Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.230.2.5
      1  1.230.2.5      yamt /*	$NetBSD: kern_synch.c,v 1.230.2.5 2010/03/11 15:04:17 yamt Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4  1.230.2.2      yamt  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
      5  1.230.2.2      yamt  *    The NetBSD Foundation, Inc.
      6       1.63   thorpej  * All rights reserved.
      7       1.63   thorpej  *
      8       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      9       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10      1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11      1.188      yamt  * Daniel Sieger.
     12       1.63   thorpej  *
     13       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     14       1.63   thorpej  * modification, are permitted provided that the following conditions
     15       1.63   thorpej  * are met:
     16       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     17       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     18       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     21       1.63   thorpej  *
     22       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     33       1.63   thorpej  */
     34       1.26       cgd 
     35       1.26       cgd /*-
     36       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     38       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     39       1.26       cgd  * All or some portions of this file are derived from material licensed
     40       1.26       cgd  * to the University of California by American Telephone and Telegraph
     41       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     43       1.26       cgd  *
     44       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     45       1.26       cgd  * modification, are permitted provided that the following conditions
     46       1.26       cgd  * are met:
     47       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     48       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     49       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     50       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     51       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     52      1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     53       1.26       cgd  *    may be used to endorse or promote products derived from this software
     54       1.26       cgd  *    without specific prior written permission.
     55       1.26       cgd  *
     56       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66       1.26       cgd  * SUCH DAMAGE.
     67       1.26       cgd  *
     68       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69       1.26       cgd  */
     70      1.106     lukem 
     71      1.106     lukem #include <sys/cdefs.h>
     72  1.230.2.5      yamt __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.230.2.5 2010/03/11 15:04:17 yamt Exp $");
     73       1.48       mrg 
     74      1.109      yamt #include "opt_kstack.h"
     75      1.110    briggs #include "opt_perfctrs.h"
     76  1.230.2.2      yamt #include "opt_sa.h"
     77  1.230.2.5      yamt #include "opt_dtrace.h"
     78       1.26       cgd 
     79      1.174        ad #define	__MUTEX_PRIVATE
     80      1.174        ad 
     81       1.26       cgd #include <sys/param.h>
     82       1.26       cgd #include <sys/systm.h>
     83       1.26       cgd #include <sys/proc.h>
     84       1.26       cgd #include <sys/kernel.h>
     85      1.111    briggs #if defined(PERFCTRS)
     86      1.110    briggs #include <sys/pmc.h>
     87      1.111    briggs #endif
     88      1.188      yamt #include <sys/cpu.h>
     89       1.26       cgd #include <sys/resourcevar.h>
     90       1.55      ross #include <sys/sched.h>
     91  1.230.2.2      yamt #include <sys/sa.h>
     92  1.230.2.2      yamt #include <sys/savar.h>
     93      1.179       dsl #include <sys/syscall_stats.h>
     94      1.174        ad #include <sys/sleepq.h>
     95      1.174        ad #include <sys/lockdebug.h>
     96      1.190        ad #include <sys/evcnt.h>
     97      1.199        ad #include <sys/intr.h>
     98      1.207        ad #include <sys/lwpctl.h>
     99      1.209        ad #include <sys/atomic.h>
    100      1.215        ad #include <sys/simplelock.h>
    101       1.47       mrg 
    102       1.47       mrg #include <uvm/uvm_extern.h>
    103       1.47       mrg 
    104  1.230.2.1      yamt #include <dev/lockstat.h>
    105       1.26       cgd 
    106  1.230.2.5      yamt #include <sys/dtrace_bsd.h>
    107  1.230.2.5      yamt int                             dtrace_vtime_active=0;
    108  1.230.2.5      yamt dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    109  1.230.2.5      yamt 
    110  1.230.2.5      yamt static void	sched_unsleep(struct lwp *, bool);
    111      1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    112      1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    113  1.230.2.2      yamt static void	resched_cpu(struct lwp *);
    114      1.122   thorpej 
    115      1.174        ad syncobj_t sleep_syncobj = {
    116      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    117      1.174        ad 	sleepq_unsleep,
    118      1.184      yamt 	sleepq_changepri,
    119      1.184      yamt 	sleepq_lendpri,
    120      1.184      yamt 	syncobj_noowner,
    121      1.174        ad };
    122      1.174        ad 
    123      1.174        ad syncobj_t sched_syncobj = {
    124      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    125      1.174        ad 	sched_unsleep,
    126      1.184      yamt 	sched_changepri,
    127      1.184      yamt 	sched_lendpri,
    128      1.184      yamt 	syncobj_noowner,
    129      1.174        ad };
    130      1.122   thorpej 
    131      1.223        ad callout_t 	sched_pstats_ch;
    132      1.223        ad unsigned	sched_pstats_ticks;
    133      1.223        ad kcondvar_t	lbolt;			/* once a second sleep address */
    134      1.223        ad 
    135  1.230.2.1      yamt /* Preemption event counters */
    136  1.230.2.1      yamt static struct evcnt kpreempt_ev_crit;
    137  1.230.2.1      yamt static struct evcnt kpreempt_ev_klock;
    138  1.230.2.1      yamt static struct evcnt kpreempt_ev_immed;
    139      1.223        ad 
    140       1.26       cgd /*
    141      1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    142      1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    143      1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    144      1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    145      1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    146      1.174        ad  * it can be made higher to block network software interrupts after panics.
    147       1.26       cgd  */
    148      1.174        ad int	safepri;
    149       1.26       cgd 
    150  1.230.2.1      yamt void
    151  1.230.2.5      yamt synch_init(void)
    152  1.230.2.1      yamt {
    153  1.230.2.1      yamt 
    154  1.230.2.1      yamt 	cv_init(&lbolt, "lbolt");
    155  1.230.2.1      yamt 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    156  1.230.2.1      yamt 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    157  1.230.2.1      yamt 
    158  1.230.2.1      yamt 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    159  1.230.2.1      yamt 	   "kpreempt", "defer: critical section");
    160  1.230.2.1      yamt 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    161  1.230.2.1      yamt 	   "kpreempt", "defer: kernel_lock");
    162  1.230.2.1      yamt 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    163  1.230.2.1      yamt 	   "kpreempt", "immediate");
    164  1.230.2.1      yamt 
    165  1.230.2.1      yamt 	sched_pstats(NULL);
    166  1.230.2.1      yamt }
    167  1.230.2.1      yamt 
    168       1.26       cgd /*
    169      1.174        ad  * OBSOLETE INTERFACE
    170      1.174        ad  *
    171  1.230.2.2      yamt  * General sleep call.  Suspends the current LWP until a wakeup is
    172  1.230.2.2      yamt  * performed on the specified identifier.  The LWP will then be made
    173      1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    174      1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    175       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    176       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    177       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    178       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    179       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    180       1.77   thorpej  *
    181      1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    182      1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    183      1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    184      1.174        ad  * return.
    185       1.26       cgd  */
    186       1.26       cgd int
    187      1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    188      1.174        ad 	volatile struct simplelock *interlock)
    189       1.26       cgd {
    190      1.122   thorpej 	struct lwp *l = curlwp;
    191      1.174        ad 	sleepq_t *sq;
    192  1.230.2.2      yamt 	kmutex_t *mp;
    193      1.188      yamt 	int error;
    194       1.26       cgd 
    195      1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    196  1.230.2.5      yamt 	KASSERT(ident != &lbolt);
    197      1.204        ad 
    198      1.174        ad 	if (sleepq_dontsleep(l)) {
    199      1.174        ad 		(void)sleepq_abort(NULL, 0);
    200      1.174        ad 		if ((priority & PNORELOCK) != 0)
    201       1.77   thorpej 			simple_unlock(interlock);
    202      1.174        ad 		return 0;
    203       1.26       cgd 	}
    204       1.78  sommerfe 
    205      1.204        ad 	l->l_kpriority = true;
    206  1.230.2.2      yamt 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    207  1.230.2.2      yamt 	sleepq_enter(sq, l, mp);
    208      1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    209       1.42       cgd 
    210      1.174        ad 	if (interlock != NULL) {
    211      1.204        ad 		KASSERT(simple_lock_held(interlock));
    212      1.174        ad 		simple_unlock(interlock);
    213      1.150       chs 	}
    214      1.150       chs 
    215      1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    216      1.126        pk 
    217      1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    218      1.126        pk 		simple_lock(interlock);
    219      1.174        ad 
    220      1.174        ad 	return error;
    221       1.26       cgd }
    222       1.26       cgd 
    223      1.187        ad int
    224      1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    225      1.187        ad 	kmutex_t *mtx)
    226      1.187        ad {
    227      1.187        ad 	struct lwp *l = curlwp;
    228      1.187        ad 	sleepq_t *sq;
    229  1.230.2.2      yamt 	kmutex_t *mp;
    230      1.188      yamt 	int error;
    231      1.187        ad 
    232      1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    233  1.230.2.5      yamt 	KASSERT(ident != &lbolt);
    234      1.204        ad 
    235      1.187        ad 	if (sleepq_dontsleep(l)) {
    236      1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    237      1.187        ad 		return 0;
    238      1.187        ad 	}
    239      1.187        ad 
    240      1.204        ad 	l->l_kpriority = true;
    241  1.230.2.2      yamt 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    242  1.230.2.2      yamt 	sleepq_enter(sq, l, mp);
    243      1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    244      1.187        ad 	mutex_exit(mtx);
    245      1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    246      1.187        ad 
    247      1.187        ad 	if ((priority & PNORELOCK) == 0)
    248      1.187        ad 		mutex_enter(mtx);
    249      1.187        ad 
    250      1.187        ad 	return error;
    251      1.187        ad }
    252      1.187        ad 
    253       1.26       cgd /*
    254      1.174        ad  * General sleep call for situations where a wake-up is not expected.
    255       1.26       cgd  */
    256      1.174        ad int
    257      1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    258       1.26       cgd {
    259      1.174        ad 	struct lwp *l = curlwp;
    260  1.230.2.2      yamt 	kmutex_t *mp;
    261      1.174        ad 	sleepq_t *sq;
    262      1.174        ad 	int error;
    263       1.26       cgd 
    264      1.174        ad 	if (sleepq_dontsleep(l))
    265      1.174        ad 		return sleepq_abort(NULL, 0);
    266       1.26       cgd 
    267      1.174        ad 	if (mtx != NULL)
    268      1.174        ad 		mutex_exit(mtx);
    269      1.204        ad 	l->l_kpriority = true;
    270  1.230.2.2      yamt 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    271  1.230.2.2      yamt 	sleepq_enter(sq, l, mp);
    272      1.204        ad 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    273      1.188      yamt 	error = sleepq_block(timo, intr);
    274      1.174        ad 	if (mtx != NULL)
    275      1.174        ad 		mutex_enter(mtx);
    276       1.83   thorpej 
    277      1.174        ad 	return error;
    278      1.139        cl }
    279      1.139        cl 
    280  1.230.2.2      yamt #ifdef KERN_SA
    281  1.230.2.2      yamt /*
    282  1.230.2.2      yamt  * sa_awaken:
    283  1.230.2.2      yamt  *
    284  1.230.2.2      yamt  *	We believe this lwp is an SA lwp. If it's yielding,
    285  1.230.2.2      yamt  * let it know it needs to wake up.
    286  1.230.2.2      yamt  *
    287  1.230.2.2      yamt  *	We are called and exit with the lwp locked. We are
    288  1.230.2.2      yamt  * called in the middle of wakeup operations, so we need
    289  1.230.2.2      yamt  * to not touch the locks at all.
    290  1.230.2.2      yamt  */
    291  1.230.2.2      yamt void
    292  1.230.2.2      yamt sa_awaken(struct lwp *l)
    293  1.230.2.2      yamt {
    294  1.230.2.2      yamt 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
    295  1.230.2.2      yamt 
    296  1.230.2.2      yamt 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
    297  1.230.2.2      yamt 		l->l_flag &= ~LW_SA_IDLE;
    298  1.230.2.2      yamt }
    299  1.230.2.2      yamt #endif /* KERN_SA */
    300  1.230.2.2      yamt 
    301       1.26       cgd /*
    302      1.174        ad  * OBSOLETE INTERFACE
    303      1.174        ad  *
    304  1.230.2.2      yamt  * Make all LWPs sleeping on the specified identifier runnable.
    305       1.26       cgd  */
    306       1.26       cgd void
    307      1.174        ad wakeup(wchan_t ident)
    308       1.26       cgd {
    309      1.174        ad 	sleepq_t *sq;
    310  1.230.2.2      yamt 	kmutex_t *mp;
    311       1.83   thorpej 
    312  1.230.2.2      yamt 	if (__predict_false(cold))
    313      1.174        ad 		return;
    314       1.83   thorpej 
    315  1.230.2.2      yamt 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    316  1.230.2.2      yamt 	sleepq_wake(sq, ident, (u_int)-1, mp);
    317       1.63   thorpej }
    318       1.63   thorpej 
    319       1.63   thorpej /*
    320      1.174        ad  * OBSOLETE INTERFACE
    321      1.174        ad  *
    322  1.230.2.2      yamt  * Make the highest priority LWP first in line on the specified
    323       1.63   thorpej  * identifier runnable.
    324       1.63   thorpej  */
    325      1.174        ad void
    326      1.174        ad wakeup_one(wchan_t ident)
    327       1.63   thorpej {
    328      1.174        ad 	sleepq_t *sq;
    329  1.230.2.2      yamt 	kmutex_t *mp;
    330       1.63   thorpej 
    331  1.230.2.2      yamt 	if (__predict_false(cold))
    332      1.174        ad 		return;
    333      1.188      yamt 
    334  1.230.2.2      yamt 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    335  1.230.2.2      yamt 	sleepq_wake(sq, ident, 1, mp);
    336      1.174        ad }
    337       1.63   thorpej 
    338      1.117  gmcgarry 
    339      1.117  gmcgarry /*
    340  1.230.2.2      yamt  * General yield call.  Puts the current LWP back on its run queue and
    341      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    342  1.230.2.2      yamt  * current LWP explicitly requests it (eg sched_yield(2)).
    343      1.117  gmcgarry  */
    344      1.117  gmcgarry void
    345      1.117  gmcgarry yield(void)
    346      1.117  gmcgarry {
    347      1.122   thorpej 	struct lwp *l = curlwp;
    348      1.117  gmcgarry 
    349      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    350      1.174        ad 	lwp_lock(l);
    351      1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    352      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    353      1.204        ad 	l->l_kpriority = false;
    354      1.188      yamt 	(void)mi_switch(l);
    355      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    356       1.69   thorpej }
    357       1.69   thorpej 
    358       1.69   thorpej /*
    359  1.230.2.2      yamt  * General preemption call.  Puts the current LWP back on its run queue
    360      1.156    rpaulo  * and performs an involuntary context switch.
    361       1.69   thorpej  */
    362       1.69   thorpej void
    363      1.174        ad preempt(void)
    364       1.69   thorpej {
    365      1.122   thorpej 	struct lwp *l = curlwp;
    366       1.69   thorpej 
    367      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    368      1.174        ad 	lwp_lock(l);
    369      1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    370      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    371      1.204        ad 	l->l_kpriority = false;
    372      1.174        ad 	l->l_nivcsw++;
    373      1.188      yamt 	(void)mi_switch(l);
    374      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    375       1.69   thorpej }
    376       1.69   thorpej 
    377       1.69   thorpej /*
    378  1.230.2.1      yamt  * Handle a request made by another agent to preempt the current LWP
    379  1.230.2.1      yamt  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    380  1.230.2.1      yamt  *
    381  1.230.2.1      yamt  * Character addresses for lockstat only.
    382      1.230        ad  */
    383  1.230.2.1      yamt static char	in_critical_section;
    384  1.230.2.1      yamt static char	kernel_lock_held;
    385  1.230.2.1      yamt static char	is_softint;
    386  1.230.2.2      yamt static char	cpu_kpreempt_enter_fail;
    387  1.230.2.1      yamt 
    388  1.230.2.1      yamt bool
    389  1.230.2.1      yamt kpreempt(uintptr_t where)
    390      1.230        ad {
    391  1.230.2.1      yamt 	uintptr_t failed;
    392  1.230.2.1      yamt 	lwp_t *l;
    393  1.230.2.2      yamt 	int s, dop, lsflag;
    394  1.230.2.1      yamt 
    395  1.230.2.1      yamt 	l = curlwp;
    396  1.230.2.1      yamt 	failed = 0;
    397  1.230.2.1      yamt 	while ((dop = l->l_dopreempt) != 0) {
    398  1.230.2.1      yamt 		if (l->l_stat != LSONPROC) {
    399  1.230.2.1      yamt 			/*
    400  1.230.2.1      yamt 			 * About to block (or die), let it happen.
    401  1.230.2.1      yamt 			 * Doesn't really count as "preemption has
    402  1.230.2.1      yamt 			 * been blocked", since we're going to
    403  1.230.2.1      yamt 			 * context switch.
    404  1.230.2.1      yamt 			 */
    405  1.230.2.1      yamt 			l->l_dopreempt = 0;
    406  1.230.2.1      yamt 			return true;
    407  1.230.2.1      yamt 		}
    408  1.230.2.1      yamt 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    409  1.230.2.1      yamt 			/* Can't preempt idle loop, don't count as failure. */
    410  1.230.2.2      yamt 			l->l_dopreempt = 0;
    411  1.230.2.2      yamt 			return true;
    412  1.230.2.1      yamt 		}
    413  1.230.2.1      yamt 		if (__predict_false(l->l_nopreempt != 0)) {
    414  1.230.2.1      yamt 			/* LWP holds preemption disabled, explicitly. */
    415  1.230.2.1      yamt 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    416  1.230.2.1      yamt 				kpreempt_ev_crit.ev_count++;
    417  1.230.2.1      yamt 			}
    418  1.230.2.1      yamt 			failed = (uintptr_t)&in_critical_section;
    419  1.230.2.1      yamt 			break;
    420  1.230.2.1      yamt 		}
    421  1.230.2.1      yamt 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    422  1.230.2.2      yamt 			/* Can't preempt soft interrupts yet. */
    423  1.230.2.2      yamt 			l->l_dopreempt = 0;
    424  1.230.2.2      yamt 			failed = (uintptr_t)&is_softint;
    425  1.230.2.2      yamt 			break;
    426  1.230.2.1      yamt 		}
    427  1.230.2.1      yamt 		s = splsched();
    428  1.230.2.1      yamt 		if (__predict_false(l->l_blcnt != 0 ||
    429  1.230.2.1      yamt 		    curcpu()->ci_biglock_wanted != NULL)) {
    430  1.230.2.1      yamt 			/* Hold or want kernel_lock, code is not MT safe. */
    431  1.230.2.1      yamt 			splx(s);
    432  1.230.2.1      yamt 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    433  1.230.2.1      yamt 				kpreempt_ev_klock.ev_count++;
    434  1.230.2.1      yamt 			}
    435  1.230.2.1      yamt 			failed = (uintptr_t)&kernel_lock_held;
    436  1.230.2.1      yamt 			break;
    437  1.230.2.1      yamt 		}
    438  1.230.2.1      yamt 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    439  1.230.2.1      yamt 			/*
    440  1.230.2.1      yamt 			 * It may be that the IPL is too high.
    441  1.230.2.1      yamt 			 * kpreempt_enter() can schedule an
    442  1.230.2.1      yamt 			 * interrupt to retry later.
    443  1.230.2.1      yamt 			 */
    444  1.230.2.1      yamt 			splx(s);
    445  1.230.2.2      yamt 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
    446  1.230.2.1      yamt 			break;
    447  1.230.2.1      yamt 		}
    448  1.230.2.1      yamt 		/* Do it! */
    449  1.230.2.1      yamt 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    450  1.230.2.1      yamt 			kpreempt_ev_immed.ev_count++;
    451  1.230.2.1      yamt 		}
    452  1.230.2.1      yamt 		lwp_lock(l);
    453  1.230.2.1      yamt 		mi_switch(l);
    454  1.230.2.1      yamt 		l->l_nopreempt++;
    455  1.230.2.1      yamt 		splx(s);
    456  1.230.2.1      yamt 
    457  1.230.2.1      yamt 		/* Take care of any MD cleanup. */
    458  1.230.2.1      yamt 		cpu_kpreempt_exit(where);
    459  1.230.2.1      yamt 		l->l_nopreempt--;
    460  1.230.2.1      yamt 	}
    461  1.230.2.1      yamt 
    462  1.230.2.2      yamt 	if (__predict_true(!failed)) {
    463  1.230.2.2      yamt 		return false;
    464  1.230.2.2      yamt 	}
    465  1.230.2.2      yamt 
    466  1.230.2.1      yamt 	/* Record preemption failure for reporting via lockstat. */
    467  1.230.2.2      yamt 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    468  1.230.2.2      yamt 	lsflag = 0;
    469  1.230.2.2      yamt 	LOCKSTAT_ENTER(lsflag);
    470  1.230.2.2      yamt 	if (__predict_false(lsflag)) {
    471  1.230.2.2      yamt 		if (where == 0) {
    472  1.230.2.2      yamt 			where = (uintptr_t)__builtin_return_address(0);
    473  1.230.2.2      yamt 		}
    474  1.230.2.2      yamt 		/* Preemption is on, might recurse, so make it atomic. */
    475  1.230.2.2      yamt 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    476  1.230.2.2      yamt 		    (void *)where) == NULL) {
    477  1.230.2.2      yamt 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    478  1.230.2.2      yamt 			l->l_pfaillock = failed;
    479  1.230.2.1      yamt 		}
    480  1.230.2.1      yamt 	}
    481  1.230.2.2      yamt 	LOCKSTAT_EXIT(lsflag);
    482  1.230.2.2      yamt 	return true;
    483      1.230        ad }
    484      1.230        ad 
    485      1.230        ad /*
    486  1.230.2.1      yamt  * Return true if preemption is explicitly disabled.
    487  1.230.2.1      yamt  */
    488  1.230.2.1      yamt bool
    489  1.230.2.1      yamt kpreempt_disabled(void)
    490  1.230.2.1      yamt {
    491  1.230.2.2      yamt 	const lwp_t *l = curlwp;
    492  1.230.2.1      yamt 
    493  1.230.2.1      yamt 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    494  1.230.2.1      yamt 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    495  1.230.2.1      yamt }
    496  1.230.2.1      yamt 
    497  1.230.2.1      yamt /*
    498  1.230.2.1      yamt  * Disable kernel preemption.
    499      1.230        ad  */
    500      1.230        ad void
    501  1.230.2.1      yamt kpreempt_disable(void)
    502      1.230        ad {
    503      1.230        ad 
    504  1.230.2.1      yamt 	KPREEMPT_DISABLE(curlwp);
    505      1.230        ad }
    506      1.230        ad 
    507      1.230        ad /*
    508  1.230.2.1      yamt  * Reenable kernel preemption.
    509      1.230        ad  */
    510  1.230.2.1      yamt void
    511  1.230.2.1      yamt kpreempt_enable(void)
    512      1.230        ad {
    513      1.230        ad 
    514  1.230.2.1      yamt 	KPREEMPT_ENABLE(curlwp);
    515      1.230        ad }
    516      1.230        ad 
    517      1.230        ad /*
    518      1.188      yamt  * Compute the amount of time during which the current lwp was running.
    519      1.130   nathanw  *
    520      1.188      yamt  * - update l_rtime unless it's an idle lwp.
    521      1.188      yamt  */
    522      1.188      yamt 
    523      1.199        ad void
    524      1.212      yamt updatertime(lwp_t *l, const struct bintime *now)
    525      1.188      yamt {
    526      1.188      yamt 
    527  1.230.2.2      yamt 	if (__predict_false(l->l_flag & LW_IDLE))
    528      1.188      yamt 		return;
    529      1.188      yamt 
    530      1.212      yamt 	/* rtime += now - stime */
    531      1.212      yamt 	bintime_add(&l->l_rtime, now);
    532      1.212      yamt 	bintime_sub(&l->l_rtime, &l->l_stime);
    533      1.188      yamt }
    534      1.188      yamt 
    535      1.188      yamt /*
    536  1.230.2.2      yamt  * Select next LWP from the current CPU to run..
    537  1.230.2.2      yamt  */
    538  1.230.2.2      yamt static inline lwp_t *
    539  1.230.2.2      yamt nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    540  1.230.2.2      yamt {
    541  1.230.2.2      yamt 	lwp_t *newl;
    542  1.230.2.2      yamt 
    543  1.230.2.2      yamt 	/*
    544  1.230.2.2      yamt 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    545  1.230.2.2      yamt 	 * If no LWP is runnable, select the idle LWP.
    546  1.230.2.2      yamt 	 *
    547  1.230.2.2      yamt 	 * Note that spc_lwplock might not necessary be held, and
    548  1.230.2.2      yamt 	 * new thread would be unlocked after setting the LWP-lock.
    549  1.230.2.2      yamt 	 */
    550  1.230.2.2      yamt 	newl = sched_nextlwp();
    551  1.230.2.2      yamt 	if (newl != NULL) {
    552  1.230.2.2      yamt 		sched_dequeue(newl);
    553  1.230.2.2      yamt 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    554  1.230.2.5      yamt 		KASSERT(newl->l_cpu == ci);
    555  1.230.2.2      yamt 		newl->l_stat = LSONPROC;
    556  1.230.2.2      yamt 		newl->l_pflag |= LP_RUNNING;
    557  1.230.2.2      yamt 		lwp_setlock(newl, spc->spc_lwplock);
    558  1.230.2.2      yamt 	} else {
    559  1.230.2.2      yamt 		newl = ci->ci_data.cpu_idlelwp;
    560  1.230.2.2      yamt 		newl->l_stat = LSONPROC;
    561  1.230.2.2      yamt 		newl->l_pflag |= LP_RUNNING;
    562  1.230.2.2      yamt 	}
    563  1.230.2.2      yamt 
    564  1.230.2.2      yamt 	/*
    565  1.230.2.2      yamt 	 * Only clear want_resched if there are no pending (slow)
    566  1.230.2.2      yamt 	 * software interrupts.
    567  1.230.2.2      yamt 	 */
    568  1.230.2.2      yamt 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    569  1.230.2.2      yamt 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    570  1.230.2.2      yamt 	spc->spc_curpriority = lwp_eprio(newl);
    571  1.230.2.2      yamt 
    572  1.230.2.2      yamt 	return newl;
    573  1.230.2.2      yamt }
    574  1.230.2.2      yamt 
    575  1.230.2.2      yamt /*
    576      1.188      yamt  * The machine independent parts of context switch.
    577      1.188      yamt  *
    578      1.188      yamt  * Returns 1 if another LWP was actually run.
    579       1.26       cgd  */
    580      1.122   thorpej int
    581      1.199        ad mi_switch(lwp_t *l)
    582       1.26       cgd {
    583  1.230.2.2      yamt 	struct cpu_info *ci;
    584       1.76   thorpej 	struct schedstate_percpu *spc;
    585      1.188      yamt 	struct lwp *newl;
    586      1.174        ad 	int retval, oldspl;
    587      1.212      yamt 	struct bintime bt;
    588      1.199        ad 	bool returning;
    589       1.26       cgd 
    590      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    591  1.230.2.1      yamt 	KASSERT(kpreempt_disabled());
    592      1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    593      1.174        ad 
    594      1.174        ad 	kstack_check_magic(l);
    595       1.83   thorpej 
    596      1.212      yamt 	binuptime(&bt);
    597      1.199        ad 
    598  1.230.2.4      yamt 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    599  1.230.2.1      yamt 	KASSERT(l->l_cpu == curcpu());
    600      1.196        ad 	ci = l->l_cpu;
    601      1.196        ad 	spc = &ci->ci_schedstate;
    602      1.199        ad 	returning = false;
    603      1.190        ad 	newl = NULL;
    604      1.190        ad 
    605      1.199        ad 	/*
    606      1.199        ad 	 * If we have been asked to switch to a specific LWP, then there
    607      1.199        ad 	 * is no need to inspect the run queues.  If a soft interrupt is
    608      1.199        ad 	 * blocking, then return to the interrupted thread without adjusting
    609      1.199        ad 	 * VM context or its start time: neither have been changed in order
    610      1.199        ad 	 * to take the interrupt.
    611      1.199        ad 	 */
    612      1.190        ad 	if (l->l_switchto != NULL) {
    613      1.204        ad 		if ((l->l_pflag & LP_INTR) != 0) {
    614      1.199        ad 			returning = true;
    615      1.199        ad 			softint_block(l);
    616  1.230.2.2      yamt 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    617      1.212      yamt 				updatertime(l, &bt);
    618      1.199        ad 		}
    619      1.190        ad 		newl = l->l_switchto;
    620      1.190        ad 		l->l_switchto = NULL;
    621      1.190        ad 	}
    622      1.204        ad #ifndef __HAVE_FAST_SOFTINTS
    623      1.204        ad 	else if (ci->ci_data.cpu_softints != 0) {
    624      1.204        ad 		/* There are pending soft interrupts, so pick one. */
    625      1.204        ad 		newl = softint_picklwp();
    626      1.204        ad 		newl->l_stat = LSONPROC;
    627  1.230.2.2      yamt 		newl->l_pflag |= LP_RUNNING;
    628      1.204        ad 	}
    629      1.204        ad #endif	/* !__HAVE_FAST_SOFTINTS */
    630      1.190        ad 
    631      1.180       dsl 	/* Count time spent in current system call */
    632      1.199        ad 	if (!returning) {
    633      1.199        ad 		SYSCALL_TIME_SLEEP(l);
    634      1.180       dsl 
    635      1.199        ad 		/*
    636      1.199        ad 		 * XXXSMP If we are using h/w performance counters,
    637      1.199        ad 		 * save context.
    638      1.199        ad 		 */
    639      1.174        ad #if PERFCTRS
    640      1.199        ad 		if (PMC_ENABLED(l->l_proc)) {
    641      1.199        ad 			pmc_save_context(l->l_proc);
    642      1.199        ad 		}
    643      1.199        ad #endif
    644      1.212      yamt 		updatertime(l, &bt);
    645      1.174        ad 	}
    646      1.113  gmcgarry 
    647  1.230.2.2      yamt 	/* Lock the runqueue */
    648  1.230.2.2      yamt 	KASSERT(l->l_stat != LSRUN);
    649  1.230.2.2      yamt 	mutex_spin_enter(spc->spc_mutex);
    650  1.230.2.2      yamt 
    651      1.113  gmcgarry 	/*
    652      1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    653      1.113  gmcgarry 	 */
    654  1.230.2.2      yamt 	if (l->l_stat == LSONPROC && l != newl) {
    655      1.217        ad 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    656      1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    657      1.188      yamt 			l->l_stat = LSRUN;
    658  1.230.2.2      yamt 			lwp_setlock(l, spc->spc_mutex);
    659      1.188      yamt 			sched_enqueue(l, true);
    660  1.230.2.2      yamt 			/* Handle migration case */
    661  1.230.2.2      yamt 			KASSERT(spc->spc_migrating == NULL);
    662  1.230.2.2      yamt 			if (l->l_target_cpu !=  NULL) {
    663  1.230.2.2      yamt 				spc->spc_migrating = l;
    664  1.230.2.2      yamt 			}
    665  1.230.2.2      yamt 		} else
    666      1.188      yamt 			l->l_stat = LSIDL;
    667      1.174        ad 	}
    668      1.174        ad 
    669  1.230.2.2      yamt 	/* Pick new LWP to run. */
    670      1.190        ad 	if (newl == NULL) {
    671  1.230.2.2      yamt 		newl = nextlwp(ci, spc);
    672      1.199        ad 	}
    673      1.199        ad 
    674      1.204        ad 	/* Items that must be updated with the CPU locked. */
    675      1.199        ad 	if (!returning) {
    676      1.204        ad 		/* Update the new LWP's start time. */
    677      1.212      yamt 		newl->l_stime = bt;
    678      1.204        ad 
    679      1.199        ad 		/*
    680      1.204        ad 		 * ci_curlwp changes when a fast soft interrupt occurs.
    681      1.204        ad 		 * We use cpu_onproc to keep track of which kernel or
    682      1.204        ad 		 * user thread is running 'underneath' the software
    683      1.204        ad 		 * interrupt.  This is important for time accounting,
    684      1.204        ad 		 * itimers and forcing user threads to preempt (aston).
    685      1.199        ad 		 */
    686      1.204        ad 		ci->ci_data.cpu_onproc = newl;
    687      1.188      yamt 	}
    688      1.188      yamt 
    689  1.230.2.1      yamt 	/*
    690  1.230.2.1      yamt 	 * Preemption related tasks.  Must be done with the current
    691  1.230.2.1      yamt 	 * CPU locked.
    692  1.230.2.1      yamt 	 */
    693  1.230.2.1      yamt 	cpu_did_resched(l);
    694  1.230.2.1      yamt 	l->l_dopreempt = 0;
    695  1.230.2.1      yamt 	if (__predict_false(l->l_pfailaddr != 0)) {
    696  1.230.2.1      yamt 		LOCKSTAT_FLAG(lsflag);
    697  1.230.2.1      yamt 		LOCKSTAT_ENTER(lsflag);
    698  1.230.2.1      yamt 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    699  1.230.2.1      yamt 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    700  1.230.2.1      yamt 		    1, l->l_pfailtime, l->l_pfailaddr);
    701  1.230.2.1      yamt 		LOCKSTAT_EXIT(lsflag);
    702  1.230.2.1      yamt 		l->l_pfailtime = 0;
    703  1.230.2.1      yamt 		l->l_pfaillock = 0;
    704  1.230.2.1      yamt 		l->l_pfailaddr = 0;
    705  1.230.2.1      yamt 	}
    706  1.230.2.1      yamt 
    707      1.188      yamt 	if (l != newl) {
    708      1.188      yamt 		struct lwp *prevlwp;
    709      1.174        ad 
    710      1.209        ad 		/* Release all locks, but leave the current LWP locked */
    711  1.230.2.2      yamt 		if (l->l_mutex == spc->spc_mutex) {
    712      1.209        ad 			/*
    713      1.209        ad 			 * Drop spc_lwplock, if the current LWP has been moved
    714      1.209        ad 			 * to the run queue (it is now locked by spc_mutex).
    715      1.209        ad 			 */
    716      1.217        ad 			mutex_spin_exit(spc->spc_lwplock);
    717      1.188      yamt 		} else {
    718      1.209        ad 			/*
    719      1.209        ad 			 * Otherwise, drop the spc_mutex, we are done with the
    720      1.209        ad 			 * run queues.
    721      1.209        ad 			 */
    722      1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    723      1.188      yamt 		}
    724      1.188      yamt 
    725      1.209        ad 		/*
    726  1.230.2.2      yamt 		 * Mark that context switch is going to be performed
    727      1.209        ad 		 * for this LWP, to protect it from being switched
    728      1.209        ad 		 * to on another CPU.
    729      1.209        ad 		 */
    730      1.209        ad 		KASSERT(l->l_ctxswtch == 0);
    731      1.209        ad 		l->l_ctxswtch = 1;
    732      1.209        ad 		l->l_ncsw++;
    733  1.230.2.4      yamt 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
    734  1.230.2.2      yamt 		l->l_pflag &= ~LP_RUNNING;
    735      1.209        ad 
    736      1.209        ad 		/*
    737      1.209        ad 		 * Increase the count of spin-mutexes before the release
    738      1.209        ad 		 * of the last lock - we must remain at IPL_SCHED during
    739      1.209        ad 		 * the context switch.
    740      1.209        ad 		 */
    741      1.209        ad 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    742      1.209        ad 		ci->ci_mtx_count--;
    743      1.209        ad 		lwp_unlock(l);
    744      1.209        ad 
    745      1.218        ad 		/* Count the context switch on this CPU. */
    746      1.218        ad 		ci->ci_data.cpu_nswtch++;
    747      1.188      yamt 
    748      1.209        ad 		/* Update status for lwpctl, if present. */
    749      1.209        ad 		if (l->l_lwpctl != NULL)
    750      1.209        ad 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    751      1.209        ad 
    752      1.199        ad 		/*
    753      1.199        ad 		 * Save old VM context, unless a soft interrupt
    754      1.199        ad 		 * handler is blocking.
    755      1.199        ad 		 */
    756      1.199        ad 		if (!returning)
    757      1.199        ad 			pmap_deactivate(l);
    758      1.188      yamt 
    759      1.209        ad 		/*
    760  1.230.2.5      yamt 		 * We may need to spin-wait if 'newl' is still
    761      1.209        ad 		 * context switching on another CPU.
    762      1.209        ad 		 */
    763  1.230.2.2      yamt 		if (__predict_false(newl->l_ctxswtch != 0)) {
    764      1.209        ad 			u_int count;
    765      1.209        ad 			count = SPINLOCK_BACKOFF_MIN;
    766      1.209        ad 			while (newl->l_ctxswtch)
    767      1.209        ad 				SPINLOCK_BACKOFF(count);
    768      1.209        ad 		}
    769      1.207        ad 
    770  1.230.2.5      yamt 		/*
    771  1.230.2.5      yamt 		 * If DTrace has set the active vtime enum to anything
    772  1.230.2.5      yamt 		 * other than INACTIVE (0), then it should have set the
    773  1.230.2.5      yamt 		 * function to call.
    774  1.230.2.5      yamt 		 */
    775  1.230.2.5      yamt 		if (__predict_false(dtrace_vtime_active)) {
    776  1.230.2.5      yamt 			(*dtrace_vtime_switch_func)(newl);
    777  1.230.2.5      yamt 		}
    778  1.230.2.5      yamt 
    779      1.188      yamt 		/* Switch to the new LWP.. */
    780      1.204        ad 		prevlwp = cpu_switchto(l, newl, returning);
    781      1.207        ad 		ci = curcpu();
    782      1.207        ad 
    783      1.188      yamt 		/*
    784      1.209        ad 		 * Switched away - we have new curlwp.
    785      1.209        ad 		 * Restore VM context and IPL.
    786      1.188      yamt 		 */
    787      1.209        ad 		pmap_activate(l);
    788  1.230.2.3      yamt 		uvm_emap_switch(l);
    789  1.230.2.3      yamt 
    790      1.188      yamt 		if (prevlwp != NULL) {
    791      1.209        ad 			/* Normalize the count of the spin-mutexes */
    792      1.209        ad 			ci->ci_mtx_count++;
    793      1.209        ad 			/* Unmark the state of context switch */
    794      1.209        ad 			membar_exit();
    795      1.209        ad 			prevlwp->l_ctxswtch = 0;
    796      1.188      yamt 		}
    797      1.209        ad 
    798      1.209        ad 		/* Update status for lwpctl, if present. */
    799      1.219        ad 		if (l->l_lwpctl != NULL) {
    800      1.209        ad 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    801      1.219        ad 			l->l_lwpctl->lc_pctr++;
    802      1.219        ad 		}
    803      1.174        ad 
    804  1.230.2.1      yamt 		KASSERT(l->l_cpu == ci);
    805  1.230.2.1      yamt 		splx(oldspl);
    806      1.188      yamt 		retval = 1;
    807      1.188      yamt 	} else {
    808      1.188      yamt 		/* Nothing to do - just unlock and return. */
    809  1.230.2.2      yamt 		mutex_spin_exit(spc->spc_mutex);
    810      1.188      yamt 		lwp_unlock(l);
    811      1.122   thorpej 		retval = 0;
    812      1.122   thorpej 	}
    813      1.110    briggs 
    814      1.188      yamt 	KASSERT(l == curlwp);
    815      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    816      1.188      yamt 
    817      1.110    briggs 	/*
    818      1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    819  1.230.2.1      yamt 	 * XXXSMP preemption problem.
    820       1.26       cgd 	 */
    821      1.114  gmcgarry #if PERFCTRS
    822      1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    823      1.175  christos 		pmc_restore_context(l->l_proc);
    824      1.166  christos 	}
    825      1.114  gmcgarry #endif
    826      1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    827      1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    828      1.169      yamt 
    829      1.122   thorpej 	return retval;
    830       1.26       cgd }
    831       1.26       cgd 
    832       1.26       cgd /*
    833  1.230.2.2      yamt  * The machine independent parts of context switch to oblivion.
    834  1.230.2.2      yamt  * Does not return.  Call with the LWP unlocked.
    835  1.230.2.2      yamt  */
    836  1.230.2.2      yamt void
    837  1.230.2.2      yamt lwp_exit_switchaway(lwp_t *l)
    838  1.230.2.2      yamt {
    839  1.230.2.2      yamt 	struct cpu_info *ci;
    840  1.230.2.2      yamt 	struct lwp *newl;
    841  1.230.2.2      yamt 	struct bintime bt;
    842  1.230.2.2      yamt 
    843  1.230.2.2      yamt 	ci = l->l_cpu;
    844  1.230.2.2      yamt 
    845  1.230.2.2      yamt 	KASSERT(kpreempt_disabled());
    846  1.230.2.2      yamt 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    847  1.230.2.2      yamt 	KASSERT(ci == curcpu());
    848  1.230.2.2      yamt 	LOCKDEBUG_BARRIER(NULL, 0);
    849  1.230.2.2      yamt 
    850  1.230.2.2      yamt 	kstack_check_magic(l);
    851  1.230.2.2      yamt 
    852  1.230.2.2      yamt 	/* Count time spent in current system call */
    853  1.230.2.2      yamt 	SYSCALL_TIME_SLEEP(l);
    854  1.230.2.2      yamt 	binuptime(&bt);
    855  1.230.2.2      yamt 	updatertime(l, &bt);
    856  1.230.2.2      yamt 
    857  1.230.2.2      yamt 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    858  1.230.2.2      yamt 	(void)splsched();
    859  1.230.2.2      yamt 
    860  1.230.2.2      yamt 	/*
    861  1.230.2.2      yamt 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    862  1.230.2.2      yamt 	 * If no LWP is runnable, select the idle LWP.
    863  1.230.2.2      yamt 	 *
    864  1.230.2.2      yamt 	 * Note that spc_lwplock might not necessary be held, and
    865  1.230.2.2      yamt 	 * new thread would be unlocked after setting the LWP-lock.
    866  1.230.2.2      yamt 	 */
    867  1.230.2.2      yamt 	spc_lock(ci);
    868  1.230.2.2      yamt #ifndef __HAVE_FAST_SOFTINTS
    869  1.230.2.2      yamt 	if (ci->ci_data.cpu_softints != 0) {
    870  1.230.2.2      yamt 		/* There are pending soft interrupts, so pick one. */
    871  1.230.2.2      yamt 		newl = softint_picklwp();
    872  1.230.2.2      yamt 		newl->l_stat = LSONPROC;
    873  1.230.2.2      yamt 		newl->l_pflag |= LP_RUNNING;
    874  1.230.2.2      yamt 	} else
    875  1.230.2.2      yamt #endif	/* !__HAVE_FAST_SOFTINTS */
    876  1.230.2.2      yamt 	{
    877  1.230.2.2      yamt 		newl = nextlwp(ci, &ci->ci_schedstate);
    878  1.230.2.2      yamt 	}
    879  1.230.2.2      yamt 
    880  1.230.2.2      yamt 	/* Update the new LWP's start time. */
    881  1.230.2.2      yamt 	newl->l_stime = bt;
    882  1.230.2.2      yamt 	l->l_pflag &= ~LP_RUNNING;
    883  1.230.2.2      yamt 
    884  1.230.2.2      yamt 	/*
    885  1.230.2.2      yamt 	 * ci_curlwp changes when a fast soft interrupt occurs.
    886  1.230.2.2      yamt 	 * We use cpu_onproc to keep track of which kernel or
    887  1.230.2.2      yamt 	 * user thread is running 'underneath' the software
    888  1.230.2.2      yamt 	 * interrupt.  This is important for time accounting,
    889  1.230.2.2      yamt 	 * itimers and forcing user threads to preempt (aston).
    890  1.230.2.2      yamt 	 */
    891  1.230.2.2      yamt 	ci->ci_data.cpu_onproc = newl;
    892  1.230.2.2      yamt 
    893  1.230.2.2      yamt 	/*
    894  1.230.2.2      yamt 	 * Preemption related tasks.  Must be done with the current
    895  1.230.2.2      yamt 	 * CPU locked.
    896  1.230.2.2      yamt 	 */
    897  1.230.2.2      yamt 	cpu_did_resched(l);
    898  1.230.2.2      yamt 
    899  1.230.2.2      yamt 	/* Unlock the run queue. */
    900  1.230.2.2      yamt 	spc_unlock(ci);
    901  1.230.2.2      yamt 
    902  1.230.2.2      yamt 	/* Count the context switch on this CPU. */
    903  1.230.2.2      yamt 	ci->ci_data.cpu_nswtch++;
    904  1.230.2.2      yamt 
    905  1.230.2.2      yamt 	/* Update status for lwpctl, if present. */
    906  1.230.2.2      yamt 	if (l->l_lwpctl != NULL)
    907  1.230.2.2      yamt 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    908  1.230.2.2      yamt 
    909  1.230.2.2      yamt 	/*
    910  1.230.2.5      yamt 	 * We may need to spin-wait if 'newl' is still
    911  1.230.2.2      yamt 	 * context switching on another CPU.
    912  1.230.2.2      yamt 	 */
    913  1.230.2.2      yamt 	if (__predict_false(newl->l_ctxswtch != 0)) {
    914  1.230.2.2      yamt 		u_int count;
    915  1.230.2.2      yamt 		count = SPINLOCK_BACKOFF_MIN;
    916  1.230.2.2      yamt 		while (newl->l_ctxswtch)
    917  1.230.2.2      yamt 			SPINLOCK_BACKOFF(count);
    918  1.230.2.2      yamt 	}
    919  1.230.2.2      yamt 
    920  1.230.2.5      yamt 	/*
    921  1.230.2.5      yamt 	 * If DTrace has set the active vtime enum to anything
    922  1.230.2.5      yamt 	 * other than INACTIVE (0), then it should have set the
    923  1.230.2.5      yamt 	 * function to call.
    924  1.230.2.5      yamt 	 */
    925  1.230.2.5      yamt 	if (__predict_false(dtrace_vtime_active)) {
    926  1.230.2.5      yamt 		(*dtrace_vtime_switch_func)(newl);
    927  1.230.2.5      yamt 	}
    928  1.230.2.5      yamt 
    929  1.230.2.2      yamt 	/* Switch to the new LWP.. */
    930  1.230.2.2      yamt 	(void)cpu_switchto(NULL, newl, false);
    931  1.230.2.2      yamt 
    932  1.230.2.2      yamt 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    933  1.230.2.2      yamt 	/* NOTREACHED */
    934  1.230.2.2      yamt }
    935  1.230.2.2      yamt 
    936  1.230.2.2      yamt /*
    937  1.230.2.5      yamt  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    938      1.174        ad  *
    939      1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    940       1.26       cgd  */
    941       1.26       cgd void
    942      1.122   thorpej setrunnable(struct lwp *l)
    943       1.26       cgd {
    944      1.122   thorpej 	struct proc *p = l->l_proc;
    945      1.205        ad 	struct cpu_info *ci;
    946       1.26       cgd 
    947      1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    948      1.229        ad 	KASSERT(mutex_owned(p->p_lock));
    949      1.183        ad 	KASSERT(lwp_locked(l, NULL));
    950      1.205        ad 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    951       1.83   thorpej 
    952      1.122   thorpej 	switch (l->l_stat) {
    953      1.122   thorpej 	case LSSTOP:
    954       1.33   mycroft 		/*
    955       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    956       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    957       1.33   mycroft 		 */
    958  1.230.2.2      yamt 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
    959      1.174        ad 			signotify(l);
    960      1.174        ad 		p->p_nrlwps++;
    961       1.26       cgd 		break;
    962      1.174        ad 	case LSSUSPENDED:
    963      1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    964      1.174        ad 		p->p_nrlwps++;
    965      1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    966      1.122   thorpej 		break;
    967      1.174        ad 	case LSSLEEP:
    968      1.174        ad 		KASSERT(l->l_wchan != NULL);
    969       1.26       cgd 		break;
    970      1.174        ad 	default:
    971      1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    972       1.26       cgd 	}
    973      1.139        cl 
    974  1.230.2.2      yamt #ifdef KERN_SA
    975  1.230.2.2      yamt 	if (l->l_proc->p_sa)
    976  1.230.2.2      yamt 		sa_awaken(l);
    977  1.230.2.2      yamt #endif /* KERN_SA */
    978  1.230.2.2      yamt 
    979      1.174        ad 	/*
    980      1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    981      1.174        ad 	 * again.  If not, mark it as still sleeping.
    982      1.174        ad 	 */
    983      1.174        ad 	if (l->l_wchan != NULL) {
    984      1.174        ad 		l->l_stat = LSSLEEP;
    985      1.183        ad 		/* lwp_unsleep() will release the lock. */
    986      1.221        ad 		lwp_unsleep(l, true);
    987      1.174        ad 		return;
    988      1.174        ad 	}
    989      1.139        cl 
    990      1.174        ad 	/*
    991      1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    992      1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    993      1.174        ad 	 */
    994  1.230.2.2      yamt 	if ((l->l_pflag & LP_RUNNING) != 0) {
    995      1.174        ad 		l->l_stat = LSONPROC;
    996      1.174        ad 		l->l_slptime = 0;
    997      1.174        ad 		lwp_unlock(l);
    998      1.174        ad 		return;
    999      1.174        ad 	}
   1000      1.122   thorpej 
   1001      1.174        ad 	/*
   1002      1.205        ad 	 * Look for a CPU to run.
   1003      1.205        ad 	 * Set the LWP runnable.
   1004      1.174        ad 	 */
   1005      1.205        ad 	ci = sched_takecpu(l);
   1006      1.205        ad 	l->l_cpu = ci;
   1007  1.230.2.1      yamt 	spc_lock(ci);
   1008  1.230.2.1      yamt 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
   1009      1.188      yamt 	sched_setrunnable(l);
   1010      1.174        ad 	l->l_stat = LSRUN;
   1011      1.122   thorpej 	l->l_slptime = 0;
   1012      1.174        ad 
   1013  1.230.2.5      yamt 	sched_enqueue(l, false);
   1014  1.230.2.5      yamt 	resched_cpu(l);
   1015  1.230.2.5      yamt 	lwp_unlock(l);
   1016       1.26       cgd }
   1017       1.26       cgd 
   1018       1.26       cgd /*
   1019      1.174        ad  * suspendsched:
   1020      1.174        ad  *
   1021  1.230.2.3      yamt  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
   1022      1.174        ad  */
   1023       1.94    bouyer void
   1024      1.174        ad suspendsched(void)
   1025       1.94    bouyer {
   1026      1.174        ad 	CPU_INFO_ITERATOR cii;
   1027      1.174        ad 	struct cpu_info *ci;
   1028      1.122   thorpej 	struct lwp *l;
   1029      1.174        ad 	struct proc *p;
   1030       1.94    bouyer 
   1031       1.94    bouyer 	/*
   1032      1.174        ad 	 * We do this by process in order not to violate the locking rules.
   1033       1.94    bouyer 	 */
   1034      1.228        ad 	mutex_enter(proc_lock);
   1035      1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
   1036  1.230.2.1      yamt 		mutex_enter(p->p_lock);
   1037      1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
   1038      1.229        ad 			mutex_exit(p->p_lock);
   1039       1.94    bouyer 			continue;
   1040      1.174        ad 		}
   1041      1.174        ad 
   1042      1.174        ad 		p->p_stat = SSTOP;
   1043      1.174        ad 
   1044      1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1045      1.174        ad 			if (l == curlwp)
   1046      1.174        ad 				continue;
   1047      1.174        ad 
   1048      1.174        ad 			lwp_lock(l);
   1049      1.122   thorpej 
   1050       1.97     enami 			/*
   1051      1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
   1052      1.174        ad 			 * when it tries to return to user mode.  We want to
   1053      1.174        ad 			 * try and get to get as many LWPs as possible to
   1054      1.174        ad 			 * the user / kernel boundary, so that they will
   1055      1.174        ad 			 * release any locks that they hold.
   1056       1.97     enami 			 */
   1057      1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1058      1.174        ad 
   1059      1.174        ad 			if (l->l_stat == LSSLEEP &&
   1060      1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
   1061      1.174        ad 				/* setrunnable() will release the lock. */
   1062      1.174        ad 				setrunnable(l);
   1063      1.174        ad 				continue;
   1064      1.174        ad 			}
   1065      1.174        ad 
   1066      1.174        ad 			lwp_unlock(l);
   1067       1.94    bouyer 		}
   1068      1.174        ad 
   1069      1.229        ad 		mutex_exit(p->p_lock);
   1070       1.94    bouyer 	}
   1071      1.228        ad 	mutex_exit(proc_lock);
   1072      1.174        ad 
   1073      1.174        ad 	/*
   1074      1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1075      1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
   1076      1.174        ad 	 */
   1077      1.204        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
   1078      1.204        ad 		spc_lock(ci);
   1079      1.204        ad 		cpu_need_resched(ci, RESCHED_IMMED);
   1080      1.204        ad 		spc_unlock(ci);
   1081      1.204        ad 	}
   1082      1.174        ad }
   1083      1.174        ad 
   1084      1.174        ad /*
   1085      1.174        ad  * sched_unsleep:
   1086      1.174        ad  *
   1087      1.174        ad  *	The is called when the LWP has not been awoken normally but instead
   1088      1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
   1089      1.174        ad  *	it's not a valid action for running or idle LWPs.
   1090      1.174        ad  */
   1091  1.230.2.5      yamt static void
   1092      1.221        ad sched_unsleep(struct lwp *l, bool cleanup)
   1093      1.174        ad {
   1094      1.174        ad 
   1095      1.174        ad 	lwp_unlock(l);
   1096      1.174        ad 	panic("sched_unsleep");
   1097      1.174        ad }
   1098      1.174        ad 
   1099  1.230.2.2      yamt static void
   1100      1.188      yamt resched_cpu(struct lwp *l)
   1101      1.188      yamt {
   1102  1.230.2.5      yamt 	struct cpu_info *ci = l->l_cpu;
   1103      1.188      yamt 
   1104  1.230.2.2      yamt 	KASSERT(lwp_locked(l, NULL));
   1105      1.204        ad 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1106      1.188      yamt 		cpu_need_resched(ci, 0);
   1107      1.188      yamt }
   1108      1.188      yamt 
   1109      1.188      yamt static void
   1110      1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
   1111      1.174        ad {
   1112      1.174        ad 
   1113      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
   1114      1.174        ad 
   1115  1.230.2.5      yamt 	if (l->l_stat == LSRUN) {
   1116      1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1117      1.204        ad 		sched_dequeue(l);
   1118      1.204        ad 		l->l_priority = pri;
   1119      1.204        ad 		sched_enqueue(l, false);
   1120      1.204        ad 	} else {
   1121      1.174        ad 		l->l_priority = pri;
   1122      1.157      yamt 	}
   1123      1.188      yamt 	resched_cpu(l);
   1124      1.184      yamt }
   1125      1.184      yamt 
   1126      1.188      yamt static void
   1127      1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
   1128      1.184      yamt {
   1129      1.184      yamt 
   1130      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
   1131      1.184      yamt 
   1132  1.230.2.5      yamt 	if (l->l_stat == LSRUN) {
   1133      1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1134      1.204        ad 		sched_dequeue(l);
   1135      1.204        ad 		l->l_inheritedprio = pri;
   1136      1.204        ad 		sched_enqueue(l, false);
   1137      1.204        ad 	} else {
   1138      1.184      yamt 		l->l_inheritedprio = pri;
   1139      1.184      yamt 	}
   1140      1.188      yamt 	resched_cpu(l);
   1141      1.184      yamt }
   1142      1.184      yamt 
   1143      1.184      yamt struct lwp *
   1144      1.184      yamt syncobj_noowner(wchan_t wchan)
   1145      1.184      yamt {
   1146      1.184      yamt 
   1147      1.184      yamt 	return NULL;
   1148      1.151      yamt }
   1149      1.151      yamt 
   1150  1.230.2.2      yamt /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1151  1.230.2.2      yamt const fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;
   1152      1.134      matt 
   1153      1.134      matt /*
   1154      1.188      yamt  * sched_pstats:
   1155      1.188      yamt  *
   1156      1.188      yamt  * Update process statistics and check CPU resource allocation.
   1157      1.188      yamt  * Call scheduler-specific hook to eventually adjust process/LWP
   1158      1.188      yamt  * priorities.
   1159      1.130   nathanw  */
   1160      1.113  gmcgarry void
   1161      1.188      yamt sched_pstats(void *arg)
   1162      1.113  gmcgarry {
   1163  1.230.2.2      yamt 	const int clkhz = (stathz != 0 ? stathz : hz);
   1164  1.230.2.2      yamt 	static bool backwards;
   1165      1.188      yamt 	struct rlimit *rlim;
   1166      1.188      yamt 	struct lwp *l;
   1167      1.188      yamt 	struct proc *p;
   1168      1.188      yamt 	long runtm;
   1169  1.230.2.2      yamt 	fixpt_t lpctcpu;
   1170  1.230.2.2      yamt 	u_int lcpticks;
   1171  1.230.2.2      yamt 	int sig;
   1172      1.113  gmcgarry 
   1173      1.188      yamt 	sched_pstats_ticks++;
   1174      1.174        ad 
   1175      1.228        ad 	mutex_enter(proc_lock);
   1176      1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
   1177  1.230.2.5      yamt 		/* Increment sleep time (if sleeping), ignore overflow. */
   1178      1.229        ad 		mutex_enter(p->p_lock);
   1179      1.212      yamt 		runtm = p->p_rtime.sec;
   1180      1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1181  1.230.2.2      yamt 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1182      1.188      yamt 				continue;
   1183      1.188      yamt 			lwp_lock(l);
   1184      1.212      yamt 			runtm += l->l_rtime.sec;
   1185      1.188      yamt 			l->l_swtime++;
   1186  1.230.2.2      yamt 			sched_lwp_stats(l);
   1187      1.188      yamt 			lwp_unlock(l);
   1188      1.113  gmcgarry 
   1189      1.188      yamt 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1190  1.230.2.2      yamt 			if (l->l_slptime != 0)
   1191  1.230.2.2      yamt 				continue;
   1192  1.230.2.2      yamt 
   1193  1.230.2.2      yamt 			lpctcpu = l->l_pctcpu;
   1194  1.230.2.2      yamt 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1195  1.230.2.2      yamt 			lpctcpu += ((FSCALE - ccpu) *
   1196  1.230.2.2      yamt 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1197  1.230.2.2      yamt 			l->l_pctcpu = lpctcpu;
   1198      1.188      yamt 		}
   1199  1.230.2.2      yamt 		/* Calculating p_pctcpu only for ps(1) */
   1200      1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1201      1.174        ad 
   1202      1.188      yamt 		/*
   1203      1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
   1204      1.188      yamt 		 * If over max, kill it.
   1205      1.188      yamt 		 */
   1206      1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1207      1.188      yamt 		sig = 0;
   1208  1.230.2.2      yamt 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1209      1.188      yamt 			if (runtm >= rlim->rlim_max)
   1210      1.188      yamt 				sig = SIGKILL;
   1211      1.188      yamt 			else {
   1212      1.188      yamt 				sig = SIGXCPU;
   1213      1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
   1214      1.188      yamt 					rlim->rlim_cur += 5;
   1215      1.188      yamt 			}
   1216      1.188      yamt 		}
   1217      1.229        ad 		mutex_exit(p->p_lock);
   1218  1.230.2.2      yamt 		if (__predict_false(runtm < 0)) {
   1219  1.230.2.2      yamt 			if (!backwards) {
   1220  1.230.2.2      yamt 				backwards = true;
   1221  1.230.2.2      yamt 				printf("WARNING: negative runtime; "
   1222  1.230.2.2      yamt 				    "monotonic clock has gone backwards\n");
   1223  1.230.2.2      yamt 			}
   1224  1.230.2.2      yamt 		} else if (__predict_false(sig)) {
   1225  1.230.2.2      yamt 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1226      1.188      yamt 			psignal(p, sig);
   1227  1.230.2.2      yamt 		}
   1228      1.174        ad 	}
   1229      1.228        ad 	mutex_exit(proc_lock);
   1230      1.188      yamt 	uvm_meter();
   1231  1.230.2.5      yamt 	cv_broadcast(&lbolt);
   1232      1.188      yamt 	callout_schedule(&sched_pstats_ch, hz);
   1233      1.113  gmcgarry }
   1234