kern_synch.c revision 1.237 1 1.237 rmind /* $NetBSD: kern_synch.c,v 1.237 2008/04/29 14:35:20 rmind Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.218 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej *
21 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
32 1.63 thorpej */
33 1.26 cgd
34 1.26 cgd /*-
35 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 1.26 cgd * The Regents of the University of California. All rights reserved.
37 1.26 cgd * (c) UNIX System Laboratories, Inc.
38 1.26 cgd * All or some portions of this file are derived from material licensed
39 1.26 cgd * to the University of California by American Telephone and Telegraph
40 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 1.26 cgd * the permission of UNIX System Laboratories, Inc.
42 1.26 cgd *
43 1.26 cgd * Redistribution and use in source and binary forms, with or without
44 1.26 cgd * modification, are permitted provided that the following conditions
45 1.26 cgd * are met:
46 1.26 cgd * 1. Redistributions of source code must retain the above copyright
47 1.26 cgd * notice, this list of conditions and the following disclaimer.
48 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.26 cgd * notice, this list of conditions and the following disclaimer in the
50 1.26 cgd * documentation and/or other materials provided with the distribution.
51 1.136 agc * 3. Neither the name of the University nor the names of its contributors
52 1.26 cgd * may be used to endorse or promote products derived from this software
53 1.26 cgd * without specific prior written permission.
54 1.26 cgd *
55 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.26 cgd * SUCH DAMAGE.
66 1.26 cgd *
67 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 1.26 cgd */
69 1.106 lukem
70 1.106 lukem #include <sys/cdefs.h>
71 1.237 rmind __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.237 2008/04/29 14:35:20 rmind Exp $");
72 1.48 mrg
73 1.109 yamt #include "opt_kstack.h"
74 1.82 thorpej #include "opt_lockdebug.h"
75 1.83 thorpej #include "opt_multiprocessor.h"
76 1.110 briggs #include "opt_perfctrs.h"
77 1.26 cgd
78 1.174 ad #define __MUTEX_PRIVATE
79 1.174 ad
80 1.26 cgd #include <sys/param.h>
81 1.26 cgd #include <sys/systm.h>
82 1.26 cgd #include <sys/proc.h>
83 1.26 cgd #include <sys/kernel.h>
84 1.111 briggs #if defined(PERFCTRS)
85 1.110 briggs #include <sys/pmc.h>
86 1.111 briggs #endif
87 1.188 yamt #include <sys/cpu.h>
88 1.26 cgd #include <sys/resourcevar.h>
89 1.55 ross #include <sys/sched.h>
90 1.179 dsl #include <sys/syscall_stats.h>
91 1.174 ad #include <sys/sleepq.h>
92 1.174 ad #include <sys/lockdebug.h>
93 1.190 ad #include <sys/evcnt.h>
94 1.199 ad #include <sys/intr.h>
95 1.207 ad #include <sys/lwpctl.h>
96 1.209 ad #include <sys/atomic.h>
97 1.215 ad #include <sys/simplelock.h>
98 1.47 mrg
99 1.47 mrg #include <uvm/uvm_extern.h>
100 1.47 mrg
101 1.231 ad #include <dev/lockstat.h>
102 1.231 ad
103 1.221 ad static u_int sched_unsleep(struct lwp *, bool);
104 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
105 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
106 1.122 thorpej
107 1.174 ad syncobj_t sleep_syncobj = {
108 1.174 ad SOBJ_SLEEPQ_SORTED,
109 1.174 ad sleepq_unsleep,
110 1.184 yamt sleepq_changepri,
111 1.184 yamt sleepq_lendpri,
112 1.184 yamt syncobj_noowner,
113 1.174 ad };
114 1.174 ad
115 1.174 ad syncobj_t sched_syncobj = {
116 1.174 ad SOBJ_SLEEPQ_SORTED,
117 1.174 ad sched_unsleep,
118 1.184 yamt sched_changepri,
119 1.184 yamt sched_lendpri,
120 1.184 yamt syncobj_noowner,
121 1.174 ad };
122 1.122 thorpej
123 1.223 ad callout_t sched_pstats_ch;
124 1.223 ad unsigned sched_pstats_ticks;
125 1.223 ad kcondvar_t lbolt; /* once a second sleep address */
126 1.223 ad
127 1.237 rmind /* Preemption event counters */
128 1.231 ad static struct evcnt kpreempt_ev_crit;
129 1.231 ad static struct evcnt kpreempt_ev_klock;
130 1.231 ad static struct evcnt kpreempt_ev_ipl;
131 1.231 ad static struct evcnt kpreempt_ev_immed;
132 1.231 ad
133 1.231 ad /*
134 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
135 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
136 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
137 1.174 ad * maintained in the machine-dependent layers. This priority will typically
138 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
139 1.174 ad * it can be made higher to block network software interrupts after panics.
140 1.26 cgd */
141 1.174 ad int safepri;
142 1.26 cgd
143 1.237 rmind void
144 1.237 rmind sched_init(void)
145 1.237 rmind {
146 1.237 rmind
147 1.237 rmind cv_init(&lbolt, "lbolt");
148 1.237 rmind callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
149 1.237 rmind callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
150 1.237 rmind
151 1.237 rmind evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_INTR, NULL,
152 1.237 rmind "kpreempt", "defer: critical section");
153 1.237 rmind evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_INTR, NULL,
154 1.237 rmind "kpreempt", "defer: kernel_lock");
155 1.237 rmind evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_INTR, NULL,
156 1.237 rmind "kpreempt", "defer: IPL");
157 1.237 rmind evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_INTR, NULL,
158 1.237 rmind "kpreempt", "immediate");
159 1.237 rmind
160 1.237 rmind sched_pstats(NULL);
161 1.237 rmind }
162 1.237 rmind
163 1.26 cgd /*
164 1.174 ad * OBSOLETE INTERFACE
165 1.174 ad *
166 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
167 1.26 cgd * performed on the specified identifier. The process will then be made
168 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
169 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
170 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
171 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
172 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
173 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
174 1.26 cgd * call should be interrupted by the signal (return EINTR).
175 1.77 thorpej *
176 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
177 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
178 1.174 ad * is specified, in which case the interlock will always be unlocked upon
179 1.174 ad * return.
180 1.26 cgd */
181 1.26 cgd int
182 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
183 1.174 ad volatile struct simplelock *interlock)
184 1.26 cgd {
185 1.122 thorpej struct lwp *l = curlwp;
186 1.174 ad sleepq_t *sq;
187 1.188 yamt int error;
188 1.26 cgd
189 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
190 1.204 ad
191 1.174 ad if (sleepq_dontsleep(l)) {
192 1.174 ad (void)sleepq_abort(NULL, 0);
193 1.174 ad if ((priority & PNORELOCK) != 0)
194 1.77 thorpej simple_unlock(interlock);
195 1.174 ad return 0;
196 1.26 cgd }
197 1.78 sommerfe
198 1.204 ad l->l_kpriority = true;
199 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
200 1.174 ad sleepq_enter(sq, l);
201 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
202 1.42 cgd
203 1.174 ad if (interlock != NULL) {
204 1.204 ad KASSERT(simple_lock_held(interlock));
205 1.174 ad simple_unlock(interlock);
206 1.150 chs }
207 1.150 chs
208 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
209 1.126 pk
210 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
211 1.126 pk simple_lock(interlock);
212 1.174 ad
213 1.174 ad return error;
214 1.26 cgd }
215 1.26 cgd
216 1.187 ad int
217 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
218 1.187 ad kmutex_t *mtx)
219 1.187 ad {
220 1.187 ad struct lwp *l = curlwp;
221 1.187 ad sleepq_t *sq;
222 1.188 yamt int error;
223 1.187 ad
224 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
225 1.204 ad
226 1.187 ad if (sleepq_dontsleep(l)) {
227 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
228 1.187 ad return 0;
229 1.187 ad }
230 1.187 ad
231 1.204 ad l->l_kpriority = true;
232 1.187 ad sq = sleeptab_lookup(&sleeptab, ident);
233 1.187 ad sleepq_enter(sq, l);
234 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
235 1.187 ad mutex_exit(mtx);
236 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
237 1.187 ad
238 1.187 ad if ((priority & PNORELOCK) == 0)
239 1.187 ad mutex_enter(mtx);
240 1.187 ad
241 1.187 ad return error;
242 1.187 ad }
243 1.187 ad
244 1.26 cgd /*
245 1.174 ad * General sleep call for situations where a wake-up is not expected.
246 1.26 cgd */
247 1.174 ad int
248 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
249 1.26 cgd {
250 1.174 ad struct lwp *l = curlwp;
251 1.174 ad sleepq_t *sq;
252 1.174 ad int error;
253 1.26 cgd
254 1.174 ad if (sleepq_dontsleep(l))
255 1.174 ad return sleepq_abort(NULL, 0);
256 1.26 cgd
257 1.174 ad if (mtx != NULL)
258 1.174 ad mutex_exit(mtx);
259 1.204 ad l->l_kpriority = true;
260 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
261 1.174 ad sleepq_enter(sq, l);
262 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
263 1.188 yamt error = sleepq_block(timo, intr);
264 1.174 ad if (mtx != NULL)
265 1.174 ad mutex_enter(mtx);
266 1.83 thorpej
267 1.174 ad return error;
268 1.139 cl }
269 1.139 cl
270 1.26 cgd /*
271 1.174 ad * OBSOLETE INTERFACE
272 1.174 ad *
273 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
274 1.26 cgd */
275 1.26 cgd void
276 1.174 ad wakeup(wchan_t ident)
277 1.26 cgd {
278 1.174 ad sleepq_t *sq;
279 1.83 thorpej
280 1.174 ad if (cold)
281 1.174 ad return;
282 1.83 thorpej
283 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
284 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
285 1.63 thorpej }
286 1.63 thorpej
287 1.63 thorpej /*
288 1.174 ad * OBSOLETE INTERFACE
289 1.174 ad *
290 1.63 thorpej * Make the highest priority process first in line on the specified
291 1.63 thorpej * identifier runnable.
292 1.63 thorpej */
293 1.174 ad void
294 1.174 ad wakeup_one(wchan_t ident)
295 1.63 thorpej {
296 1.174 ad sleepq_t *sq;
297 1.63 thorpej
298 1.174 ad if (cold)
299 1.174 ad return;
300 1.188 yamt
301 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
302 1.174 ad sleepq_wake(sq, ident, 1);
303 1.174 ad }
304 1.63 thorpej
305 1.117 gmcgarry
306 1.117 gmcgarry /*
307 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
308 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
309 1.198 ad * current process explicitly requests it (eg sched_yield(2)).
310 1.117 gmcgarry */
311 1.117 gmcgarry void
312 1.117 gmcgarry yield(void)
313 1.117 gmcgarry {
314 1.122 thorpej struct lwp *l = curlwp;
315 1.117 gmcgarry
316 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
317 1.174 ad lwp_lock(l);
318 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
319 1.188 yamt KASSERT(l->l_stat == LSONPROC);
320 1.204 ad l->l_kpriority = false;
321 1.188 yamt (void)mi_switch(l);
322 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
323 1.69 thorpej }
324 1.69 thorpej
325 1.69 thorpej /*
326 1.69 thorpej * General preemption call. Puts the current process back on its run queue
327 1.156 rpaulo * and performs an involuntary context switch.
328 1.69 thorpej */
329 1.69 thorpej void
330 1.174 ad preempt(void)
331 1.69 thorpej {
332 1.122 thorpej struct lwp *l = curlwp;
333 1.69 thorpej
334 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
335 1.174 ad lwp_lock(l);
336 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
337 1.188 yamt KASSERT(l->l_stat == LSONPROC);
338 1.204 ad l->l_kpriority = false;
339 1.174 ad l->l_nivcsw++;
340 1.188 yamt (void)mi_switch(l);
341 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
342 1.69 thorpej }
343 1.69 thorpej
344 1.234 ad /*
345 1.234 ad * Handle a request made by another agent to preempt the current LWP
346 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
347 1.234 ad *
348 1.234 ad * Character addresses for lockstat only.
349 1.234 ad */
350 1.231 ad static char in_critical_section;
351 1.231 ad static char kernel_lock_held;
352 1.231 ad static char spl_raised;
353 1.231 ad static char is_softint;
354 1.231 ad
355 1.231 ad bool
356 1.231 ad kpreempt(uintptr_t where)
357 1.231 ad {
358 1.231 ad uintptr_t failed;
359 1.231 ad lwp_t *l;
360 1.231 ad int s, dop;
361 1.231 ad
362 1.231 ad l = curlwp;
363 1.231 ad failed = 0;
364 1.231 ad while ((dop = l->l_dopreempt) != 0) {
365 1.231 ad if (l->l_stat != LSONPROC) {
366 1.231 ad /*
367 1.231 ad * About to block (or die), let it happen.
368 1.231 ad * Doesn't really count as "preemption has
369 1.231 ad * been blocked", since we're going to
370 1.231 ad * context switch.
371 1.231 ad */
372 1.231 ad l->l_dopreempt = 0;
373 1.231 ad return true;
374 1.231 ad }
375 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
376 1.231 ad /* Can't preempt idle loop, don't count as failure. */
377 1.231 ad l->l_dopreempt = 0;
378 1.231 ad return true;
379 1.231 ad }
380 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
381 1.231 ad /* LWP holds preemption disabled, explicitly. */
382 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
383 1.234 ad kpreempt_ev_crit.ev_count++;
384 1.231 ad }
385 1.231 ad failed = (uintptr_t)&in_critical_section;
386 1.231 ad break;
387 1.231 ad }
388 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
389 1.231 ad /* Can't preempt soft interrupts yet. */
390 1.231 ad l->l_dopreempt = 0;
391 1.231 ad failed = (uintptr_t)&is_softint;
392 1.231 ad break;
393 1.231 ad }
394 1.231 ad s = splsched();
395 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
396 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
397 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
398 1.231 ad splx(s);
399 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
400 1.234 ad kpreempt_ev_klock.ev_count++;
401 1.231 ad }
402 1.231 ad failed = (uintptr_t)&kernel_lock_held;
403 1.231 ad break;
404 1.231 ad }
405 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
406 1.231 ad /*
407 1.231 ad * It may be that the IPL is too high.
408 1.231 ad * kpreempt_enter() can schedule an
409 1.231 ad * interrupt to retry later.
410 1.231 ad */
411 1.231 ad splx(s);
412 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
413 1.234 ad kpreempt_ev_ipl.ev_count++;
414 1.231 ad }
415 1.231 ad failed = (uintptr_t)&spl_raised;
416 1.231 ad break;
417 1.231 ad }
418 1.231 ad /* Do it! */
419 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
420 1.234 ad kpreempt_ev_immed.ev_count++;
421 1.231 ad }
422 1.231 ad lwp_lock(l);
423 1.231 ad mi_switch(l);
424 1.231 ad l->l_nopreempt++;
425 1.231 ad splx(s);
426 1.231 ad
427 1.231 ad /* Take care of any MD cleanup. */
428 1.231 ad cpu_kpreempt_exit(where);
429 1.231 ad l->l_nopreempt--;
430 1.231 ad }
431 1.231 ad
432 1.231 ad /* Record preemption failure for reporting via lockstat. */
433 1.231 ad if (__predict_false(failed)) {
434 1.231 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
435 1.231 ad int lsflag = 0;
436 1.231 ad LOCKSTAT_ENTER(lsflag);
437 1.231 ad /* Might recurse, make it atomic. */
438 1.231 ad if (__predict_false(lsflag)) {
439 1.231 ad if (where == 0) {
440 1.231 ad where = (uintptr_t)__builtin_return_address(0);
441 1.231 ad }
442 1.231 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
443 1.231 ad NULL, (void *)where) == NULL) {
444 1.231 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
445 1.231 ad l->l_pfaillock = failed;
446 1.231 ad }
447 1.231 ad }
448 1.231 ad LOCKSTAT_EXIT(lsflag);
449 1.231 ad }
450 1.231 ad
451 1.231 ad return failed;
452 1.231 ad }
453 1.231 ad
454 1.69 thorpej /*
455 1.231 ad * Return true if preemption is explicitly disabled.
456 1.230 ad */
457 1.231 ad bool
458 1.231 ad kpreempt_disabled(void)
459 1.231 ad {
460 1.231 ad lwp_t *l;
461 1.231 ad
462 1.231 ad l = curlwp;
463 1.231 ad
464 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
465 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
466 1.231 ad }
467 1.230 ad
468 1.230 ad /*
469 1.231 ad * Disable kernel preemption.
470 1.230 ad */
471 1.230 ad void
472 1.231 ad kpreempt_disable(void)
473 1.230 ad {
474 1.230 ad
475 1.231 ad KPREEMPT_DISABLE(curlwp);
476 1.230 ad }
477 1.230 ad
478 1.230 ad /*
479 1.231 ad * Reenable kernel preemption.
480 1.230 ad */
481 1.231 ad void
482 1.231 ad kpreempt_enable(void)
483 1.230 ad {
484 1.230 ad
485 1.231 ad KPREEMPT_ENABLE(curlwp);
486 1.230 ad }
487 1.230 ad
488 1.230 ad /*
489 1.188 yamt * Compute the amount of time during which the current lwp was running.
490 1.130 nathanw *
491 1.188 yamt * - update l_rtime unless it's an idle lwp.
492 1.188 yamt */
493 1.188 yamt
494 1.199 ad void
495 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
496 1.188 yamt {
497 1.188 yamt
498 1.199 ad if ((l->l_flag & LW_IDLE) != 0)
499 1.188 yamt return;
500 1.188 yamt
501 1.212 yamt /* rtime += now - stime */
502 1.212 yamt bintime_add(&l->l_rtime, now);
503 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
504 1.188 yamt }
505 1.188 yamt
506 1.188 yamt /*
507 1.188 yamt * The machine independent parts of context switch.
508 1.188 yamt *
509 1.188 yamt * Returns 1 if another LWP was actually run.
510 1.26 cgd */
511 1.122 thorpej int
512 1.199 ad mi_switch(lwp_t *l)
513 1.26 cgd {
514 1.216 rmind struct cpu_info *ci, *tci = NULL;
515 1.76 thorpej struct schedstate_percpu *spc;
516 1.188 yamt struct lwp *newl;
517 1.174 ad int retval, oldspl;
518 1.212 yamt struct bintime bt;
519 1.199 ad bool returning;
520 1.26 cgd
521 1.188 yamt KASSERT(lwp_locked(l, NULL));
522 1.231 ad KASSERT(kpreempt_disabled());
523 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
524 1.174 ad
525 1.174 ad #ifdef KSTACK_CHECK_MAGIC
526 1.174 ad kstack_check_magic(l);
527 1.174 ad #endif
528 1.83 thorpej
529 1.212 yamt binuptime(&bt);
530 1.199 ad
531 1.231 ad KASSERT(l->l_cpu == curcpu());
532 1.196 ad ci = l->l_cpu;
533 1.196 ad spc = &ci->ci_schedstate;
534 1.199 ad returning = false;
535 1.190 ad newl = NULL;
536 1.190 ad
537 1.199 ad /*
538 1.199 ad * If we have been asked to switch to a specific LWP, then there
539 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
540 1.199 ad * blocking, then return to the interrupted thread without adjusting
541 1.199 ad * VM context or its start time: neither have been changed in order
542 1.199 ad * to take the interrupt.
543 1.199 ad */
544 1.190 ad if (l->l_switchto != NULL) {
545 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
546 1.199 ad returning = true;
547 1.199 ad softint_block(l);
548 1.199 ad if ((l->l_flag & LW_TIMEINTR) != 0)
549 1.212 yamt updatertime(l, &bt);
550 1.199 ad }
551 1.190 ad newl = l->l_switchto;
552 1.190 ad l->l_switchto = NULL;
553 1.190 ad }
554 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
555 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
556 1.204 ad /* There are pending soft interrupts, so pick one. */
557 1.204 ad newl = softint_picklwp();
558 1.204 ad newl->l_stat = LSONPROC;
559 1.204 ad newl->l_flag |= LW_RUNNING;
560 1.204 ad }
561 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
562 1.190 ad
563 1.180 dsl /* Count time spent in current system call */
564 1.199 ad if (!returning) {
565 1.199 ad SYSCALL_TIME_SLEEP(l);
566 1.180 dsl
567 1.199 ad /*
568 1.199 ad * XXXSMP If we are using h/w performance counters,
569 1.199 ad * save context.
570 1.199 ad */
571 1.174 ad #if PERFCTRS
572 1.199 ad if (PMC_ENABLED(l->l_proc)) {
573 1.199 ad pmc_save_context(l->l_proc);
574 1.199 ad }
575 1.199 ad #endif
576 1.212 yamt updatertime(l, &bt);
577 1.174 ad }
578 1.113 gmcgarry
579 1.113 gmcgarry /*
580 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
581 1.113 gmcgarry */
582 1.174 ad KASSERT(l->l_stat != LSRUN);
583 1.216 rmind if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
584 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
585 1.216 rmind
586 1.220 rmind if (l->l_target_cpu == l->l_cpu) {
587 1.220 rmind l->l_target_cpu = NULL;
588 1.220 rmind } else {
589 1.220 rmind tci = l->l_target_cpu;
590 1.220 rmind }
591 1.220 rmind
592 1.216 rmind if (__predict_false(tci != NULL)) {
593 1.216 rmind /* Double-lock the runqueues */
594 1.216 rmind spc_dlock(ci, tci);
595 1.216 rmind } else {
596 1.216 rmind /* Lock the runqueue */
597 1.216 rmind spc_lock(ci);
598 1.216 rmind }
599 1.216 rmind
600 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
601 1.188 yamt l->l_stat = LSRUN;
602 1.216 rmind if (__predict_false(tci != NULL)) {
603 1.216 rmind /*
604 1.216 rmind * Set the new CPU, lock and unset the
605 1.216 rmind * l_target_cpu - thread will be enqueued
606 1.216 rmind * to the runqueue of target CPU.
607 1.216 rmind */
608 1.216 rmind l->l_cpu = tci;
609 1.216 rmind lwp_setlock(l, tci->ci_schedstate.spc_mutex);
610 1.216 rmind l->l_target_cpu = NULL;
611 1.216 rmind } else {
612 1.216 rmind lwp_setlock(l, spc->spc_mutex);
613 1.216 rmind }
614 1.188 yamt sched_enqueue(l, true);
615 1.216 rmind } else {
616 1.216 rmind KASSERT(tci == NULL);
617 1.188 yamt l->l_stat = LSIDL;
618 1.216 rmind }
619 1.216 rmind } else {
620 1.216 rmind /* Lock the runqueue */
621 1.216 rmind spc_lock(ci);
622 1.174 ad }
623 1.174 ad
624 1.174 ad /*
625 1.201 rmind * Let sched_nextlwp() select the LWP to run the CPU next.
626 1.209 ad * If no LWP is runnable, select the idle LWP.
627 1.209 ad *
628 1.209 ad * Note that spc_lwplock might not necessary be held, and
629 1.209 ad * new thread would be unlocked after setting the LWP-lock.
630 1.174 ad */
631 1.190 ad if (newl == NULL) {
632 1.190 ad newl = sched_nextlwp();
633 1.190 ad if (newl != NULL) {
634 1.190 ad sched_dequeue(newl);
635 1.190 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
636 1.190 ad newl->l_stat = LSONPROC;
637 1.196 ad newl->l_cpu = ci;
638 1.190 ad newl->l_flag |= LW_RUNNING;
639 1.217 ad lwp_setlock(newl, spc->spc_lwplock);
640 1.190 ad } else {
641 1.196 ad newl = ci->ci_data.cpu_idlelwp;
642 1.190 ad newl->l_stat = LSONPROC;
643 1.190 ad newl->l_flag |= LW_RUNNING;
644 1.190 ad }
645 1.204 ad /*
646 1.204 ad * Only clear want_resched if there are no
647 1.204 ad * pending (slow) software interrupts.
648 1.204 ad */
649 1.204 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
650 1.199 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
651 1.204 ad spc->spc_curpriority = lwp_eprio(newl);
652 1.199 ad }
653 1.199 ad
654 1.204 ad /* Items that must be updated with the CPU locked. */
655 1.199 ad if (!returning) {
656 1.204 ad /* Update the new LWP's start time. */
657 1.212 yamt newl->l_stime = bt;
658 1.204 ad
659 1.199 ad /*
660 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
661 1.204 ad * We use cpu_onproc to keep track of which kernel or
662 1.204 ad * user thread is running 'underneath' the software
663 1.204 ad * interrupt. This is important for time accounting,
664 1.204 ad * itimers and forcing user threads to preempt (aston).
665 1.199 ad */
666 1.204 ad ci->ci_data.cpu_onproc = newl;
667 1.188 yamt }
668 1.188 yamt
669 1.231 ad /* Kernel preemption related tasks. */
670 1.231 ad l->l_dopreempt = 0;
671 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
672 1.231 ad LOCKSTAT_FLAG(lsflag);
673 1.231 ad LOCKSTAT_ENTER(lsflag);
674 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
675 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
676 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
677 1.231 ad LOCKSTAT_EXIT(lsflag);
678 1.231 ad l->l_pfailtime = 0;
679 1.231 ad l->l_pfaillock = 0;
680 1.231 ad l->l_pfailaddr = 0;
681 1.231 ad }
682 1.231 ad
683 1.188 yamt if (l != newl) {
684 1.188 yamt struct lwp *prevlwp;
685 1.174 ad
686 1.209 ad /* Release all locks, but leave the current LWP locked */
687 1.216 rmind if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
688 1.216 rmind /*
689 1.216 rmind * In case of migration, drop the local runqueue
690 1.216 rmind * lock, thread is on other runqueue now.
691 1.216 rmind */
692 1.216 rmind if (__predict_false(tci != NULL))
693 1.216 rmind spc_unlock(ci);
694 1.209 ad /*
695 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
696 1.209 ad * to the run queue (it is now locked by spc_mutex).
697 1.209 ad */
698 1.217 ad mutex_spin_exit(spc->spc_lwplock);
699 1.188 yamt } else {
700 1.209 ad /*
701 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
702 1.209 ad * run queues.
703 1.209 ad */
704 1.188 yamt mutex_spin_exit(spc->spc_mutex);
705 1.216 rmind KASSERT(tci == NULL);
706 1.188 yamt }
707 1.188 yamt
708 1.209 ad /*
709 1.209 ad * Mark that context switch is going to be perfomed
710 1.209 ad * for this LWP, to protect it from being switched
711 1.209 ad * to on another CPU.
712 1.209 ad */
713 1.209 ad KASSERT(l->l_ctxswtch == 0);
714 1.209 ad l->l_ctxswtch = 1;
715 1.209 ad l->l_ncsw++;
716 1.209 ad l->l_flag &= ~LW_RUNNING;
717 1.209 ad
718 1.209 ad /*
719 1.209 ad * Increase the count of spin-mutexes before the release
720 1.209 ad * of the last lock - we must remain at IPL_SCHED during
721 1.209 ad * the context switch.
722 1.209 ad */
723 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
724 1.209 ad ci->ci_mtx_count--;
725 1.209 ad lwp_unlock(l);
726 1.209 ad
727 1.218 ad /* Count the context switch on this CPU. */
728 1.218 ad ci->ci_data.cpu_nswtch++;
729 1.188 yamt
730 1.209 ad /* Update status for lwpctl, if present. */
731 1.209 ad if (l->l_lwpctl != NULL)
732 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
733 1.209 ad
734 1.199 ad /*
735 1.199 ad * Save old VM context, unless a soft interrupt
736 1.199 ad * handler is blocking.
737 1.199 ad */
738 1.199 ad if (!returning)
739 1.199 ad pmap_deactivate(l);
740 1.188 yamt
741 1.209 ad /*
742 1.209 ad * We may need to spin-wait for if 'newl' is still
743 1.209 ad * context switching on another CPU.
744 1.209 ad */
745 1.209 ad if (newl->l_ctxswtch != 0) {
746 1.209 ad u_int count;
747 1.209 ad count = SPINLOCK_BACKOFF_MIN;
748 1.209 ad while (newl->l_ctxswtch)
749 1.209 ad SPINLOCK_BACKOFF(count);
750 1.209 ad }
751 1.207 ad
752 1.188 yamt /* Switch to the new LWP.. */
753 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
754 1.207 ad ci = curcpu();
755 1.207 ad
756 1.188 yamt /*
757 1.209 ad * Switched away - we have new curlwp.
758 1.209 ad * Restore VM context and IPL.
759 1.188 yamt */
760 1.209 ad pmap_activate(l);
761 1.188 yamt if (prevlwp != NULL) {
762 1.209 ad /* Normalize the count of the spin-mutexes */
763 1.209 ad ci->ci_mtx_count++;
764 1.209 ad /* Unmark the state of context switch */
765 1.209 ad membar_exit();
766 1.209 ad prevlwp->l_ctxswtch = 0;
767 1.188 yamt }
768 1.209 ad
769 1.209 ad /* Update status for lwpctl, if present. */
770 1.219 ad if (l->l_lwpctl != NULL) {
771 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
772 1.219 ad l->l_lwpctl->lc_pctr++;
773 1.219 ad }
774 1.174 ad
775 1.231 ad KASSERT(l->l_cpu == ci);
776 1.231 ad splx(oldspl);
777 1.188 yamt retval = 1;
778 1.188 yamt } else {
779 1.188 yamt /* Nothing to do - just unlock and return. */
780 1.216 rmind KASSERT(tci == NULL);
781 1.216 rmind spc_unlock(ci);
782 1.188 yamt lwp_unlock(l);
783 1.122 thorpej retval = 0;
784 1.122 thorpej }
785 1.110 briggs
786 1.188 yamt KASSERT(l == curlwp);
787 1.188 yamt KASSERT(l->l_stat == LSONPROC);
788 1.188 yamt
789 1.110 briggs /*
790 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
791 1.231 ad * XXXSMP preemption problem.
792 1.26 cgd */
793 1.114 gmcgarry #if PERFCTRS
794 1.175 christos if (PMC_ENABLED(l->l_proc)) {
795 1.175 christos pmc_restore_context(l->l_proc);
796 1.166 christos }
797 1.114 gmcgarry #endif
798 1.180 dsl SYSCALL_TIME_WAKEUP(l);
799 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
800 1.169 yamt
801 1.122 thorpej return retval;
802 1.26 cgd }
803 1.26 cgd
804 1.26 cgd /*
805 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
806 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
807 1.174 ad *
808 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
809 1.26 cgd */
810 1.26 cgd void
811 1.122 thorpej setrunnable(struct lwp *l)
812 1.26 cgd {
813 1.122 thorpej struct proc *p = l->l_proc;
814 1.205 ad struct cpu_info *ci;
815 1.174 ad sigset_t *ss;
816 1.26 cgd
817 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
818 1.229 ad KASSERT(mutex_owned(p->p_lock));
819 1.183 ad KASSERT(lwp_locked(l, NULL));
820 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
821 1.83 thorpej
822 1.122 thorpej switch (l->l_stat) {
823 1.122 thorpej case LSSTOP:
824 1.33 mycroft /*
825 1.33 mycroft * If we're being traced (possibly because someone attached us
826 1.33 mycroft * while we were stopped), check for a signal from the debugger.
827 1.33 mycroft */
828 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
829 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
830 1.174 ad ss = &l->l_sigpend.sp_set;
831 1.174 ad else
832 1.174 ad ss = &p->p_sigpend.sp_set;
833 1.174 ad sigaddset(ss, p->p_xstat);
834 1.174 ad signotify(l);
835 1.53 mycroft }
836 1.174 ad p->p_nrlwps++;
837 1.26 cgd break;
838 1.174 ad case LSSUSPENDED:
839 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
840 1.174 ad p->p_nrlwps++;
841 1.192 rmind cv_broadcast(&p->p_lwpcv);
842 1.122 thorpej break;
843 1.174 ad case LSSLEEP:
844 1.174 ad KASSERT(l->l_wchan != NULL);
845 1.26 cgd break;
846 1.174 ad default:
847 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
848 1.26 cgd }
849 1.139 cl
850 1.174 ad /*
851 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
852 1.174 ad * again. If not, mark it as still sleeping.
853 1.174 ad */
854 1.174 ad if (l->l_wchan != NULL) {
855 1.174 ad l->l_stat = LSSLEEP;
856 1.183 ad /* lwp_unsleep() will release the lock. */
857 1.221 ad lwp_unsleep(l, true);
858 1.174 ad return;
859 1.174 ad }
860 1.139 cl
861 1.174 ad /*
862 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
863 1.174 ad * about to call mi_switch(), in which case it will yield.
864 1.174 ad */
865 1.188 yamt if ((l->l_flag & LW_RUNNING) != 0) {
866 1.174 ad l->l_stat = LSONPROC;
867 1.174 ad l->l_slptime = 0;
868 1.174 ad lwp_unlock(l);
869 1.174 ad return;
870 1.174 ad }
871 1.122 thorpej
872 1.174 ad /*
873 1.205 ad * Look for a CPU to run.
874 1.205 ad * Set the LWP runnable.
875 1.174 ad */
876 1.205 ad ci = sched_takecpu(l);
877 1.205 ad l->l_cpu = ci;
878 1.236 ad spc_lock(ci);
879 1.236 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
880 1.188 yamt sched_setrunnable(l);
881 1.174 ad l->l_stat = LSRUN;
882 1.122 thorpej l->l_slptime = 0;
883 1.174 ad
884 1.205 ad /*
885 1.205 ad * If thread is swapped out - wake the swapper to bring it back in.
886 1.205 ad * Otherwise, enter it into a run queue.
887 1.205 ad */
888 1.178 pavel if (l->l_flag & LW_INMEM) {
889 1.188 yamt sched_enqueue(l, false);
890 1.188 yamt resched_cpu(l);
891 1.174 ad lwp_unlock(l);
892 1.174 ad } else {
893 1.174 ad lwp_unlock(l);
894 1.177 ad uvm_kick_scheduler();
895 1.174 ad }
896 1.26 cgd }
897 1.26 cgd
898 1.26 cgd /*
899 1.174 ad * suspendsched:
900 1.174 ad *
901 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
902 1.174 ad */
903 1.94 bouyer void
904 1.174 ad suspendsched(void)
905 1.94 bouyer {
906 1.174 ad CPU_INFO_ITERATOR cii;
907 1.174 ad struct cpu_info *ci;
908 1.122 thorpej struct lwp *l;
909 1.174 ad struct proc *p;
910 1.94 bouyer
911 1.94 bouyer /*
912 1.174 ad * We do this by process in order not to violate the locking rules.
913 1.94 bouyer */
914 1.228 ad mutex_enter(proc_lock);
915 1.174 ad PROCLIST_FOREACH(p, &allproc) {
916 1.229 ad mutex_enter(p->p_lock);
917 1.174 ad
918 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
919 1.229 ad mutex_exit(p->p_lock);
920 1.94 bouyer continue;
921 1.174 ad }
922 1.174 ad
923 1.174 ad p->p_stat = SSTOP;
924 1.174 ad
925 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
926 1.174 ad if (l == curlwp)
927 1.174 ad continue;
928 1.174 ad
929 1.174 ad lwp_lock(l);
930 1.122 thorpej
931 1.97 enami /*
932 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
933 1.174 ad * when it tries to return to user mode. We want to
934 1.174 ad * try and get to get as many LWPs as possible to
935 1.174 ad * the user / kernel boundary, so that they will
936 1.174 ad * release any locks that they hold.
937 1.97 enami */
938 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
939 1.174 ad
940 1.174 ad if (l->l_stat == LSSLEEP &&
941 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
942 1.174 ad /* setrunnable() will release the lock. */
943 1.174 ad setrunnable(l);
944 1.174 ad continue;
945 1.174 ad }
946 1.174 ad
947 1.174 ad lwp_unlock(l);
948 1.94 bouyer }
949 1.174 ad
950 1.229 ad mutex_exit(p->p_lock);
951 1.94 bouyer }
952 1.228 ad mutex_exit(proc_lock);
953 1.174 ad
954 1.174 ad /*
955 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
956 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
957 1.174 ad */
958 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
959 1.204 ad spc_lock(ci);
960 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
961 1.204 ad spc_unlock(ci);
962 1.204 ad }
963 1.174 ad }
964 1.174 ad
965 1.174 ad /*
966 1.174 ad * sched_unsleep:
967 1.174 ad *
968 1.174 ad * The is called when the LWP has not been awoken normally but instead
969 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
970 1.174 ad * it's not a valid action for running or idle LWPs.
971 1.174 ad */
972 1.221 ad static u_int
973 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
974 1.174 ad {
975 1.174 ad
976 1.174 ad lwp_unlock(l);
977 1.174 ad panic("sched_unsleep");
978 1.174 ad }
979 1.174 ad
980 1.204 ad void
981 1.188 yamt resched_cpu(struct lwp *l)
982 1.188 yamt {
983 1.188 yamt struct cpu_info *ci;
984 1.188 yamt
985 1.188 yamt /*
986 1.188 yamt * XXXSMP
987 1.188 yamt * Since l->l_cpu persists across a context switch,
988 1.188 yamt * this gives us *very weak* processor affinity, in
989 1.188 yamt * that we notify the CPU on which the process last
990 1.188 yamt * ran that it should try to switch.
991 1.188 yamt *
992 1.188 yamt * This does not guarantee that the process will run on
993 1.188 yamt * that processor next, because another processor might
994 1.188 yamt * grab it the next time it performs a context switch.
995 1.188 yamt *
996 1.188 yamt * This also does not handle the case where its last
997 1.188 yamt * CPU is running a higher-priority process, but every
998 1.188 yamt * other CPU is running a lower-priority process. There
999 1.188 yamt * are ways to handle this situation, but they're not
1000 1.188 yamt * currently very pretty, and we also need to weigh the
1001 1.188 yamt * cost of moving a process from one CPU to another.
1002 1.188 yamt */
1003 1.204 ad ci = l->l_cpu;
1004 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1005 1.188 yamt cpu_need_resched(ci, 0);
1006 1.188 yamt }
1007 1.188 yamt
1008 1.188 yamt static void
1009 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1010 1.174 ad {
1011 1.174 ad
1012 1.188 yamt KASSERT(lwp_locked(l, NULL));
1013 1.174 ad
1014 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1015 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1016 1.204 ad sched_dequeue(l);
1017 1.204 ad l->l_priority = pri;
1018 1.204 ad sched_enqueue(l, false);
1019 1.204 ad } else {
1020 1.174 ad l->l_priority = pri;
1021 1.157 yamt }
1022 1.188 yamt resched_cpu(l);
1023 1.184 yamt }
1024 1.184 yamt
1025 1.188 yamt static void
1026 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1027 1.184 yamt {
1028 1.184 yamt
1029 1.188 yamt KASSERT(lwp_locked(l, NULL));
1030 1.184 yamt
1031 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1032 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1033 1.204 ad sched_dequeue(l);
1034 1.204 ad l->l_inheritedprio = pri;
1035 1.204 ad sched_enqueue(l, false);
1036 1.204 ad } else {
1037 1.184 yamt l->l_inheritedprio = pri;
1038 1.184 yamt }
1039 1.188 yamt resched_cpu(l);
1040 1.184 yamt }
1041 1.184 yamt
1042 1.184 yamt struct lwp *
1043 1.184 yamt syncobj_noowner(wchan_t wchan)
1044 1.184 yamt {
1045 1.184 yamt
1046 1.184 yamt return NULL;
1047 1.151 yamt }
1048 1.151 yamt
1049 1.188 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
1050 1.188 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
1051 1.115 nisimura
1052 1.130 nathanw /*
1053 1.188 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
1054 1.188 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
1055 1.188 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
1056 1.188 yamt *
1057 1.188 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
1058 1.188 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
1059 1.188 yamt *
1060 1.188 yamt * If you dont want to bother with the faster/more-accurate formula, you
1061 1.188 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
1062 1.188 yamt * (more general) method of calculating the %age of CPU used by a process.
1063 1.134 matt */
1064 1.188 yamt #define CCPU_SHIFT (FSHIFT + 1)
1065 1.134 matt
1066 1.134 matt /*
1067 1.188 yamt * sched_pstats:
1068 1.188 yamt *
1069 1.188 yamt * Update process statistics and check CPU resource allocation.
1070 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
1071 1.188 yamt * priorities.
1072 1.130 nathanw */
1073 1.188 yamt /* ARGSUSED */
1074 1.113 gmcgarry void
1075 1.188 yamt sched_pstats(void *arg)
1076 1.113 gmcgarry {
1077 1.188 yamt struct rlimit *rlim;
1078 1.188 yamt struct lwp *l;
1079 1.188 yamt struct proc *p;
1080 1.204 ad int sig, clkhz;
1081 1.188 yamt long runtm;
1082 1.113 gmcgarry
1083 1.188 yamt sched_pstats_ticks++;
1084 1.174 ad
1085 1.228 ad mutex_enter(proc_lock);
1086 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1087 1.188 yamt /*
1088 1.188 yamt * Increment time in/out of memory and sleep time (if
1089 1.188 yamt * sleeping). We ignore overflow; with 16-bit int's
1090 1.188 yamt * (remember them?) overflow takes 45 days.
1091 1.188 yamt */
1092 1.229 ad mutex_enter(p->p_lock);
1093 1.188 yamt mutex_spin_enter(&p->p_stmutex);
1094 1.212 yamt runtm = p->p_rtime.sec;
1095 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1096 1.188 yamt if ((l->l_flag & LW_IDLE) != 0)
1097 1.188 yamt continue;
1098 1.188 yamt lwp_lock(l);
1099 1.212 yamt runtm += l->l_rtime.sec;
1100 1.188 yamt l->l_swtime++;
1101 1.200 rmind sched_pstats_hook(l);
1102 1.188 yamt lwp_unlock(l);
1103 1.113 gmcgarry
1104 1.188 yamt /*
1105 1.188 yamt * p_pctcpu is only for ps.
1106 1.188 yamt */
1107 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1108 1.188 yamt if (l->l_slptime < 1) {
1109 1.188 yamt clkhz = stathz != 0 ? stathz : hz;
1110 1.188 yamt #if (FSHIFT >= CCPU_SHIFT)
1111 1.188 yamt l->l_pctcpu += (clkhz == 100) ?
1112 1.188 yamt ((fixpt_t)l->l_cpticks) <<
1113 1.188 yamt (FSHIFT - CCPU_SHIFT) :
1114 1.188 yamt 100 * (((fixpt_t) p->p_cpticks)
1115 1.188 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
1116 1.188 yamt #else
1117 1.188 yamt l->l_pctcpu += ((FSCALE - ccpu) *
1118 1.188 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
1119 1.146 matt #endif
1120 1.188 yamt l->l_cpticks = 0;
1121 1.188 yamt }
1122 1.188 yamt }
1123 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1124 1.188 yamt mutex_spin_exit(&p->p_stmutex);
1125 1.174 ad
1126 1.188 yamt /*
1127 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1128 1.188 yamt * If over max, kill it.
1129 1.188 yamt */
1130 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1131 1.188 yamt sig = 0;
1132 1.188 yamt if (runtm >= rlim->rlim_cur) {
1133 1.188 yamt if (runtm >= rlim->rlim_max)
1134 1.188 yamt sig = SIGKILL;
1135 1.188 yamt else {
1136 1.188 yamt sig = SIGXCPU;
1137 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1138 1.188 yamt rlim->rlim_cur += 5;
1139 1.188 yamt }
1140 1.188 yamt }
1141 1.229 ad mutex_exit(p->p_lock);
1142 1.228 ad if (sig)
1143 1.188 yamt psignal(p, sig);
1144 1.174 ad }
1145 1.228 ad mutex_exit(proc_lock);
1146 1.188 yamt uvm_meter();
1147 1.191 ad cv_wakeup(&lbolt);
1148 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
1149 1.113 gmcgarry }
1150