kern_synch.c revision 1.231 1 1.231 ad /* $NetBSD: kern_synch.c,v 1.231 2008/04/28 15:36:01 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.218 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej * 3. All advertising materials mentioning features or use of this software
21 1.63 thorpej * must display the following acknowledgement:
22 1.63 thorpej * This product includes software developed by the NetBSD
23 1.63 thorpej * Foundation, Inc. and its contributors.
24 1.63 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.63 thorpej * contributors may be used to endorse or promote products derived
26 1.63 thorpej * from this software without specific prior written permission.
27 1.63 thorpej *
28 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
39 1.63 thorpej */
40 1.26 cgd
41 1.223 ad /*
42 1.223 ad * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
43 1.223 ad * All rights reserved.
44 1.223 ad *
45 1.223 ad * Redistribution and use in source and binary forms, with or without
46 1.223 ad * modification, are permitted provided that the following conditions
47 1.223 ad * are met:
48 1.223 ad * 1. Redistributions of source code must retain the above copyright
49 1.223 ad * notice, this list of conditions and the following disclaimer.
50 1.223 ad * 2. Redistributions in binary form must reproduce the above copyright
51 1.223 ad * notice, this list of conditions and the following disclaimer in the
52 1.223 ad * documentation and/or other materials provided with the distribution.
53 1.223 ad *
54 1.223 ad * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 1.223 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 1.223 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 1.223 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 1.223 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 1.223 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 1.223 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 1.223 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 1.223 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 1.223 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 1.223 ad * SUCH DAMAGE.
65 1.223 ad */
66 1.223 ad
67 1.26 cgd /*-
68 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
69 1.26 cgd * The Regents of the University of California. All rights reserved.
70 1.26 cgd * (c) UNIX System Laboratories, Inc.
71 1.26 cgd * All or some portions of this file are derived from material licensed
72 1.26 cgd * to the University of California by American Telephone and Telegraph
73 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
74 1.26 cgd * the permission of UNIX System Laboratories, Inc.
75 1.26 cgd *
76 1.26 cgd * Redistribution and use in source and binary forms, with or without
77 1.26 cgd * modification, are permitted provided that the following conditions
78 1.26 cgd * are met:
79 1.26 cgd * 1. Redistributions of source code must retain the above copyright
80 1.26 cgd * notice, this list of conditions and the following disclaimer.
81 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
82 1.26 cgd * notice, this list of conditions and the following disclaimer in the
83 1.26 cgd * documentation and/or other materials provided with the distribution.
84 1.136 agc * 3. Neither the name of the University nor the names of its contributors
85 1.26 cgd * may be used to endorse or promote products derived from this software
86 1.26 cgd * without specific prior written permission.
87 1.26 cgd *
88 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
89 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
90 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
91 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
92 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
93 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
94 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
95 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
96 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
97 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
98 1.26 cgd * SUCH DAMAGE.
99 1.26 cgd *
100 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
101 1.26 cgd */
102 1.106 lukem
103 1.106 lukem #include <sys/cdefs.h>
104 1.231 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.231 2008/04/28 15:36:01 ad Exp $");
105 1.48 mrg
106 1.109 yamt #include "opt_kstack.h"
107 1.82 thorpej #include "opt_lockdebug.h"
108 1.83 thorpej #include "opt_multiprocessor.h"
109 1.110 briggs #include "opt_perfctrs.h"
110 1.231 ad #include "opt_preemption.h"
111 1.26 cgd
112 1.174 ad #define __MUTEX_PRIVATE
113 1.174 ad
114 1.26 cgd #include <sys/param.h>
115 1.26 cgd #include <sys/systm.h>
116 1.26 cgd #include <sys/proc.h>
117 1.26 cgd #include <sys/kernel.h>
118 1.111 briggs #if defined(PERFCTRS)
119 1.110 briggs #include <sys/pmc.h>
120 1.111 briggs #endif
121 1.188 yamt #include <sys/cpu.h>
122 1.26 cgd #include <sys/resourcevar.h>
123 1.55 ross #include <sys/sched.h>
124 1.179 dsl #include <sys/syscall_stats.h>
125 1.174 ad #include <sys/sleepq.h>
126 1.174 ad #include <sys/lockdebug.h>
127 1.190 ad #include <sys/evcnt.h>
128 1.199 ad #include <sys/intr.h>
129 1.207 ad #include <sys/lwpctl.h>
130 1.209 ad #include <sys/atomic.h>
131 1.215 ad #include <sys/simplelock.h>
132 1.223 ad #include <sys/bitops.h>
133 1.223 ad #include <sys/kmem.h>
134 1.223 ad #include <sys/sysctl.h>
135 1.223 ad #include <sys/idle.h>
136 1.47 mrg
137 1.47 mrg #include <uvm/uvm_extern.h>
138 1.47 mrg
139 1.231 ad #include <dev/lockstat.h>
140 1.231 ad
141 1.223 ad /*
142 1.223 ad * Priority related defintions.
143 1.223 ad */
144 1.223 ad #define PRI_TS_COUNT (NPRI_USER)
145 1.223 ad #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
146 1.223 ad #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
147 1.223 ad
148 1.223 ad #define PRI_HIGHEST_TS (MAXPRI_USER)
149 1.223 ad
150 1.223 ad /*
151 1.223 ad * Bits per map.
152 1.223 ad */
153 1.223 ad #define BITMAP_BITS (32)
154 1.223 ad #define BITMAP_SHIFT (5)
155 1.223 ad #define BITMAP_MSB (0x80000000U)
156 1.223 ad #define BITMAP_MASK (BITMAP_BITS - 1)
157 1.223 ad
158 1.223 ad /*
159 1.223 ad * Structures, runqueue.
160 1.223 ad */
161 1.34 christos
162 1.223 ad typedef struct {
163 1.223 ad TAILQ_HEAD(, lwp) q_head;
164 1.223 ad } queue_t;
165 1.223 ad
166 1.223 ad typedef struct {
167 1.223 ad /* Lock and bitmap */
168 1.223 ad uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
169 1.223 ad /* Counters */
170 1.223 ad u_int r_count; /* Count of the threads */
171 1.223 ad u_int r_avgcount; /* Average count of threads */
172 1.223 ad u_int r_mcount; /* Count of migratable threads */
173 1.223 ad /* Runqueues */
174 1.223 ad queue_t r_rt_queue[PRI_RT_COUNT];
175 1.223 ad queue_t r_ts_queue[PRI_TS_COUNT];
176 1.223 ad } runqueue_t;
177 1.26 cgd
178 1.221 ad static u_int sched_unsleep(struct lwp *, bool);
179 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
180 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
181 1.223 ad static void *sched_getrq(runqueue_t *, const pri_t);
182 1.223 ad #ifdef MULTIPROCESSOR
183 1.223 ad static lwp_t *sched_catchlwp(void);
184 1.223 ad static void sched_balance(void *);
185 1.223 ad #endif
186 1.122 thorpej
187 1.174 ad syncobj_t sleep_syncobj = {
188 1.174 ad SOBJ_SLEEPQ_SORTED,
189 1.174 ad sleepq_unsleep,
190 1.184 yamt sleepq_changepri,
191 1.184 yamt sleepq_lendpri,
192 1.184 yamt syncobj_noowner,
193 1.174 ad };
194 1.174 ad
195 1.174 ad syncobj_t sched_syncobj = {
196 1.174 ad SOBJ_SLEEPQ_SORTED,
197 1.174 ad sched_unsleep,
198 1.184 yamt sched_changepri,
199 1.184 yamt sched_lendpri,
200 1.184 yamt syncobj_noowner,
201 1.174 ad };
202 1.122 thorpej
203 1.223 ad const int schedppq = 1;
204 1.223 ad callout_t sched_pstats_ch;
205 1.223 ad unsigned sched_pstats_ticks;
206 1.223 ad kcondvar_t lbolt; /* once a second sleep address */
207 1.223 ad
208 1.223 ad /*
209 1.231 ad * Kernel preemption.
210 1.231 ad */
211 1.231 ad #ifdef PREEMPTION
212 1.231 ad int sched_kpreempt_pri = PRI_USER_RT;
213 1.231 ad
214 1.231 ad static struct evcnt kpreempt_ev_crit;
215 1.231 ad static struct evcnt kpreempt_ev_klock;
216 1.231 ad static struct evcnt kpreempt_ev_ipl;
217 1.231 ad static struct evcnt kpreempt_ev_immed;
218 1.231 ad #else
219 1.231 ad int sched_kpreempt_pri = INT_MAX;
220 1.231 ad #endif
221 1.231 ad int sched_upreempt_pri = PRI_KERNEL;
222 1.231 ad
223 1.231 ad /*
224 1.223 ad * Migration and balancing.
225 1.223 ad */
226 1.223 ad static u_int cacheht_time; /* Cache hotness time */
227 1.223 ad static u_int min_catch; /* Minimal LWP count for catching */
228 1.223 ad static u_int balance_period; /* Balance period */
229 1.223 ad static struct cpu_info *worker_ci; /* Victim CPU */
230 1.223 ad #ifdef MULTIPROCESSOR
231 1.223 ad static struct callout balance_ch; /* Callout of balancer */
232 1.223 ad #endif
233 1.223 ad
234 1.26 cgd /*
235 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
236 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
237 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
238 1.174 ad * maintained in the machine-dependent layers. This priority will typically
239 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
240 1.174 ad * it can be made higher to block network software interrupts after panics.
241 1.26 cgd */
242 1.174 ad int safepri;
243 1.26 cgd
244 1.26 cgd /*
245 1.174 ad * OBSOLETE INTERFACE
246 1.174 ad *
247 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
248 1.26 cgd * performed on the specified identifier. The process will then be made
249 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
250 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
251 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
252 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
253 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
254 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
255 1.26 cgd * call should be interrupted by the signal (return EINTR).
256 1.77 thorpej *
257 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
258 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
259 1.174 ad * is specified, in which case the interlock will always be unlocked upon
260 1.174 ad * return.
261 1.26 cgd */
262 1.26 cgd int
263 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
264 1.174 ad volatile struct simplelock *interlock)
265 1.26 cgd {
266 1.122 thorpej struct lwp *l = curlwp;
267 1.174 ad sleepq_t *sq;
268 1.188 yamt int error;
269 1.26 cgd
270 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
271 1.204 ad
272 1.174 ad if (sleepq_dontsleep(l)) {
273 1.174 ad (void)sleepq_abort(NULL, 0);
274 1.174 ad if ((priority & PNORELOCK) != 0)
275 1.77 thorpej simple_unlock(interlock);
276 1.174 ad return 0;
277 1.26 cgd }
278 1.78 sommerfe
279 1.204 ad l->l_kpriority = true;
280 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
281 1.174 ad sleepq_enter(sq, l);
282 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
283 1.42 cgd
284 1.174 ad if (interlock != NULL) {
285 1.204 ad KASSERT(simple_lock_held(interlock));
286 1.174 ad simple_unlock(interlock);
287 1.150 chs }
288 1.150 chs
289 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
290 1.126 pk
291 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
292 1.126 pk simple_lock(interlock);
293 1.174 ad
294 1.174 ad return error;
295 1.26 cgd }
296 1.26 cgd
297 1.187 ad int
298 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
299 1.187 ad kmutex_t *mtx)
300 1.187 ad {
301 1.187 ad struct lwp *l = curlwp;
302 1.187 ad sleepq_t *sq;
303 1.188 yamt int error;
304 1.187 ad
305 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
306 1.204 ad
307 1.187 ad if (sleepq_dontsleep(l)) {
308 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
309 1.187 ad return 0;
310 1.187 ad }
311 1.187 ad
312 1.204 ad l->l_kpriority = true;
313 1.187 ad sq = sleeptab_lookup(&sleeptab, ident);
314 1.187 ad sleepq_enter(sq, l);
315 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
316 1.187 ad mutex_exit(mtx);
317 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
318 1.187 ad
319 1.187 ad if ((priority & PNORELOCK) == 0)
320 1.187 ad mutex_enter(mtx);
321 1.187 ad
322 1.187 ad return error;
323 1.187 ad }
324 1.187 ad
325 1.26 cgd /*
326 1.174 ad * General sleep call for situations where a wake-up is not expected.
327 1.26 cgd */
328 1.174 ad int
329 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
330 1.26 cgd {
331 1.174 ad struct lwp *l = curlwp;
332 1.174 ad sleepq_t *sq;
333 1.174 ad int error;
334 1.26 cgd
335 1.174 ad if (sleepq_dontsleep(l))
336 1.174 ad return sleepq_abort(NULL, 0);
337 1.26 cgd
338 1.174 ad if (mtx != NULL)
339 1.174 ad mutex_exit(mtx);
340 1.204 ad l->l_kpriority = true;
341 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
342 1.174 ad sleepq_enter(sq, l);
343 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
344 1.188 yamt error = sleepq_block(timo, intr);
345 1.174 ad if (mtx != NULL)
346 1.174 ad mutex_enter(mtx);
347 1.83 thorpej
348 1.174 ad return error;
349 1.139 cl }
350 1.139 cl
351 1.26 cgd /*
352 1.174 ad * OBSOLETE INTERFACE
353 1.174 ad *
354 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
355 1.26 cgd */
356 1.26 cgd void
357 1.174 ad wakeup(wchan_t ident)
358 1.26 cgd {
359 1.174 ad sleepq_t *sq;
360 1.83 thorpej
361 1.174 ad if (cold)
362 1.174 ad return;
363 1.83 thorpej
364 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
365 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
366 1.63 thorpej }
367 1.63 thorpej
368 1.63 thorpej /*
369 1.174 ad * OBSOLETE INTERFACE
370 1.174 ad *
371 1.63 thorpej * Make the highest priority process first in line on the specified
372 1.63 thorpej * identifier runnable.
373 1.63 thorpej */
374 1.174 ad void
375 1.174 ad wakeup_one(wchan_t ident)
376 1.63 thorpej {
377 1.174 ad sleepq_t *sq;
378 1.63 thorpej
379 1.174 ad if (cold)
380 1.174 ad return;
381 1.188 yamt
382 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
383 1.174 ad sleepq_wake(sq, ident, 1);
384 1.174 ad }
385 1.63 thorpej
386 1.117 gmcgarry
387 1.117 gmcgarry /*
388 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
389 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
390 1.198 ad * current process explicitly requests it (eg sched_yield(2)).
391 1.117 gmcgarry */
392 1.117 gmcgarry void
393 1.117 gmcgarry yield(void)
394 1.117 gmcgarry {
395 1.122 thorpej struct lwp *l = curlwp;
396 1.117 gmcgarry
397 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
398 1.174 ad lwp_lock(l);
399 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
400 1.188 yamt KASSERT(l->l_stat == LSONPROC);
401 1.204 ad l->l_kpriority = false;
402 1.188 yamt (void)mi_switch(l);
403 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
404 1.69 thorpej }
405 1.69 thorpej
406 1.69 thorpej /*
407 1.69 thorpej * General preemption call. Puts the current process back on its run queue
408 1.156 rpaulo * and performs an involuntary context switch.
409 1.69 thorpej */
410 1.69 thorpej void
411 1.174 ad preempt(void)
412 1.69 thorpej {
413 1.122 thorpej struct lwp *l = curlwp;
414 1.69 thorpej
415 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
416 1.174 ad lwp_lock(l);
417 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
418 1.188 yamt KASSERT(l->l_stat == LSONPROC);
419 1.204 ad l->l_kpriority = false;
420 1.174 ad l->l_nivcsw++;
421 1.188 yamt (void)mi_switch(l);
422 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
423 1.69 thorpej }
424 1.69 thorpej
425 1.231 ad #ifdef PREEMPTION
426 1.231 ad /* XXX Yuck, for lockstat. */
427 1.231 ad static char in_critical_section;
428 1.231 ad static char kernel_lock_held;
429 1.231 ad static char spl_raised;
430 1.231 ad static char is_softint;
431 1.231 ad
432 1.231 ad /*
433 1.231 ad * Handle a request made by another agent to preempt the current LWP
434 1.231 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
435 1.231 ad */
436 1.231 ad bool
437 1.231 ad kpreempt(uintptr_t where)
438 1.231 ad {
439 1.231 ad uintptr_t failed;
440 1.231 ad lwp_t *l;
441 1.231 ad int s, dop;
442 1.231 ad
443 1.231 ad l = curlwp;
444 1.231 ad failed = 0;
445 1.231 ad while ((dop = l->l_dopreempt) != 0) {
446 1.231 ad if (l->l_stat != LSONPROC) {
447 1.231 ad /*
448 1.231 ad * About to block (or die), let it happen.
449 1.231 ad * Doesn't really count as "preemption has
450 1.231 ad * been blocked", since we're going to
451 1.231 ad * context switch.
452 1.231 ad */
453 1.231 ad l->l_dopreempt = 0;
454 1.231 ad return true;
455 1.231 ad }
456 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
457 1.231 ad /* Can't preempt idle loop, don't count as failure. */
458 1.231 ad l->l_dopreempt = 0;
459 1.231 ad return true;
460 1.231 ad }
461 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
462 1.231 ad /* LWP holds preemption disabled, explicitly. */
463 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
464 1.231 ad atomic_inc_64(&kpreempt_ev_crit.ev_count);
465 1.231 ad }
466 1.231 ad failed = (uintptr_t)&in_critical_section;
467 1.231 ad break;
468 1.231 ad }
469 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
470 1.231 ad /* Can't preempt soft interrupts yet. */
471 1.231 ad l->l_dopreempt = 0;
472 1.231 ad failed = (uintptr_t)&is_softint;
473 1.231 ad break;
474 1.231 ad }
475 1.231 ad s = splsched();
476 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
477 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
478 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
479 1.231 ad splx(s);
480 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
481 1.231 ad atomic_inc_64(&kpreempt_ev_klock.ev_count);
482 1.231 ad }
483 1.231 ad failed = (uintptr_t)&kernel_lock_held;
484 1.231 ad break;
485 1.231 ad }
486 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
487 1.231 ad /*
488 1.231 ad * It may be that the IPL is too high.
489 1.231 ad * kpreempt_enter() can schedule an
490 1.231 ad * interrupt to retry later.
491 1.231 ad */
492 1.231 ad splx(s);
493 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
494 1.231 ad atomic_inc_64(&kpreempt_ev_ipl.ev_count);
495 1.231 ad }
496 1.231 ad failed = (uintptr_t)&spl_raised;
497 1.231 ad break;
498 1.231 ad }
499 1.231 ad /* Do it! */
500 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
501 1.231 ad atomic_inc_64(&kpreempt_ev_immed.ev_count);
502 1.231 ad }
503 1.231 ad lwp_lock(l);
504 1.231 ad mi_switch(l);
505 1.231 ad l->l_nopreempt++;
506 1.231 ad splx(s);
507 1.231 ad
508 1.231 ad /* Take care of any MD cleanup. */
509 1.231 ad cpu_kpreempt_exit(where);
510 1.231 ad l->l_nopreempt--;
511 1.231 ad }
512 1.231 ad
513 1.231 ad /* Record preemption failure for reporting via lockstat. */
514 1.231 ad if (__predict_false(failed)) {
515 1.231 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
516 1.231 ad int lsflag = 0;
517 1.231 ad LOCKSTAT_ENTER(lsflag);
518 1.231 ad /* Might recurse, make it atomic. */
519 1.231 ad if (__predict_false(lsflag)) {
520 1.231 ad if (where == 0) {
521 1.231 ad where = (uintptr_t)__builtin_return_address(0);
522 1.231 ad }
523 1.231 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
524 1.231 ad NULL, (void *)where) == NULL) {
525 1.231 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
526 1.231 ad l->l_pfaillock = failed;
527 1.231 ad }
528 1.231 ad }
529 1.231 ad LOCKSTAT_EXIT(lsflag);
530 1.231 ad }
531 1.231 ad
532 1.231 ad return failed;
533 1.231 ad }
534 1.231 ad
535 1.69 thorpej /*
536 1.231 ad * Return true if preemption is explicitly disabled.
537 1.230 ad */
538 1.231 ad bool
539 1.231 ad kpreempt_disabled(void)
540 1.231 ad {
541 1.231 ad lwp_t *l;
542 1.231 ad
543 1.231 ad l = curlwp;
544 1.231 ad
545 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
546 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
547 1.231 ad }
548 1.231 ad #else
549 1.231 ad bool
550 1.231 ad kpreempt(uintptr_t where)
551 1.231 ad {
552 1.231 ad
553 1.231 ad panic("kpreempt");
554 1.231 ad return true;
555 1.231 ad }
556 1.231 ad
557 1.231 ad bool
558 1.231 ad kpreempt_disabled(void)
559 1.230 ad {
560 1.230 ad
561 1.231 ad return true;
562 1.230 ad }
563 1.231 ad #endif
564 1.230 ad
565 1.230 ad /*
566 1.231 ad * Disable kernel preemption.
567 1.230 ad */
568 1.230 ad void
569 1.231 ad kpreempt_disable(void)
570 1.230 ad {
571 1.230 ad
572 1.231 ad KPREEMPT_DISABLE(curlwp);
573 1.230 ad }
574 1.230 ad
575 1.230 ad /*
576 1.231 ad * Reenable kernel preemption.
577 1.230 ad */
578 1.231 ad void
579 1.231 ad kpreempt_enable(void)
580 1.230 ad {
581 1.230 ad
582 1.231 ad KPREEMPT_ENABLE(curlwp);
583 1.230 ad }
584 1.230 ad
585 1.230 ad /*
586 1.188 yamt * Compute the amount of time during which the current lwp was running.
587 1.130 nathanw *
588 1.188 yamt * - update l_rtime unless it's an idle lwp.
589 1.188 yamt */
590 1.188 yamt
591 1.199 ad void
592 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
593 1.188 yamt {
594 1.188 yamt
595 1.199 ad if ((l->l_flag & LW_IDLE) != 0)
596 1.188 yamt return;
597 1.188 yamt
598 1.212 yamt /* rtime += now - stime */
599 1.212 yamt bintime_add(&l->l_rtime, now);
600 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
601 1.188 yamt }
602 1.188 yamt
603 1.188 yamt /*
604 1.188 yamt * The machine independent parts of context switch.
605 1.188 yamt *
606 1.188 yamt * Returns 1 if another LWP was actually run.
607 1.26 cgd */
608 1.122 thorpej int
609 1.199 ad mi_switch(lwp_t *l)
610 1.26 cgd {
611 1.216 rmind struct cpu_info *ci, *tci = NULL;
612 1.76 thorpej struct schedstate_percpu *spc;
613 1.188 yamt struct lwp *newl;
614 1.174 ad int retval, oldspl;
615 1.212 yamt struct bintime bt;
616 1.199 ad bool returning;
617 1.26 cgd
618 1.188 yamt KASSERT(lwp_locked(l, NULL));
619 1.231 ad KASSERT(kpreempt_disabled());
620 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
621 1.174 ad
622 1.174 ad #ifdef KSTACK_CHECK_MAGIC
623 1.174 ad kstack_check_magic(l);
624 1.174 ad #endif
625 1.83 thorpej
626 1.212 yamt binuptime(&bt);
627 1.199 ad
628 1.231 ad KASSERT(l->l_cpu == curcpu());
629 1.196 ad ci = l->l_cpu;
630 1.196 ad spc = &ci->ci_schedstate;
631 1.199 ad returning = false;
632 1.190 ad newl = NULL;
633 1.190 ad
634 1.199 ad /*
635 1.199 ad * If we have been asked to switch to a specific LWP, then there
636 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
637 1.199 ad * blocking, then return to the interrupted thread without adjusting
638 1.199 ad * VM context or its start time: neither have been changed in order
639 1.199 ad * to take the interrupt.
640 1.199 ad */
641 1.190 ad if (l->l_switchto != NULL) {
642 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
643 1.199 ad returning = true;
644 1.199 ad softint_block(l);
645 1.199 ad if ((l->l_flag & LW_TIMEINTR) != 0)
646 1.212 yamt updatertime(l, &bt);
647 1.199 ad }
648 1.190 ad newl = l->l_switchto;
649 1.190 ad l->l_switchto = NULL;
650 1.190 ad }
651 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
652 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
653 1.204 ad /* There are pending soft interrupts, so pick one. */
654 1.204 ad newl = softint_picklwp();
655 1.204 ad newl->l_stat = LSONPROC;
656 1.204 ad newl->l_flag |= LW_RUNNING;
657 1.204 ad }
658 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
659 1.190 ad
660 1.180 dsl /* Count time spent in current system call */
661 1.199 ad if (!returning) {
662 1.199 ad SYSCALL_TIME_SLEEP(l);
663 1.180 dsl
664 1.199 ad /*
665 1.199 ad * XXXSMP If we are using h/w performance counters,
666 1.199 ad * save context.
667 1.199 ad */
668 1.174 ad #if PERFCTRS
669 1.199 ad if (PMC_ENABLED(l->l_proc)) {
670 1.199 ad pmc_save_context(l->l_proc);
671 1.199 ad }
672 1.199 ad #endif
673 1.212 yamt updatertime(l, &bt);
674 1.174 ad }
675 1.113 gmcgarry
676 1.113 gmcgarry /*
677 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
678 1.113 gmcgarry */
679 1.174 ad KASSERT(l->l_stat != LSRUN);
680 1.216 rmind if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
681 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
682 1.216 rmind
683 1.220 rmind if (l->l_target_cpu == l->l_cpu) {
684 1.220 rmind l->l_target_cpu = NULL;
685 1.220 rmind } else {
686 1.220 rmind tci = l->l_target_cpu;
687 1.220 rmind }
688 1.220 rmind
689 1.216 rmind if (__predict_false(tci != NULL)) {
690 1.216 rmind /* Double-lock the runqueues */
691 1.216 rmind spc_dlock(ci, tci);
692 1.216 rmind } else {
693 1.216 rmind /* Lock the runqueue */
694 1.216 rmind spc_lock(ci);
695 1.216 rmind }
696 1.216 rmind
697 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
698 1.188 yamt l->l_stat = LSRUN;
699 1.216 rmind if (__predict_false(tci != NULL)) {
700 1.216 rmind /*
701 1.216 rmind * Set the new CPU, lock and unset the
702 1.216 rmind * l_target_cpu - thread will be enqueued
703 1.216 rmind * to the runqueue of target CPU.
704 1.216 rmind */
705 1.216 rmind l->l_cpu = tci;
706 1.216 rmind lwp_setlock(l, tci->ci_schedstate.spc_mutex);
707 1.216 rmind l->l_target_cpu = NULL;
708 1.216 rmind } else {
709 1.216 rmind lwp_setlock(l, spc->spc_mutex);
710 1.216 rmind }
711 1.188 yamt sched_enqueue(l, true);
712 1.216 rmind } else {
713 1.216 rmind KASSERT(tci == NULL);
714 1.188 yamt l->l_stat = LSIDL;
715 1.216 rmind }
716 1.216 rmind } else {
717 1.216 rmind /* Lock the runqueue */
718 1.216 rmind spc_lock(ci);
719 1.174 ad }
720 1.174 ad
721 1.174 ad /*
722 1.201 rmind * Let sched_nextlwp() select the LWP to run the CPU next.
723 1.209 ad * If no LWP is runnable, select the idle LWP.
724 1.209 ad *
725 1.209 ad * Note that spc_lwplock might not necessary be held, and
726 1.209 ad * new thread would be unlocked after setting the LWP-lock.
727 1.174 ad */
728 1.190 ad if (newl == NULL) {
729 1.190 ad newl = sched_nextlwp();
730 1.190 ad if (newl != NULL) {
731 1.190 ad sched_dequeue(newl);
732 1.190 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
733 1.190 ad newl->l_stat = LSONPROC;
734 1.196 ad newl->l_cpu = ci;
735 1.190 ad newl->l_flag |= LW_RUNNING;
736 1.217 ad lwp_setlock(newl, spc->spc_lwplock);
737 1.190 ad } else {
738 1.196 ad newl = ci->ci_data.cpu_idlelwp;
739 1.190 ad newl->l_stat = LSONPROC;
740 1.190 ad newl->l_flag |= LW_RUNNING;
741 1.190 ad }
742 1.204 ad /*
743 1.204 ad * Only clear want_resched if there are no
744 1.204 ad * pending (slow) software interrupts.
745 1.204 ad */
746 1.204 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
747 1.199 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
748 1.204 ad spc->spc_curpriority = lwp_eprio(newl);
749 1.199 ad }
750 1.199 ad
751 1.204 ad /* Items that must be updated with the CPU locked. */
752 1.199 ad if (!returning) {
753 1.204 ad /* Update the new LWP's start time. */
754 1.212 yamt newl->l_stime = bt;
755 1.204 ad
756 1.199 ad /*
757 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
758 1.204 ad * We use cpu_onproc to keep track of which kernel or
759 1.204 ad * user thread is running 'underneath' the software
760 1.204 ad * interrupt. This is important for time accounting,
761 1.204 ad * itimers and forcing user threads to preempt (aston).
762 1.199 ad */
763 1.204 ad ci->ci_data.cpu_onproc = newl;
764 1.188 yamt }
765 1.188 yamt
766 1.231 ad /* Kernel preemption related tasks. */
767 1.231 ad l->l_dopreempt = 0;
768 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
769 1.231 ad LOCKSTAT_FLAG(lsflag);
770 1.231 ad LOCKSTAT_ENTER(lsflag);
771 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
772 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
773 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
774 1.231 ad LOCKSTAT_EXIT(lsflag);
775 1.231 ad l->l_pfailtime = 0;
776 1.231 ad l->l_pfaillock = 0;
777 1.231 ad l->l_pfailaddr = 0;
778 1.231 ad }
779 1.231 ad
780 1.188 yamt if (l != newl) {
781 1.188 yamt struct lwp *prevlwp;
782 1.174 ad
783 1.209 ad /* Release all locks, but leave the current LWP locked */
784 1.216 rmind if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
785 1.216 rmind /*
786 1.216 rmind * In case of migration, drop the local runqueue
787 1.216 rmind * lock, thread is on other runqueue now.
788 1.216 rmind */
789 1.216 rmind if (__predict_false(tci != NULL))
790 1.216 rmind spc_unlock(ci);
791 1.209 ad /*
792 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
793 1.209 ad * to the run queue (it is now locked by spc_mutex).
794 1.209 ad */
795 1.217 ad mutex_spin_exit(spc->spc_lwplock);
796 1.188 yamt } else {
797 1.209 ad /*
798 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
799 1.209 ad * run queues.
800 1.209 ad */
801 1.188 yamt mutex_spin_exit(spc->spc_mutex);
802 1.216 rmind KASSERT(tci == NULL);
803 1.188 yamt }
804 1.188 yamt
805 1.209 ad /*
806 1.209 ad * Mark that context switch is going to be perfomed
807 1.209 ad * for this LWP, to protect it from being switched
808 1.209 ad * to on another CPU.
809 1.209 ad */
810 1.209 ad KASSERT(l->l_ctxswtch == 0);
811 1.209 ad l->l_ctxswtch = 1;
812 1.209 ad l->l_ncsw++;
813 1.209 ad l->l_flag &= ~LW_RUNNING;
814 1.209 ad
815 1.209 ad /*
816 1.209 ad * Increase the count of spin-mutexes before the release
817 1.209 ad * of the last lock - we must remain at IPL_SCHED during
818 1.209 ad * the context switch.
819 1.209 ad */
820 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
821 1.209 ad ci->ci_mtx_count--;
822 1.209 ad lwp_unlock(l);
823 1.209 ad
824 1.218 ad /* Count the context switch on this CPU. */
825 1.218 ad ci->ci_data.cpu_nswtch++;
826 1.188 yamt
827 1.209 ad /* Update status for lwpctl, if present. */
828 1.209 ad if (l->l_lwpctl != NULL)
829 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
830 1.209 ad
831 1.199 ad /*
832 1.199 ad * Save old VM context, unless a soft interrupt
833 1.199 ad * handler is blocking.
834 1.199 ad */
835 1.199 ad if (!returning)
836 1.199 ad pmap_deactivate(l);
837 1.188 yamt
838 1.209 ad /*
839 1.209 ad * We may need to spin-wait for if 'newl' is still
840 1.209 ad * context switching on another CPU.
841 1.209 ad */
842 1.209 ad if (newl->l_ctxswtch != 0) {
843 1.209 ad u_int count;
844 1.209 ad count = SPINLOCK_BACKOFF_MIN;
845 1.209 ad while (newl->l_ctxswtch)
846 1.209 ad SPINLOCK_BACKOFF(count);
847 1.209 ad }
848 1.207 ad
849 1.188 yamt /* Switch to the new LWP.. */
850 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
851 1.207 ad ci = curcpu();
852 1.207 ad
853 1.188 yamt /*
854 1.209 ad * Switched away - we have new curlwp.
855 1.209 ad * Restore VM context and IPL.
856 1.188 yamt */
857 1.209 ad pmap_activate(l);
858 1.188 yamt if (prevlwp != NULL) {
859 1.209 ad /* Normalize the count of the spin-mutexes */
860 1.209 ad ci->ci_mtx_count++;
861 1.209 ad /* Unmark the state of context switch */
862 1.209 ad membar_exit();
863 1.209 ad prevlwp->l_ctxswtch = 0;
864 1.188 yamt }
865 1.209 ad
866 1.209 ad /* Update status for lwpctl, if present. */
867 1.219 ad if (l->l_lwpctl != NULL) {
868 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
869 1.219 ad l->l_lwpctl->lc_pctr++;
870 1.219 ad }
871 1.174 ad
872 1.231 ad KASSERT(l->l_cpu == ci);
873 1.231 ad splx(oldspl);
874 1.188 yamt retval = 1;
875 1.188 yamt } else {
876 1.188 yamt /* Nothing to do - just unlock and return. */
877 1.216 rmind KASSERT(tci == NULL);
878 1.216 rmind spc_unlock(ci);
879 1.188 yamt lwp_unlock(l);
880 1.122 thorpej retval = 0;
881 1.122 thorpej }
882 1.110 briggs
883 1.188 yamt KASSERT(l == curlwp);
884 1.188 yamt KASSERT(l->l_stat == LSONPROC);
885 1.188 yamt
886 1.110 briggs /*
887 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
888 1.231 ad * XXXSMP preemption problem.
889 1.26 cgd */
890 1.114 gmcgarry #if PERFCTRS
891 1.175 christos if (PMC_ENABLED(l->l_proc)) {
892 1.175 christos pmc_restore_context(l->l_proc);
893 1.166 christos }
894 1.114 gmcgarry #endif
895 1.180 dsl SYSCALL_TIME_WAKEUP(l);
896 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
897 1.169 yamt
898 1.122 thorpej return retval;
899 1.26 cgd }
900 1.26 cgd
901 1.26 cgd /*
902 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
903 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
904 1.174 ad *
905 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
906 1.26 cgd */
907 1.26 cgd void
908 1.122 thorpej setrunnable(struct lwp *l)
909 1.26 cgd {
910 1.122 thorpej struct proc *p = l->l_proc;
911 1.205 ad struct cpu_info *ci;
912 1.174 ad sigset_t *ss;
913 1.26 cgd
914 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
915 1.229 ad KASSERT(mutex_owned(p->p_lock));
916 1.183 ad KASSERT(lwp_locked(l, NULL));
917 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
918 1.83 thorpej
919 1.122 thorpej switch (l->l_stat) {
920 1.122 thorpej case LSSTOP:
921 1.33 mycroft /*
922 1.33 mycroft * If we're being traced (possibly because someone attached us
923 1.33 mycroft * while we were stopped), check for a signal from the debugger.
924 1.33 mycroft */
925 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
926 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
927 1.174 ad ss = &l->l_sigpend.sp_set;
928 1.174 ad else
929 1.174 ad ss = &p->p_sigpend.sp_set;
930 1.174 ad sigaddset(ss, p->p_xstat);
931 1.174 ad signotify(l);
932 1.53 mycroft }
933 1.174 ad p->p_nrlwps++;
934 1.26 cgd break;
935 1.174 ad case LSSUSPENDED:
936 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
937 1.174 ad p->p_nrlwps++;
938 1.192 rmind cv_broadcast(&p->p_lwpcv);
939 1.122 thorpej break;
940 1.174 ad case LSSLEEP:
941 1.174 ad KASSERT(l->l_wchan != NULL);
942 1.26 cgd break;
943 1.174 ad default:
944 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
945 1.26 cgd }
946 1.139 cl
947 1.174 ad /*
948 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
949 1.174 ad * again. If not, mark it as still sleeping.
950 1.174 ad */
951 1.174 ad if (l->l_wchan != NULL) {
952 1.174 ad l->l_stat = LSSLEEP;
953 1.183 ad /* lwp_unsleep() will release the lock. */
954 1.221 ad lwp_unsleep(l, true);
955 1.174 ad return;
956 1.174 ad }
957 1.139 cl
958 1.174 ad /*
959 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
960 1.174 ad * about to call mi_switch(), in which case it will yield.
961 1.174 ad */
962 1.188 yamt if ((l->l_flag & LW_RUNNING) != 0) {
963 1.174 ad l->l_stat = LSONPROC;
964 1.174 ad l->l_slptime = 0;
965 1.174 ad lwp_unlock(l);
966 1.174 ad return;
967 1.174 ad }
968 1.122 thorpej
969 1.174 ad /*
970 1.205 ad * Look for a CPU to run.
971 1.205 ad * Set the LWP runnable.
972 1.174 ad */
973 1.205 ad ci = sched_takecpu(l);
974 1.205 ad l->l_cpu = ci;
975 1.206 ad if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
976 1.206 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
977 1.206 ad lwp_lock(l);
978 1.206 ad }
979 1.188 yamt sched_setrunnable(l);
980 1.174 ad l->l_stat = LSRUN;
981 1.122 thorpej l->l_slptime = 0;
982 1.174 ad
983 1.205 ad /*
984 1.205 ad * If thread is swapped out - wake the swapper to bring it back in.
985 1.205 ad * Otherwise, enter it into a run queue.
986 1.205 ad */
987 1.178 pavel if (l->l_flag & LW_INMEM) {
988 1.188 yamt sched_enqueue(l, false);
989 1.188 yamt resched_cpu(l);
990 1.174 ad lwp_unlock(l);
991 1.174 ad } else {
992 1.174 ad lwp_unlock(l);
993 1.177 ad uvm_kick_scheduler();
994 1.174 ad }
995 1.26 cgd }
996 1.26 cgd
997 1.26 cgd /*
998 1.174 ad * suspendsched:
999 1.174 ad *
1000 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1001 1.174 ad */
1002 1.94 bouyer void
1003 1.174 ad suspendsched(void)
1004 1.94 bouyer {
1005 1.174 ad CPU_INFO_ITERATOR cii;
1006 1.174 ad struct cpu_info *ci;
1007 1.122 thorpej struct lwp *l;
1008 1.174 ad struct proc *p;
1009 1.94 bouyer
1010 1.94 bouyer /*
1011 1.174 ad * We do this by process in order not to violate the locking rules.
1012 1.94 bouyer */
1013 1.228 ad mutex_enter(proc_lock);
1014 1.174 ad PROCLIST_FOREACH(p, &allproc) {
1015 1.229 ad mutex_enter(p->p_lock);
1016 1.174 ad
1017 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
1018 1.229 ad mutex_exit(p->p_lock);
1019 1.94 bouyer continue;
1020 1.174 ad }
1021 1.174 ad
1022 1.174 ad p->p_stat = SSTOP;
1023 1.174 ad
1024 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1025 1.174 ad if (l == curlwp)
1026 1.174 ad continue;
1027 1.174 ad
1028 1.174 ad lwp_lock(l);
1029 1.122 thorpej
1030 1.97 enami /*
1031 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
1032 1.174 ad * when it tries to return to user mode. We want to
1033 1.174 ad * try and get to get as many LWPs as possible to
1034 1.174 ad * the user / kernel boundary, so that they will
1035 1.174 ad * release any locks that they hold.
1036 1.97 enami */
1037 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1038 1.174 ad
1039 1.174 ad if (l->l_stat == LSSLEEP &&
1040 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1041 1.174 ad /* setrunnable() will release the lock. */
1042 1.174 ad setrunnable(l);
1043 1.174 ad continue;
1044 1.174 ad }
1045 1.174 ad
1046 1.174 ad lwp_unlock(l);
1047 1.94 bouyer }
1048 1.174 ad
1049 1.229 ad mutex_exit(p->p_lock);
1050 1.94 bouyer }
1051 1.228 ad mutex_exit(proc_lock);
1052 1.174 ad
1053 1.174 ad /*
1054 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1055 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
1056 1.174 ad */
1057 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1058 1.204 ad spc_lock(ci);
1059 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
1060 1.204 ad spc_unlock(ci);
1061 1.204 ad }
1062 1.174 ad }
1063 1.174 ad
1064 1.174 ad /*
1065 1.174 ad * sched_unsleep:
1066 1.174 ad *
1067 1.174 ad * The is called when the LWP has not been awoken normally but instead
1068 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1069 1.174 ad * it's not a valid action for running or idle LWPs.
1070 1.174 ad */
1071 1.221 ad static u_int
1072 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1073 1.174 ad {
1074 1.174 ad
1075 1.174 ad lwp_unlock(l);
1076 1.174 ad panic("sched_unsleep");
1077 1.174 ad }
1078 1.174 ad
1079 1.204 ad void
1080 1.188 yamt resched_cpu(struct lwp *l)
1081 1.188 yamt {
1082 1.188 yamt struct cpu_info *ci;
1083 1.188 yamt
1084 1.188 yamt /*
1085 1.188 yamt * XXXSMP
1086 1.188 yamt * Since l->l_cpu persists across a context switch,
1087 1.188 yamt * this gives us *very weak* processor affinity, in
1088 1.188 yamt * that we notify the CPU on which the process last
1089 1.188 yamt * ran that it should try to switch.
1090 1.188 yamt *
1091 1.188 yamt * This does not guarantee that the process will run on
1092 1.188 yamt * that processor next, because another processor might
1093 1.188 yamt * grab it the next time it performs a context switch.
1094 1.188 yamt *
1095 1.188 yamt * This also does not handle the case where its last
1096 1.188 yamt * CPU is running a higher-priority process, but every
1097 1.188 yamt * other CPU is running a lower-priority process. There
1098 1.188 yamt * are ways to handle this situation, but they're not
1099 1.188 yamt * currently very pretty, and we also need to weigh the
1100 1.188 yamt * cost of moving a process from one CPU to another.
1101 1.188 yamt */
1102 1.204 ad ci = l->l_cpu;
1103 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1104 1.188 yamt cpu_need_resched(ci, 0);
1105 1.188 yamt }
1106 1.188 yamt
1107 1.188 yamt static void
1108 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1109 1.174 ad {
1110 1.174 ad
1111 1.188 yamt KASSERT(lwp_locked(l, NULL));
1112 1.174 ad
1113 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1114 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1115 1.204 ad sched_dequeue(l);
1116 1.204 ad l->l_priority = pri;
1117 1.204 ad sched_enqueue(l, false);
1118 1.204 ad } else {
1119 1.174 ad l->l_priority = pri;
1120 1.157 yamt }
1121 1.188 yamt resched_cpu(l);
1122 1.184 yamt }
1123 1.184 yamt
1124 1.188 yamt static void
1125 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1126 1.184 yamt {
1127 1.184 yamt
1128 1.188 yamt KASSERT(lwp_locked(l, NULL));
1129 1.184 yamt
1130 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1131 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1132 1.204 ad sched_dequeue(l);
1133 1.204 ad l->l_inheritedprio = pri;
1134 1.204 ad sched_enqueue(l, false);
1135 1.204 ad } else {
1136 1.184 yamt l->l_inheritedprio = pri;
1137 1.184 yamt }
1138 1.188 yamt resched_cpu(l);
1139 1.184 yamt }
1140 1.184 yamt
1141 1.184 yamt struct lwp *
1142 1.184 yamt syncobj_noowner(wchan_t wchan)
1143 1.184 yamt {
1144 1.184 yamt
1145 1.184 yamt return NULL;
1146 1.151 yamt }
1147 1.151 yamt
1148 1.188 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
1149 1.188 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
1150 1.115 nisimura
1151 1.130 nathanw /*
1152 1.188 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
1153 1.188 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
1154 1.188 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
1155 1.188 yamt *
1156 1.188 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
1157 1.188 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
1158 1.188 yamt *
1159 1.188 yamt * If you dont want to bother with the faster/more-accurate formula, you
1160 1.188 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
1161 1.188 yamt * (more general) method of calculating the %age of CPU used by a process.
1162 1.134 matt */
1163 1.188 yamt #define CCPU_SHIFT (FSHIFT + 1)
1164 1.134 matt
1165 1.134 matt /*
1166 1.188 yamt * sched_pstats:
1167 1.188 yamt *
1168 1.188 yamt * Update process statistics and check CPU resource allocation.
1169 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
1170 1.188 yamt * priorities.
1171 1.130 nathanw */
1172 1.188 yamt /* ARGSUSED */
1173 1.113 gmcgarry void
1174 1.188 yamt sched_pstats(void *arg)
1175 1.113 gmcgarry {
1176 1.188 yamt struct rlimit *rlim;
1177 1.188 yamt struct lwp *l;
1178 1.188 yamt struct proc *p;
1179 1.204 ad int sig, clkhz;
1180 1.188 yamt long runtm;
1181 1.113 gmcgarry
1182 1.188 yamt sched_pstats_ticks++;
1183 1.174 ad
1184 1.228 ad mutex_enter(proc_lock);
1185 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1186 1.188 yamt /*
1187 1.188 yamt * Increment time in/out of memory and sleep time (if
1188 1.188 yamt * sleeping). We ignore overflow; with 16-bit int's
1189 1.188 yamt * (remember them?) overflow takes 45 days.
1190 1.188 yamt */
1191 1.229 ad mutex_enter(p->p_lock);
1192 1.188 yamt mutex_spin_enter(&p->p_stmutex);
1193 1.212 yamt runtm = p->p_rtime.sec;
1194 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1195 1.188 yamt if ((l->l_flag & LW_IDLE) != 0)
1196 1.188 yamt continue;
1197 1.188 yamt lwp_lock(l);
1198 1.212 yamt runtm += l->l_rtime.sec;
1199 1.188 yamt l->l_swtime++;
1200 1.200 rmind sched_pstats_hook(l);
1201 1.188 yamt lwp_unlock(l);
1202 1.113 gmcgarry
1203 1.188 yamt /*
1204 1.188 yamt * p_pctcpu is only for ps.
1205 1.188 yamt */
1206 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1207 1.188 yamt if (l->l_slptime < 1) {
1208 1.188 yamt clkhz = stathz != 0 ? stathz : hz;
1209 1.188 yamt #if (FSHIFT >= CCPU_SHIFT)
1210 1.188 yamt l->l_pctcpu += (clkhz == 100) ?
1211 1.188 yamt ((fixpt_t)l->l_cpticks) <<
1212 1.188 yamt (FSHIFT - CCPU_SHIFT) :
1213 1.188 yamt 100 * (((fixpt_t) p->p_cpticks)
1214 1.188 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
1215 1.188 yamt #else
1216 1.188 yamt l->l_pctcpu += ((FSCALE - ccpu) *
1217 1.188 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
1218 1.146 matt #endif
1219 1.188 yamt l->l_cpticks = 0;
1220 1.188 yamt }
1221 1.188 yamt }
1222 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1223 1.188 yamt mutex_spin_exit(&p->p_stmutex);
1224 1.174 ad
1225 1.188 yamt /*
1226 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1227 1.188 yamt * If over max, kill it.
1228 1.188 yamt */
1229 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1230 1.188 yamt sig = 0;
1231 1.188 yamt if (runtm >= rlim->rlim_cur) {
1232 1.188 yamt if (runtm >= rlim->rlim_max)
1233 1.188 yamt sig = SIGKILL;
1234 1.188 yamt else {
1235 1.188 yamt sig = SIGXCPU;
1236 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1237 1.188 yamt rlim->rlim_cur += 5;
1238 1.188 yamt }
1239 1.188 yamt }
1240 1.229 ad mutex_exit(p->p_lock);
1241 1.228 ad if (sig)
1242 1.188 yamt psignal(p, sig);
1243 1.174 ad }
1244 1.228 ad mutex_exit(proc_lock);
1245 1.188 yamt uvm_meter();
1246 1.191 ad cv_wakeup(&lbolt);
1247 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
1248 1.113 gmcgarry }
1249 1.190 ad
1250 1.190 ad void
1251 1.190 ad sched_init(void)
1252 1.190 ad {
1253 1.190 ad
1254 1.208 ad cv_init(&lbolt, "lbolt");
1255 1.214 ad callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
1256 1.190 ad callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
1257 1.223 ad
1258 1.223 ad /* Balancing */
1259 1.223 ad worker_ci = curcpu();
1260 1.223 ad cacheht_time = mstohz(5); /* ~5 ms */
1261 1.223 ad balance_period = mstohz(300); /* ~300ms */
1262 1.223 ad
1263 1.223 ad /* Minimal count of LWPs for catching: log2(count of CPUs) */
1264 1.223 ad min_catch = min(ilog2(ncpu), 4);
1265 1.223 ad
1266 1.231 ad #ifdef PREEMPTION
1267 1.231 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_INTR, NULL,
1268 1.231 ad "kpreempt", "defer: critical section");
1269 1.231 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_INTR, NULL,
1270 1.231 ad "kpreempt", "defer: kernel_lock");
1271 1.231 ad evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_INTR, NULL,
1272 1.231 ad "kpreempt", "defer: IPL");
1273 1.231 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_INTR, NULL,
1274 1.231 ad "kpreempt", "immediate");
1275 1.231 ad #endif
1276 1.231 ad
1277 1.223 ad /* Initialize balancing callout and run it */
1278 1.223 ad #ifdef MULTIPROCESSOR
1279 1.223 ad callout_init(&balance_ch, CALLOUT_MPSAFE);
1280 1.223 ad callout_setfunc(&balance_ch, sched_balance, NULL);
1281 1.223 ad callout_schedule(&balance_ch, balance_period);
1282 1.223 ad #endif
1283 1.190 ad sched_pstats(NULL);
1284 1.190 ad }
1285 1.223 ad
1286 1.223 ad SYSCTL_SETUP(sysctl_sched_setup, "sysctl sched setup")
1287 1.223 ad {
1288 1.223 ad const struct sysctlnode *node = NULL;
1289 1.223 ad
1290 1.223 ad sysctl_createv(clog, 0, NULL, NULL,
1291 1.223 ad CTLFLAG_PERMANENT,
1292 1.223 ad CTLTYPE_NODE, "kern", NULL,
1293 1.223 ad NULL, 0, NULL, 0,
1294 1.223 ad CTL_KERN, CTL_EOL);
1295 1.223 ad sysctl_createv(clog, 0, NULL, &node,
1296 1.223 ad CTLFLAG_PERMANENT,
1297 1.223 ad CTLTYPE_NODE, "sched",
1298 1.223 ad SYSCTL_DESCR("Scheduler options"),
1299 1.223 ad NULL, 0, NULL, 0,
1300 1.223 ad CTL_KERN, CTL_CREATE, CTL_EOL);
1301 1.223 ad
1302 1.223 ad if (node == NULL)
1303 1.223 ad return;
1304 1.223 ad
1305 1.223 ad sysctl_createv(clog, 0, &node, NULL,
1306 1.223 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1307 1.223 ad CTLTYPE_INT, "cacheht_time",
1308 1.223 ad SYSCTL_DESCR("Cache hotness time (in ticks)"),
1309 1.223 ad NULL, 0, &cacheht_time, 0,
1310 1.223 ad CTL_CREATE, CTL_EOL);
1311 1.223 ad sysctl_createv(clog, 0, &node, NULL,
1312 1.223 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1313 1.223 ad CTLTYPE_INT, "balance_period",
1314 1.223 ad SYSCTL_DESCR("Balance period (in ticks)"),
1315 1.223 ad NULL, 0, &balance_period, 0,
1316 1.223 ad CTL_CREATE, CTL_EOL);
1317 1.223 ad sysctl_createv(clog, 0, &node, NULL,
1318 1.223 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1319 1.223 ad CTLTYPE_INT, "min_catch",
1320 1.223 ad SYSCTL_DESCR("Minimal count of threads for catching"),
1321 1.223 ad NULL, 0, &min_catch, 0,
1322 1.223 ad CTL_CREATE, CTL_EOL);
1323 1.223 ad sysctl_createv(clog, 0, &node, NULL,
1324 1.231 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1325 1.223 ad CTLTYPE_INT, "timesoftints",
1326 1.223 ad SYSCTL_DESCR("Track CPU time for soft interrupts"),
1327 1.223 ad NULL, 0, &softint_timing, 0,
1328 1.223 ad CTL_CREATE, CTL_EOL);
1329 1.231 ad sysctl_createv(clog, 0, &node, NULL,
1330 1.231 ad #ifdef PREEMPTION
1331 1.231 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1332 1.231 ad #else
1333 1.231 ad CTLFLAG_PERMANENT,
1334 1.231 ad #endif
1335 1.231 ad CTLTYPE_INT, "kpreempt_pri",
1336 1.231 ad SYSCTL_DESCR("Minimum priority to trigger kernel preemption"),
1337 1.231 ad NULL, 0, &sched_kpreempt_pri, 0,
1338 1.231 ad CTL_CREATE, CTL_EOL);
1339 1.231 ad sysctl_createv(clog, 0, &node, NULL,
1340 1.231 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1341 1.231 ad CTLTYPE_INT, "upreempt_pri",
1342 1.231 ad SYSCTL_DESCR("Minimum priority to trigger user preemption"),
1343 1.231 ad NULL, 0, &sched_upreempt_pri, 0,
1344 1.231 ad CTL_CREATE, CTL_EOL);
1345 1.223 ad }
1346 1.223 ad
1347 1.223 ad void
1348 1.223 ad sched_cpuattach(struct cpu_info *ci)
1349 1.223 ad {
1350 1.223 ad runqueue_t *ci_rq;
1351 1.223 ad void *rq_ptr;
1352 1.223 ad u_int i, size;
1353 1.223 ad
1354 1.223 ad if (ci->ci_schedstate.spc_lwplock == NULL) {
1355 1.223 ad ci->ci_schedstate.spc_lwplock =
1356 1.223 ad mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
1357 1.223 ad }
1358 1.223 ad if (ci == lwp0.l_cpu) {
1359 1.223 ad /* Initialize the scheduler structure of the primary LWP */
1360 1.223 ad lwp0.l_mutex = ci->ci_schedstate.spc_lwplock;
1361 1.223 ad }
1362 1.223 ad if (ci->ci_schedstate.spc_mutex != NULL) {
1363 1.223 ad /* Already initialized. */
1364 1.223 ad return;
1365 1.223 ad }
1366 1.223 ad
1367 1.223 ad /* Allocate the run queue */
1368 1.223 ad size = roundup2(sizeof(runqueue_t), coherency_unit) + coherency_unit;
1369 1.223 ad rq_ptr = kmem_zalloc(size, KM_SLEEP);
1370 1.223 ad if (rq_ptr == NULL) {
1371 1.223 ad panic("sched_cpuattach: could not allocate the runqueue");
1372 1.223 ad }
1373 1.223 ad ci_rq = (void *)(roundup2((uintptr_t)(rq_ptr), coherency_unit));
1374 1.223 ad
1375 1.223 ad /* Initialize run queues */
1376 1.223 ad ci->ci_schedstate.spc_mutex =
1377 1.223 ad mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
1378 1.223 ad for (i = 0; i < PRI_RT_COUNT; i++)
1379 1.223 ad TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
1380 1.223 ad for (i = 0; i < PRI_TS_COUNT; i++)
1381 1.223 ad TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
1382 1.223 ad
1383 1.223 ad ci->ci_schedstate.spc_sched_info = ci_rq;
1384 1.223 ad }
1385 1.223 ad
1386 1.223 ad /*
1387 1.223 ad * Control of the runqueue.
1388 1.223 ad */
1389 1.223 ad
1390 1.223 ad static void *
1391 1.223 ad sched_getrq(runqueue_t *ci_rq, const pri_t prio)
1392 1.223 ad {
1393 1.223 ad
1394 1.223 ad KASSERT(prio < PRI_COUNT);
1395 1.223 ad return (prio <= PRI_HIGHEST_TS) ?
1396 1.223 ad &ci_rq->r_ts_queue[prio].q_head :
1397 1.223 ad &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
1398 1.223 ad }
1399 1.223 ad
1400 1.223 ad void
1401 1.223 ad sched_enqueue(struct lwp *l, bool swtch)
1402 1.223 ad {
1403 1.223 ad runqueue_t *ci_rq;
1404 1.223 ad struct schedstate_percpu *spc;
1405 1.223 ad TAILQ_HEAD(, lwp) *q_head;
1406 1.223 ad const pri_t eprio = lwp_eprio(l);
1407 1.223 ad struct cpu_info *ci;
1408 1.231 ad int type;
1409 1.223 ad
1410 1.223 ad ci = l->l_cpu;
1411 1.223 ad spc = &ci->ci_schedstate;
1412 1.223 ad ci_rq = spc->spc_sched_info;
1413 1.223 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1414 1.223 ad
1415 1.223 ad /* Update the last run time on switch */
1416 1.223 ad if (__predict_true(swtch == true)) {
1417 1.223 ad l->l_rticks = hardclock_ticks;
1418 1.223 ad l->l_rticksum += (hardclock_ticks - l->l_rticks);
1419 1.223 ad } else if (l->l_rticks == 0)
1420 1.223 ad l->l_rticks = hardclock_ticks;
1421 1.223 ad
1422 1.223 ad /* Enqueue the thread */
1423 1.223 ad q_head = sched_getrq(ci_rq, eprio);
1424 1.223 ad if (TAILQ_EMPTY(q_head)) {
1425 1.223 ad u_int i;
1426 1.223 ad uint32_t q;
1427 1.223 ad
1428 1.223 ad /* Mark bit */
1429 1.223 ad i = eprio >> BITMAP_SHIFT;
1430 1.223 ad q = BITMAP_MSB >> (eprio & BITMAP_MASK);
1431 1.223 ad KASSERT((ci_rq->r_bitmap[i] & q) == 0);
1432 1.223 ad ci_rq->r_bitmap[i] |= q;
1433 1.223 ad }
1434 1.223 ad TAILQ_INSERT_TAIL(q_head, l, l_runq);
1435 1.223 ad ci_rq->r_count++;
1436 1.224 ad if ((l->l_pflag & LP_BOUND) == 0)
1437 1.223 ad ci_rq->r_mcount++;
1438 1.223 ad
1439 1.223 ad /*
1440 1.223 ad * Update the value of highest priority in the runqueue,
1441 1.223 ad * if priority of this thread is higher.
1442 1.223 ad */
1443 1.223 ad if (eprio > spc->spc_maxpriority)
1444 1.223 ad spc->spc_maxpriority = eprio;
1445 1.223 ad
1446 1.223 ad sched_newts(l);
1447 1.223 ad
1448 1.223 ad /*
1449 1.223 ad * Wake the chosen CPU or cause a preemption if the newly
1450 1.223 ad * enqueued thread has higher priority. Don't cause a
1451 1.223 ad * preemption if the thread is yielding (swtch).
1452 1.223 ad */
1453 1.223 ad if (!swtch && eprio > spc->spc_curpriority) {
1454 1.231 ad if (eprio >= sched_kpreempt_pri)
1455 1.231 ad type = RESCHED_KPREEMPT;
1456 1.231 ad else if (eprio >= sched_upreempt_pri)
1457 1.231 ad type = RESCHED_IMMED;
1458 1.231 ad else
1459 1.231 ad type = 0;
1460 1.231 ad cpu_need_resched(ci, type);
1461 1.223 ad }
1462 1.223 ad }
1463 1.223 ad
1464 1.223 ad void
1465 1.223 ad sched_dequeue(struct lwp *l)
1466 1.223 ad {
1467 1.223 ad runqueue_t *ci_rq;
1468 1.223 ad TAILQ_HEAD(, lwp) *q_head;
1469 1.223 ad struct schedstate_percpu *spc;
1470 1.223 ad const pri_t eprio = lwp_eprio(l);
1471 1.223 ad
1472 1.223 ad spc = & l->l_cpu->ci_schedstate;
1473 1.223 ad ci_rq = spc->spc_sched_info;
1474 1.223 ad KASSERT(lwp_locked(l, spc->spc_mutex));
1475 1.223 ad
1476 1.223 ad KASSERT(eprio <= spc->spc_maxpriority);
1477 1.223 ad KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
1478 1.223 ad KASSERT(ci_rq->r_count > 0);
1479 1.223 ad
1480 1.223 ad ci_rq->r_count--;
1481 1.224 ad if ((l->l_pflag & LP_BOUND) == 0)
1482 1.223 ad ci_rq->r_mcount--;
1483 1.223 ad
1484 1.223 ad q_head = sched_getrq(ci_rq, eprio);
1485 1.223 ad TAILQ_REMOVE(q_head, l, l_runq);
1486 1.223 ad if (TAILQ_EMPTY(q_head)) {
1487 1.223 ad u_int i;
1488 1.223 ad uint32_t q;
1489 1.223 ad
1490 1.223 ad /* Unmark bit */
1491 1.223 ad i = eprio >> BITMAP_SHIFT;
1492 1.223 ad q = BITMAP_MSB >> (eprio & BITMAP_MASK);
1493 1.223 ad KASSERT((ci_rq->r_bitmap[i] & q) != 0);
1494 1.223 ad ci_rq->r_bitmap[i] &= ~q;
1495 1.223 ad
1496 1.223 ad /*
1497 1.223 ad * Update the value of highest priority in the runqueue, in a
1498 1.223 ad * case it was a last thread in the queue of highest priority.
1499 1.223 ad */
1500 1.223 ad if (eprio != spc->spc_maxpriority)
1501 1.223 ad return;
1502 1.223 ad
1503 1.223 ad do {
1504 1.223 ad if (ci_rq->r_bitmap[i] != 0) {
1505 1.223 ad q = ffs(ci_rq->r_bitmap[i]);
1506 1.223 ad spc->spc_maxpriority =
1507 1.223 ad (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
1508 1.223 ad return;
1509 1.223 ad }
1510 1.223 ad } while (i--);
1511 1.223 ad
1512 1.223 ad /* If not found - set the lowest value */
1513 1.223 ad spc->spc_maxpriority = 0;
1514 1.223 ad }
1515 1.223 ad }
1516 1.223 ad
1517 1.223 ad /*
1518 1.223 ad * Migration and balancing.
1519 1.223 ad */
1520 1.223 ad
1521 1.223 ad #ifdef MULTIPROCESSOR
1522 1.223 ad
1523 1.223 ad /* Estimate if LWP is cache-hot */
1524 1.223 ad static inline bool
1525 1.223 ad lwp_cache_hot(const struct lwp *l)
1526 1.223 ad {
1527 1.223 ad
1528 1.223 ad if (l->l_slptime || l->l_rticks == 0)
1529 1.223 ad return false;
1530 1.223 ad
1531 1.223 ad return (hardclock_ticks - l->l_rticks <= cacheht_time);
1532 1.223 ad }
1533 1.223 ad
1534 1.223 ad /* Check if LWP can migrate to the chosen CPU */
1535 1.223 ad static inline bool
1536 1.223 ad sched_migratable(const struct lwp *l, struct cpu_info *ci)
1537 1.223 ad {
1538 1.223 ad const struct schedstate_percpu *spc = &ci->ci_schedstate;
1539 1.223 ad
1540 1.223 ad /* CPU is offline */
1541 1.223 ad if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
1542 1.223 ad return false;
1543 1.223 ad
1544 1.223 ad /* Affinity bind */
1545 1.223 ad if (__predict_false(l->l_flag & LW_AFFINITY))
1546 1.223 ad return CPU_ISSET(cpu_index(ci), &l->l_affinity);
1547 1.223 ad
1548 1.223 ad /* Processor-set */
1549 1.223 ad return (spc->spc_psid == l->l_psid);
1550 1.223 ad }
1551 1.223 ad
1552 1.223 ad /*
1553 1.223 ad * Estimate the migration of LWP to the other CPU.
1554 1.223 ad * Take and return the CPU, if migration is needed.
1555 1.223 ad */
1556 1.223 ad struct cpu_info *
1557 1.223 ad sched_takecpu(struct lwp *l)
1558 1.223 ad {
1559 1.223 ad struct cpu_info *ci, *tci, *first, *next;
1560 1.223 ad struct schedstate_percpu *spc;
1561 1.223 ad runqueue_t *ci_rq, *ici_rq;
1562 1.223 ad pri_t eprio, lpri, pri;
1563 1.223 ad
1564 1.223 ad KASSERT(lwp_locked(l, NULL));
1565 1.223 ad
1566 1.223 ad ci = l->l_cpu;
1567 1.223 ad spc = &ci->ci_schedstate;
1568 1.223 ad ci_rq = spc->spc_sched_info;
1569 1.223 ad
1570 1.223 ad /* If thread is strictly bound, do not estimate other CPUs */
1571 1.224 ad if (l->l_pflag & LP_BOUND)
1572 1.223 ad return ci;
1573 1.223 ad
1574 1.223 ad /* CPU of this thread is idling - run there */
1575 1.223 ad if (ci_rq->r_count == 0)
1576 1.223 ad return ci;
1577 1.223 ad
1578 1.223 ad eprio = lwp_eprio(l);
1579 1.223 ad
1580 1.223 ad /* Stay if thread is cache-hot */
1581 1.223 ad if (__predict_true(l->l_stat != LSIDL) &&
1582 1.223 ad lwp_cache_hot(l) && eprio >= spc->spc_curpriority)
1583 1.223 ad return ci;
1584 1.223 ad
1585 1.223 ad /* Run on current CPU if priority of thread is higher */
1586 1.223 ad ci = curcpu();
1587 1.223 ad spc = &ci->ci_schedstate;
1588 1.223 ad if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
1589 1.223 ad return ci;
1590 1.223 ad
1591 1.223 ad /*
1592 1.223 ad * Look for the CPU with the lowest priority thread. In case of
1593 1.223 ad * equal priority, choose the CPU with the fewest of threads.
1594 1.223 ad */
1595 1.223 ad first = l->l_cpu;
1596 1.223 ad ci = first;
1597 1.223 ad tci = first;
1598 1.223 ad lpri = PRI_COUNT;
1599 1.223 ad do {
1600 1.223 ad next = CIRCLEQ_LOOP_NEXT(&cpu_queue, ci, ci_data.cpu_qchain);
1601 1.223 ad spc = &ci->ci_schedstate;
1602 1.223 ad ici_rq = spc->spc_sched_info;
1603 1.223 ad pri = max(spc->spc_curpriority, spc->spc_maxpriority);
1604 1.223 ad if (pri > lpri)
1605 1.223 ad continue;
1606 1.223 ad
1607 1.223 ad if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
1608 1.223 ad continue;
1609 1.223 ad
1610 1.223 ad if (!sched_migratable(l, ci))
1611 1.223 ad continue;
1612 1.223 ad
1613 1.223 ad lpri = pri;
1614 1.223 ad tci = ci;
1615 1.223 ad ci_rq = ici_rq;
1616 1.223 ad } while (ci = next, ci != first);
1617 1.223 ad
1618 1.223 ad return tci;
1619 1.223 ad }
1620 1.223 ad
1621 1.223 ad /*
1622 1.223 ad * Tries to catch an LWP from the runqueue of other CPU.
1623 1.223 ad */
1624 1.223 ad static struct lwp *
1625 1.223 ad sched_catchlwp(void)
1626 1.223 ad {
1627 1.223 ad struct cpu_info *curci = curcpu(), *ci = worker_ci;
1628 1.223 ad struct schedstate_percpu *spc;
1629 1.223 ad TAILQ_HEAD(, lwp) *q_head;
1630 1.223 ad runqueue_t *ci_rq;
1631 1.223 ad struct lwp *l;
1632 1.223 ad
1633 1.223 ad if (curci == ci)
1634 1.223 ad return NULL;
1635 1.223 ad
1636 1.223 ad /* Lockless check */
1637 1.223 ad spc = &ci->ci_schedstate;
1638 1.223 ad ci_rq = spc->spc_sched_info;
1639 1.223 ad if (ci_rq->r_mcount < min_catch)
1640 1.223 ad return NULL;
1641 1.223 ad
1642 1.223 ad /*
1643 1.223 ad * Double-lock the runqueues.
1644 1.223 ad */
1645 1.223 ad if (curci < ci) {
1646 1.223 ad spc_lock(ci);
1647 1.223 ad } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
1648 1.223 ad const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
1649 1.223 ad
1650 1.223 ad spc_unlock(curci);
1651 1.223 ad spc_lock(ci);
1652 1.223 ad spc_lock(curci);
1653 1.223 ad
1654 1.223 ad if (cur_rq->r_count) {
1655 1.223 ad spc_unlock(ci);
1656 1.223 ad return NULL;
1657 1.223 ad }
1658 1.223 ad }
1659 1.223 ad
1660 1.223 ad if (ci_rq->r_mcount < min_catch) {
1661 1.223 ad spc_unlock(ci);
1662 1.223 ad return NULL;
1663 1.223 ad }
1664 1.223 ad
1665 1.223 ad /* Take the highest priority thread */
1666 1.223 ad q_head = sched_getrq(ci_rq, spc->spc_maxpriority);
1667 1.223 ad l = TAILQ_FIRST(q_head);
1668 1.223 ad
1669 1.223 ad for (;;) {
1670 1.223 ad /* Check the first and next result from the queue */
1671 1.223 ad if (l == NULL)
1672 1.223 ad break;
1673 1.223 ad KASSERT(l->l_stat == LSRUN);
1674 1.223 ad KASSERT(l->l_flag & LW_INMEM);
1675 1.223 ad
1676 1.223 ad /* Look for threads, whose are allowed to migrate */
1677 1.224 ad if ((l->l_pflag & LP_BOUND) || lwp_cache_hot(l) ||
1678 1.223 ad !sched_migratable(l, curci)) {
1679 1.223 ad l = TAILQ_NEXT(l, l_runq);
1680 1.223 ad continue;
1681 1.223 ad }
1682 1.223 ad
1683 1.223 ad /* Grab the thread, and move to the local run queue */
1684 1.223 ad sched_dequeue(l);
1685 1.223 ad l->l_cpu = curci;
1686 1.223 ad lwp_unlock_to(l, curci->ci_schedstate.spc_mutex);
1687 1.223 ad sched_enqueue(l, false);
1688 1.223 ad return l;
1689 1.223 ad }
1690 1.223 ad spc_unlock(ci);
1691 1.223 ad
1692 1.223 ad return l;
1693 1.223 ad }
1694 1.223 ad
1695 1.223 ad /*
1696 1.223 ad * Periodical calculations for balancing.
1697 1.223 ad */
1698 1.223 ad static void
1699 1.223 ad sched_balance(void *nocallout)
1700 1.223 ad {
1701 1.223 ad struct cpu_info *ci, *hci;
1702 1.223 ad runqueue_t *ci_rq;
1703 1.223 ad CPU_INFO_ITERATOR cii;
1704 1.223 ad u_int highest;
1705 1.223 ad
1706 1.223 ad hci = curcpu();
1707 1.223 ad highest = 0;
1708 1.223 ad
1709 1.223 ad /* Make lockless countings */
1710 1.223 ad for (CPU_INFO_FOREACH(cii, ci)) {
1711 1.223 ad ci_rq = ci->ci_schedstate.spc_sched_info;
1712 1.223 ad
1713 1.223 ad /* Average count of the threads */
1714 1.223 ad ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
1715 1.223 ad
1716 1.223 ad /* Look for CPU with the highest average */
1717 1.223 ad if (ci_rq->r_avgcount > highest) {
1718 1.223 ad hci = ci;
1719 1.223 ad highest = ci_rq->r_avgcount;
1720 1.223 ad }
1721 1.223 ad }
1722 1.223 ad
1723 1.223 ad /* Update the worker */
1724 1.223 ad worker_ci = hci;
1725 1.223 ad
1726 1.223 ad if (nocallout == NULL)
1727 1.223 ad callout_schedule(&balance_ch, balance_period);
1728 1.223 ad }
1729 1.223 ad
1730 1.223 ad #else
1731 1.223 ad
1732 1.223 ad struct cpu_info *
1733 1.223 ad sched_takecpu(struct lwp *l)
1734 1.223 ad {
1735 1.223 ad
1736 1.223 ad return l->l_cpu;
1737 1.223 ad }
1738 1.223 ad
1739 1.223 ad #endif /* MULTIPROCESSOR */
1740 1.223 ad
1741 1.223 ad /*
1742 1.223 ad * Scheduler mill.
1743 1.223 ad */
1744 1.223 ad struct lwp *
1745 1.223 ad sched_nextlwp(void)
1746 1.223 ad {
1747 1.223 ad struct cpu_info *ci = curcpu();
1748 1.223 ad struct schedstate_percpu *spc;
1749 1.223 ad TAILQ_HEAD(, lwp) *q_head;
1750 1.223 ad runqueue_t *ci_rq;
1751 1.223 ad struct lwp *l;
1752 1.223 ad
1753 1.223 ad spc = &ci->ci_schedstate;
1754 1.223 ad ci_rq = spc->spc_sched_info;
1755 1.223 ad
1756 1.223 ad #ifdef MULTIPROCESSOR
1757 1.223 ad /* If runqueue is empty, try to catch some thread from other CPU */
1758 1.223 ad if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
1759 1.223 ad if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
1760 1.223 ad return NULL;
1761 1.223 ad } else if (ci_rq->r_count == 0) {
1762 1.223 ad /* Reset the counter, and call the balancer */
1763 1.223 ad ci_rq->r_avgcount = 0;
1764 1.223 ad sched_balance(ci);
1765 1.223 ad
1766 1.223 ad /* The re-locking will be done inside */
1767 1.223 ad return sched_catchlwp();
1768 1.223 ad }
1769 1.223 ad #else
1770 1.223 ad if (ci_rq->r_count == 0)
1771 1.223 ad return NULL;
1772 1.223 ad #endif
1773 1.223 ad
1774 1.223 ad /* Take the highest priority thread */
1775 1.223 ad KASSERT(ci_rq->r_bitmap[spc->spc_maxpriority >> BITMAP_SHIFT]);
1776 1.223 ad q_head = sched_getrq(ci_rq, spc->spc_maxpriority);
1777 1.223 ad l = TAILQ_FIRST(q_head);
1778 1.223 ad KASSERT(l != NULL);
1779 1.223 ad
1780 1.223 ad sched_oncpu(l);
1781 1.223 ad l->l_rticks = hardclock_ticks;
1782 1.223 ad
1783 1.223 ad return l;
1784 1.223 ad }
1785 1.223 ad
1786 1.223 ad bool
1787 1.223 ad sched_curcpu_runnable_p(void)
1788 1.223 ad {
1789 1.231 ad const struct cpu_info *ci;
1790 1.231 ad const runqueue_t *ci_rq;
1791 1.231 ad bool rv;
1792 1.231 ad
1793 1.231 ad kpreempt_disable();
1794 1.231 ad ci = curcpu();
1795 1.231 ad ci_rq = ci->ci_schedstate.spc_sched_info;
1796 1.223 ad
1797 1.223 ad #ifndef __HAVE_FAST_SOFTINTS
1798 1.231 ad if (ci->ci_data.cpu_softints) {
1799 1.231 ad kpreempt_enable();
1800 1.223 ad return true;
1801 1.231 ad }
1802 1.223 ad #endif
1803 1.223 ad
1804 1.223 ad if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
1805 1.231 ad rv = (ci_rq->r_count - ci_rq->r_mcount);
1806 1.231 ad else
1807 1.231 ad rv = ci_rq->r_count != 0;
1808 1.231 ad kpreempt_enable();
1809 1.223 ad
1810 1.231 ad return rv;
1811 1.223 ad }
1812 1.223 ad
1813 1.223 ad /*
1814 1.223 ad * Debugging.
1815 1.223 ad */
1816 1.223 ad
1817 1.223 ad #ifdef DDB
1818 1.223 ad
1819 1.223 ad void
1820 1.227 yamt sched_print_runqueue(void (*pr)(const char *, ...)
1821 1.227 yamt __attribute__((__format__(__printf__,1,2))))
1822 1.223 ad {
1823 1.223 ad runqueue_t *ci_rq;
1824 1.223 ad struct schedstate_percpu *spc;
1825 1.223 ad struct lwp *l;
1826 1.223 ad struct proc *p;
1827 1.223 ad int i;
1828 1.223 ad struct cpu_info *ci;
1829 1.223 ad CPU_INFO_ITERATOR cii;
1830 1.223 ad
1831 1.223 ad for (CPU_INFO_FOREACH(cii, ci)) {
1832 1.223 ad spc = &ci->ci_schedstate;
1833 1.223 ad ci_rq = spc->spc_sched_info;
1834 1.223 ad
1835 1.223 ad (*pr)("Run-queue (CPU = %u):\n", ci->ci_index);
1836 1.223 ad (*pr)(" pid.lid = %d.%d, threads count = %u, "
1837 1.223 ad "avgcount = %u, highest pri = %d\n",
1838 1.225 dogcow #ifdef MULTIPROCESSOR
1839 1.223 ad ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1840 1.225 dogcow #else
1841 1.225 dogcow curlwp->l_proc->p_pid, curlwp->l_lid,
1842 1.225 dogcow #endif
1843 1.223 ad ci_rq->r_count, ci_rq->r_avgcount, spc->spc_maxpriority);
1844 1.223 ad i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1845 1.223 ad do {
1846 1.223 ad uint32_t q;
1847 1.223 ad q = ci_rq->r_bitmap[i];
1848 1.223 ad (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1849 1.223 ad } while (i--);
1850 1.223 ad }
1851 1.223 ad
1852 1.226 yamt (*pr)(" %5s %4s %4s %10s %3s %18s %4s %s\n",
1853 1.223 ad "LID", "PRI", "EPRI", "FL", "ST", "LWP", "CPU", "LRTIME");
1854 1.223 ad
1855 1.223 ad PROCLIST_FOREACH(p, &allproc) {
1856 1.223 ad (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1857 1.223 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1858 1.223 ad ci = l->l_cpu;
1859 1.226 yamt (*pr)(" | %5d %4u %4u 0x%8.8x %3s %18p %4u %u\n",
1860 1.223 ad (int)l->l_lid, l->l_priority, lwp_eprio(l),
1861 1.223 ad l->l_flag, l->l_stat == LSRUN ? "RQ" :
1862 1.223 ad (l->l_stat == LSSLEEP ? "SQ" : "-"),
1863 1.223 ad l, ci->ci_index,
1864 1.223 ad (u_int)(hardclock_ticks - l->l_rticks));
1865 1.223 ad }
1866 1.223 ad }
1867 1.223 ad }
1868 1.223 ad
1869 1.223 ad #endif
1870