kern_synch.c revision 1.233 1 1.233 martin /* $NetBSD: kern_synch.c,v 1.233 2008/04/28 20:24:03 martin Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.218 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej *
21 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
32 1.63 thorpej */
33 1.26 cgd
34 1.223 ad /*
35 1.223 ad * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
36 1.223 ad * All rights reserved.
37 1.223 ad *
38 1.223 ad * Redistribution and use in source and binary forms, with or without
39 1.223 ad * modification, are permitted provided that the following conditions
40 1.223 ad * are met:
41 1.223 ad * 1. Redistributions of source code must retain the above copyright
42 1.223 ad * notice, this list of conditions and the following disclaimer.
43 1.223 ad * 2. Redistributions in binary form must reproduce the above copyright
44 1.223 ad * notice, this list of conditions and the following disclaimer in the
45 1.223 ad * documentation and/or other materials provided with the distribution.
46 1.223 ad *
47 1.223 ad * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
48 1.223 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 1.223 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 1.223 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
51 1.223 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 1.223 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 1.223 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 1.223 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 1.223 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 1.223 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 1.223 ad * SUCH DAMAGE.
58 1.223 ad */
59 1.223 ad
60 1.26 cgd /*-
61 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
62 1.26 cgd * The Regents of the University of California. All rights reserved.
63 1.26 cgd * (c) UNIX System Laboratories, Inc.
64 1.26 cgd * All or some portions of this file are derived from material licensed
65 1.26 cgd * to the University of California by American Telephone and Telegraph
66 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
67 1.26 cgd * the permission of UNIX System Laboratories, Inc.
68 1.26 cgd *
69 1.26 cgd * Redistribution and use in source and binary forms, with or without
70 1.26 cgd * modification, are permitted provided that the following conditions
71 1.26 cgd * are met:
72 1.26 cgd * 1. Redistributions of source code must retain the above copyright
73 1.26 cgd * notice, this list of conditions and the following disclaimer.
74 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
75 1.26 cgd * notice, this list of conditions and the following disclaimer in the
76 1.26 cgd * documentation and/or other materials provided with the distribution.
77 1.136 agc * 3. Neither the name of the University nor the names of its contributors
78 1.26 cgd * may be used to endorse or promote products derived from this software
79 1.26 cgd * without specific prior written permission.
80 1.26 cgd *
81 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
82 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
83 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
84 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
85 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
86 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
87 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
88 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
89 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
90 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
91 1.26 cgd * SUCH DAMAGE.
92 1.26 cgd *
93 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
94 1.26 cgd */
95 1.106 lukem
96 1.106 lukem #include <sys/cdefs.h>
97 1.233 martin __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.233 2008/04/28 20:24:03 martin Exp $");
98 1.48 mrg
99 1.109 yamt #include "opt_kstack.h"
100 1.82 thorpej #include "opt_lockdebug.h"
101 1.83 thorpej #include "opt_multiprocessor.h"
102 1.110 briggs #include "opt_perfctrs.h"
103 1.231 ad #include "opt_preemption.h"
104 1.26 cgd
105 1.174 ad #define __MUTEX_PRIVATE
106 1.174 ad
107 1.26 cgd #include <sys/param.h>
108 1.26 cgd #include <sys/systm.h>
109 1.26 cgd #include <sys/proc.h>
110 1.26 cgd #include <sys/kernel.h>
111 1.111 briggs #if defined(PERFCTRS)
112 1.110 briggs #include <sys/pmc.h>
113 1.111 briggs #endif
114 1.188 yamt #include <sys/cpu.h>
115 1.26 cgd #include <sys/resourcevar.h>
116 1.55 ross #include <sys/sched.h>
117 1.179 dsl #include <sys/syscall_stats.h>
118 1.174 ad #include <sys/sleepq.h>
119 1.174 ad #include <sys/lockdebug.h>
120 1.190 ad #include <sys/evcnt.h>
121 1.199 ad #include <sys/intr.h>
122 1.207 ad #include <sys/lwpctl.h>
123 1.209 ad #include <sys/atomic.h>
124 1.215 ad #include <sys/simplelock.h>
125 1.223 ad #include <sys/bitops.h>
126 1.223 ad #include <sys/kmem.h>
127 1.223 ad #include <sys/sysctl.h>
128 1.223 ad #include <sys/idle.h>
129 1.47 mrg
130 1.47 mrg #include <uvm/uvm_extern.h>
131 1.47 mrg
132 1.231 ad #include <dev/lockstat.h>
133 1.231 ad
134 1.223 ad /*
135 1.223 ad * Priority related defintions.
136 1.223 ad */
137 1.223 ad #define PRI_TS_COUNT (NPRI_USER)
138 1.223 ad #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
139 1.223 ad #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
140 1.223 ad
141 1.223 ad #define PRI_HIGHEST_TS (MAXPRI_USER)
142 1.223 ad
143 1.223 ad /*
144 1.223 ad * Bits per map.
145 1.223 ad */
146 1.223 ad #define BITMAP_BITS (32)
147 1.223 ad #define BITMAP_SHIFT (5)
148 1.223 ad #define BITMAP_MSB (0x80000000U)
149 1.223 ad #define BITMAP_MASK (BITMAP_BITS - 1)
150 1.223 ad
151 1.223 ad /*
152 1.223 ad * Structures, runqueue.
153 1.223 ad */
154 1.34 christos
155 1.223 ad typedef struct {
156 1.223 ad TAILQ_HEAD(, lwp) q_head;
157 1.223 ad } queue_t;
158 1.223 ad
159 1.223 ad typedef struct {
160 1.223 ad /* Lock and bitmap */
161 1.223 ad uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
162 1.223 ad /* Counters */
163 1.223 ad u_int r_count; /* Count of the threads */
164 1.223 ad u_int r_avgcount; /* Average count of threads */
165 1.223 ad u_int r_mcount; /* Count of migratable threads */
166 1.223 ad /* Runqueues */
167 1.223 ad queue_t r_rt_queue[PRI_RT_COUNT];
168 1.223 ad queue_t r_ts_queue[PRI_TS_COUNT];
169 1.223 ad } runqueue_t;
170 1.26 cgd
171 1.221 ad static u_int sched_unsleep(struct lwp *, bool);
172 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
173 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
174 1.223 ad static void *sched_getrq(runqueue_t *, const pri_t);
175 1.223 ad #ifdef MULTIPROCESSOR
176 1.223 ad static lwp_t *sched_catchlwp(void);
177 1.223 ad static void sched_balance(void *);
178 1.223 ad #endif
179 1.122 thorpej
180 1.174 ad syncobj_t sleep_syncobj = {
181 1.174 ad SOBJ_SLEEPQ_SORTED,
182 1.174 ad sleepq_unsleep,
183 1.184 yamt sleepq_changepri,
184 1.184 yamt sleepq_lendpri,
185 1.184 yamt syncobj_noowner,
186 1.174 ad };
187 1.174 ad
188 1.174 ad syncobj_t sched_syncobj = {
189 1.174 ad SOBJ_SLEEPQ_SORTED,
190 1.174 ad sched_unsleep,
191 1.184 yamt sched_changepri,
192 1.184 yamt sched_lendpri,
193 1.184 yamt syncobj_noowner,
194 1.174 ad };
195 1.122 thorpej
196 1.223 ad const int schedppq = 1;
197 1.223 ad callout_t sched_pstats_ch;
198 1.223 ad unsigned sched_pstats_ticks;
199 1.223 ad kcondvar_t lbolt; /* once a second sleep address */
200 1.223 ad
201 1.223 ad /*
202 1.231 ad * Kernel preemption.
203 1.231 ad */
204 1.231 ad #ifdef PREEMPTION
205 1.232 ad #if 0
206 1.231 ad int sched_kpreempt_pri = PRI_USER_RT;
207 1.232 ad #else
208 1.232 ad /* XXX disable for now until any bugs are worked out. */
209 1.232 ad int sched_kpreempt_pri = 1000;
210 1.232 ad #endif
211 1.231 ad
212 1.231 ad static struct evcnt kpreempt_ev_crit;
213 1.231 ad static struct evcnt kpreempt_ev_klock;
214 1.231 ad static struct evcnt kpreempt_ev_ipl;
215 1.231 ad static struct evcnt kpreempt_ev_immed;
216 1.231 ad #else
217 1.231 ad int sched_kpreempt_pri = INT_MAX;
218 1.231 ad #endif
219 1.231 ad int sched_upreempt_pri = PRI_KERNEL;
220 1.231 ad
221 1.231 ad /*
222 1.223 ad * Migration and balancing.
223 1.223 ad */
224 1.223 ad static u_int cacheht_time; /* Cache hotness time */
225 1.223 ad static u_int min_catch; /* Minimal LWP count for catching */
226 1.223 ad static u_int balance_period; /* Balance period */
227 1.223 ad static struct cpu_info *worker_ci; /* Victim CPU */
228 1.223 ad #ifdef MULTIPROCESSOR
229 1.223 ad static struct callout balance_ch; /* Callout of balancer */
230 1.223 ad #endif
231 1.223 ad
232 1.26 cgd /*
233 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
234 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
235 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
236 1.174 ad * maintained in the machine-dependent layers. This priority will typically
237 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
238 1.174 ad * it can be made higher to block network software interrupts after panics.
239 1.26 cgd */
240 1.174 ad int safepri;
241 1.26 cgd
242 1.26 cgd /*
243 1.174 ad * OBSOLETE INTERFACE
244 1.174 ad *
245 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
246 1.26 cgd * performed on the specified identifier. The process will then be made
247 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
248 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
249 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
250 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
251 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
252 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
253 1.26 cgd * call should be interrupted by the signal (return EINTR).
254 1.77 thorpej *
255 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
256 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
257 1.174 ad * is specified, in which case the interlock will always be unlocked upon
258 1.174 ad * return.
259 1.26 cgd */
260 1.26 cgd int
261 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
262 1.174 ad volatile struct simplelock *interlock)
263 1.26 cgd {
264 1.122 thorpej struct lwp *l = curlwp;
265 1.174 ad sleepq_t *sq;
266 1.188 yamt int error;
267 1.26 cgd
268 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
269 1.204 ad
270 1.174 ad if (sleepq_dontsleep(l)) {
271 1.174 ad (void)sleepq_abort(NULL, 0);
272 1.174 ad if ((priority & PNORELOCK) != 0)
273 1.77 thorpej simple_unlock(interlock);
274 1.174 ad return 0;
275 1.26 cgd }
276 1.78 sommerfe
277 1.204 ad l->l_kpriority = true;
278 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
279 1.174 ad sleepq_enter(sq, l);
280 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
281 1.42 cgd
282 1.174 ad if (interlock != NULL) {
283 1.204 ad KASSERT(simple_lock_held(interlock));
284 1.174 ad simple_unlock(interlock);
285 1.150 chs }
286 1.150 chs
287 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
288 1.126 pk
289 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
290 1.126 pk simple_lock(interlock);
291 1.174 ad
292 1.174 ad return error;
293 1.26 cgd }
294 1.26 cgd
295 1.187 ad int
296 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
297 1.187 ad kmutex_t *mtx)
298 1.187 ad {
299 1.187 ad struct lwp *l = curlwp;
300 1.187 ad sleepq_t *sq;
301 1.188 yamt int error;
302 1.187 ad
303 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
304 1.204 ad
305 1.187 ad if (sleepq_dontsleep(l)) {
306 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
307 1.187 ad return 0;
308 1.187 ad }
309 1.187 ad
310 1.204 ad l->l_kpriority = true;
311 1.187 ad sq = sleeptab_lookup(&sleeptab, ident);
312 1.187 ad sleepq_enter(sq, l);
313 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
314 1.187 ad mutex_exit(mtx);
315 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
316 1.187 ad
317 1.187 ad if ((priority & PNORELOCK) == 0)
318 1.187 ad mutex_enter(mtx);
319 1.187 ad
320 1.187 ad return error;
321 1.187 ad }
322 1.187 ad
323 1.26 cgd /*
324 1.174 ad * General sleep call for situations where a wake-up is not expected.
325 1.26 cgd */
326 1.174 ad int
327 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
328 1.26 cgd {
329 1.174 ad struct lwp *l = curlwp;
330 1.174 ad sleepq_t *sq;
331 1.174 ad int error;
332 1.26 cgd
333 1.174 ad if (sleepq_dontsleep(l))
334 1.174 ad return sleepq_abort(NULL, 0);
335 1.26 cgd
336 1.174 ad if (mtx != NULL)
337 1.174 ad mutex_exit(mtx);
338 1.204 ad l->l_kpriority = true;
339 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
340 1.174 ad sleepq_enter(sq, l);
341 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
342 1.188 yamt error = sleepq_block(timo, intr);
343 1.174 ad if (mtx != NULL)
344 1.174 ad mutex_enter(mtx);
345 1.83 thorpej
346 1.174 ad return error;
347 1.139 cl }
348 1.139 cl
349 1.26 cgd /*
350 1.174 ad * OBSOLETE INTERFACE
351 1.174 ad *
352 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
353 1.26 cgd */
354 1.26 cgd void
355 1.174 ad wakeup(wchan_t ident)
356 1.26 cgd {
357 1.174 ad sleepq_t *sq;
358 1.83 thorpej
359 1.174 ad if (cold)
360 1.174 ad return;
361 1.83 thorpej
362 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
363 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
364 1.63 thorpej }
365 1.63 thorpej
366 1.63 thorpej /*
367 1.174 ad * OBSOLETE INTERFACE
368 1.174 ad *
369 1.63 thorpej * Make the highest priority process first in line on the specified
370 1.63 thorpej * identifier runnable.
371 1.63 thorpej */
372 1.174 ad void
373 1.174 ad wakeup_one(wchan_t ident)
374 1.63 thorpej {
375 1.174 ad sleepq_t *sq;
376 1.63 thorpej
377 1.174 ad if (cold)
378 1.174 ad return;
379 1.188 yamt
380 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
381 1.174 ad sleepq_wake(sq, ident, 1);
382 1.174 ad }
383 1.63 thorpej
384 1.117 gmcgarry
385 1.117 gmcgarry /*
386 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
387 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
388 1.198 ad * current process explicitly requests it (eg sched_yield(2)).
389 1.117 gmcgarry */
390 1.117 gmcgarry void
391 1.117 gmcgarry yield(void)
392 1.117 gmcgarry {
393 1.122 thorpej struct lwp *l = curlwp;
394 1.117 gmcgarry
395 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
396 1.174 ad lwp_lock(l);
397 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
398 1.188 yamt KASSERT(l->l_stat == LSONPROC);
399 1.204 ad l->l_kpriority = false;
400 1.188 yamt (void)mi_switch(l);
401 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
402 1.69 thorpej }
403 1.69 thorpej
404 1.69 thorpej /*
405 1.69 thorpej * General preemption call. Puts the current process back on its run queue
406 1.156 rpaulo * and performs an involuntary context switch.
407 1.69 thorpej */
408 1.69 thorpej void
409 1.174 ad preempt(void)
410 1.69 thorpej {
411 1.122 thorpej struct lwp *l = curlwp;
412 1.69 thorpej
413 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
414 1.174 ad lwp_lock(l);
415 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
416 1.188 yamt KASSERT(l->l_stat == LSONPROC);
417 1.204 ad l->l_kpriority = false;
418 1.174 ad l->l_nivcsw++;
419 1.188 yamt (void)mi_switch(l);
420 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
421 1.69 thorpej }
422 1.69 thorpej
423 1.231 ad #ifdef PREEMPTION
424 1.231 ad /* XXX Yuck, for lockstat. */
425 1.231 ad static char in_critical_section;
426 1.231 ad static char kernel_lock_held;
427 1.231 ad static char spl_raised;
428 1.231 ad static char is_softint;
429 1.231 ad
430 1.231 ad /*
431 1.231 ad * Handle a request made by another agent to preempt the current LWP
432 1.231 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
433 1.231 ad */
434 1.231 ad bool
435 1.231 ad kpreempt(uintptr_t where)
436 1.231 ad {
437 1.231 ad uintptr_t failed;
438 1.231 ad lwp_t *l;
439 1.231 ad int s, dop;
440 1.231 ad
441 1.231 ad l = curlwp;
442 1.231 ad failed = 0;
443 1.231 ad while ((dop = l->l_dopreempt) != 0) {
444 1.231 ad if (l->l_stat != LSONPROC) {
445 1.231 ad /*
446 1.231 ad * About to block (or die), let it happen.
447 1.231 ad * Doesn't really count as "preemption has
448 1.231 ad * been blocked", since we're going to
449 1.231 ad * context switch.
450 1.231 ad */
451 1.231 ad l->l_dopreempt = 0;
452 1.231 ad return true;
453 1.231 ad }
454 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
455 1.231 ad /* Can't preempt idle loop, don't count as failure. */
456 1.231 ad l->l_dopreempt = 0;
457 1.231 ad return true;
458 1.231 ad }
459 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
460 1.231 ad /* LWP holds preemption disabled, explicitly. */
461 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
462 1.231 ad atomic_inc_64(&kpreempt_ev_crit.ev_count);
463 1.231 ad }
464 1.231 ad failed = (uintptr_t)&in_critical_section;
465 1.231 ad break;
466 1.231 ad }
467 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
468 1.231 ad /* Can't preempt soft interrupts yet. */
469 1.231 ad l->l_dopreempt = 0;
470 1.231 ad failed = (uintptr_t)&is_softint;
471 1.231 ad break;
472 1.231 ad }
473 1.231 ad s = splsched();
474 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
475 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
476 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
477 1.231 ad splx(s);
478 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
479 1.231 ad atomic_inc_64(&kpreempt_ev_klock.ev_count);
480 1.231 ad }
481 1.231 ad failed = (uintptr_t)&kernel_lock_held;
482 1.231 ad break;
483 1.231 ad }
484 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
485 1.231 ad /*
486 1.231 ad * It may be that the IPL is too high.
487 1.231 ad * kpreempt_enter() can schedule an
488 1.231 ad * interrupt to retry later.
489 1.231 ad */
490 1.231 ad splx(s);
491 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
492 1.231 ad atomic_inc_64(&kpreempt_ev_ipl.ev_count);
493 1.231 ad }
494 1.231 ad failed = (uintptr_t)&spl_raised;
495 1.231 ad break;
496 1.231 ad }
497 1.231 ad /* Do it! */
498 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
499 1.231 ad atomic_inc_64(&kpreempt_ev_immed.ev_count);
500 1.231 ad }
501 1.231 ad lwp_lock(l);
502 1.231 ad mi_switch(l);
503 1.231 ad l->l_nopreempt++;
504 1.231 ad splx(s);
505 1.231 ad
506 1.231 ad /* Take care of any MD cleanup. */
507 1.231 ad cpu_kpreempt_exit(where);
508 1.231 ad l->l_nopreempt--;
509 1.231 ad }
510 1.231 ad
511 1.231 ad /* Record preemption failure for reporting via lockstat. */
512 1.231 ad if (__predict_false(failed)) {
513 1.231 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
514 1.231 ad int lsflag = 0;
515 1.231 ad LOCKSTAT_ENTER(lsflag);
516 1.231 ad /* Might recurse, make it atomic. */
517 1.231 ad if (__predict_false(lsflag)) {
518 1.231 ad if (where == 0) {
519 1.231 ad where = (uintptr_t)__builtin_return_address(0);
520 1.231 ad }
521 1.231 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
522 1.231 ad NULL, (void *)where) == NULL) {
523 1.231 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
524 1.231 ad l->l_pfaillock = failed;
525 1.231 ad }
526 1.231 ad }
527 1.231 ad LOCKSTAT_EXIT(lsflag);
528 1.231 ad }
529 1.231 ad
530 1.231 ad return failed;
531 1.231 ad }
532 1.231 ad
533 1.69 thorpej /*
534 1.231 ad * Return true if preemption is explicitly disabled.
535 1.230 ad */
536 1.231 ad bool
537 1.231 ad kpreempt_disabled(void)
538 1.231 ad {
539 1.231 ad lwp_t *l;
540 1.231 ad
541 1.231 ad l = curlwp;
542 1.231 ad
543 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
544 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
545 1.231 ad }
546 1.231 ad #else
547 1.231 ad bool
548 1.231 ad kpreempt(uintptr_t where)
549 1.231 ad {
550 1.231 ad
551 1.231 ad panic("kpreempt");
552 1.231 ad return true;
553 1.231 ad }
554 1.231 ad
555 1.231 ad bool
556 1.231 ad kpreempt_disabled(void)
557 1.230 ad {
558 1.230 ad
559 1.231 ad return true;
560 1.230 ad }
561 1.231 ad #endif
562 1.230 ad
563 1.230 ad /*
564 1.231 ad * Disable kernel preemption.
565 1.230 ad */
566 1.230 ad void
567 1.231 ad kpreempt_disable(void)
568 1.230 ad {
569 1.230 ad
570 1.231 ad KPREEMPT_DISABLE(curlwp);
571 1.230 ad }
572 1.230 ad
573 1.230 ad /*
574 1.231 ad * Reenable kernel preemption.
575 1.230 ad */
576 1.231 ad void
577 1.231 ad kpreempt_enable(void)
578 1.230 ad {
579 1.230 ad
580 1.231 ad KPREEMPT_ENABLE(curlwp);
581 1.230 ad }
582 1.230 ad
583 1.230 ad /*
584 1.188 yamt * Compute the amount of time during which the current lwp was running.
585 1.130 nathanw *
586 1.188 yamt * - update l_rtime unless it's an idle lwp.
587 1.188 yamt */
588 1.188 yamt
589 1.199 ad void
590 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
591 1.188 yamt {
592 1.188 yamt
593 1.199 ad if ((l->l_flag & LW_IDLE) != 0)
594 1.188 yamt return;
595 1.188 yamt
596 1.212 yamt /* rtime += now - stime */
597 1.212 yamt bintime_add(&l->l_rtime, now);
598 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
599 1.188 yamt }
600 1.188 yamt
601 1.188 yamt /*
602 1.188 yamt * The machine independent parts of context switch.
603 1.188 yamt *
604 1.188 yamt * Returns 1 if another LWP was actually run.
605 1.26 cgd */
606 1.122 thorpej int
607 1.199 ad mi_switch(lwp_t *l)
608 1.26 cgd {
609 1.216 rmind struct cpu_info *ci, *tci = NULL;
610 1.76 thorpej struct schedstate_percpu *spc;
611 1.188 yamt struct lwp *newl;
612 1.174 ad int retval, oldspl;
613 1.212 yamt struct bintime bt;
614 1.199 ad bool returning;
615 1.26 cgd
616 1.188 yamt KASSERT(lwp_locked(l, NULL));
617 1.231 ad KASSERT(kpreempt_disabled());
618 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
619 1.174 ad
620 1.174 ad #ifdef KSTACK_CHECK_MAGIC
621 1.174 ad kstack_check_magic(l);
622 1.174 ad #endif
623 1.83 thorpej
624 1.212 yamt binuptime(&bt);
625 1.199 ad
626 1.231 ad KASSERT(l->l_cpu == curcpu());
627 1.196 ad ci = l->l_cpu;
628 1.196 ad spc = &ci->ci_schedstate;
629 1.199 ad returning = false;
630 1.190 ad newl = NULL;
631 1.190 ad
632 1.199 ad /*
633 1.199 ad * If we have been asked to switch to a specific LWP, then there
634 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
635 1.199 ad * blocking, then return to the interrupted thread without adjusting
636 1.199 ad * VM context or its start time: neither have been changed in order
637 1.199 ad * to take the interrupt.
638 1.199 ad */
639 1.190 ad if (l->l_switchto != NULL) {
640 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
641 1.199 ad returning = true;
642 1.199 ad softint_block(l);
643 1.199 ad if ((l->l_flag & LW_TIMEINTR) != 0)
644 1.212 yamt updatertime(l, &bt);
645 1.199 ad }
646 1.190 ad newl = l->l_switchto;
647 1.190 ad l->l_switchto = NULL;
648 1.190 ad }
649 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
650 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
651 1.204 ad /* There are pending soft interrupts, so pick one. */
652 1.204 ad newl = softint_picklwp();
653 1.204 ad newl->l_stat = LSONPROC;
654 1.204 ad newl->l_flag |= LW_RUNNING;
655 1.204 ad }
656 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
657 1.190 ad
658 1.180 dsl /* Count time spent in current system call */
659 1.199 ad if (!returning) {
660 1.199 ad SYSCALL_TIME_SLEEP(l);
661 1.180 dsl
662 1.199 ad /*
663 1.199 ad * XXXSMP If we are using h/w performance counters,
664 1.199 ad * save context.
665 1.199 ad */
666 1.174 ad #if PERFCTRS
667 1.199 ad if (PMC_ENABLED(l->l_proc)) {
668 1.199 ad pmc_save_context(l->l_proc);
669 1.199 ad }
670 1.199 ad #endif
671 1.212 yamt updatertime(l, &bt);
672 1.174 ad }
673 1.113 gmcgarry
674 1.113 gmcgarry /*
675 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
676 1.113 gmcgarry */
677 1.174 ad KASSERT(l->l_stat != LSRUN);
678 1.216 rmind if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
679 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
680 1.216 rmind
681 1.220 rmind if (l->l_target_cpu == l->l_cpu) {
682 1.220 rmind l->l_target_cpu = NULL;
683 1.220 rmind } else {
684 1.220 rmind tci = l->l_target_cpu;
685 1.220 rmind }
686 1.220 rmind
687 1.216 rmind if (__predict_false(tci != NULL)) {
688 1.216 rmind /* Double-lock the runqueues */
689 1.216 rmind spc_dlock(ci, tci);
690 1.216 rmind } else {
691 1.216 rmind /* Lock the runqueue */
692 1.216 rmind spc_lock(ci);
693 1.216 rmind }
694 1.216 rmind
695 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
696 1.188 yamt l->l_stat = LSRUN;
697 1.216 rmind if (__predict_false(tci != NULL)) {
698 1.216 rmind /*
699 1.216 rmind * Set the new CPU, lock and unset the
700 1.216 rmind * l_target_cpu - thread will be enqueued
701 1.216 rmind * to the runqueue of target CPU.
702 1.216 rmind */
703 1.216 rmind l->l_cpu = tci;
704 1.216 rmind lwp_setlock(l, tci->ci_schedstate.spc_mutex);
705 1.216 rmind l->l_target_cpu = NULL;
706 1.216 rmind } else {
707 1.216 rmind lwp_setlock(l, spc->spc_mutex);
708 1.216 rmind }
709 1.188 yamt sched_enqueue(l, true);
710 1.216 rmind } else {
711 1.216 rmind KASSERT(tci == NULL);
712 1.188 yamt l->l_stat = LSIDL;
713 1.216 rmind }
714 1.216 rmind } else {
715 1.216 rmind /* Lock the runqueue */
716 1.216 rmind spc_lock(ci);
717 1.174 ad }
718 1.174 ad
719 1.174 ad /*
720 1.201 rmind * Let sched_nextlwp() select the LWP to run the CPU next.
721 1.209 ad * If no LWP is runnable, select the idle LWP.
722 1.209 ad *
723 1.209 ad * Note that spc_lwplock might not necessary be held, and
724 1.209 ad * new thread would be unlocked after setting the LWP-lock.
725 1.174 ad */
726 1.190 ad if (newl == NULL) {
727 1.190 ad newl = sched_nextlwp();
728 1.190 ad if (newl != NULL) {
729 1.190 ad sched_dequeue(newl);
730 1.190 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
731 1.190 ad newl->l_stat = LSONPROC;
732 1.196 ad newl->l_cpu = ci;
733 1.190 ad newl->l_flag |= LW_RUNNING;
734 1.217 ad lwp_setlock(newl, spc->spc_lwplock);
735 1.190 ad } else {
736 1.196 ad newl = ci->ci_data.cpu_idlelwp;
737 1.190 ad newl->l_stat = LSONPROC;
738 1.190 ad newl->l_flag |= LW_RUNNING;
739 1.190 ad }
740 1.204 ad /*
741 1.204 ad * Only clear want_resched if there are no
742 1.204 ad * pending (slow) software interrupts.
743 1.204 ad */
744 1.204 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
745 1.199 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
746 1.204 ad spc->spc_curpriority = lwp_eprio(newl);
747 1.199 ad }
748 1.199 ad
749 1.204 ad /* Items that must be updated with the CPU locked. */
750 1.199 ad if (!returning) {
751 1.204 ad /* Update the new LWP's start time. */
752 1.212 yamt newl->l_stime = bt;
753 1.204 ad
754 1.199 ad /*
755 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
756 1.204 ad * We use cpu_onproc to keep track of which kernel or
757 1.204 ad * user thread is running 'underneath' the software
758 1.204 ad * interrupt. This is important for time accounting,
759 1.204 ad * itimers and forcing user threads to preempt (aston).
760 1.199 ad */
761 1.204 ad ci->ci_data.cpu_onproc = newl;
762 1.188 yamt }
763 1.188 yamt
764 1.231 ad /* Kernel preemption related tasks. */
765 1.231 ad l->l_dopreempt = 0;
766 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
767 1.231 ad LOCKSTAT_FLAG(lsflag);
768 1.231 ad LOCKSTAT_ENTER(lsflag);
769 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
770 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
771 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
772 1.231 ad LOCKSTAT_EXIT(lsflag);
773 1.231 ad l->l_pfailtime = 0;
774 1.231 ad l->l_pfaillock = 0;
775 1.231 ad l->l_pfailaddr = 0;
776 1.231 ad }
777 1.231 ad
778 1.188 yamt if (l != newl) {
779 1.188 yamt struct lwp *prevlwp;
780 1.174 ad
781 1.209 ad /* Release all locks, but leave the current LWP locked */
782 1.216 rmind if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
783 1.216 rmind /*
784 1.216 rmind * In case of migration, drop the local runqueue
785 1.216 rmind * lock, thread is on other runqueue now.
786 1.216 rmind */
787 1.216 rmind if (__predict_false(tci != NULL))
788 1.216 rmind spc_unlock(ci);
789 1.209 ad /*
790 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
791 1.209 ad * to the run queue (it is now locked by spc_mutex).
792 1.209 ad */
793 1.217 ad mutex_spin_exit(spc->spc_lwplock);
794 1.188 yamt } else {
795 1.209 ad /*
796 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
797 1.209 ad * run queues.
798 1.209 ad */
799 1.188 yamt mutex_spin_exit(spc->spc_mutex);
800 1.216 rmind KASSERT(tci == NULL);
801 1.188 yamt }
802 1.188 yamt
803 1.209 ad /*
804 1.209 ad * Mark that context switch is going to be perfomed
805 1.209 ad * for this LWP, to protect it from being switched
806 1.209 ad * to on another CPU.
807 1.209 ad */
808 1.209 ad KASSERT(l->l_ctxswtch == 0);
809 1.209 ad l->l_ctxswtch = 1;
810 1.209 ad l->l_ncsw++;
811 1.209 ad l->l_flag &= ~LW_RUNNING;
812 1.209 ad
813 1.209 ad /*
814 1.209 ad * Increase the count of spin-mutexes before the release
815 1.209 ad * of the last lock - we must remain at IPL_SCHED during
816 1.209 ad * the context switch.
817 1.209 ad */
818 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
819 1.209 ad ci->ci_mtx_count--;
820 1.209 ad lwp_unlock(l);
821 1.209 ad
822 1.218 ad /* Count the context switch on this CPU. */
823 1.218 ad ci->ci_data.cpu_nswtch++;
824 1.188 yamt
825 1.209 ad /* Update status for lwpctl, if present. */
826 1.209 ad if (l->l_lwpctl != NULL)
827 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
828 1.209 ad
829 1.199 ad /*
830 1.199 ad * Save old VM context, unless a soft interrupt
831 1.199 ad * handler is blocking.
832 1.199 ad */
833 1.199 ad if (!returning)
834 1.199 ad pmap_deactivate(l);
835 1.188 yamt
836 1.209 ad /*
837 1.209 ad * We may need to spin-wait for if 'newl' is still
838 1.209 ad * context switching on another CPU.
839 1.209 ad */
840 1.209 ad if (newl->l_ctxswtch != 0) {
841 1.209 ad u_int count;
842 1.209 ad count = SPINLOCK_BACKOFF_MIN;
843 1.209 ad while (newl->l_ctxswtch)
844 1.209 ad SPINLOCK_BACKOFF(count);
845 1.209 ad }
846 1.207 ad
847 1.188 yamt /* Switch to the new LWP.. */
848 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
849 1.207 ad ci = curcpu();
850 1.207 ad
851 1.188 yamt /*
852 1.209 ad * Switched away - we have new curlwp.
853 1.209 ad * Restore VM context and IPL.
854 1.188 yamt */
855 1.209 ad pmap_activate(l);
856 1.188 yamt if (prevlwp != NULL) {
857 1.209 ad /* Normalize the count of the spin-mutexes */
858 1.209 ad ci->ci_mtx_count++;
859 1.209 ad /* Unmark the state of context switch */
860 1.209 ad membar_exit();
861 1.209 ad prevlwp->l_ctxswtch = 0;
862 1.188 yamt }
863 1.209 ad
864 1.209 ad /* Update status for lwpctl, if present. */
865 1.219 ad if (l->l_lwpctl != NULL) {
866 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
867 1.219 ad l->l_lwpctl->lc_pctr++;
868 1.219 ad }
869 1.174 ad
870 1.231 ad KASSERT(l->l_cpu == ci);
871 1.231 ad splx(oldspl);
872 1.188 yamt retval = 1;
873 1.188 yamt } else {
874 1.188 yamt /* Nothing to do - just unlock and return. */
875 1.216 rmind KASSERT(tci == NULL);
876 1.216 rmind spc_unlock(ci);
877 1.188 yamt lwp_unlock(l);
878 1.122 thorpej retval = 0;
879 1.122 thorpej }
880 1.110 briggs
881 1.188 yamt KASSERT(l == curlwp);
882 1.188 yamt KASSERT(l->l_stat == LSONPROC);
883 1.188 yamt
884 1.110 briggs /*
885 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
886 1.231 ad * XXXSMP preemption problem.
887 1.26 cgd */
888 1.114 gmcgarry #if PERFCTRS
889 1.175 christos if (PMC_ENABLED(l->l_proc)) {
890 1.175 christos pmc_restore_context(l->l_proc);
891 1.166 christos }
892 1.114 gmcgarry #endif
893 1.180 dsl SYSCALL_TIME_WAKEUP(l);
894 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
895 1.169 yamt
896 1.122 thorpej return retval;
897 1.26 cgd }
898 1.26 cgd
899 1.26 cgd /*
900 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
901 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
902 1.174 ad *
903 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
904 1.26 cgd */
905 1.26 cgd void
906 1.122 thorpej setrunnable(struct lwp *l)
907 1.26 cgd {
908 1.122 thorpej struct proc *p = l->l_proc;
909 1.205 ad struct cpu_info *ci;
910 1.174 ad sigset_t *ss;
911 1.26 cgd
912 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
913 1.229 ad KASSERT(mutex_owned(p->p_lock));
914 1.183 ad KASSERT(lwp_locked(l, NULL));
915 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
916 1.83 thorpej
917 1.122 thorpej switch (l->l_stat) {
918 1.122 thorpej case LSSTOP:
919 1.33 mycroft /*
920 1.33 mycroft * If we're being traced (possibly because someone attached us
921 1.33 mycroft * while we were stopped), check for a signal from the debugger.
922 1.33 mycroft */
923 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
924 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
925 1.174 ad ss = &l->l_sigpend.sp_set;
926 1.174 ad else
927 1.174 ad ss = &p->p_sigpend.sp_set;
928 1.174 ad sigaddset(ss, p->p_xstat);
929 1.174 ad signotify(l);
930 1.53 mycroft }
931 1.174 ad p->p_nrlwps++;
932 1.26 cgd break;
933 1.174 ad case LSSUSPENDED:
934 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
935 1.174 ad p->p_nrlwps++;
936 1.192 rmind cv_broadcast(&p->p_lwpcv);
937 1.122 thorpej break;
938 1.174 ad case LSSLEEP:
939 1.174 ad KASSERT(l->l_wchan != NULL);
940 1.26 cgd break;
941 1.174 ad default:
942 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
943 1.26 cgd }
944 1.139 cl
945 1.174 ad /*
946 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
947 1.174 ad * again. If not, mark it as still sleeping.
948 1.174 ad */
949 1.174 ad if (l->l_wchan != NULL) {
950 1.174 ad l->l_stat = LSSLEEP;
951 1.183 ad /* lwp_unsleep() will release the lock. */
952 1.221 ad lwp_unsleep(l, true);
953 1.174 ad return;
954 1.174 ad }
955 1.139 cl
956 1.174 ad /*
957 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
958 1.174 ad * about to call mi_switch(), in which case it will yield.
959 1.174 ad */
960 1.188 yamt if ((l->l_flag & LW_RUNNING) != 0) {
961 1.174 ad l->l_stat = LSONPROC;
962 1.174 ad l->l_slptime = 0;
963 1.174 ad lwp_unlock(l);
964 1.174 ad return;
965 1.174 ad }
966 1.122 thorpej
967 1.174 ad /*
968 1.205 ad * Look for a CPU to run.
969 1.205 ad * Set the LWP runnable.
970 1.174 ad */
971 1.205 ad ci = sched_takecpu(l);
972 1.205 ad l->l_cpu = ci;
973 1.206 ad if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
974 1.206 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
975 1.206 ad lwp_lock(l);
976 1.206 ad }
977 1.188 yamt sched_setrunnable(l);
978 1.174 ad l->l_stat = LSRUN;
979 1.122 thorpej l->l_slptime = 0;
980 1.174 ad
981 1.205 ad /*
982 1.205 ad * If thread is swapped out - wake the swapper to bring it back in.
983 1.205 ad * Otherwise, enter it into a run queue.
984 1.205 ad */
985 1.178 pavel if (l->l_flag & LW_INMEM) {
986 1.188 yamt sched_enqueue(l, false);
987 1.188 yamt resched_cpu(l);
988 1.174 ad lwp_unlock(l);
989 1.174 ad } else {
990 1.174 ad lwp_unlock(l);
991 1.177 ad uvm_kick_scheduler();
992 1.174 ad }
993 1.26 cgd }
994 1.26 cgd
995 1.26 cgd /*
996 1.174 ad * suspendsched:
997 1.174 ad *
998 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
999 1.174 ad */
1000 1.94 bouyer void
1001 1.174 ad suspendsched(void)
1002 1.94 bouyer {
1003 1.174 ad CPU_INFO_ITERATOR cii;
1004 1.174 ad struct cpu_info *ci;
1005 1.122 thorpej struct lwp *l;
1006 1.174 ad struct proc *p;
1007 1.94 bouyer
1008 1.94 bouyer /*
1009 1.174 ad * We do this by process in order not to violate the locking rules.
1010 1.94 bouyer */
1011 1.228 ad mutex_enter(proc_lock);
1012 1.174 ad PROCLIST_FOREACH(p, &allproc) {
1013 1.229 ad mutex_enter(p->p_lock);
1014 1.174 ad
1015 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
1016 1.229 ad mutex_exit(p->p_lock);
1017 1.94 bouyer continue;
1018 1.174 ad }
1019 1.174 ad
1020 1.174 ad p->p_stat = SSTOP;
1021 1.174 ad
1022 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1023 1.174 ad if (l == curlwp)
1024 1.174 ad continue;
1025 1.174 ad
1026 1.174 ad lwp_lock(l);
1027 1.122 thorpej
1028 1.97 enami /*
1029 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
1030 1.174 ad * when it tries to return to user mode. We want to
1031 1.174 ad * try and get to get as many LWPs as possible to
1032 1.174 ad * the user / kernel boundary, so that they will
1033 1.174 ad * release any locks that they hold.
1034 1.97 enami */
1035 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1036 1.174 ad
1037 1.174 ad if (l->l_stat == LSSLEEP &&
1038 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1039 1.174 ad /* setrunnable() will release the lock. */
1040 1.174 ad setrunnable(l);
1041 1.174 ad continue;
1042 1.174 ad }
1043 1.174 ad
1044 1.174 ad lwp_unlock(l);
1045 1.94 bouyer }
1046 1.174 ad
1047 1.229 ad mutex_exit(p->p_lock);
1048 1.94 bouyer }
1049 1.228 ad mutex_exit(proc_lock);
1050 1.174 ad
1051 1.174 ad /*
1052 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1053 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
1054 1.174 ad */
1055 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1056 1.204 ad spc_lock(ci);
1057 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
1058 1.204 ad spc_unlock(ci);
1059 1.204 ad }
1060 1.174 ad }
1061 1.174 ad
1062 1.174 ad /*
1063 1.174 ad * sched_unsleep:
1064 1.174 ad *
1065 1.174 ad * The is called when the LWP has not been awoken normally but instead
1066 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1067 1.174 ad * it's not a valid action for running or idle LWPs.
1068 1.174 ad */
1069 1.221 ad static u_int
1070 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1071 1.174 ad {
1072 1.174 ad
1073 1.174 ad lwp_unlock(l);
1074 1.174 ad panic("sched_unsleep");
1075 1.174 ad }
1076 1.174 ad
1077 1.204 ad void
1078 1.188 yamt resched_cpu(struct lwp *l)
1079 1.188 yamt {
1080 1.188 yamt struct cpu_info *ci;
1081 1.188 yamt
1082 1.188 yamt /*
1083 1.188 yamt * XXXSMP
1084 1.188 yamt * Since l->l_cpu persists across a context switch,
1085 1.188 yamt * this gives us *very weak* processor affinity, in
1086 1.188 yamt * that we notify the CPU on which the process last
1087 1.188 yamt * ran that it should try to switch.
1088 1.188 yamt *
1089 1.188 yamt * This does not guarantee that the process will run on
1090 1.188 yamt * that processor next, because another processor might
1091 1.188 yamt * grab it the next time it performs a context switch.
1092 1.188 yamt *
1093 1.188 yamt * This also does not handle the case where its last
1094 1.188 yamt * CPU is running a higher-priority process, but every
1095 1.188 yamt * other CPU is running a lower-priority process. There
1096 1.188 yamt * are ways to handle this situation, but they're not
1097 1.188 yamt * currently very pretty, and we also need to weigh the
1098 1.188 yamt * cost of moving a process from one CPU to another.
1099 1.188 yamt */
1100 1.204 ad ci = l->l_cpu;
1101 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1102 1.188 yamt cpu_need_resched(ci, 0);
1103 1.188 yamt }
1104 1.188 yamt
1105 1.188 yamt static void
1106 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1107 1.174 ad {
1108 1.174 ad
1109 1.188 yamt KASSERT(lwp_locked(l, NULL));
1110 1.174 ad
1111 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1112 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1113 1.204 ad sched_dequeue(l);
1114 1.204 ad l->l_priority = pri;
1115 1.204 ad sched_enqueue(l, false);
1116 1.204 ad } else {
1117 1.174 ad l->l_priority = pri;
1118 1.157 yamt }
1119 1.188 yamt resched_cpu(l);
1120 1.184 yamt }
1121 1.184 yamt
1122 1.188 yamt static void
1123 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1124 1.184 yamt {
1125 1.184 yamt
1126 1.188 yamt KASSERT(lwp_locked(l, NULL));
1127 1.184 yamt
1128 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1129 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1130 1.204 ad sched_dequeue(l);
1131 1.204 ad l->l_inheritedprio = pri;
1132 1.204 ad sched_enqueue(l, false);
1133 1.204 ad } else {
1134 1.184 yamt l->l_inheritedprio = pri;
1135 1.184 yamt }
1136 1.188 yamt resched_cpu(l);
1137 1.184 yamt }
1138 1.184 yamt
1139 1.184 yamt struct lwp *
1140 1.184 yamt syncobj_noowner(wchan_t wchan)
1141 1.184 yamt {
1142 1.184 yamt
1143 1.184 yamt return NULL;
1144 1.151 yamt }
1145 1.151 yamt
1146 1.188 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
1147 1.188 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
1148 1.115 nisimura
1149 1.130 nathanw /*
1150 1.188 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
1151 1.188 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
1152 1.188 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
1153 1.188 yamt *
1154 1.188 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
1155 1.188 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
1156 1.188 yamt *
1157 1.188 yamt * If you dont want to bother with the faster/more-accurate formula, you
1158 1.188 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
1159 1.188 yamt * (more general) method of calculating the %age of CPU used by a process.
1160 1.134 matt */
1161 1.188 yamt #define CCPU_SHIFT (FSHIFT + 1)
1162 1.134 matt
1163 1.134 matt /*
1164 1.188 yamt * sched_pstats:
1165 1.188 yamt *
1166 1.188 yamt * Update process statistics and check CPU resource allocation.
1167 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
1168 1.188 yamt * priorities.
1169 1.130 nathanw */
1170 1.188 yamt /* ARGSUSED */
1171 1.113 gmcgarry void
1172 1.188 yamt sched_pstats(void *arg)
1173 1.113 gmcgarry {
1174 1.188 yamt struct rlimit *rlim;
1175 1.188 yamt struct lwp *l;
1176 1.188 yamt struct proc *p;
1177 1.204 ad int sig, clkhz;
1178 1.188 yamt long runtm;
1179 1.113 gmcgarry
1180 1.188 yamt sched_pstats_ticks++;
1181 1.174 ad
1182 1.228 ad mutex_enter(proc_lock);
1183 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1184 1.188 yamt /*
1185 1.188 yamt * Increment time in/out of memory and sleep time (if
1186 1.188 yamt * sleeping). We ignore overflow; with 16-bit int's
1187 1.188 yamt * (remember them?) overflow takes 45 days.
1188 1.188 yamt */
1189 1.229 ad mutex_enter(p->p_lock);
1190 1.188 yamt mutex_spin_enter(&p->p_stmutex);
1191 1.212 yamt runtm = p->p_rtime.sec;
1192 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1193 1.188 yamt if ((l->l_flag & LW_IDLE) != 0)
1194 1.188 yamt continue;
1195 1.188 yamt lwp_lock(l);
1196 1.212 yamt runtm += l->l_rtime.sec;
1197 1.188 yamt l->l_swtime++;
1198 1.200 rmind sched_pstats_hook(l);
1199 1.188 yamt lwp_unlock(l);
1200 1.113 gmcgarry
1201 1.188 yamt /*
1202 1.188 yamt * p_pctcpu is only for ps.
1203 1.188 yamt */
1204 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1205 1.188 yamt if (l->l_slptime < 1) {
1206 1.188 yamt clkhz = stathz != 0 ? stathz : hz;
1207 1.188 yamt #if (FSHIFT >= CCPU_SHIFT)
1208 1.188 yamt l->l_pctcpu += (clkhz == 100) ?
1209 1.188 yamt ((fixpt_t)l->l_cpticks) <<
1210 1.188 yamt (FSHIFT - CCPU_SHIFT) :
1211 1.188 yamt 100 * (((fixpt_t) p->p_cpticks)
1212 1.188 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
1213 1.188 yamt #else
1214 1.188 yamt l->l_pctcpu += ((FSCALE - ccpu) *
1215 1.188 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
1216 1.146 matt #endif
1217 1.188 yamt l->l_cpticks = 0;
1218 1.188 yamt }
1219 1.188 yamt }
1220 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1221 1.188 yamt mutex_spin_exit(&p->p_stmutex);
1222 1.174 ad
1223 1.188 yamt /*
1224 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1225 1.188 yamt * If over max, kill it.
1226 1.188 yamt */
1227 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1228 1.188 yamt sig = 0;
1229 1.188 yamt if (runtm >= rlim->rlim_cur) {
1230 1.188 yamt if (runtm >= rlim->rlim_max)
1231 1.188 yamt sig = SIGKILL;
1232 1.188 yamt else {
1233 1.188 yamt sig = SIGXCPU;
1234 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1235 1.188 yamt rlim->rlim_cur += 5;
1236 1.188 yamt }
1237 1.188 yamt }
1238 1.229 ad mutex_exit(p->p_lock);
1239 1.228 ad if (sig)
1240 1.188 yamt psignal(p, sig);
1241 1.174 ad }
1242 1.228 ad mutex_exit(proc_lock);
1243 1.188 yamt uvm_meter();
1244 1.191 ad cv_wakeup(&lbolt);
1245 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
1246 1.113 gmcgarry }
1247 1.190 ad
1248 1.190 ad void
1249 1.190 ad sched_init(void)
1250 1.190 ad {
1251 1.190 ad
1252 1.208 ad cv_init(&lbolt, "lbolt");
1253 1.214 ad callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
1254 1.190 ad callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
1255 1.223 ad
1256 1.223 ad /* Balancing */
1257 1.223 ad worker_ci = curcpu();
1258 1.223 ad cacheht_time = mstohz(5); /* ~5 ms */
1259 1.223 ad balance_period = mstohz(300); /* ~300ms */
1260 1.223 ad
1261 1.223 ad /* Minimal count of LWPs for catching: log2(count of CPUs) */
1262 1.223 ad min_catch = min(ilog2(ncpu), 4);
1263 1.223 ad
1264 1.231 ad #ifdef PREEMPTION
1265 1.231 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_INTR, NULL,
1266 1.231 ad "kpreempt", "defer: critical section");
1267 1.231 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_INTR, NULL,
1268 1.231 ad "kpreempt", "defer: kernel_lock");
1269 1.231 ad evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_INTR, NULL,
1270 1.231 ad "kpreempt", "defer: IPL");
1271 1.231 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_INTR, NULL,
1272 1.231 ad "kpreempt", "immediate");
1273 1.231 ad #endif
1274 1.231 ad
1275 1.223 ad /* Initialize balancing callout and run it */
1276 1.223 ad #ifdef MULTIPROCESSOR
1277 1.223 ad callout_init(&balance_ch, CALLOUT_MPSAFE);
1278 1.223 ad callout_setfunc(&balance_ch, sched_balance, NULL);
1279 1.223 ad callout_schedule(&balance_ch, balance_period);
1280 1.223 ad #endif
1281 1.190 ad sched_pstats(NULL);
1282 1.190 ad }
1283 1.223 ad
1284 1.223 ad SYSCTL_SETUP(sysctl_sched_setup, "sysctl sched setup")
1285 1.223 ad {
1286 1.223 ad const struct sysctlnode *node = NULL;
1287 1.223 ad
1288 1.223 ad sysctl_createv(clog, 0, NULL, NULL,
1289 1.223 ad CTLFLAG_PERMANENT,
1290 1.223 ad CTLTYPE_NODE, "kern", NULL,
1291 1.223 ad NULL, 0, NULL, 0,
1292 1.223 ad CTL_KERN, CTL_EOL);
1293 1.223 ad sysctl_createv(clog, 0, NULL, &node,
1294 1.223 ad CTLFLAG_PERMANENT,
1295 1.223 ad CTLTYPE_NODE, "sched",
1296 1.223 ad SYSCTL_DESCR("Scheduler options"),
1297 1.223 ad NULL, 0, NULL, 0,
1298 1.223 ad CTL_KERN, CTL_CREATE, CTL_EOL);
1299 1.223 ad
1300 1.223 ad if (node == NULL)
1301 1.223 ad return;
1302 1.223 ad
1303 1.223 ad sysctl_createv(clog, 0, &node, NULL,
1304 1.223 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1305 1.223 ad CTLTYPE_INT, "cacheht_time",
1306 1.223 ad SYSCTL_DESCR("Cache hotness time (in ticks)"),
1307 1.223 ad NULL, 0, &cacheht_time, 0,
1308 1.223 ad CTL_CREATE, CTL_EOL);
1309 1.223 ad sysctl_createv(clog, 0, &node, NULL,
1310 1.223 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1311 1.223 ad CTLTYPE_INT, "balance_period",
1312 1.223 ad SYSCTL_DESCR("Balance period (in ticks)"),
1313 1.223 ad NULL, 0, &balance_period, 0,
1314 1.223 ad CTL_CREATE, CTL_EOL);
1315 1.223 ad sysctl_createv(clog, 0, &node, NULL,
1316 1.223 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1317 1.223 ad CTLTYPE_INT, "min_catch",
1318 1.223 ad SYSCTL_DESCR("Minimal count of threads for catching"),
1319 1.223 ad NULL, 0, &min_catch, 0,
1320 1.223 ad CTL_CREATE, CTL_EOL);
1321 1.223 ad sysctl_createv(clog, 0, &node, NULL,
1322 1.231 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1323 1.223 ad CTLTYPE_INT, "timesoftints",
1324 1.223 ad SYSCTL_DESCR("Track CPU time for soft interrupts"),
1325 1.223 ad NULL, 0, &softint_timing, 0,
1326 1.223 ad CTL_CREATE, CTL_EOL);
1327 1.231 ad sysctl_createv(clog, 0, &node, NULL,
1328 1.231 ad #ifdef PREEMPTION
1329 1.231 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1330 1.231 ad #else
1331 1.231 ad CTLFLAG_PERMANENT,
1332 1.231 ad #endif
1333 1.231 ad CTLTYPE_INT, "kpreempt_pri",
1334 1.231 ad SYSCTL_DESCR("Minimum priority to trigger kernel preemption"),
1335 1.231 ad NULL, 0, &sched_kpreempt_pri, 0,
1336 1.231 ad CTL_CREATE, CTL_EOL);
1337 1.231 ad sysctl_createv(clog, 0, &node, NULL,
1338 1.231 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1339 1.231 ad CTLTYPE_INT, "upreempt_pri",
1340 1.231 ad SYSCTL_DESCR("Minimum priority to trigger user preemption"),
1341 1.231 ad NULL, 0, &sched_upreempt_pri, 0,
1342 1.231 ad CTL_CREATE, CTL_EOL);
1343 1.223 ad }
1344 1.223 ad
1345 1.223 ad void
1346 1.223 ad sched_cpuattach(struct cpu_info *ci)
1347 1.223 ad {
1348 1.223 ad runqueue_t *ci_rq;
1349 1.223 ad void *rq_ptr;
1350 1.223 ad u_int i, size;
1351 1.223 ad
1352 1.223 ad if (ci->ci_schedstate.spc_lwplock == NULL) {
1353 1.223 ad ci->ci_schedstate.spc_lwplock =
1354 1.223 ad mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
1355 1.223 ad }
1356 1.223 ad if (ci == lwp0.l_cpu) {
1357 1.223 ad /* Initialize the scheduler structure of the primary LWP */
1358 1.223 ad lwp0.l_mutex = ci->ci_schedstate.spc_lwplock;
1359 1.223 ad }
1360 1.223 ad if (ci->ci_schedstate.spc_mutex != NULL) {
1361 1.223 ad /* Already initialized. */
1362 1.223 ad return;
1363 1.223 ad }
1364 1.223 ad
1365 1.223 ad /* Allocate the run queue */
1366 1.223 ad size = roundup2(sizeof(runqueue_t), coherency_unit) + coherency_unit;
1367 1.223 ad rq_ptr = kmem_zalloc(size, KM_SLEEP);
1368 1.223 ad if (rq_ptr == NULL) {
1369 1.223 ad panic("sched_cpuattach: could not allocate the runqueue");
1370 1.223 ad }
1371 1.223 ad ci_rq = (void *)(roundup2((uintptr_t)(rq_ptr), coherency_unit));
1372 1.223 ad
1373 1.223 ad /* Initialize run queues */
1374 1.223 ad ci->ci_schedstate.spc_mutex =
1375 1.223 ad mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
1376 1.223 ad for (i = 0; i < PRI_RT_COUNT; i++)
1377 1.223 ad TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
1378 1.223 ad for (i = 0; i < PRI_TS_COUNT; i++)
1379 1.223 ad TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
1380 1.223 ad
1381 1.223 ad ci->ci_schedstate.spc_sched_info = ci_rq;
1382 1.223 ad }
1383 1.223 ad
1384 1.223 ad /*
1385 1.223 ad * Control of the runqueue.
1386 1.223 ad */
1387 1.223 ad
1388 1.223 ad static void *
1389 1.223 ad sched_getrq(runqueue_t *ci_rq, const pri_t prio)
1390 1.223 ad {
1391 1.223 ad
1392 1.223 ad KASSERT(prio < PRI_COUNT);
1393 1.223 ad return (prio <= PRI_HIGHEST_TS) ?
1394 1.223 ad &ci_rq->r_ts_queue[prio].q_head :
1395 1.223 ad &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
1396 1.223 ad }
1397 1.223 ad
1398 1.223 ad void
1399 1.223 ad sched_enqueue(struct lwp *l, bool swtch)
1400 1.223 ad {
1401 1.223 ad runqueue_t *ci_rq;
1402 1.223 ad struct schedstate_percpu *spc;
1403 1.223 ad TAILQ_HEAD(, lwp) *q_head;
1404 1.223 ad const pri_t eprio = lwp_eprio(l);
1405 1.223 ad struct cpu_info *ci;
1406 1.231 ad int type;
1407 1.223 ad
1408 1.223 ad ci = l->l_cpu;
1409 1.223 ad spc = &ci->ci_schedstate;
1410 1.223 ad ci_rq = spc->spc_sched_info;
1411 1.223 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1412 1.223 ad
1413 1.223 ad /* Update the last run time on switch */
1414 1.223 ad if (__predict_true(swtch == true)) {
1415 1.223 ad l->l_rticks = hardclock_ticks;
1416 1.223 ad l->l_rticksum += (hardclock_ticks - l->l_rticks);
1417 1.223 ad } else if (l->l_rticks == 0)
1418 1.223 ad l->l_rticks = hardclock_ticks;
1419 1.223 ad
1420 1.223 ad /* Enqueue the thread */
1421 1.223 ad q_head = sched_getrq(ci_rq, eprio);
1422 1.223 ad if (TAILQ_EMPTY(q_head)) {
1423 1.223 ad u_int i;
1424 1.223 ad uint32_t q;
1425 1.223 ad
1426 1.223 ad /* Mark bit */
1427 1.223 ad i = eprio >> BITMAP_SHIFT;
1428 1.223 ad q = BITMAP_MSB >> (eprio & BITMAP_MASK);
1429 1.223 ad KASSERT((ci_rq->r_bitmap[i] & q) == 0);
1430 1.223 ad ci_rq->r_bitmap[i] |= q;
1431 1.223 ad }
1432 1.223 ad TAILQ_INSERT_TAIL(q_head, l, l_runq);
1433 1.223 ad ci_rq->r_count++;
1434 1.224 ad if ((l->l_pflag & LP_BOUND) == 0)
1435 1.223 ad ci_rq->r_mcount++;
1436 1.223 ad
1437 1.223 ad /*
1438 1.223 ad * Update the value of highest priority in the runqueue,
1439 1.223 ad * if priority of this thread is higher.
1440 1.223 ad */
1441 1.223 ad if (eprio > spc->spc_maxpriority)
1442 1.223 ad spc->spc_maxpriority = eprio;
1443 1.223 ad
1444 1.223 ad sched_newts(l);
1445 1.223 ad
1446 1.223 ad /*
1447 1.223 ad * Wake the chosen CPU or cause a preemption if the newly
1448 1.223 ad * enqueued thread has higher priority. Don't cause a
1449 1.223 ad * preemption if the thread is yielding (swtch).
1450 1.223 ad */
1451 1.223 ad if (!swtch && eprio > spc->spc_curpriority) {
1452 1.231 ad if (eprio >= sched_kpreempt_pri)
1453 1.231 ad type = RESCHED_KPREEMPT;
1454 1.231 ad else if (eprio >= sched_upreempt_pri)
1455 1.231 ad type = RESCHED_IMMED;
1456 1.231 ad else
1457 1.231 ad type = 0;
1458 1.231 ad cpu_need_resched(ci, type);
1459 1.223 ad }
1460 1.223 ad }
1461 1.223 ad
1462 1.223 ad void
1463 1.223 ad sched_dequeue(struct lwp *l)
1464 1.223 ad {
1465 1.223 ad runqueue_t *ci_rq;
1466 1.223 ad TAILQ_HEAD(, lwp) *q_head;
1467 1.223 ad struct schedstate_percpu *spc;
1468 1.223 ad const pri_t eprio = lwp_eprio(l);
1469 1.223 ad
1470 1.223 ad spc = & l->l_cpu->ci_schedstate;
1471 1.223 ad ci_rq = spc->spc_sched_info;
1472 1.223 ad KASSERT(lwp_locked(l, spc->spc_mutex));
1473 1.223 ad
1474 1.223 ad KASSERT(eprio <= spc->spc_maxpriority);
1475 1.223 ad KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
1476 1.223 ad KASSERT(ci_rq->r_count > 0);
1477 1.223 ad
1478 1.223 ad ci_rq->r_count--;
1479 1.224 ad if ((l->l_pflag & LP_BOUND) == 0)
1480 1.223 ad ci_rq->r_mcount--;
1481 1.223 ad
1482 1.223 ad q_head = sched_getrq(ci_rq, eprio);
1483 1.223 ad TAILQ_REMOVE(q_head, l, l_runq);
1484 1.223 ad if (TAILQ_EMPTY(q_head)) {
1485 1.223 ad u_int i;
1486 1.223 ad uint32_t q;
1487 1.223 ad
1488 1.223 ad /* Unmark bit */
1489 1.223 ad i = eprio >> BITMAP_SHIFT;
1490 1.223 ad q = BITMAP_MSB >> (eprio & BITMAP_MASK);
1491 1.223 ad KASSERT((ci_rq->r_bitmap[i] & q) != 0);
1492 1.223 ad ci_rq->r_bitmap[i] &= ~q;
1493 1.223 ad
1494 1.223 ad /*
1495 1.223 ad * Update the value of highest priority in the runqueue, in a
1496 1.223 ad * case it was a last thread in the queue of highest priority.
1497 1.223 ad */
1498 1.223 ad if (eprio != spc->spc_maxpriority)
1499 1.223 ad return;
1500 1.223 ad
1501 1.223 ad do {
1502 1.223 ad if (ci_rq->r_bitmap[i] != 0) {
1503 1.223 ad q = ffs(ci_rq->r_bitmap[i]);
1504 1.223 ad spc->spc_maxpriority =
1505 1.223 ad (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
1506 1.223 ad return;
1507 1.223 ad }
1508 1.223 ad } while (i--);
1509 1.223 ad
1510 1.223 ad /* If not found - set the lowest value */
1511 1.223 ad spc->spc_maxpriority = 0;
1512 1.223 ad }
1513 1.223 ad }
1514 1.223 ad
1515 1.223 ad /*
1516 1.223 ad * Migration and balancing.
1517 1.223 ad */
1518 1.223 ad
1519 1.223 ad #ifdef MULTIPROCESSOR
1520 1.223 ad
1521 1.223 ad /* Estimate if LWP is cache-hot */
1522 1.223 ad static inline bool
1523 1.223 ad lwp_cache_hot(const struct lwp *l)
1524 1.223 ad {
1525 1.223 ad
1526 1.223 ad if (l->l_slptime || l->l_rticks == 0)
1527 1.223 ad return false;
1528 1.223 ad
1529 1.223 ad return (hardclock_ticks - l->l_rticks <= cacheht_time);
1530 1.223 ad }
1531 1.223 ad
1532 1.223 ad /* Check if LWP can migrate to the chosen CPU */
1533 1.223 ad static inline bool
1534 1.223 ad sched_migratable(const struct lwp *l, struct cpu_info *ci)
1535 1.223 ad {
1536 1.223 ad const struct schedstate_percpu *spc = &ci->ci_schedstate;
1537 1.223 ad
1538 1.223 ad /* CPU is offline */
1539 1.223 ad if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
1540 1.223 ad return false;
1541 1.223 ad
1542 1.223 ad /* Affinity bind */
1543 1.223 ad if (__predict_false(l->l_flag & LW_AFFINITY))
1544 1.223 ad return CPU_ISSET(cpu_index(ci), &l->l_affinity);
1545 1.223 ad
1546 1.223 ad /* Processor-set */
1547 1.223 ad return (spc->spc_psid == l->l_psid);
1548 1.223 ad }
1549 1.223 ad
1550 1.223 ad /*
1551 1.223 ad * Estimate the migration of LWP to the other CPU.
1552 1.223 ad * Take and return the CPU, if migration is needed.
1553 1.223 ad */
1554 1.223 ad struct cpu_info *
1555 1.223 ad sched_takecpu(struct lwp *l)
1556 1.223 ad {
1557 1.223 ad struct cpu_info *ci, *tci, *first, *next;
1558 1.223 ad struct schedstate_percpu *spc;
1559 1.223 ad runqueue_t *ci_rq, *ici_rq;
1560 1.223 ad pri_t eprio, lpri, pri;
1561 1.223 ad
1562 1.223 ad KASSERT(lwp_locked(l, NULL));
1563 1.223 ad
1564 1.223 ad ci = l->l_cpu;
1565 1.223 ad spc = &ci->ci_schedstate;
1566 1.223 ad ci_rq = spc->spc_sched_info;
1567 1.223 ad
1568 1.223 ad /* If thread is strictly bound, do not estimate other CPUs */
1569 1.224 ad if (l->l_pflag & LP_BOUND)
1570 1.223 ad return ci;
1571 1.223 ad
1572 1.223 ad /* CPU of this thread is idling - run there */
1573 1.223 ad if (ci_rq->r_count == 0)
1574 1.223 ad return ci;
1575 1.223 ad
1576 1.223 ad eprio = lwp_eprio(l);
1577 1.223 ad
1578 1.223 ad /* Stay if thread is cache-hot */
1579 1.223 ad if (__predict_true(l->l_stat != LSIDL) &&
1580 1.223 ad lwp_cache_hot(l) && eprio >= spc->spc_curpriority)
1581 1.223 ad return ci;
1582 1.223 ad
1583 1.223 ad /* Run on current CPU if priority of thread is higher */
1584 1.223 ad ci = curcpu();
1585 1.223 ad spc = &ci->ci_schedstate;
1586 1.223 ad if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
1587 1.223 ad return ci;
1588 1.223 ad
1589 1.223 ad /*
1590 1.223 ad * Look for the CPU with the lowest priority thread. In case of
1591 1.223 ad * equal priority, choose the CPU with the fewest of threads.
1592 1.223 ad */
1593 1.223 ad first = l->l_cpu;
1594 1.223 ad ci = first;
1595 1.223 ad tci = first;
1596 1.223 ad lpri = PRI_COUNT;
1597 1.223 ad do {
1598 1.223 ad next = CIRCLEQ_LOOP_NEXT(&cpu_queue, ci, ci_data.cpu_qchain);
1599 1.223 ad spc = &ci->ci_schedstate;
1600 1.223 ad ici_rq = spc->spc_sched_info;
1601 1.223 ad pri = max(spc->spc_curpriority, spc->spc_maxpriority);
1602 1.223 ad if (pri > lpri)
1603 1.223 ad continue;
1604 1.223 ad
1605 1.223 ad if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
1606 1.223 ad continue;
1607 1.223 ad
1608 1.223 ad if (!sched_migratable(l, ci))
1609 1.223 ad continue;
1610 1.223 ad
1611 1.223 ad lpri = pri;
1612 1.223 ad tci = ci;
1613 1.223 ad ci_rq = ici_rq;
1614 1.223 ad } while (ci = next, ci != first);
1615 1.223 ad
1616 1.223 ad return tci;
1617 1.223 ad }
1618 1.223 ad
1619 1.223 ad /*
1620 1.223 ad * Tries to catch an LWP from the runqueue of other CPU.
1621 1.223 ad */
1622 1.223 ad static struct lwp *
1623 1.223 ad sched_catchlwp(void)
1624 1.223 ad {
1625 1.223 ad struct cpu_info *curci = curcpu(), *ci = worker_ci;
1626 1.223 ad struct schedstate_percpu *spc;
1627 1.223 ad TAILQ_HEAD(, lwp) *q_head;
1628 1.223 ad runqueue_t *ci_rq;
1629 1.223 ad struct lwp *l;
1630 1.223 ad
1631 1.223 ad if (curci == ci)
1632 1.223 ad return NULL;
1633 1.223 ad
1634 1.223 ad /* Lockless check */
1635 1.223 ad spc = &ci->ci_schedstate;
1636 1.223 ad ci_rq = spc->spc_sched_info;
1637 1.223 ad if (ci_rq->r_mcount < min_catch)
1638 1.223 ad return NULL;
1639 1.223 ad
1640 1.223 ad /*
1641 1.223 ad * Double-lock the runqueues.
1642 1.223 ad */
1643 1.223 ad if (curci < ci) {
1644 1.223 ad spc_lock(ci);
1645 1.223 ad } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
1646 1.223 ad const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
1647 1.223 ad
1648 1.223 ad spc_unlock(curci);
1649 1.223 ad spc_lock(ci);
1650 1.223 ad spc_lock(curci);
1651 1.223 ad
1652 1.223 ad if (cur_rq->r_count) {
1653 1.223 ad spc_unlock(ci);
1654 1.223 ad return NULL;
1655 1.223 ad }
1656 1.223 ad }
1657 1.223 ad
1658 1.223 ad if (ci_rq->r_mcount < min_catch) {
1659 1.223 ad spc_unlock(ci);
1660 1.223 ad return NULL;
1661 1.223 ad }
1662 1.223 ad
1663 1.223 ad /* Take the highest priority thread */
1664 1.223 ad q_head = sched_getrq(ci_rq, spc->spc_maxpriority);
1665 1.223 ad l = TAILQ_FIRST(q_head);
1666 1.223 ad
1667 1.223 ad for (;;) {
1668 1.223 ad /* Check the first and next result from the queue */
1669 1.223 ad if (l == NULL)
1670 1.223 ad break;
1671 1.223 ad KASSERT(l->l_stat == LSRUN);
1672 1.223 ad KASSERT(l->l_flag & LW_INMEM);
1673 1.223 ad
1674 1.223 ad /* Look for threads, whose are allowed to migrate */
1675 1.224 ad if ((l->l_pflag & LP_BOUND) || lwp_cache_hot(l) ||
1676 1.223 ad !sched_migratable(l, curci)) {
1677 1.223 ad l = TAILQ_NEXT(l, l_runq);
1678 1.223 ad continue;
1679 1.223 ad }
1680 1.223 ad
1681 1.223 ad /* Grab the thread, and move to the local run queue */
1682 1.223 ad sched_dequeue(l);
1683 1.223 ad l->l_cpu = curci;
1684 1.223 ad lwp_unlock_to(l, curci->ci_schedstate.spc_mutex);
1685 1.223 ad sched_enqueue(l, false);
1686 1.223 ad return l;
1687 1.223 ad }
1688 1.223 ad spc_unlock(ci);
1689 1.223 ad
1690 1.223 ad return l;
1691 1.223 ad }
1692 1.223 ad
1693 1.223 ad /*
1694 1.223 ad * Periodical calculations for balancing.
1695 1.223 ad */
1696 1.223 ad static void
1697 1.223 ad sched_balance(void *nocallout)
1698 1.223 ad {
1699 1.223 ad struct cpu_info *ci, *hci;
1700 1.223 ad runqueue_t *ci_rq;
1701 1.223 ad CPU_INFO_ITERATOR cii;
1702 1.223 ad u_int highest;
1703 1.223 ad
1704 1.223 ad hci = curcpu();
1705 1.223 ad highest = 0;
1706 1.223 ad
1707 1.223 ad /* Make lockless countings */
1708 1.223 ad for (CPU_INFO_FOREACH(cii, ci)) {
1709 1.223 ad ci_rq = ci->ci_schedstate.spc_sched_info;
1710 1.223 ad
1711 1.223 ad /* Average count of the threads */
1712 1.223 ad ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
1713 1.223 ad
1714 1.223 ad /* Look for CPU with the highest average */
1715 1.223 ad if (ci_rq->r_avgcount > highest) {
1716 1.223 ad hci = ci;
1717 1.223 ad highest = ci_rq->r_avgcount;
1718 1.223 ad }
1719 1.223 ad }
1720 1.223 ad
1721 1.223 ad /* Update the worker */
1722 1.223 ad worker_ci = hci;
1723 1.223 ad
1724 1.223 ad if (nocallout == NULL)
1725 1.223 ad callout_schedule(&balance_ch, balance_period);
1726 1.223 ad }
1727 1.223 ad
1728 1.223 ad #else
1729 1.223 ad
1730 1.223 ad struct cpu_info *
1731 1.223 ad sched_takecpu(struct lwp *l)
1732 1.223 ad {
1733 1.223 ad
1734 1.223 ad return l->l_cpu;
1735 1.223 ad }
1736 1.223 ad
1737 1.223 ad #endif /* MULTIPROCESSOR */
1738 1.223 ad
1739 1.223 ad /*
1740 1.223 ad * Scheduler mill.
1741 1.223 ad */
1742 1.223 ad struct lwp *
1743 1.223 ad sched_nextlwp(void)
1744 1.223 ad {
1745 1.223 ad struct cpu_info *ci = curcpu();
1746 1.223 ad struct schedstate_percpu *spc;
1747 1.223 ad TAILQ_HEAD(, lwp) *q_head;
1748 1.223 ad runqueue_t *ci_rq;
1749 1.223 ad struct lwp *l;
1750 1.223 ad
1751 1.223 ad spc = &ci->ci_schedstate;
1752 1.223 ad ci_rq = spc->spc_sched_info;
1753 1.223 ad
1754 1.223 ad #ifdef MULTIPROCESSOR
1755 1.223 ad /* If runqueue is empty, try to catch some thread from other CPU */
1756 1.223 ad if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
1757 1.223 ad if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
1758 1.223 ad return NULL;
1759 1.223 ad } else if (ci_rq->r_count == 0) {
1760 1.223 ad /* Reset the counter, and call the balancer */
1761 1.223 ad ci_rq->r_avgcount = 0;
1762 1.223 ad sched_balance(ci);
1763 1.223 ad
1764 1.223 ad /* The re-locking will be done inside */
1765 1.223 ad return sched_catchlwp();
1766 1.223 ad }
1767 1.223 ad #else
1768 1.223 ad if (ci_rq->r_count == 0)
1769 1.223 ad return NULL;
1770 1.223 ad #endif
1771 1.223 ad
1772 1.223 ad /* Take the highest priority thread */
1773 1.223 ad KASSERT(ci_rq->r_bitmap[spc->spc_maxpriority >> BITMAP_SHIFT]);
1774 1.223 ad q_head = sched_getrq(ci_rq, spc->spc_maxpriority);
1775 1.223 ad l = TAILQ_FIRST(q_head);
1776 1.223 ad KASSERT(l != NULL);
1777 1.223 ad
1778 1.223 ad sched_oncpu(l);
1779 1.223 ad l->l_rticks = hardclock_ticks;
1780 1.223 ad
1781 1.223 ad return l;
1782 1.223 ad }
1783 1.223 ad
1784 1.223 ad bool
1785 1.223 ad sched_curcpu_runnable_p(void)
1786 1.223 ad {
1787 1.231 ad const struct cpu_info *ci;
1788 1.231 ad const runqueue_t *ci_rq;
1789 1.231 ad bool rv;
1790 1.231 ad
1791 1.231 ad kpreempt_disable();
1792 1.231 ad ci = curcpu();
1793 1.231 ad ci_rq = ci->ci_schedstate.spc_sched_info;
1794 1.223 ad
1795 1.223 ad #ifndef __HAVE_FAST_SOFTINTS
1796 1.231 ad if (ci->ci_data.cpu_softints) {
1797 1.231 ad kpreempt_enable();
1798 1.223 ad return true;
1799 1.231 ad }
1800 1.223 ad #endif
1801 1.223 ad
1802 1.223 ad if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
1803 1.231 ad rv = (ci_rq->r_count - ci_rq->r_mcount);
1804 1.231 ad else
1805 1.231 ad rv = ci_rq->r_count != 0;
1806 1.231 ad kpreempt_enable();
1807 1.223 ad
1808 1.231 ad return rv;
1809 1.223 ad }
1810 1.223 ad
1811 1.223 ad /*
1812 1.223 ad * Debugging.
1813 1.223 ad */
1814 1.223 ad
1815 1.223 ad #ifdef DDB
1816 1.223 ad
1817 1.223 ad void
1818 1.227 yamt sched_print_runqueue(void (*pr)(const char *, ...)
1819 1.227 yamt __attribute__((__format__(__printf__,1,2))))
1820 1.223 ad {
1821 1.223 ad runqueue_t *ci_rq;
1822 1.223 ad struct schedstate_percpu *spc;
1823 1.223 ad struct lwp *l;
1824 1.223 ad struct proc *p;
1825 1.223 ad int i;
1826 1.223 ad struct cpu_info *ci;
1827 1.223 ad CPU_INFO_ITERATOR cii;
1828 1.223 ad
1829 1.223 ad for (CPU_INFO_FOREACH(cii, ci)) {
1830 1.223 ad spc = &ci->ci_schedstate;
1831 1.223 ad ci_rq = spc->spc_sched_info;
1832 1.223 ad
1833 1.223 ad (*pr)("Run-queue (CPU = %u):\n", ci->ci_index);
1834 1.223 ad (*pr)(" pid.lid = %d.%d, threads count = %u, "
1835 1.223 ad "avgcount = %u, highest pri = %d\n",
1836 1.225 dogcow #ifdef MULTIPROCESSOR
1837 1.223 ad ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1838 1.225 dogcow #else
1839 1.225 dogcow curlwp->l_proc->p_pid, curlwp->l_lid,
1840 1.225 dogcow #endif
1841 1.223 ad ci_rq->r_count, ci_rq->r_avgcount, spc->spc_maxpriority);
1842 1.223 ad i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1843 1.223 ad do {
1844 1.223 ad uint32_t q;
1845 1.223 ad q = ci_rq->r_bitmap[i];
1846 1.223 ad (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1847 1.223 ad } while (i--);
1848 1.223 ad }
1849 1.223 ad
1850 1.226 yamt (*pr)(" %5s %4s %4s %10s %3s %18s %4s %s\n",
1851 1.223 ad "LID", "PRI", "EPRI", "FL", "ST", "LWP", "CPU", "LRTIME");
1852 1.223 ad
1853 1.223 ad PROCLIST_FOREACH(p, &allproc) {
1854 1.223 ad (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1855 1.223 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1856 1.223 ad ci = l->l_cpu;
1857 1.226 yamt (*pr)(" | %5d %4u %4u 0x%8.8x %3s %18p %4u %u\n",
1858 1.223 ad (int)l->l_lid, l->l_priority, lwp_eprio(l),
1859 1.223 ad l->l_flag, l->l_stat == LSRUN ? "RQ" :
1860 1.223 ad (l->l_stat == LSSLEEP ? "SQ" : "-"),
1861 1.223 ad l, ci->ci_index,
1862 1.223 ad (u_int)(hardclock_ticks - l->l_rticks));
1863 1.223 ad }
1864 1.223 ad }
1865 1.223 ad }
1866 1.223 ad
1867 1.223 ad #endif
1868