174        ad 	case LSSUSPENDED:
    843      1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    844      1.174        ad 		p->p_nrlwps++;
    845      1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    846      1.122   thorpej 		break;
    847      1.174        ad 	case LSSLEEP:
    848      1.174        ad 		KASSERT(l->l_wchan != NULL);
    849       1.26       cgd 		break;
    850      1.174        ad 	default:
    851      1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    852       1.26       cgd 	}
    853      1.139        cl 
    854      1.174        ad 	/*
    855      1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    856      1.174        ad 	 * again.  If not, mark it as still sleeping.
    857      1.174        ad 	 */
    858      1.174        ad 	if (l->l_wchan != NULL) {
    859      1.174        ad 		l->l_stat = LSSLEEP;
    860      1.183        ad 		/* lwp_unsleep() will release the lock. */
    861      1.221        ad 		lwp_unsleep(l, true);
    862      1.174        ad 		return;
    863      1.174        ad 	}
    864      1.139        cl 
    865      1.174        ad 	/*
    866      1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    867      1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    868      1.174        ad 	 */
    869      1.188      yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    870      1.174        ad 		l->l_stat = LSONPROC;
    871      1.174        ad 		l->l_slptime = 0;
    872      1.174        ad 		lwp_unlock(l);
    873      1.174        ad 		return;
    874      1.174        ad 	}
    875      1.122   thorpej 
    876      1.174        ad 	/*
    877      1.205        ad 	 * Look for a CPU to run.
    878      1.205        ad 	 * Set the LWP runnable.
    879      1.174        ad 	 */
    880      1.205        ad 	ci = sched_takecpu(l);
    881      1.205        ad 	l->l_cpu = ci;
    882  1.227.2.1      yamt 	spc_lock(ci);
    883  1.227.2.1      yamt 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    884      1.188      yamt 	sched_setrunnable(l);
    885      1.174        ad 	l->l_stat = LSRUN;
    886      1.122   thorpej 	l->l_slptime = 0;
    887      1.174        ad 
    888      1.205        ad 	/*
    889      1.205        ad 	 * If thread is swapped out - wake the swapper to bring it back in.
    890      1.205        ad 	 * Otherwise, enter it into a run queue.
    891      1.205        ad 	 */
    892      1.178     pavel 	if (l->l_flag & LW_INMEM) {
    893      1.188      yamt 		sched_enqueue(l, false);
    894      1.188      yamt 		resched_cpu(l);
    895      1.174        ad 		lwp_unlock(l);
    896      1.174        ad 	} else {
    897      1.174        ad 		lwp_unlock(l);
    898      1.177        ad 		uvm_kick_scheduler();
    899      1.174        ad 	}
    900       1.26       cgd }
    901       1.26       cgd 
    902       1.26       cgd /*
    903      1.174        ad  * suspendsched:
    904      1.174        ad  *
    905      1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    906      1.174        ad  */
    907       1.94    bouyer void
    908      1.174        ad suspendsched(void)
    909       1.94    bouyer {
    910      1.174        ad 	CPU_INFO_ITERATOR cii;
    911      1.174        ad 	struct cpu_info *ci;
    912      1.122   thorpej 	struct lwp *l;
    913      1.174        ad 	struct proc *p;
    914       1.94    bouyer 
    915       1.94    bouyer 	/*
    916      1.174        ad 	 * We do this by process in order not to violate the locking rules.
    917       1.94    bouyer 	 */
    918  1.227.2.1      yamt 	mutex_enter(proc_lock);
    919      1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    920  1.227.2.1      yamt 		if ((p->p_flag & PK_MARKER) != 0)
    921  1.227.2.1      yamt 			continue;
    922      1.174        ad 
    923  1.227.2.1      yamt 		mutex_enter(p->p_lock);
    924      1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    925  1.227.2.1      yamt 			mutex_exit(p->p_lock);
    926       1.94    bouyer 			continue;
    927      1.174        ad 		}
    928      1.174        ad 
    929      1.174        ad 		p->p_stat = SSTOP;
    930      1.174        ad 
    931      1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    932      1.174        ad 			if (l == curlwp)
    933      1.174        ad 				continue;
    934      1.174        ad 
    935      1.174        ad 			lwp_lock(l);
    936      1.122   thorpej 
    937       1.97     enami 			/*
    938      1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    939      1.174        ad 			 * when it tries to return to user mode.  We want to
    940      1.174        ad 			 * try and get to get as many LWPs as possible to
    941      1.174        ad 			 * the user / kernel boundary, so that they will
    942      1.174        ad 			 * release any locks that they hold.
    943       1.97     enami 			 */
    944      1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    945      1.174        ad 
    946      1.174        ad 			if (l->l_stat == LSSLEEP &&
    947      1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    948      1.174        ad 				/* setrunnable() will release the lock. */
    949      1.174        ad 				setrunnable(l);
    950      1.174        ad 				continue;
    951      1.174        ad 			}
    952      1.174        ad 
    953      1.174        ad 			lwp_unlock(l);
    954       1.94    bouyer 		}
    955      1.174        ad 
    956  1.227.2.1      yamt 		mutex_exit(p->p_lock);
    957       1.94    bouyer 	}
    958  1.227.2.1      yamt 	mutex_exit(proc_lock);
    959      1.174        ad 
    960      1.174        ad 	/*
    961      1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    962      1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    963      1.174        ad 	 */
    964      1.204        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    965      1.204        ad 		spc_lock(ci);
    966      1.204        ad 		cpu_need_resched(ci, RESCHED_IMMED);
    967      1.204        ad 		spc_unlock(ci);
    968      1.204        ad 	}
    969      1.174        ad }
    970      1.174        ad 
    971      1.174        ad /*
    972      1.174        ad  * sched_unsleep:
    973      1.174        ad  *
    974      1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    975      1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    976      1.174        ad  *	it's not a valid action for running or idle LWPs.
    977      1.174        ad  */
    978      1.221        ad static u_int
    979      1.221        ad sched_unsleep(struct lwp *l, bool cleanup)
    980      1.174        ad {
    981      1.174        ad 
    982      1.174        ad 	lwp_unlock(l);
    983      1.174        ad 	panic("sched_unsleep");
    984      1.174        ad }
    985      1.174        ad 
    986      1.204        ad void
    987      1.188      yamt resched_cpu(struct lwp *l)
    988      1.188      yamt {
    989      1.188      yamt 	struct cpu_info *ci;
    990      1.188      yamt 
    991      1.188      yamt 	/*
    992      1.188      yamt 	 * XXXSMP
    993      1.188      yamt 	 * Since l->l_cpu persists across a context switch,
    994      1.188      yamt 	 * this gives us *very weak* processor affinity, in
    995      1.188      yamt 	 * that we notify the CPU on which the process last
    996      1.188      yamt 	 * ran that it should try to switch.
    997      1.188      yamt 	 *
    998      1.188      yamt 	 * This does not guarantee that the process will run on
    999      1.188      yamt 	 * that processor next, because another processor might
   1000      1.188      yamt 	 * grab it the next time it performs a context switch.
   1001      1.188      yamt 	 *
   1002      1.188      yamt 	 * This also does not handle the case where its last
   1003      1.188      yamt 	 * CPU is running a higher-priority process, but every
   1004      1.188      yamt 	 * other CPU is running a lower-priority process.  There
   1005      1.188      yamt 	 * are ways to handle this situation, but they're not
   1006      1.188      yamt 	 * currently very pretty, and we also need to weigh the
   1007      1.188      yamt 	 * cost of moving a process from one CPU to another.
   1008      1.188      yamt 	 */
   1009      1.204        ad 	ci = l->l_cpu;
   1010      1.204        ad 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1011      1.188      yamt 		cpu_need_resched(ci, 0);
   1012      1.188      yamt }
   1013      1.188      yamt 
   1014      1.188      yamt static void
   1015      1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
   1016      1.174        ad {
   1017      1.174        ad 
   1018      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
   1019      1.174        ad 
   1020      1.204        ad 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1021      1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1022      1.204        ad 		sched_dequeue(l);
   1023      1.204        ad 		l->l_priority = pri;
   1024      1.204        ad 		sched_enqueue(l, false);
   1025      1.204        ad 	} else {
   1026      1.174        ad 		l->l_priority = pri;
   1027      1.157      yamt 	}
   1028      1.188      yamt 	resched_cpu(l);
   1029      1.184      yamt }
   1030      1.184      yamt 
   1031      1.188      yamt static void
   1032      1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
   1033      1.184      yamt {
   1034      1.184      yamt 
   1035      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
   1036      1.184      yamt 
   1037      1.204        ad 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1038      1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1039      1.204        ad 		sched_dequeue(l);
   1040      1.204        ad 		l->l_inheritedprio = pri;
   1041      1.204        ad 		sched_enqueue(l, false);
   1042      1.204        ad 	} else {
   1043      1.184      yamt 		l->l_inheritedprio = pri;
   1044      1.184      yamt 	}
   1045      1.188      yamt 	resched_cpu(l);
   1046      1.184      yamt }
   1047      1.184      yamt 
   1048      1.184      yamt struct lwp *
   1049      1.184      yamt syncobj_noowner(wchan_t wchan)
   1050      1.184      yamt {
   1051      1.184      yamt 
   1052      1.184      yamt 	return NULL;
   1053      1.151      yamt }
   1054      1.151      yamt 
   1055      1.188      yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
   1056      1.188      yamt fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
   1057      1.115  nisimura 
   1058      1.130   nathanw /*
   1059      1.188      yamt  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
   1060      1.188      yamt  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
   1061      1.188      yamt  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
   1062      1.188      yamt  *
   1063      1.188      yamt  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
   1064      1.188      yamt  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
   1065      1.188      yamt  *
   1066      1.188      yamt  * If you dont want to bother with the faster/more-accurate formula, you
   1067      1.188      yamt  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
   1068      1.188      yamt  * (more general) method of calculating the %age of CPU used by a process.
   1069      1.134      matt  */
   1070      1.188      yamt #define	CCPU_SHIFT	(FSHIFT + 1)
   1071      1.134      matt 
   1072      1.134      matt /*
   1073      1.188      yamt  * sched_pstats:
   1074      1.188      yamt  *
   1075      1.188      yamt  * Update process statistics and check CPU resource allocation.
   1076      1.188      yamt  * Call scheduler-specific hook to eventually adjust process/LWP
   1077      1.188      yamt  * priorities.
   1078      1.130   nathanw  */
   1079      1.188      yamt /* ARGSUSED */
   1080      1.113  gmcgarry void
   1081      1.188      yamt sched_pstats(void *arg)
   1082      1.113  gmcgarry {
   1083      1.188      yamt 	struct rlimit *rlim;
   1084      1.188      yamt 	struct lwp *l;
   1085      1.188      yamt 	struct proc *p;
   1086      1.204        ad 	int sig, clkhz;
   1087      1.188      yamt 	long runtm;
   1088      1.113  gmcgarry 
   1089      1.188      yamt 	sched_pstats_ticks++;
   1090      1.174        ad 
   1091  1.227.2.1      yamt 	mutex_enter(proc_lock);
   1092      1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
   1093  1.227.2.1      yamt 		if ((p->p_flag & PK_MARKER) != 0)
   1094  1.227.2.1      yamt 			continue;
   1095  1.227.2.1      yamt 
   1096      1.188      yamt 		/*
   1097      1.188      yamt 		 * Increment time in/out of memory and sleep time (if
   1098      1.188      yamt 		 * sleeping).  We ignore overflow; with 16-bit int's
   1099      1.188      yamt 		 * (remember them?) overflow takes 45 days.
   1100      1.188      yamt 		 */
   1101  1.227.2.1      yamt 		mutex_enter(p->p_lock);
   1102      1.188      yamt 		mutex_spin_enter(&p->p_stmutex);
   1103      1.212      yamt 		runtm = p->p_rtime.sec;
   1104      1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1105      1.188      yamt 			if ((l->l_flag & LW_IDLE) != 0)
   1106      1.188      yamt 				continue;
   1107      1.188      yamt 			lwp_lock(l);
   1108      1.212      yamt 			runtm += l->l_rtime.sec;
   1109      1.188      yamt 			l->l_swtime++;
   1110      1.200     rmind 			sched_pstats_hook(l);
   1111      1.188      yamt 			lwp_unlock(l);
   1112      1.113  gmcgarry 
   1113      1.188      yamt 			/*
   1114      1.188      yamt 			 * p_pctcpu is only for ps.
   1115      1.188      yamt 			 */
   1116      1.188      yamt 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1117      1.188      yamt 			if (l->l_slptime < 1) {
   1118      1.188      yamt 				clkhz = stathz != 0 ? stathz : hz;
   1119      1.188      yamt #if	(FSHIFT >= CCPU_SHIFT)
   1120      1.188      yamt 				l->l_pctcpu += (clkhz == 100) ?
   1121      1.188      yamt 				    ((fixpt_t)l->l_cpticks) <<
   1122      1.188      yamt 				        (FSHIFT - CCPU_SHIFT) :
   1123      1.188      yamt 				    100 * (((fixpt_t) p->p_cpticks)
   1124      1.188      yamt 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
   1125      1.188      yamt #else
   1126      1.188      yamt 				l->l_pctcpu += ((FSCALE - ccpu) *
   1127      1.188      yamt 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
   1128      1.146      matt #endif
   1129      1.188      yamt 				l->l_cpticks = 0;
   1130      1.188      yamt 			}
   1131      1.188      yamt 		}
   1132      1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1133      1.188      yamt 		mutex_spin_exit(&p->p_stmutex);
   1134      1.174        ad 
   1135      1.188      yamt 		/*
   1136      1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
   1137      1.188      yamt 		 * If over max, kill it.
   1138      1.188      yamt 		 */
   1139      1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1140      1.188      yamt 		sig = 0;
   1141      1.188      yamt 		if (runtm >= rlim->rlim_cur) {
   1142      1.188      yamt 			if (runtm >= rlim->rlim_max)
   1143      1.188      yamt 				sig = SIGKILL;
   1144      1.188      yamt 			else {
   1145      1.188      yamt 				sig = SIGXCPU;
   1146      1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
   1147      1.188      yamt 					rlim->rlim_cur += 5;
   1148      1.188      yamt 			}
   1149      1.188      yamt 		}
   1150  1.227.2.1      yamt 		mutex_exit(p->p_lock);
   1151  1.227.2.1      yamt 		if (sig)
   1152      1.188      yamt 			psignal(p, sig);
   1153      1.174        ad 	}
   1154  1.227.2.1      yamt 	mutex_exit(proc_lock);
   1155      1.188      yamt 	uvm_meter();
   1156      1.191        ad 	cv_wakeup(&lbolt);
   1157      1.188      yamt 	callout_schedule(&sched_pstats_ch, hz);
   1158      1.113  gmcgarry }
   1159