kern_synch.c revision 1.234 1 1.234 ad /* $NetBSD: kern_synch.c,v 1.234 2008/04/28 21:17:16 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.218 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej *
21 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
32 1.63 thorpej */
33 1.26 cgd
34 1.223 ad /*
35 1.223 ad * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
36 1.223 ad * All rights reserved.
37 1.223 ad *
38 1.223 ad * Redistribution and use in source and binary forms, with or without
39 1.223 ad * modification, are permitted provided that the following conditions
40 1.223 ad * are met:
41 1.223 ad * 1. Redistributions of source code must retain the above copyright
42 1.223 ad * notice, this list of conditions and the following disclaimer.
43 1.223 ad * 2. Redistributions in binary form must reproduce the above copyright
44 1.223 ad * notice, this list of conditions and the following disclaimer in the
45 1.223 ad * documentation and/or other materials provided with the distribution.
46 1.223 ad *
47 1.223 ad * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
48 1.223 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 1.223 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 1.223 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
51 1.223 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 1.223 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 1.223 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 1.223 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 1.223 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 1.223 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 1.223 ad * SUCH DAMAGE.
58 1.223 ad */
59 1.223 ad
60 1.26 cgd /*-
61 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
62 1.26 cgd * The Regents of the University of California. All rights reserved.
63 1.26 cgd * (c) UNIX System Laboratories, Inc.
64 1.26 cgd * All or some portions of this file are derived from material licensed
65 1.26 cgd * to the University of California by American Telephone and Telegraph
66 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
67 1.26 cgd * the permission of UNIX System Laboratories, Inc.
68 1.26 cgd *
69 1.26 cgd * Redistribution and use in source and binary forms, with or without
70 1.26 cgd * modification, are permitted provided that the following conditions
71 1.26 cgd * are met:
72 1.26 cgd * 1. Redistributions of source code must retain the above copyright
73 1.26 cgd * notice, this list of conditions and the following disclaimer.
74 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
75 1.26 cgd * notice, this list of conditions and the following disclaimer in the
76 1.26 cgd * documentation and/or other materials provided with the distribution.
77 1.136 agc * 3. Neither the name of the University nor the names of its contributors
78 1.26 cgd * may be used to endorse or promote products derived from this software
79 1.26 cgd * without specific prior written permission.
80 1.26 cgd *
81 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
82 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
83 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
84 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
85 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
86 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
87 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
88 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
89 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
90 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
91 1.26 cgd * SUCH DAMAGE.
92 1.26 cgd *
93 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
94 1.26 cgd */
95 1.106 lukem
96 1.106 lukem #include <sys/cdefs.h>
97 1.234 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.234 2008/04/28 21:17:16 ad Exp $");
98 1.48 mrg
99 1.109 yamt #include "opt_kstack.h"
100 1.82 thorpej #include "opt_lockdebug.h"
101 1.83 thorpej #include "opt_multiprocessor.h"
102 1.110 briggs #include "opt_perfctrs.h"
103 1.26 cgd
104 1.174 ad #define __MUTEX_PRIVATE
105 1.174 ad
106 1.26 cgd #include <sys/param.h>
107 1.26 cgd #include <sys/systm.h>
108 1.26 cgd #include <sys/proc.h>
109 1.26 cgd #include <sys/kernel.h>
110 1.111 briggs #if defined(PERFCTRS)
111 1.110 briggs #include <sys/pmc.h>
112 1.111 briggs #endif
113 1.188 yamt #include <sys/cpu.h>
114 1.26 cgd #include <sys/resourcevar.h>
115 1.55 ross #include <sys/sched.h>
116 1.179 dsl #include <sys/syscall_stats.h>
117 1.174 ad #include <sys/sleepq.h>
118 1.174 ad #include <sys/lockdebug.h>
119 1.190 ad #include <sys/evcnt.h>
120 1.199 ad #include <sys/intr.h>
121 1.207 ad #include <sys/lwpctl.h>
122 1.209 ad #include <sys/atomic.h>
123 1.215 ad #include <sys/simplelock.h>
124 1.223 ad #include <sys/bitops.h>
125 1.223 ad #include <sys/kmem.h>
126 1.223 ad #include <sys/sysctl.h>
127 1.223 ad #include <sys/idle.h>
128 1.47 mrg
129 1.47 mrg #include <uvm/uvm_extern.h>
130 1.47 mrg
131 1.231 ad #include <dev/lockstat.h>
132 1.231 ad
133 1.223 ad /*
134 1.223 ad * Priority related defintions.
135 1.223 ad */
136 1.223 ad #define PRI_TS_COUNT (NPRI_USER)
137 1.223 ad #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
138 1.223 ad #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
139 1.223 ad
140 1.223 ad #define PRI_HIGHEST_TS (MAXPRI_USER)
141 1.223 ad
142 1.223 ad /*
143 1.223 ad * Bits per map.
144 1.223 ad */
145 1.223 ad #define BITMAP_BITS (32)
146 1.223 ad #define BITMAP_SHIFT (5)
147 1.223 ad #define BITMAP_MSB (0x80000000U)
148 1.223 ad #define BITMAP_MASK (BITMAP_BITS - 1)
149 1.223 ad
150 1.223 ad /*
151 1.223 ad * Structures, runqueue.
152 1.223 ad */
153 1.34 christos
154 1.223 ad typedef struct {
155 1.223 ad TAILQ_HEAD(, lwp) q_head;
156 1.223 ad } queue_t;
157 1.223 ad
158 1.223 ad typedef struct {
159 1.223 ad /* Lock and bitmap */
160 1.223 ad uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
161 1.223 ad /* Counters */
162 1.223 ad u_int r_count; /* Count of the threads */
163 1.223 ad u_int r_avgcount; /* Average count of threads */
164 1.223 ad u_int r_mcount; /* Count of migratable threads */
165 1.223 ad /* Runqueues */
166 1.223 ad queue_t r_rt_queue[PRI_RT_COUNT];
167 1.223 ad queue_t r_ts_queue[PRI_TS_COUNT];
168 1.223 ad } runqueue_t;
169 1.26 cgd
170 1.221 ad static u_int sched_unsleep(struct lwp *, bool);
171 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
172 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
173 1.223 ad static void *sched_getrq(runqueue_t *, const pri_t);
174 1.223 ad #ifdef MULTIPROCESSOR
175 1.223 ad static lwp_t *sched_catchlwp(void);
176 1.223 ad static void sched_balance(void *);
177 1.223 ad #endif
178 1.122 thorpej
179 1.174 ad syncobj_t sleep_syncobj = {
180 1.174 ad SOBJ_SLEEPQ_SORTED,
181 1.174 ad sleepq_unsleep,
182 1.184 yamt sleepq_changepri,
183 1.184 yamt sleepq_lendpri,
184 1.184 yamt syncobj_noowner,
185 1.174 ad };
186 1.174 ad
187 1.174 ad syncobj_t sched_syncobj = {
188 1.174 ad SOBJ_SLEEPQ_SORTED,
189 1.174 ad sched_unsleep,
190 1.184 yamt sched_changepri,
191 1.184 yamt sched_lendpri,
192 1.184 yamt syncobj_noowner,
193 1.174 ad };
194 1.122 thorpej
195 1.223 ad const int schedppq = 1;
196 1.223 ad callout_t sched_pstats_ch;
197 1.223 ad unsigned sched_pstats_ticks;
198 1.223 ad kcondvar_t lbolt; /* once a second sleep address */
199 1.223 ad
200 1.223 ad /*
201 1.234 ad * Preemption control.
202 1.231 ad */
203 1.234 ad int sched_upreempt_pri = PRI_KERNEL;
204 1.232 ad #if 0
205 1.231 ad int sched_kpreempt_pri = PRI_USER_RT;
206 1.232 ad #else
207 1.232 ad /* XXX disable for now until any bugs are worked out. */
208 1.232 ad int sched_kpreempt_pri = 1000;
209 1.232 ad #endif
210 1.231 ad
211 1.231 ad static struct evcnt kpreempt_ev_crit;
212 1.231 ad static struct evcnt kpreempt_ev_klock;
213 1.231 ad static struct evcnt kpreempt_ev_ipl;
214 1.231 ad static struct evcnt kpreempt_ev_immed;
215 1.231 ad
216 1.231 ad /*
217 1.223 ad * Migration and balancing.
218 1.223 ad */
219 1.223 ad static u_int cacheht_time; /* Cache hotness time */
220 1.223 ad static u_int min_catch; /* Minimal LWP count for catching */
221 1.223 ad static u_int balance_period; /* Balance period */
222 1.223 ad static struct cpu_info *worker_ci; /* Victim CPU */
223 1.223 ad #ifdef MULTIPROCESSOR
224 1.223 ad static struct callout balance_ch; /* Callout of balancer */
225 1.223 ad #endif
226 1.223 ad
227 1.26 cgd /*
228 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
229 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
230 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
231 1.174 ad * maintained in the machine-dependent layers. This priority will typically
232 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
233 1.174 ad * it can be made higher to block network software interrupts after panics.
234 1.26 cgd */
235 1.174 ad int safepri;
236 1.26 cgd
237 1.26 cgd /*
238 1.174 ad * OBSOLETE INTERFACE
239 1.174 ad *
240 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
241 1.26 cgd * performed on the specified identifier. The process will then be made
242 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
243 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
244 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
245 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
246 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
247 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
248 1.26 cgd * call should be interrupted by the signal (return EINTR).
249 1.77 thorpej *
250 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
251 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
252 1.174 ad * is specified, in which case the interlock will always be unlocked upon
253 1.174 ad * return.
254 1.26 cgd */
255 1.26 cgd int
256 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
257 1.174 ad volatile struct simplelock *interlock)
258 1.26 cgd {
259 1.122 thorpej struct lwp *l = curlwp;
260 1.174 ad sleepq_t *sq;
261 1.188 yamt int error;
262 1.26 cgd
263 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
264 1.204 ad
265 1.174 ad if (sleepq_dontsleep(l)) {
266 1.174 ad (void)sleepq_abort(NULL, 0);
267 1.174 ad if ((priority & PNORELOCK) != 0)
268 1.77 thorpej simple_unlock(interlock);
269 1.174 ad return 0;
270 1.26 cgd }
271 1.78 sommerfe
272 1.204 ad l->l_kpriority = true;
273 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
274 1.174 ad sleepq_enter(sq, l);
275 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
276 1.42 cgd
277 1.174 ad if (interlock != NULL) {
278 1.204 ad KASSERT(simple_lock_held(interlock));
279 1.174 ad simple_unlock(interlock);
280 1.150 chs }
281 1.150 chs
282 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
283 1.126 pk
284 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
285 1.126 pk simple_lock(interlock);
286 1.174 ad
287 1.174 ad return error;
288 1.26 cgd }
289 1.26 cgd
290 1.187 ad int
291 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
292 1.187 ad kmutex_t *mtx)
293 1.187 ad {
294 1.187 ad struct lwp *l = curlwp;
295 1.187 ad sleepq_t *sq;
296 1.188 yamt int error;
297 1.187 ad
298 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
299 1.204 ad
300 1.187 ad if (sleepq_dontsleep(l)) {
301 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
302 1.187 ad return 0;
303 1.187 ad }
304 1.187 ad
305 1.204 ad l->l_kpriority = true;
306 1.187 ad sq = sleeptab_lookup(&sleeptab, ident);
307 1.187 ad sleepq_enter(sq, l);
308 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
309 1.187 ad mutex_exit(mtx);
310 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
311 1.187 ad
312 1.187 ad if ((priority & PNORELOCK) == 0)
313 1.187 ad mutex_enter(mtx);
314 1.187 ad
315 1.187 ad return error;
316 1.187 ad }
317 1.187 ad
318 1.26 cgd /*
319 1.174 ad * General sleep call for situations where a wake-up is not expected.
320 1.26 cgd */
321 1.174 ad int
322 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
323 1.26 cgd {
324 1.174 ad struct lwp *l = curlwp;
325 1.174 ad sleepq_t *sq;
326 1.174 ad int error;
327 1.26 cgd
328 1.174 ad if (sleepq_dontsleep(l))
329 1.174 ad return sleepq_abort(NULL, 0);
330 1.26 cgd
331 1.174 ad if (mtx != NULL)
332 1.174 ad mutex_exit(mtx);
333 1.204 ad l->l_kpriority = true;
334 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
335 1.174 ad sleepq_enter(sq, l);
336 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
337 1.188 yamt error = sleepq_block(timo, intr);
338 1.174 ad if (mtx != NULL)
339 1.174 ad mutex_enter(mtx);
340 1.83 thorpej
341 1.174 ad return error;
342 1.139 cl }
343 1.139 cl
344 1.26 cgd /*
345 1.174 ad * OBSOLETE INTERFACE
346 1.174 ad *
347 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
348 1.26 cgd */
349 1.26 cgd void
350 1.174 ad wakeup(wchan_t ident)
351 1.26 cgd {
352 1.174 ad sleepq_t *sq;
353 1.83 thorpej
354 1.174 ad if (cold)
355 1.174 ad return;
356 1.83 thorpej
357 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
358 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
359 1.63 thorpej }
360 1.63 thorpej
361 1.63 thorpej /*
362 1.174 ad * OBSOLETE INTERFACE
363 1.174 ad *
364 1.63 thorpej * Make the highest priority process first in line on the specified
365 1.63 thorpej * identifier runnable.
366 1.63 thorpej */
367 1.174 ad void
368 1.174 ad wakeup_one(wchan_t ident)
369 1.63 thorpej {
370 1.174 ad sleepq_t *sq;
371 1.63 thorpej
372 1.174 ad if (cold)
373 1.174 ad return;
374 1.188 yamt
375 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
376 1.174 ad sleepq_wake(sq, ident, 1);
377 1.174 ad }
378 1.63 thorpej
379 1.117 gmcgarry
380 1.117 gmcgarry /*
381 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
382 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
383 1.198 ad * current process explicitly requests it (eg sched_yield(2)).
384 1.117 gmcgarry */
385 1.117 gmcgarry void
386 1.117 gmcgarry yield(void)
387 1.117 gmcgarry {
388 1.122 thorpej struct lwp *l = curlwp;
389 1.117 gmcgarry
390 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
391 1.174 ad lwp_lock(l);
392 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
393 1.188 yamt KASSERT(l->l_stat == LSONPROC);
394 1.204 ad l->l_kpriority = false;
395 1.188 yamt (void)mi_switch(l);
396 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
397 1.69 thorpej }
398 1.69 thorpej
399 1.69 thorpej /*
400 1.69 thorpej * General preemption call. Puts the current process back on its run queue
401 1.156 rpaulo * and performs an involuntary context switch.
402 1.69 thorpej */
403 1.69 thorpej void
404 1.174 ad preempt(void)
405 1.69 thorpej {
406 1.122 thorpej struct lwp *l = curlwp;
407 1.69 thorpej
408 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
409 1.174 ad lwp_lock(l);
410 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
411 1.188 yamt KASSERT(l->l_stat == LSONPROC);
412 1.204 ad l->l_kpriority = false;
413 1.174 ad l->l_nivcsw++;
414 1.188 yamt (void)mi_switch(l);
415 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
416 1.69 thorpej }
417 1.69 thorpej
418 1.234 ad /*
419 1.234 ad * Handle a request made by another agent to preempt the current LWP
420 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
421 1.234 ad *
422 1.234 ad * Character addresses for lockstat only.
423 1.234 ad */
424 1.231 ad static char in_critical_section;
425 1.231 ad static char kernel_lock_held;
426 1.231 ad static char spl_raised;
427 1.231 ad static char is_softint;
428 1.231 ad
429 1.231 ad bool
430 1.231 ad kpreempt(uintptr_t where)
431 1.231 ad {
432 1.231 ad uintptr_t failed;
433 1.231 ad lwp_t *l;
434 1.231 ad int s, dop;
435 1.231 ad
436 1.231 ad l = curlwp;
437 1.231 ad failed = 0;
438 1.231 ad while ((dop = l->l_dopreempt) != 0) {
439 1.231 ad if (l->l_stat != LSONPROC) {
440 1.231 ad /*
441 1.231 ad * About to block (or die), let it happen.
442 1.231 ad * Doesn't really count as "preemption has
443 1.231 ad * been blocked", since we're going to
444 1.231 ad * context switch.
445 1.231 ad */
446 1.231 ad l->l_dopreempt = 0;
447 1.231 ad return true;
448 1.231 ad }
449 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
450 1.231 ad /* Can't preempt idle loop, don't count as failure. */
451 1.231 ad l->l_dopreempt = 0;
452 1.231 ad return true;
453 1.231 ad }
454 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
455 1.231 ad /* LWP holds preemption disabled, explicitly. */
456 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
457 1.234 ad kpreempt_ev_crit.ev_count++;
458 1.231 ad }
459 1.231 ad failed = (uintptr_t)&in_critical_section;
460 1.231 ad break;
461 1.231 ad }
462 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
463 1.231 ad /* Can't preempt soft interrupts yet. */
464 1.231 ad l->l_dopreempt = 0;
465 1.231 ad failed = (uintptr_t)&is_softint;
466 1.231 ad break;
467 1.231 ad }
468 1.231 ad s = splsched();
469 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
470 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
471 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
472 1.231 ad splx(s);
473 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
474 1.234 ad kpreempt_ev_klock.ev_count++;
475 1.231 ad }
476 1.231 ad failed = (uintptr_t)&kernel_lock_held;
477 1.231 ad break;
478 1.231 ad }
479 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
480 1.231 ad /*
481 1.231 ad * It may be that the IPL is too high.
482 1.231 ad * kpreempt_enter() can schedule an
483 1.231 ad * interrupt to retry later.
484 1.231 ad */
485 1.231 ad splx(s);
486 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
487 1.234 ad kpreempt_ev_ipl.ev_count++;
488 1.231 ad }
489 1.231 ad failed = (uintptr_t)&spl_raised;
490 1.231 ad break;
491 1.231 ad }
492 1.231 ad /* Do it! */
493 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
494 1.234 ad kpreempt_ev_immed.ev_count++;
495 1.231 ad }
496 1.231 ad lwp_lock(l);
497 1.231 ad mi_switch(l);
498 1.231 ad l->l_nopreempt++;
499 1.231 ad splx(s);
500 1.231 ad
501 1.231 ad /* Take care of any MD cleanup. */
502 1.231 ad cpu_kpreempt_exit(where);
503 1.231 ad l->l_nopreempt--;
504 1.231 ad }
505 1.231 ad
506 1.231 ad /* Record preemption failure for reporting via lockstat. */
507 1.231 ad if (__predict_false(failed)) {
508 1.231 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
509 1.231 ad int lsflag = 0;
510 1.231 ad LOCKSTAT_ENTER(lsflag);
511 1.231 ad /* Might recurse, make it atomic. */
512 1.231 ad if (__predict_false(lsflag)) {
513 1.231 ad if (where == 0) {
514 1.231 ad where = (uintptr_t)__builtin_return_address(0);
515 1.231 ad }
516 1.231 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
517 1.231 ad NULL, (void *)where) == NULL) {
518 1.231 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
519 1.231 ad l->l_pfaillock = failed;
520 1.231 ad }
521 1.231 ad }
522 1.231 ad LOCKSTAT_EXIT(lsflag);
523 1.231 ad }
524 1.231 ad
525 1.231 ad return failed;
526 1.231 ad }
527 1.231 ad
528 1.69 thorpej /*
529 1.231 ad * Return true if preemption is explicitly disabled.
530 1.230 ad */
531 1.231 ad bool
532 1.231 ad kpreempt_disabled(void)
533 1.231 ad {
534 1.231 ad lwp_t *l;
535 1.231 ad
536 1.231 ad l = curlwp;
537 1.231 ad
538 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
539 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
540 1.231 ad }
541 1.230 ad
542 1.230 ad /*
543 1.231 ad * Disable kernel preemption.
544 1.230 ad */
545 1.230 ad void
546 1.231 ad kpreempt_disable(void)
547 1.230 ad {
548 1.230 ad
549 1.231 ad KPREEMPT_DISABLE(curlwp);
550 1.230 ad }
551 1.230 ad
552 1.230 ad /*
553 1.231 ad * Reenable kernel preemption.
554 1.230 ad */
555 1.231 ad void
556 1.231 ad kpreempt_enable(void)
557 1.230 ad {
558 1.230 ad
559 1.231 ad KPREEMPT_ENABLE(curlwp);
560 1.230 ad }
561 1.230 ad
562 1.230 ad /*
563 1.188 yamt * Compute the amount of time during which the current lwp was running.
564 1.130 nathanw *
565 1.188 yamt * - update l_rtime unless it's an idle lwp.
566 1.188 yamt */
567 1.188 yamt
568 1.199 ad void
569 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
570 1.188 yamt {
571 1.188 yamt
572 1.199 ad if ((l->l_flag & LW_IDLE) != 0)
573 1.188 yamt return;
574 1.188 yamt
575 1.212 yamt /* rtime += now - stime */
576 1.212 yamt bintime_add(&l->l_rtime, now);
577 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
578 1.188 yamt }
579 1.188 yamt
580 1.188 yamt /*
581 1.188 yamt * The machine independent parts of context switch.
582 1.188 yamt *
583 1.188 yamt * Returns 1 if another LWP was actually run.
584 1.26 cgd */
585 1.122 thorpej int
586 1.199 ad mi_switch(lwp_t *l)
587 1.26 cgd {
588 1.216 rmind struct cpu_info *ci, *tci = NULL;
589 1.76 thorpej struct schedstate_percpu *spc;
590 1.188 yamt struct lwp *newl;
591 1.174 ad int retval, oldspl;
592 1.212 yamt struct bintime bt;
593 1.199 ad bool returning;
594 1.26 cgd
595 1.188 yamt KASSERT(lwp_locked(l, NULL));
596 1.231 ad KASSERT(kpreempt_disabled());
597 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
598 1.174 ad
599 1.174 ad #ifdef KSTACK_CHECK_MAGIC
600 1.174 ad kstack_check_magic(l);
601 1.174 ad #endif
602 1.83 thorpej
603 1.212 yamt binuptime(&bt);
604 1.199 ad
605 1.231 ad KASSERT(l->l_cpu == curcpu());
606 1.196 ad ci = l->l_cpu;
607 1.196 ad spc = &ci->ci_schedstate;
608 1.199 ad returning = false;
609 1.190 ad newl = NULL;
610 1.190 ad
611 1.199 ad /*
612 1.199 ad * If we have been asked to switch to a specific LWP, then there
613 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
614 1.199 ad * blocking, then return to the interrupted thread without adjusting
615 1.199 ad * VM context or its start time: neither have been changed in order
616 1.199 ad * to take the interrupt.
617 1.199 ad */
618 1.190 ad if (l->l_switchto != NULL) {
619 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
620 1.199 ad returning = true;
621 1.199 ad softint_block(l);
622 1.199 ad if ((l->l_flag & LW_TIMEINTR) != 0)
623 1.212 yamt updatertime(l, &bt);
624 1.199 ad }
625 1.190 ad newl = l->l_switchto;
626 1.190 ad l->l_switchto = NULL;
627 1.190 ad }
628 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
629 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
630 1.204 ad /* There are pending soft interrupts, so pick one. */
631 1.204 ad newl = softint_picklwp();
632 1.204 ad newl->l_stat = LSONPROC;
633 1.204 ad newl->l_flag |= LW_RUNNING;
634 1.204 ad }
635 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
636 1.190 ad
637 1.180 dsl /* Count time spent in current system call */
638 1.199 ad if (!returning) {
639 1.199 ad SYSCALL_TIME_SLEEP(l);
640 1.180 dsl
641 1.199 ad /*
642 1.199 ad * XXXSMP If we are using h/w performance counters,
643 1.199 ad * save context.
644 1.199 ad */
645 1.174 ad #if PERFCTRS
646 1.199 ad if (PMC_ENABLED(l->l_proc)) {
647 1.199 ad pmc_save_context(l->l_proc);
648 1.199 ad }
649 1.199 ad #endif
650 1.212 yamt updatertime(l, &bt);
651 1.174 ad }
652 1.113 gmcgarry
653 1.113 gmcgarry /*
654 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
655 1.113 gmcgarry */
656 1.174 ad KASSERT(l->l_stat != LSRUN);
657 1.216 rmind if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
658 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
659 1.216 rmind
660 1.220 rmind if (l->l_target_cpu == l->l_cpu) {
661 1.220 rmind l->l_target_cpu = NULL;
662 1.220 rmind } else {
663 1.220 rmind tci = l->l_target_cpu;
664 1.220 rmind }
665 1.220 rmind
666 1.216 rmind if (__predict_false(tci != NULL)) {
667 1.216 rmind /* Double-lock the runqueues */
668 1.216 rmind spc_dlock(ci, tci);
669 1.216 rmind } else {
670 1.216 rmind /* Lock the runqueue */
671 1.216 rmind spc_lock(ci);
672 1.216 rmind }
673 1.216 rmind
674 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
675 1.188 yamt l->l_stat = LSRUN;
676 1.216 rmind if (__predict_false(tci != NULL)) {
677 1.216 rmind /*
678 1.216 rmind * Set the new CPU, lock and unset the
679 1.216 rmind * l_target_cpu - thread will be enqueued
680 1.216 rmind * to the runqueue of target CPU.
681 1.216 rmind */
682 1.216 rmind l->l_cpu = tci;
683 1.216 rmind lwp_setlock(l, tci->ci_schedstate.spc_mutex);
684 1.216 rmind l->l_target_cpu = NULL;
685 1.216 rmind } else {
686 1.216 rmind lwp_setlock(l, spc->spc_mutex);
687 1.216 rmind }
688 1.188 yamt sched_enqueue(l, true);
689 1.216 rmind } else {
690 1.216 rmind KASSERT(tci == NULL);
691 1.188 yamt l->l_stat = LSIDL;
692 1.216 rmind }
693 1.216 rmind } else {
694 1.216 rmind /* Lock the runqueue */
695 1.216 rmind spc_lock(ci);
696 1.174 ad }
697 1.174 ad
698 1.174 ad /*
699 1.201 rmind * Let sched_nextlwp() select the LWP to run the CPU next.
700 1.209 ad * If no LWP is runnable, select the idle LWP.
701 1.209 ad *
702 1.209 ad * Note that spc_lwplock might not necessary be held, and
703 1.209 ad * new thread would be unlocked after setting the LWP-lock.
704 1.174 ad */
705 1.190 ad if (newl == NULL) {
706 1.190 ad newl = sched_nextlwp();
707 1.190 ad if (newl != NULL) {
708 1.190 ad sched_dequeue(newl);
709 1.190 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
710 1.190 ad newl->l_stat = LSONPROC;
711 1.196 ad newl->l_cpu = ci;
712 1.190 ad newl->l_flag |= LW_RUNNING;
713 1.217 ad lwp_setlock(newl, spc->spc_lwplock);
714 1.190 ad } else {
715 1.196 ad newl = ci->ci_data.cpu_idlelwp;
716 1.190 ad newl->l_stat = LSONPROC;
717 1.190 ad newl->l_flag |= LW_RUNNING;
718 1.190 ad }
719 1.204 ad /*
720 1.204 ad * Only clear want_resched if there are no
721 1.204 ad * pending (slow) software interrupts.
722 1.204 ad */
723 1.204 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
724 1.199 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
725 1.204 ad spc->spc_curpriority = lwp_eprio(newl);
726 1.199 ad }
727 1.199 ad
728 1.204 ad /* Items that must be updated with the CPU locked. */
729 1.199 ad if (!returning) {
730 1.204 ad /* Update the new LWP's start time. */
731 1.212 yamt newl->l_stime = bt;
732 1.204 ad
733 1.199 ad /*
734 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
735 1.204 ad * We use cpu_onproc to keep track of which kernel or
736 1.204 ad * user thread is running 'underneath' the software
737 1.204 ad * interrupt. This is important for time accounting,
738 1.204 ad * itimers and forcing user threads to preempt (aston).
739 1.199 ad */
740 1.204 ad ci->ci_data.cpu_onproc = newl;
741 1.188 yamt }
742 1.188 yamt
743 1.231 ad /* Kernel preemption related tasks. */
744 1.231 ad l->l_dopreempt = 0;
745 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
746 1.231 ad LOCKSTAT_FLAG(lsflag);
747 1.231 ad LOCKSTAT_ENTER(lsflag);
748 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
749 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
750 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
751 1.231 ad LOCKSTAT_EXIT(lsflag);
752 1.231 ad l->l_pfailtime = 0;
753 1.231 ad l->l_pfaillock = 0;
754 1.231 ad l->l_pfailaddr = 0;
755 1.231 ad }
756 1.231 ad
757 1.188 yamt if (l != newl) {
758 1.188 yamt struct lwp *prevlwp;
759 1.174 ad
760 1.209 ad /* Release all locks, but leave the current LWP locked */
761 1.216 rmind if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
762 1.216 rmind /*
763 1.216 rmind * In case of migration, drop the local runqueue
764 1.216 rmind * lock, thread is on other runqueue now.
765 1.216 rmind */
766 1.216 rmind if (__predict_false(tci != NULL))
767 1.216 rmind spc_unlock(ci);
768 1.209 ad /*
769 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
770 1.209 ad * to the run queue (it is now locked by spc_mutex).
771 1.209 ad */
772 1.217 ad mutex_spin_exit(spc->spc_lwplock);
773 1.188 yamt } else {
774 1.209 ad /*
775 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
776 1.209 ad * run queues.
777 1.209 ad */
778 1.188 yamt mutex_spin_exit(spc->spc_mutex);
779 1.216 rmind KASSERT(tci == NULL);
780 1.188 yamt }
781 1.188 yamt
782 1.209 ad /*
783 1.209 ad * Mark that context switch is going to be perfomed
784 1.209 ad * for this LWP, to protect it from being switched
785 1.209 ad * to on another CPU.
786 1.209 ad */
787 1.209 ad KASSERT(l->l_ctxswtch == 0);
788 1.209 ad l->l_ctxswtch = 1;
789 1.209 ad l->l_ncsw++;
790 1.209 ad l->l_flag &= ~LW_RUNNING;
791 1.209 ad
792 1.209 ad /*
793 1.209 ad * Increase the count of spin-mutexes before the release
794 1.209 ad * of the last lock - we must remain at IPL_SCHED during
795 1.209 ad * the context switch.
796 1.209 ad */
797 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
798 1.209 ad ci->ci_mtx_count--;
799 1.209 ad lwp_unlock(l);
800 1.209 ad
801 1.218 ad /* Count the context switch on this CPU. */
802 1.218 ad ci->ci_data.cpu_nswtch++;
803 1.188 yamt
804 1.209 ad /* Update status for lwpctl, if present. */
805 1.209 ad if (l->l_lwpctl != NULL)
806 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
807 1.209 ad
808 1.199 ad /*
809 1.199 ad * Save old VM context, unless a soft interrupt
810 1.199 ad * handler is blocking.
811 1.199 ad */
812 1.199 ad if (!returning)
813 1.199 ad pmap_deactivate(l);
814 1.188 yamt
815 1.209 ad /*
816 1.209 ad * We may need to spin-wait for if 'newl' is still
817 1.209 ad * context switching on another CPU.
818 1.209 ad */
819 1.209 ad if (newl->l_ctxswtch != 0) {
820 1.209 ad u_int count;
821 1.209 ad count = SPINLOCK_BACKOFF_MIN;
822 1.209 ad while (newl->l_ctxswtch)
823 1.209 ad SPINLOCK_BACKOFF(count);
824 1.209 ad }
825 1.207 ad
826 1.188 yamt /* Switch to the new LWP.. */
827 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
828 1.207 ad ci = curcpu();
829 1.207 ad
830 1.188 yamt /*
831 1.209 ad * Switched away - we have new curlwp.
832 1.209 ad * Restore VM context and IPL.
833 1.188 yamt */
834 1.209 ad pmap_activate(l);
835 1.188 yamt if (prevlwp != NULL) {
836 1.209 ad /* Normalize the count of the spin-mutexes */
837 1.209 ad ci->ci_mtx_count++;
838 1.209 ad /* Unmark the state of context switch */
839 1.209 ad membar_exit();
840 1.209 ad prevlwp->l_ctxswtch = 0;
841 1.188 yamt }
842 1.209 ad
843 1.209 ad /* Update status for lwpctl, if present. */
844 1.219 ad if (l->l_lwpctl != NULL) {
845 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
846 1.219 ad l->l_lwpctl->lc_pctr++;
847 1.219 ad }
848 1.174 ad
849 1.231 ad KASSERT(l->l_cpu == ci);
850 1.231 ad splx(oldspl);
851 1.188 yamt retval = 1;
852 1.188 yamt } else {
853 1.188 yamt /* Nothing to do - just unlock and return. */
854 1.216 rmind KASSERT(tci == NULL);
855 1.216 rmind spc_unlock(ci);
856 1.188 yamt lwp_unlock(l);
857 1.122 thorpej retval = 0;
858 1.122 thorpej }
859 1.110 briggs
860 1.188 yamt KASSERT(l == curlwp);
861 1.188 yamt KASSERT(l->l_stat == LSONPROC);
862 1.188 yamt
863 1.110 briggs /*
864 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
865 1.231 ad * XXXSMP preemption problem.
866 1.26 cgd */
867 1.114 gmcgarry #if PERFCTRS
868 1.175 christos if (PMC_ENABLED(l->l_proc)) {
869 1.175 christos pmc_restore_context(l->l_proc);
870 1.166 christos }
871 1.114 gmcgarry #endif
872 1.180 dsl SYSCALL_TIME_WAKEUP(l);
873 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
874 1.169 yamt
875 1.122 thorpej return retval;
876 1.26 cgd }
877 1.26 cgd
878 1.26 cgd /*
879 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
880 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
881 1.174 ad *
882 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
883 1.26 cgd */
884 1.26 cgd void
885 1.122 thorpej setrunnable(struct lwp *l)
886 1.26 cgd {
887 1.122 thorpej struct proc *p = l->l_proc;
888 1.205 ad struct cpu_info *ci;
889 1.174 ad sigset_t *ss;
890 1.26 cgd
891 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
892 1.229 ad KASSERT(mutex_owned(p->p_lock));
893 1.183 ad KASSERT(lwp_locked(l, NULL));
894 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
895 1.83 thorpej
896 1.122 thorpej switch (l->l_stat) {
897 1.122 thorpej case LSSTOP:
898 1.33 mycroft /*
899 1.33 mycroft * If we're being traced (possibly because someone attached us
900 1.33 mycroft * while we were stopped), check for a signal from the debugger.
901 1.33 mycroft */
902 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
903 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
904 1.174 ad ss = &l->l_sigpend.sp_set;
905 1.174 ad else
906 1.174 ad ss = &p->p_sigpend.sp_set;
907 1.174 ad sigaddset(ss, p->p_xstat);
908 1.174 ad signotify(l);
909 1.53 mycroft }
910 1.174 ad p->p_nrlwps++;
911 1.26 cgd break;
912 1.174 ad case LSSUSPENDED:
913 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
914 1.174 ad p->p_nrlwps++;
915 1.192 rmind cv_broadcast(&p->p_lwpcv);
916 1.122 thorpej break;
917 1.174 ad case LSSLEEP:
918 1.174 ad KASSERT(l->l_wchan != NULL);
919 1.26 cgd break;
920 1.174 ad default:
921 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
922 1.26 cgd }
923 1.139 cl
924 1.174 ad /*
925 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
926 1.174 ad * again. If not, mark it as still sleeping.
927 1.174 ad */
928 1.174 ad if (l->l_wchan != NULL) {
929 1.174 ad l->l_stat = LSSLEEP;
930 1.183 ad /* lwp_unsleep() will release the lock. */
931 1.221 ad lwp_unsleep(l, true);
932 1.174 ad return;
933 1.174 ad }
934 1.139 cl
935 1.174 ad /*
936 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
937 1.174 ad * about to call mi_switch(), in which case it will yield.
938 1.174 ad */
939 1.188 yamt if ((l->l_flag & LW_RUNNING) != 0) {
940 1.174 ad l->l_stat = LSONPROC;
941 1.174 ad l->l_slptime = 0;
942 1.174 ad lwp_unlock(l);
943 1.174 ad return;
944 1.174 ad }
945 1.122 thorpej
946 1.174 ad /*
947 1.205 ad * Look for a CPU to run.
948 1.205 ad * Set the LWP runnable.
949 1.174 ad */
950 1.205 ad ci = sched_takecpu(l);
951 1.205 ad l->l_cpu = ci;
952 1.206 ad if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
953 1.206 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
954 1.206 ad lwp_lock(l);
955 1.206 ad }
956 1.188 yamt sched_setrunnable(l);
957 1.174 ad l->l_stat = LSRUN;
958 1.122 thorpej l->l_slptime = 0;
959 1.174 ad
960 1.205 ad /*
961 1.205 ad * If thread is swapped out - wake the swapper to bring it back in.
962 1.205 ad * Otherwise, enter it into a run queue.
963 1.205 ad */
964 1.178 pavel if (l->l_flag & LW_INMEM) {
965 1.188 yamt sched_enqueue(l, false);
966 1.188 yamt resched_cpu(l);
967 1.174 ad lwp_unlock(l);
968 1.174 ad } else {
969 1.174 ad lwp_unlock(l);
970 1.177 ad uvm_kick_scheduler();
971 1.174 ad }
972 1.26 cgd }
973 1.26 cgd
974 1.26 cgd /*
975 1.174 ad * suspendsched:
976 1.174 ad *
977 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
978 1.174 ad */
979 1.94 bouyer void
980 1.174 ad suspendsched(void)
981 1.94 bouyer {
982 1.174 ad CPU_INFO_ITERATOR cii;
983 1.174 ad struct cpu_info *ci;
984 1.122 thorpej struct lwp *l;
985 1.174 ad struct proc *p;
986 1.94 bouyer
987 1.94 bouyer /*
988 1.174 ad * We do this by process in order not to violate the locking rules.
989 1.94 bouyer */
990 1.228 ad mutex_enter(proc_lock);
991 1.174 ad PROCLIST_FOREACH(p, &allproc) {
992 1.229 ad mutex_enter(p->p_lock);
993 1.174 ad
994 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
995 1.229 ad mutex_exit(p->p_lock);
996 1.94 bouyer continue;
997 1.174 ad }
998 1.174 ad
999 1.174 ad p->p_stat = SSTOP;
1000 1.174 ad
1001 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1002 1.174 ad if (l == curlwp)
1003 1.174 ad continue;
1004 1.174 ad
1005 1.174 ad lwp_lock(l);
1006 1.122 thorpej
1007 1.97 enami /*
1008 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
1009 1.174 ad * when it tries to return to user mode. We want to
1010 1.174 ad * try and get to get as many LWPs as possible to
1011 1.174 ad * the user / kernel boundary, so that they will
1012 1.174 ad * release any locks that they hold.
1013 1.97 enami */
1014 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1015 1.174 ad
1016 1.174 ad if (l->l_stat == LSSLEEP &&
1017 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1018 1.174 ad /* setrunnable() will release the lock. */
1019 1.174 ad setrunnable(l);
1020 1.174 ad continue;
1021 1.174 ad }
1022 1.174 ad
1023 1.174 ad lwp_unlock(l);
1024 1.94 bouyer }
1025 1.174 ad
1026 1.229 ad mutex_exit(p->p_lock);
1027 1.94 bouyer }
1028 1.228 ad mutex_exit(proc_lock);
1029 1.174 ad
1030 1.174 ad /*
1031 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1032 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
1033 1.174 ad */
1034 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1035 1.204 ad spc_lock(ci);
1036 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
1037 1.204 ad spc_unlock(ci);
1038 1.204 ad }
1039 1.174 ad }
1040 1.174 ad
1041 1.174 ad /*
1042 1.174 ad * sched_unsleep:
1043 1.174 ad *
1044 1.174 ad * The is called when the LWP has not been awoken normally but instead
1045 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1046 1.174 ad * it's not a valid action for running or idle LWPs.
1047 1.174 ad */
1048 1.221 ad static u_int
1049 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1050 1.174 ad {
1051 1.174 ad
1052 1.174 ad lwp_unlock(l);
1053 1.174 ad panic("sched_unsleep");
1054 1.174 ad }
1055 1.174 ad
1056 1.204 ad void
1057 1.188 yamt resched_cpu(struct lwp *l)
1058 1.188 yamt {
1059 1.188 yamt struct cpu_info *ci;
1060 1.188 yamt
1061 1.188 yamt /*
1062 1.188 yamt * XXXSMP
1063 1.188 yamt * Since l->l_cpu persists across a context switch,
1064 1.188 yamt * this gives us *very weak* processor affinity, in
1065 1.188 yamt * that we notify the CPU on which the process last
1066 1.188 yamt * ran that it should try to switch.
1067 1.188 yamt *
1068 1.188 yamt * This does not guarantee that the process will run on
1069 1.188 yamt * that processor next, because another processor might
1070 1.188 yamt * grab it the next time it performs a context switch.
1071 1.188 yamt *
1072 1.188 yamt * This also does not handle the case where its last
1073 1.188 yamt * CPU is running a higher-priority process, but every
1074 1.188 yamt * other CPU is running a lower-priority process. There
1075 1.188 yamt * are ways to handle this situation, but they're not
1076 1.188 yamt * currently very pretty, and we also need to weigh the
1077 1.188 yamt * cost of moving a process from one CPU to another.
1078 1.188 yamt */
1079 1.204 ad ci = l->l_cpu;
1080 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1081 1.188 yamt cpu_need_resched(ci, 0);
1082 1.188 yamt }
1083 1.188 yamt
1084 1.188 yamt static void
1085 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1086 1.174 ad {
1087 1.174 ad
1088 1.188 yamt KASSERT(lwp_locked(l, NULL));
1089 1.174 ad
1090 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1091 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1092 1.204 ad sched_dequeue(l);
1093 1.204 ad l->l_priority = pri;
1094 1.204 ad sched_enqueue(l, false);
1095 1.204 ad } else {
1096 1.174 ad l->l_priority = pri;
1097 1.157 yamt }
1098 1.188 yamt resched_cpu(l);
1099 1.184 yamt }
1100 1.184 yamt
1101 1.188 yamt static void
1102 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1103 1.184 yamt {
1104 1.184 yamt
1105 1.188 yamt KASSERT(lwp_locked(l, NULL));
1106 1.184 yamt
1107 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1108 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1109 1.204 ad sched_dequeue(l);
1110 1.204 ad l->l_inheritedprio = pri;
1111 1.204 ad sched_enqueue(l, false);
1112 1.204 ad } else {
1113 1.184 yamt l->l_inheritedprio = pri;
1114 1.184 yamt }
1115 1.188 yamt resched_cpu(l);
1116 1.184 yamt }
1117 1.184 yamt
1118 1.184 yamt struct lwp *
1119 1.184 yamt syncobj_noowner(wchan_t wchan)
1120 1.184 yamt {
1121 1.184 yamt
1122 1.184 yamt return NULL;
1123 1.151 yamt }
1124 1.151 yamt
1125 1.188 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
1126 1.188 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
1127 1.115 nisimura
1128 1.130 nathanw /*
1129 1.188 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
1130 1.188 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
1131 1.188 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
1132 1.188 yamt *
1133 1.188 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
1134 1.188 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
1135 1.188 yamt *
1136 1.188 yamt * If you dont want to bother with the faster/more-accurate formula, you
1137 1.188 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
1138 1.188 yamt * (more general) method of calculating the %age of CPU used by a process.
1139 1.134 matt */
1140 1.188 yamt #define CCPU_SHIFT (FSHIFT + 1)
1141 1.134 matt
1142 1.134 matt /*
1143 1.188 yamt * sched_pstats:
1144 1.188 yamt *
1145 1.188 yamt * Update process statistics and check CPU resource allocation.
1146 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
1147 1.188 yamt * priorities.
1148 1.130 nathanw */
1149 1.188 yamt /* ARGSUSED */
1150 1.113 gmcgarry void
1151 1.188 yamt sched_pstats(void *arg)
1152 1.113 gmcgarry {
1153 1.188 yamt struct rlimit *rlim;
1154 1.188 yamt struct lwp *l;
1155 1.188 yamt struct proc *p;
1156 1.204 ad int sig, clkhz;
1157 1.188 yamt long runtm;
1158 1.113 gmcgarry
1159 1.188 yamt sched_pstats_ticks++;
1160 1.174 ad
1161 1.228 ad mutex_enter(proc_lock);
1162 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1163 1.188 yamt /*
1164 1.188 yamt * Increment time in/out of memory and sleep time (if
1165 1.188 yamt * sleeping). We ignore overflow; with 16-bit int's
1166 1.188 yamt * (remember them?) overflow takes 45 days.
1167 1.188 yamt */
1168 1.229 ad mutex_enter(p->p_lock);
1169 1.188 yamt mutex_spin_enter(&p->p_stmutex);
1170 1.212 yamt runtm = p->p_rtime.sec;
1171 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1172 1.188 yamt if ((l->l_flag & LW_IDLE) != 0)
1173 1.188 yamt continue;
1174 1.188 yamt lwp_lock(l);
1175 1.212 yamt runtm += l->l_rtime.sec;
1176 1.188 yamt l->l_swtime++;
1177 1.200 rmind sched_pstats_hook(l);
1178 1.188 yamt lwp_unlock(l);
1179 1.113 gmcgarry
1180 1.188 yamt /*
1181 1.188 yamt * p_pctcpu is only for ps.
1182 1.188 yamt */
1183 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1184 1.188 yamt if (l->l_slptime < 1) {
1185 1.188 yamt clkhz = stathz != 0 ? stathz : hz;
1186 1.188 yamt #if (FSHIFT >= CCPU_SHIFT)
1187 1.188 yamt l->l_pctcpu += (clkhz == 100) ?
1188 1.188 yamt ((fixpt_t)l->l_cpticks) <<
1189 1.188 yamt (FSHIFT - CCPU_SHIFT) :
1190 1.188 yamt 100 * (((fixpt_t) p->p_cpticks)
1191 1.188 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
1192 1.188 yamt #else
1193 1.188 yamt l->l_pctcpu += ((FSCALE - ccpu) *
1194 1.188 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
1195 1.146 matt #endif
1196 1.188 yamt l->l_cpticks = 0;
1197 1.188 yamt }
1198 1.188 yamt }
1199 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1200 1.188 yamt mutex_spin_exit(&p->p_stmutex);
1201 1.174 ad
1202 1.188 yamt /*
1203 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1204 1.188 yamt * If over max, kill it.
1205 1.188 yamt */
1206 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1207 1.188 yamt sig = 0;
1208 1.188 yamt if (runtm >= rlim->rlim_cur) {
1209 1.188 yamt if (runtm >= rlim->rlim_max)
1210 1.188 yamt sig = SIGKILL;
1211 1.188 yamt else {
1212 1.188 yamt sig = SIGXCPU;
1213 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1214 1.188 yamt rlim->rlim_cur += 5;
1215 1.188 yamt }
1216 1.188 yamt }
1217 1.229 ad mutex_exit(p->p_lock);
1218 1.228 ad if (sig)
1219 1.188 yamt psignal(p, sig);
1220 1.174 ad }
1221 1.228 ad mutex_exit(proc_lock);
1222 1.188 yamt uvm_meter();
1223 1.191 ad cv_wakeup(&lbolt);
1224 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
1225 1.113 gmcgarry }
1226 1.190 ad
1227 1.190 ad void
1228 1.190 ad sched_init(void)
1229 1.190 ad {
1230 1.190 ad
1231 1.208 ad cv_init(&lbolt, "lbolt");
1232 1.214 ad callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
1233 1.190 ad callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
1234 1.223 ad
1235 1.223 ad /* Balancing */
1236 1.223 ad worker_ci = curcpu();
1237 1.223 ad cacheht_time = mstohz(5); /* ~5 ms */
1238 1.223 ad balance_period = mstohz(300); /* ~300ms */
1239 1.223 ad
1240 1.223 ad /* Minimal count of LWPs for catching: log2(count of CPUs) */
1241 1.223 ad min_catch = min(ilog2(ncpu), 4);
1242 1.223 ad
1243 1.231 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_INTR, NULL,
1244 1.231 ad "kpreempt", "defer: critical section");
1245 1.231 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_INTR, NULL,
1246 1.231 ad "kpreempt", "defer: kernel_lock");
1247 1.231 ad evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_INTR, NULL,
1248 1.231 ad "kpreempt", "defer: IPL");
1249 1.231 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_INTR, NULL,
1250 1.231 ad "kpreempt", "immediate");
1251 1.231 ad
1252 1.223 ad /* Initialize balancing callout and run it */
1253 1.223 ad #ifdef MULTIPROCESSOR
1254 1.223 ad callout_init(&balance_ch, CALLOUT_MPSAFE);
1255 1.223 ad callout_setfunc(&balance_ch, sched_balance, NULL);
1256 1.223 ad callout_schedule(&balance_ch, balance_period);
1257 1.223 ad #endif
1258 1.190 ad sched_pstats(NULL);
1259 1.190 ad }
1260 1.223 ad
1261 1.223 ad SYSCTL_SETUP(sysctl_sched_setup, "sysctl sched setup")
1262 1.223 ad {
1263 1.223 ad const struct sysctlnode *node = NULL;
1264 1.223 ad
1265 1.223 ad sysctl_createv(clog, 0, NULL, NULL,
1266 1.223 ad CTLFLAG_PERMANENT,
1267 1.223 ad CTLTYPE_NODE, "kern", NULL,
1268 1.223 ad NULL, 0, NULL, 0,
1269 1.223 ad CTL_KERN, CTL_EOL);
1270 1.223 ad sysctl_createv(clog, 0, NULL, &node,
1271 1.223 ad CTLFLAG_PERMANENT,
1272 1.223 ad CTLTYPE_NODE, "sched",
1273 1.223 ad SYSCTL_DESCR("Scheduler options"),
1274 1.223 ad NULL, 0, NULL, 0,
1275 1.223 ad CTL_KERN, CTL_CREATE, CTL_EOL);
1276 1.223 ad
1277 1.223 ad if (node == NULL)
1278 1.223 ad return;
1279 1.223 ad
1280 1.223 ad sysctl_createv(clog, 0, &node, NULL,
1281 1.223 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1282 1.223 ad CTLTYPE_INT, "cacheht_time",
1283 1.223 ad SYSCTL_DESCR("Cache hotness time (in ticks)"),
1284 1.223 ad NULL, 0, &cacheht_time, 0,
1285 1.223 ad CTL_CREATE, CTL_EOL);
1286 1.223 ad sysctl_createv(clog, 0, &node, NULL,
1287 1.223 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1288 1.223 ad CTLTYPE_INT, "balance_period",
1289 1.223 ad SYSCTL_DESCR("Balance period (in ticks)"),
1290 1.223 ad NULL, 0, &balance_period, 0,
1291 1.223 ad CTL_CREATE, CTL_EOL);
1292 1.223 ad sysctl_createv(clog, 0, &node, NULL,
1293 1.223 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1294 1.223 ad CTLTYPE_INT, "min_catch",
1295 1.223 ad SYSCTL_DESCR("Minimal count of threads for catching"),
1296 1.223 ad NULL, 0, &min_catch, 0,
1297 1.223 ad CTL_CREATE, CTL_EOL);
1298 1.223 ad sysctl_createv(clog, 0, &node, NULL,
1299 1.231 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1300 1.223 ad CTLTYPE_INT, "timesoftints",
1301 1.223 ad SYSCTL_DESCR("Track CPU time for soft interrupts"),
1302 1.223 ad NULL, 0, &softint_timing, 0,
1303 1.223 ad CTL_CREATE, CTL_EOL);
1304 1.231 ad sysctl_createv(clog, 0, &node, NULL,
1305 1.231 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1306 1.231 ad CTLTYPE_INT, "kpreempt_pri",
1307 1.231 ad SYSCTL_DESCR("Minimum priority to trigger kernel preemption"),
1308 1.231 ad NULL, 0, &sched_kpreempt_pri, 0,
1309 1.231 ad CTL_CREATE, CTL_EOL);
1310 1.231 ad sysctl_createv(clog, 0, &node, NULL,
1311 1.231 ad CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1312 1.231 ad CTLTYPE_INT, "upreempt_pri",
1313 1.231 ad SYSCTL_DESCR("Minimum priority to trigger user preemption"),
1314 1.231 ad NULL, 0, &sched_upreempt_pri, 0,
1315 1.231 ad CTL_CREATE, CTL_EOL);
1316 1.223 ad }
1317 1.223 ad
1318 1.223 ad void
1319 1.223 ad sched_cpuattach(struct cpu_info *ci)
1320 1.223 ad {
1321 1.223 ad runqueue_t *ci_rq;
1322 1.223 ad void *rq_ptr;
1323 1.223 ad u_int i, size;
1324 1.223 ad
1325 1.223 ad if (ci->ci_schedstate.spc_lwplock == NULL) {
1326 1.223 ad ci->ci_schedstate.spc_lwplock =
1327 1.223 ad mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
1328 1.223 ad }
1329 1.223 ad if (ci == lwp0.l_cpu) {
1330 1.223 ad /* Initialize the scheduler structure of the primary LWP */
1331 1.223 ad lwp0.l_mutex = ci->ci_schedstate.spc_lwplock;
1332 1.223 ad }
1333 1.223 ad if (ci->ci_schedstate.spc_mutex != NULL) {
1334 1.223 ad /* Already initialized. */
1335 1.223 ad return;
1336 1.223 ad }
1337 1.223 ad
1338 1.223 ad /* Allocate the run queue */
1339 1.223 ad size = roundup2(sizeof(runqueue_t), coherency_unit) + coherency_unit;
1340 1.223 ad rq_ptr = kmem_zalloc(size, KM_SLEEP);
1341 1.223 ad if (rq_ptr == NULL) {
1342 1.223 ad panic("sched_cpuattach: could not allocate the runqueue");
1343 1.223 ad }
1344 1.223 ad ci_rq = (void *)(roundup2((uintptr_t)(rq_ptr), coherency_unit));
1345 1.223 ad
1346 1.223 ad /* Initialize run queues */
1347 1.223 ad ci->ci_schedstate.spc_mutex =
1348 1.223 ad mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
1349 1.223 ad for (i = 0; i < PRI_RT_COUNT; i++)
1350 1.223 ad TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
1351 1.223 ad for (i = 0; i < PRI_TS_COUNT; i++)
1352 1.223 ad TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
1353 1.223 ad
1354 1.223 ad ci->ci_schedstate.spc_sched_info = ci_rq;
1355 1.223 ad }
1356 1.223 ad
1357 1.223 ad /*
1358 1.223 ad * Control of the runqueue.
1359 1.223 ad */
1360 1.223 ad
1361 1.223 ad static void *
1362 1.223 ad sched_getrq(runqueue_t *ci_rq, const pri_t prio)
1363 1.223 ad {
1364 1.223 ad
1365 1.223 ad KASSERT(prio < PRI_COUNT);
1366 1.223 ad return (prio <= PRI_HIGHEST_TS) ?
1367 1.223 ad &ci_rq->r_ts_queue[prio].q_head :
1368 1.223 ad &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
1369 1.223 ad }
1370 1.223 ad
1371 1.223 ad void
1372 1.223 ad sched_enqueue(struct lwp *l, bool swtch)
1373 1.223 ad {
1374 1.223 ad runqueue_t *ci_rq;
1375 1.223 ad struct schedstate_percpu *spc;
1376 1.223 ad TAILQ_HEAD(, lwp) *q_head;
1377 1.223 ad const pri_t eprio = lwp_eprio(l);
1378 1.223 ad struct cpu_info *ci;
1379 1.231 ad int type;
1380 1.223 ad
1381 1.223 ad ci = l->l_cpu;
1382 1.223 ad spc = &ci->ci_schedstate;
1383 1.223 ad ci_rq = spc->spc_sched_info;
1384 1.223 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1385 1.223 ad
1386 1.223 ad /* Update the last run time on switch */
1387 1.223 ad if (__predict_true(swtch == true)) {
1388 1.223 ad l->l_rticks = hardclock_ticks;
1389 1.223 ad l->l_rticksum += (hardclock_ticks - l->l_rticks);
1390 1.223 ad } else if (l->l_rticks == 0)
1391 1.223 ad l->l_rticks = hardclock_ticks;
1392 1.223 ad
1393 1.223 ad /* Enqueue the thread */
1394 1.223 ad q_head = sched_getrq(ci_rq, eprio);
1395 1.223 ad if (TAILQ_EMPTY(q_head)) {
1396 1.223 ad u_int i;
1397 1.223 ad uint32_t q;
1398 1.223 ad
1399 1.223 ad /* Mark bit */
1400 1.223 ad i = eprio >> BITMAP_SHIFT;
1401 1.223 ad q = BITMAP_MSB >> (eprio & BITMAP_MASK);
1402 1.223 ad KASSERT((ci_rq->r_bitmap[i] & q) == 0);
1403 1.223 ad ci_rq->r_bitmap[i] |= q;
1404 1.223 ad }
1405 1.223 ad TAILQ_INSERT_TAIL(q_head, l, l_runq);
1406 1.223 ad ci_rq->r_count++;
1407 1.224 ad if ((l->l_pflag & LP_BOUND) == 0)
1408 1.223 ad ci_rq->r_mcount++;
1409 1.223 ad
1410 1.223 ad /*
1411 1.223 ad * Update the value of highest priority in the runqueue,
1412 1.223 ad * if priority of this thread is higher.
1413 1.223 ad */
1414 1.223 ad if (eprio > spc->spc_maxpriority)
1415 1.223 ad spc->spc_maxpriority = eprio;
1416 1.223 ad
1417 1.223 ad sched_newts(l);
1418 1.223 ad
1419 1.223 ad /*
1420 1.223 ad * Wake the chosen CPU or cause a preemption if the newly
1421 1.223 ad * enqueued thread has higher priority. Don't cause a
1422 1.223 ad * preemption if the thread is yielding (swtch).
1423 1.223 ad */
1424 1.223 ad if (!swtch && eprio > spc->spc_curpriority) {
1425 1.231 ad if (eprio >= sched_kpreempt_pri)
1426 1.231 ad type = RESCHED_KPREEMPT;
1427 1.231 ad else if (eprio >= sched_upreempt_pri)
1428 1.231 ad type = RESCHED_IMMED;
1429 1.231 ad else
1430 1.231 ad type = 0;
1431 1.231 ad cpu_need_resched(ci, type);
1432 1.223 ad }
1433 1.223 ad }
1434 1.223 ad
1435 1.223 ad void
1436 1.223 ad sched_dequeue(struct lwp *l)
1437 1.223 ad {
1438 1.223 ad runqueue_t *ci_rq;
1439 1.223 ad TAILQ_HEAD(, lwp) *q_head;
1440 1.223 ad struct schedstate_percpu *spc;
1441 1.223 ad const pri_t eprio = lwp_eprio(l);
1442 1.223 ad
1443 1.223 ad spc = & l->l_cpu->ci_schedstate;
1444 1.223 ad ci_rq = spc->spc_sched_info;
1445 1.223 ad KASSERT(lwp_locked(l, spc->spc_mutex));
1446 1.223 ad
1447 1.223 ad KASSERT(eprio <= spc->spc_maxpriority);
1448 1.223 ad KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
1449 1.223 ad KASSERT(ci_rq->r_count > 0);
1450 1.223 ad
1451 1.223 ad ci_rq->r_count--;
1452 1.224 ad if ((l->l_pflag & LP_BOUND) == 0)
1453 1.223 ad ci_rq->r_mcount--;
1454 1.223 ad
1455 1.223 ad q_head = sched_getrq(ci_rq, eprio);
1456 1.223 ad TAILQ_REMOVE(q_head, l, l_runq);
1457 1.223 ad if (TAILQ_EMPTY(q_head)) {
1458 1.223 ad u_int i;
1459 1.223 ad uint32_t q;
1460 1.223 ad
1461 1.223 ad /* Unmark bit */
1462 1.223 ad i = eprio >> BITMAP_SHIFT;
1463 1.223 ad q = BITMAP_MSB >> (eprio & BITMAP_MASK);
1464 1.223 ad KASSERT((ci_rq->r_bitmap[i] & q) != 0);
1465 1.223 ad ci_rq->r_bitmap[i] &= ~q;
1466 1.223 ad
1467 1.223 ad /*
1468 1.223 ad * Update the value of highest priority in the runqueue, in a
1469 1.223 ad * case it was a last thread in the queue of highest priority.
1470 1.223 ad */
1471 1.223 ad if (eprio != spc->spc_maxpriority)
1472 1.223 ad return;
1473 1.223 ad
1474 1.223 ad do {
1475 1.223 ad if (ci_rq->r_bitmap[i] != 0) {
1476 1.223 ad q = ffs(ci_rq->r_bitmap[i]);
1477 1.223 ad spc->spc_maxpriority =
1478 1.223 ad (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
1479 1.223 ad return;
1480 1.223 ad }
1481 1.223 ad } while (i--);
1482 1.223 ad
1483 1.223 ad /* If not found - set the lowest value */
1484 1.223 ad spc->spc_maxpriority = 0;
1485 1.223 ad }
1486 1.223 ad }
1487 1.223 ad
1488 1.223 ad /*
1489 1.223 ad * Migration and balancing.
1490 1.223 ad */
1491 1.223 ad
1492 1.223 ad #ifdef MULTIPROCESSOR
1493 1.223 ad
1494 1.223 ad /* Estimate if LWP is cache-hot */
1495 1.223 ad static inline bool
1496 1.223 ad lwp_cache_hot(const struct lwp *l)
1497 1.223 ad {
1498 1.223 ad
1499 1.223 ad if (l->l_slptime || l->l_rticks == 0)
1500 1.223 ad return false;
1501 1.223 ad
1502 1.223 ad return (hardclock_ticks - l->l_rticks <= cacheht_time);
1503 1.223 ad }
1504 1.223 ad
1505 1.223 ad /* Check if LWP can migrate to the chosen CPU */
1506 1.223 ad static inline bool
1507 1.223 ad sched_migratable(const struct lwp *l, struct cpu_info *ci)
1508 1.223 ad {
1509 1.223 ad const struct schedstate_percpu *spc = &ci->ci_schedstate;
1510 1.223 ad
1511 1.223 ad /* CPU is offline */
1512 1.223 ad if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
1513 1.223 ad return false;
1514 1.223 ad
1515 1.223 ad /* Affinity bind */
1516 1.223 ad if (__predict_false(l->l_flag & LW_AFFINITY))
1517 1.223 ad return CPU_ISSET(cpu_index(ci), &l->l_affinity);
1518 1.223 ad
1519 1.223 ad /* Processor-set */
1520 1.223 ad return (spc->spc_psid == l->l_psid);
1521 1.223 ad }
1522 1.223 ad
1523 1.223 ad /*
1524 1.223 ad * Estimate the migration of LWP to the other CPU.
1525 1.223 ad * Take and return the CPU, if migration is needed.
1526 1.223 ad */
1527 1.223 ad struct cpu_info *
1528 1.223 ad sched_takecpu(struct lwp *l)
1529 1.223 ad {
1530 1.223 ad struct cpu_info *ci, *tci, *first, *next;
1531 1.223 ad struct schedstate_percpu *spc;
1532 1.223 ad runqueue_t *ci_rq, *ici_rq;
1533 1.223 ad pri_t eprio, lpri, pri;
1534 1.223 ad
1535 1.223 ad KASSERT(lwp_locked(l, NULL));
1536 1.223 ad
1537 1.223 ad ci = l->l_cpu;
1538 1.223 ad spc = &ci->ci_schedstate;
1539 1.223 ad ci_rq = spc->spc_sched_info;
1540 1.223 ad
1541 1.223 ad /* If thread is strictly bound, do not estimate other CPUs */
1542 1.224 ad if (l->l_pflag & LP_BOUND)
1543 1.223 ad return ci;
1544 1.223 ad
1545 1.223 ad /* CPU of this thread is idling - run there */
1546 1.223 ad if (ci_rq->r_count == 0)
1547 1.223 ad return ci;
1548 1.223 ad
1549 1.223 ad eprio = lwp_eprio(l);
1550 1.223 ad
1551 1.223 ad /* Stay if thread is cache-hot */
1552 1.223 ad if (__predict_true(l->l_stat != LSIDL) &&
1553 1.223 ad lwp_cache_hot(l) && eprio >= spc->spc_curpriority)
1554 1.223 ad return ci;
1555 1.223 ad
1556 1.223 ad /* Run on current CPU if priority of thread is higher */
1557 1.223 ad ci = curcpu();
1558 1.223 ad spc = &ci->ci_schedstate;
1559 1.223 ad if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
1560 1.223 ad return ci;
1561 1.223 ad
1562 1.223 ad /*
1563 1.223 ad * Look for the CPU with the lowest priority thread. In case of
1564 1.223 ad * equal priority, choose the CPU with the fewest of threads.
1565 1.223 ad */
1566 1.223 ad first = l->l_cpu;
1567 1.223 ad ci = first;
1568 1.223 ad tci = first;
1569 1.223 ad lpri = PRI_COUNT;
1570 1.223 ad do {
1571 1.223 ad next = CIRCLEQ_LOOP_NEXT(&cpu_queue, ci, ci_data.cpu_qchain);
1572 1.223 ad spc = &ci->ci_schedstate;
1573 1.223 ad ici_rq = spc->spc_sched_info;
1574 1.223 ad pri = max(spc->spc_curpriority, spc->spc_maxpriority);
1575 1.223 ad if (pri > lpri)
1576 1.223 ad continue;
1577 1.223 ad
1578 1.223 ad if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
1579 1.223 ad continue;
1580 1.223 ad
1581 1.223 ad if (!sched_migratable(l, ci))
1582 1.223 ad continue;
1583 1.223 ad
1584 1.223 ad lpri = pri;
1585 1.223 ad tci = ci;
1586 1.223 ad ci_rq = ici_rq;
1587 1.223 ad } while (ci = next, ci != first);
1588 1.223 ad
1589 1.223 ad return tci;
1590 1.223 ad }
1591 1.223 ad
1592 1.223 ad /*
1593 1.223 ad * Tries to catch an LWP from the runqueue of other CPU.
1594 1.223 ad */
1595 1.223 ad static struct lwp *
1596 1.223 ad sched_catchlwp(void)
1597 1.223 ad {
1598 1.223 ad struct cpu_info *curci = curcpu(), *ci = worker_ci;
1599 1.223 ad struct schedstate_percpu *spc;
1600 1.223 ad TAILQ_HEAD(, lwp) *q_head;
1601 1.223 ad runqueue_t *ci_rq;
1602 1.223 ad struct lwp *l;
1603 1.223 ad
1604 1.223 ad if (curci == ci)
1605 1.223 ad return NULL;
1606 1.223 ad
1607 1.223 ad /* Lockless check */
1608 1.223 ad spc = &ci->ci_schedstate;
1609 1.223 ad ci_rq = spc->spc_sched_info;
1610 1.223 ad if (ci_rq->r_mcount < min_catch)
1611 1.223 ad return NULL;
1612 1.223 ad
1613 1.223 ad /*
1614 1.223 ad * Double-lock the runqueues.
1615 1.223 ad */
1616 1.223 ad if (curci < ci) {
1617 1.223 ad spc_lock(ci);
1618 1.223 ad } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
1619 1.223 ad const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
1620 1.223 ad
1621 1.223 ad spc_unlock(curci);
1622 1.223 ad spc_lock(ci);
1623 1.223 ad spc_lock(curci);
1624 1.223 ad
1625 1.223 ad if (cur_rq->r_count) {
1626 1.223 ad spc_unlock(ci);
1627 1.223 ad return NULL;
1628 1.223 ad }
1629 1.223 ad }
1630 1.223 ad
1631 1.223 ad if (ci_rq->r_mcount < min_catch) {
1632 1.223 ad spc_unlock(ci);
1633 1.223 ad return NULL;
1634 1.223 ad }
1635 1.223 ad
1636 1.223 ad /* Take the highest priority thread */
1637 1.223 ad q_head = sched_getrq(ci_rq, spc->spc_maxpriority);
1638 1.223 ad l = TAILQ_FIRST(q_head);
1639 1.223 ad
1640 1.223 ad for (;;) {
1641 1.223 ad /* Check the first and next result from the queue */
1642 1.223 ad if (l == NULL)
1643 1.223 ad break;
1644 1.223 ad KASSERT(l->l_stat == LSRUN);
1645 1.223 ad KASSERT(l->l_flag & LW_INMEM);
1646 1.223 ad
1647 1.223 ad /* Look for threads, whose are allowed to migrate */
1648 1.224 ad if ((l->l_pflag & LP_BOUND) || lwp_cache_hot(l) ||
1649 1.223 ad !sched_migratable(l, curci)) {
1650 1.223 ad l = TAILQ_NEXT(l, l_runq);
1651 1.223 ad continue;
1652 1.223 ad }
1653 1.223 ad
1654 1.223 ad /* Grab the thread, and move to the local run queue */
1655 1.223 ad sched_dequeue(l);
1656 1.223 ad l->l_cpu = curci;
1657 1.223 ad lwp_unlock_to(l, curci->ci_schedstate.spc_mutex);
1658 1.223 ad sched_enqueue(l, false);
1659 1.223 ad return l;
1660 1.223 ad }
1661 1.223 ad spc_unlock(ci);
1662 1.223 ad
1663 1.223 ad return l;
1664 1.223 ad }
1665 1.223 ad
1666 1.223 ad /*
1667 1.223 ad * Periodical calculations for balancing.
1668 1.223 ad */
1669 1.223 ad static void
1670 1.223 ad sched_balance(void *nocallout)
1671 1.223 ad {
1672 1.223 ad struct cpu_info *ci, *hci;
1673 1.223 ad runqueue_t *ci_rq;
1674 1.223 ad CPU_INFO_ITERATOR cii;
1675 1.223 ad u_int highest;
1676 1.223 ad
1677 1.223 ad hci = curcpu();
1678 1.223 ad highest = 0;
1679 1.223 ad
1680 1.223 ad /* Make lockless countings */
1681 1.223 ad for (CPU_INFO_FOREACH(cii, ci)) {
1682 1.223 ad ci_rq = ci->ci_schedstate.spc_sched_info;
1683 1.223 ad
1684 1.223 ad /* Average count of the threads */
1685 1.223 ad ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
1686 1.223 ad
1687 1.223 ad /* Look for CPU with the highest average */
1688 1.223 ad if (ci_rq->r_avgcount > highest) {
1689 1.223 ad hci = ci;
1690 1.223 ad highest = ci_rq->r_avgcount;
1691 1.223 ad }
1692 1.223 ad }
1693 1.223 ad
1694 1.223 ad /* Update the worker */
1695 1.223 ad worker_ci = hci;
1696 1.223 ad
1697 1.223 ad if (nocallout == NULL)
1698 1.223 ad callout_schedule(&balance_ch, balance_period);
1699 1.223 ad }
1700 1.223 ad
1701 1.223 ad #else
1702 1.223 ad
1703 1.223 ad struct cpu_info *
1704 1.223 ad sched_takecpu(struct lwp *l)
1705 1.223 ad {
1706 1.223 ad
1707 1.223 ad return l->l_cpu;
1708 1.223 ad }
1709 1.223 ad
1710 1.223 ad #endif /* MULTIPROCESSOR */
1711 1.223 ad
1712 1.223 ad /*
1713 1.223 ad * Scheduler mill.
1714 1.223 ad */
1715 1.223 ad struct lwp *
1716 1.223 ad sched_nextlwp(void)
1717 1.223 ad {
1718 1.223 ad struct cpu_info *ci = curcpu();
1719 1.223 ad struct schedstate_percpu *spc;
1720 1.223 ad TAILQ_HEAD(, lwp) *q_head;
1721 1.223 ad runqueue_t *ci_rq;
1722 1.223 ad struct lwp *l;
1723 1.223 ad
1724 1.223 ad spc = &ci->ci_schedstate;
1725 1.223 ad ci_rq = spc->spc_sched_info;
1726 1.223 ad
1727 1.223 ad #ifdef MULTIPROCESSOR
1728 1.223 ad /* If runqueue is empty, try to catch some thread from other CPU */
1729 1.223 ad if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
1730 1.223 ad if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
1731 1.223 ad return NULL;
1732 1.223 ad } else if (ci_rq->r_count == 0) {
1733 1.223 ad /* Reset the counter, and call the balancer */
1734 1.223 ad ci_rq->r_avgcount = 0;
1735 1.223 ad sched_balance(ci);
1736 1.223 ad
1737 1.223 ad /* The re-locking will be done inside */
1738 1.223 ad return sched_catchlwp();
1739 1.223 ad }
1740 1.223 ad #else
1741 1.223 ad if (ci_rq->r_count == 0)
1742 1.223 ad return NULL;
1743 1.223 ad #endif
1744 1.223 ad
1745 1.223 ad /* Take the highest priority thread */
1746 1.223 ad KASSERT(ci_rq->r_bitmap[spc->spc_maxpriority >> BITMAP_SHIFT]);
1747 1.223 ad q_head = sched_getrq(ci_rq, spc->spc_maxpriority);
1748 1.223 ad l = TAILQ_FIRST(q_head);
1749 1.223 ad KASSERT(l != NULL);
1750 1.223 ad
1751 1.223 ad sched_oncpu(l);
1752 1.223 ad l->l_rticks = hardclock_ticks;
1753 1.223 ad
1754 1.223 ad return l;
1755 1.223 ad }
1756 1.223 ad
1757 1.223 ad bool
1758 1.223 ad sched_curcpu_runnable_p(void)
1759 1.223 ad {
1760 1.231 ad const struct cpu_info *ci;
1761 1.231 ad const runqueue_t *ci_rq;
1762 1.231 ad bool rv;
1763 1.231 ad
1764 1.231 ad kpreempt_disable();
1765 1.231 ad ci = curcpu();
1766 1.231 ad ci_rq = ci->ci_schedstate.spc_sched_info;
1767 1.223 ad
1768 1.223 ad #ifndef __HAVE_FAST_SOFTINTS
1769 1.231 ad if (ci->ci_data.cpu_softints) {
1770 1.231 ad kpreempt_enable();
1771 1.223 ad return true;
1772 1.231 ad }
1773 1.223 ad #endif
1774 1.223 ad
1775 1.223 ad if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
1776 1.231 ad rv = (ci_rq->r_count - ci_rq->r_mcount);
1777 1.231 ad else
1778 1.231 ad rv = ci_rq->r_count != 0;
1779 1.231 ad kpreempt_enable();
1780 1.223 ad
1781 1.231 ad return rv;
1782 1.223 ad }
1783 1.223 ad
1784 1.223 ad /*
1785 1.223 ad * Debugging.
1786 1.223 ad */
1787 1.223 ad
1788 1.223 ad #ifdef DDB
1789 1.223 ad
1790 1.223 ad void
1791 1.227 yamt sched_print_runqueue(void (*pr)(const char *, ...)
1792 1.227 yamt __attribute__((__format__(__printf__,1,2))))
1793 1.223 ad {
1794 1.223 ad runqueue_t *ci_rq;
1795 1.223 ad struct schedstate_percpu *spc;
1796 1.223 ad struct lwp *l;
1797 1.223 ad struct proc *p;
1798 1.223 ad int i;
1799 1.223 ad struct cpu_info *ci;
1800 1.223 ad CPU_INFO_ITERATOR cii;
1801 1.223 ad
1802 1.223 ad for (CPU_INFO_FOREACH(cii, ci)) {
1803 1.223 ad spc = &ci->ci_schedstate;
1804 1.223 ad ci_rq = spc->spc_sched_info;
1805 1.223 ad
1806 1.223 ad (*pr)("Run-queue (CPU = %u):\n", ci->ci_index);
1807 1.223 ad (*pr)(" pid.lid = %d.%d, threads count = %u, "
1808 1.223 ad "avgcount = %u, highest pri = %d\n",
1809 1.225 dogcow #ifdef MULTIPROCESSOR
1810 1.223 ad ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1811 1.225 dogcow #else
1812 1.225 dogcow curlwp->l_proc->p_pid, curlwp->l_lid,
1813 1.225 dogcow #endif
1814 1.223 ad ci_rq->r_count, ci_rq->r_avgcount, spc->spc_maxpriority);
1815 1.223 ad i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1816 1.223 ad do {
1817 1.223 ad uint32_t q;
1818 1.223 ad q = ci_rq->r_bitmap[i];
1819 1.223 ad (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1820 1.223 ad } while (i--);
1821 1.223 ad }
1822 1.223 ad
1823 1.226 yamt (*pr)(" %5s %4s %4s %10s %3s %18s %4s %s\n",
1824 1.223 ad "LID", "PRI", "EPRI", "FL", "ST", "LWP", "CPU", "LRTIME");
1825 1.223 ad
1826 1.223 ad PROCLIST_FOREACH(p, &allproc) {
1827 1.223 ad (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1828 1.223 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1829 1.223 ad ci = l->l_cpu;
1830 1.226 yamt (*pr)(" | %5d %4u %4u 0x%8.8x %3s %18p %4u %u\n",
1831 1.223 ad (int)l->l_lid, l->l_priority, lwp_eprio(l),
1832 1.223 ad l->l_flag, l->l_stat == LSRUN ? "RQ" :
1833 1.223 ad (l->l_stat == LSSLEEP ? "SQ" : "-"),
1834 1.223 ad l, ci->ci_index,
1835 1.223 ad (u_int)(hardclock_ticks - l->l_rticks));
1836 1.223 ad }
1837 1.223 ad }
1838 1.223 ad }
1839 1.223 ad
1840 1.223 ad #endif
1841