kern_synch.c revision 1.241.2.1 1 1.241.2.1 wrstuden /* $NetBSD: kern_synch.c,v 1.241.2.1 2008/05/10 23:49:04 wrstuden Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.218 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej *
21 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
32 1.63 thorpej */
33 1.26 cgd
34 1.26 cgd /*-
35 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 1.26 cgd * The Regents of the University of California. All rights reserved.
37 1.26 cgd * (c) UNIX System Laboratories, Inc.
38 1.26 cgd * All or some portions of this file are derived from material licensed
39 1.26 cgd * to the University of California by American Telephone and Telegraph
40 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 1.26 cgd * the permission of UNIX System Laboratories, Inc.
42 1.26 cgd *
43 1.26 cgd * Redistribution and use in source and binary forms, with or without
44 1.26 cgd * modification, are permitted provided that the following conditions
45 1.26 cgd * are met:
46 1.26 cgd * 1. Redistributions of source code must retain the above copyright
47 1.26 cgd * notice, this list of conditions and the following disclaimer.
48 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.26 cgd * notice, this list of conditions and the following disclaimer in the
50 1.26 cgd * documentation and/or other materials provided with the distribution.
51 1.136 agc * 3. Neither the name of the University nor the names of its contributors
52 1.26 cgd * may be used to endorse or promote products derived from this software
53 1.26 cgd * without specific prior written permission.
54 1.26 cgd *
55 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.26 cgd * SUCH DAMAGE.
66 1.26 cgd *
67 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 1.26 cgd */
69 1.106 lukem
70 1.106 lukem #include <sys/cdefs.h>
71 1.241.2.1 wrstuden __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.241.2.1 2008/05/10 23:49:04 wrstuden Exp $");
72 1.48 mrg
73 1.109 yamt #include "opt_kstack.h"
74 1.82 thorpej #include "opt_lockdebug.h"
75 1.83 thorpej #include "opt_multiprocessor.h"
76 1.110 briggs #include "opt_perfctrs.h"
77 1.26 cgd
78 1.174 ad #define __MUTEX_PRIVATE
79 1.174 ad
80 1.26 cgd #include <sys/param.h>
81 1.26 cgd #include <sys/systm.h>
82 1.26 cgd #include <sys/proc.h>
83 1.26 cgd #include <sys/kernel.h>
84 1.111 briggs #if defined(PERFCTRS)
85 1.110 briggs #include <sys/pmc.h>
86 1.111 briggs #endif
87 1.188 yamt #include <sys/cpu.h>
88 1.26 cgd #include <sys/resourcevar.h>
89 1.55 ross #include <sys/sched.h>
90 1.241.2.1 wrstuden #include <sys/sa.h>
91 1.241.2.1 wrstuden #include <sys/savar.h>
92 1.179 dsl #include <sys/syscall_stats.h>
93 1.174 ad #include <sys/sleepq.h>
94 1.174 ad #include <sys/lockdebug.h>
95 1.190 ad #include <sys/evcnt.h>
96 1.199 ad #include <sys/intr.h>
97 1.207 ad #include <sys/lwpctl.h>
98 1.209 ad #include <sys/atomic.h>
99 1.215 ad #include <sys/simplelock.h>
100 1.47 mrg
101 1.47 mrg #include <uvm/uvm_extern.h>
102 1.47 mrg
103 1.231 ad #include <dev/lockstat.h>
104 1.231 ad
105 1.221 ad static u_int sched_unsleep(struct lwp *, bool);
106 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
107 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
108 1.122 thorpej
109 1.174 ad syncobj_t sleep_syncobj = {
110 1.174 ad SOBJ_SLEEPQ_SORTED,
111 1.174 ad sleepq_unsleep,
112 1.184 yamt sleepq_changepri,
113 1.184 yamt sleepq_lendpri,
114 1.184 yamt syncobj_noowner,
115 1.174 ad };
116 1.174 ad
117 1.174 ad syncobj_t sched_syncobj = {
118 1.174 ad SOBJ_SLEEPQ_SORTED,
119 1.174 ad sched_unsleep,
120 1.184 yamt sched_changepri,
121 1.184 yamt sched_lendpri,
122 1.184 yamt syncobj_noowner,
123 1.174 ad };
124 1.122 thorpej
125 1.223 ad callout_t sched_pstats_ch;
126 1.223 ad unsigned sched_pstats_ticks;
127 1.223 ad kcondvar_t lbolt; /* once a second sleep address */
128 1.223 ad
129 1.237 rmind /* Preemption event counters */
130 1.231 ad static struct evcnt kpreempt_ev_crit;
131 1.231 ad static struct evcnt kpreempt_ev_klock;
132 1.231 ad static struct evcnt kpreempt_ev_ipl;
133 1.231 ad static struct evcnt kpreempt_ev_immed;
134 1.231 ad
135 1.231 ad /*
136 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
137 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
138 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
139 1.174 ad * maintained in the machine-dependent layers. This priority will typically
140 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
141 1.174 ad * it can be made higher to block network software interrupts after panics.
142 1.26 cgd */
143 1.174 ad int safepri;
144 1.26 cgd
145 1.237 rmind void
146 1.237 rmind sched_init(void)
147 1.237 rmind {
148 1.237 rmind
149 1.237 rmind cv_init(&lbolt, "lbolt");
150 1.237 rmind callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
151 1.237 rmind callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
152 1.237 rmind
153 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
154 1.237 rmind "kpreempt", "defer: critical section");
155 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
156 1.237 rmind "kpreempt", "defer: kernel_lock");
157 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
158 1.237 rmind "kpreempt", "defer: IPL");
159 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
160 1.237 rmind "kpreempt", "immediate");
161 1.237 rmind
162 1.237 rmind sched_pstats(NULL);
163 1.237 rmind }
164 1.237 rmind
165 1.26 cgd /*
166 1.174 ad * OBSOLETE INTERFACE
167 1.174 ad *
168 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
169 1.26 cgd * performed on the specified identifier. The process will then be made
170 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
171 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
172 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
173 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
174 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
175 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
176 1.26 cgd * call should be interrupted by the signal (return EINTR).
177 1.77 thorpej *
178 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
179 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
180 1.174 ad * is specified, in which case the interlock will always be unlocked upon
181 1.174 ad * return.
182 1.26 cgd */
183 1.26 cgd int
184 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
185 1.174 ad volatile struct simplelock *interlock)
186 1.26 cgd {
187 1.122 thorpej struct lwp *l = curlwp;
188 1.174 ad sleepq_t *sq;
189 1.188 yamt int error;
190 1.26 cgd
191 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
192 1.204 ad
193 1.174 ad if (sleepq_dontsleep(l)) {
194 1.174 ad (void)sleepq_abort(NULL, 0);
195 1.174 ad if ((priority & PNORELOCK) != 0)
196 1.77 thorpej simple_unlock(interlock);
197 1.174 ad return 0;
198 1.26 cgd }
199 1.78 sommerfe
200 1.204 ad l->l_kpriority = true;
201 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
202 1.174 ad sleepq_enter(sq, l);
203 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
204 1.42 cgd
205 1.174 ad if (interlock != NULL) {
206 1.204 ad KASSERT(simple_lock_held(interlock));
207 1.174 ad simple_unlock(interlock);
208 1.150 chs }
209 1.150 chs
210 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
211 1.126 pk
212 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
213 1.126 pk simple_lock(interlock);
214 1.174 ad
215 1.174 ad return error;
216 1.26 cgd }
217 1.26 cgd
218 1.187 ad int
219 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
220 1.187 ad kmutex_t *mtx)
221 1.187 ad {
222 1.187 ad struct lwp *l = curlwp;
223 1.187 ad sleepq_t *sq;
224 1.188 yamt int error;
225 1.187 ad
226 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
227 1.204 ad
228 1.187 ad if (sleepq_dontsleep(l)) {
229 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
230 1.187 ad return 0;
231 1.187 ad }
232 1.187 ad
233 1.204 ad l->l_kpriority = true;
234 1.187 ad sq = sleeptab_lookup(&sleeptab, ident);
235 1.187 ad sleepq_enter(sq, l);
236 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
237 1.187 ad mutex_exit(mtx);
238 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
239 1.187 ad
240 1.187 ad if ((priority & PNORELOCK) == 0)
241 1.187 ad mutex_enter(mtx);
242 1.187 ad
243 1.187 ad return error;
244 1.187 ad }
245 1.187 ad
246 1.26 cgd /*
247 1.174 ad * General sleep call for situations where a wake-up is not expected.
248 1.26 cgd */
249 1.174 ad int
250 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
251 1.26 cgd {
252 1.174 ad struct lwp *l = curlwp;
253 1.174 ad sleepq_t *sq;
254 1.174 ad int error;
255 1.26 cgd
256 1.174 ad if (sleepq_dontsleep(l))
257 1.174 ad return sleepq_abort(NULL, 0);
258 1.26 cgd
259 1.174 ad if (mtx != NULL)
260 1.174 ad mutex_exit(mtx);
261 1.204 ad l->l_kpriority = true;
262 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
263 1.174 ad sleepq_enter(sq, l);
264 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
265 1.188 yamt error = sleepq_block(timo, intr);
266 1.174 ad if (mtx != NULL)
267 1.174 ad mutex_enter(mtx);
268 1.83 thorpej
269 1.174 ad return error;
270 1.139 cl }
271 1.139 cl
272 1.26 cgd /*
273 1.174 ad * OBSOLETE INTERFACE
274 1.174 ad *
275 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
276 1.26 cgd */
277 1.26 cgd void
278 1.174 ad wakeup(wchan_t ident)
279 1.26 cgd {
280 1.174 ad sleepq_t *sq;
281 1.83 thorpej
282 1.174 ad if (cold)
283 1.174 ad return;
284 1.83 thorpej
285 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
286 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
287 1.63 thorpej }
288 1.63 thorpej
289 1.63 thorpej /*
290 1.174 ad * OBSOLETE INTERFACE
291 1.174 ad *
292 1.63 thorpej * Make the highest priority process first in line on the specified
293 1.63 thorpej * identifier runnable.
294 1.63 thorpej */
295 1.174 ad void
296 1.174 ad wakeup_one(wchan_t ident)
297 1.63 thorpej {
298 1.174 ad sleepq_t *sq;
299 1.63 thorpej
300 1.174 ad if (cold)
301 1.174 ad return;
302 1.188 yamt
303 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
304 1.174 ad sleepq_wake(sq, ident, 1);
305 1.174 ad }
306 1.63 thorpej
307 1.117 gmcgarry
308 1.117 gmcgarry /*
309 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
310 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
311 1.198 ad * current process explicitly requests it (eg sched_yield(2)).
312 1.117 gmcgarry */
313 1.117 gmcgarry void
314 1.117 gmcgarry yield(void)
315 1.117 gmcgarry {
316 1.122 thorpej struct lwp *l = curlwp;
317 1.117 gmcgarry
318 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
319 1.174 ad lwp_lock(l);
320 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
321 1.188 yamt KASSERT(l->l_stat == LSONPROC);
322 1.204 ad l->l_kpriority = false;
323 1.188 yamt (void)mi_switch(l);
324 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
325 1.69 thorpej }
326 1.69 thorpej
327 1.69 thorpej /*
328 1.69 thorpej * General preemption call. Puts the current process back on its run queue
329 1.156 rpaulo * and performs an involuntary context switch.
330 1.69 thorpej */
331 1.69 thorpej void
332 1.174 ad preempt(void)
333 1.69 thorpej {
334 1.122 thorpej struct lwp *l = curlwp;
335 1.69 thorpej
336 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
337 1.174 ad lwp_lock(l);
338 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
339 1.188 yamt KASSERT(l->l_stat == LSONPROC);
340 1.204 ad l->l_kpriority = false;
341 1.174 ad l->l_nivcsw++;
342 1.188 yamt (void)mi_switch(l);
343 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
344 1.69 thorpej }
345 1.69 thorpej
346 1.234 ad /*
347 1.234 ad * Handle a request made by another agent to preempt the current LWP
348 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
349 1.234 ad *
350 1.234 ad * Character addresses for lockstat only.
351 1.234 ad */
352 1.231 ad static char in_critical_section;
353 1.231 ad static char kernel_lock_held;
354 1.231 ad static char spl_raised;
355 1.231 ad static char is_softint;
356 1.231 ad
357 1.231 ad bool
358 1.231 ad kpreempt(uintptr_t where)
359 1.231 ad {
360 1.231 ad uintptr_t failed;
361 1.231 ad lwp_t *l;
362 1.231 ad int s, dop;
363 1.231 ad
364 1.231 ad l = curlwp;
365 1.231 ad failed = 0;
366 1.231 ad while ((dop = l->l_dopreempt) != 0) {
367 1.231 ad if (l->l_stat != LSONPROC) {
368 1.231 ad /*
369 1.231 ad * About to block (or die), let it happen.
370 1.231 ad * Doesn't really count as "preemption has
371 1.231 ad * been blocked", since we're going to
372 1.231 ad * context switch.
373 1.231 ad */
374 1.231 ad l->l_dopreempt = 0;
375 1.231 ad return true;
376 1.231 ad }
377 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
378 1.231 ad /* Can't preempt idle loop, don't count as failure. */
379 1.231 ad l->l_dopreempt = 0;
380 1.231 ad return true;
381 1.231 ad }
382 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
383 1.231 ad /* LWP holds preemption disabled, explicitly. */
384 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
385 1.234 ad kpreempt_ev_crit.ev_count++;
386 1.231 ad }
387 1.231 ad failed = (uintptr_t)&in_critical_section;
388 1.231 ad break;
389 1.231 ad }
390 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
391 1.231 ad /* Can't preempt soft interrupts yet. */
392 1.231 ad l->l_dopreempt = 0;
393 1.231 ad failed = (uintptr_t)&is_softint;
394 1.231 ad break;
395 1.231 ad }
396 1.231 ad s = splsched();
397 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
398 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
399 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
400 1.231 ad splx(s);
401 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
402 1.234 ad kpreempt_ev_klock.ev_count++;
403 1.231 ad }
404 1.231 ad failed = (uintptr_t)&kernel_lock_held;
405 1.231 ad break;
406 1.231 ad }
407 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
408 1.231 ad /*
409 1.231 ad * It may be that the IPL is too high.
410 1.231 ad * kpreempt_enter() can schedule an
411 1.231 ad * interrupt to retry later.
412 1.231 ad */
413 1.231 ad splx(s);
414 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
415 1.234 ad kpreempt_ev_ipl.ev_count++;
416 1.231 ad }
417 1.231 ad failed = (uintptr_t)&spl_raised;
418 1.231 ad break;
419 1.231 ad }
420 1.231 ad /* Do it! */
421 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
422 1.234 ad kpreempt_ev_immed.ev_count++;
423 1.231 ad }
424 1.231 ad lwp_lock(l);
425 1.231 ad mi_switch(l);
426 1.231 ad l->l_nopreempt++;
427 1.231 ad splx(s);
428 1.231 ad
429 1.231 ad /* Take care of any MD cleanup. */
430 1.231 ad cpu_kpreempt_exit(where);
431 1.231 ad l->l_nopreempt--;
432 1.231 ad }
433 1.231 ad
434 1.231 ad /* Record preemption failure for reporting via lockstat. */
435 1.231 ad if (__predict_false(failed)) {
436 1.240 ad int lsflag = 0;
437 1.231 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
438 1.231 ad LOCKSTAT_ENTER(lsflag);
439 1.231 ad /* Might recurse, make it atomic. */
440 1.231 ad if (__predict_false(lsflag)) {
441 1.231 ad if (where == 0) {
442 1.231 ad where = (uintptr_t)__builtin_return_address(0);
443 1.231 ad }
444 1.231 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
445 1.231 ad NULL, (void *)where) == NULL) {
446 1.231 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
447 1.231 ad l->l_pfaillock = failed;
448 1.231 ad }
449 1.231 ad }
450 1.231 ad LOCKSTAT_EXIT(lsflag);
451 1.231 ad }
452 1.231 ad
453 1.231 ad return failed;
454 1.231 ad }
455 1.231 ad
456 1.69 thorpej /*
457 1.231 ad * Return true if preemption is explicitly disabled.
458 1.230 ad */
459 1.231 ad bool
460 1.231 ad kpreempt_disabled(void)
461 1.231 ad {
462 1.231 ad lwp_t *l;
463 1.231 ad
464 1.231 ad l = curlwp;
465 1.231 ad
466 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
467 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
468 1.231 ad }
469 1.230 ad
470 1.230 ad /*
471 1.231 ad * Disable kernel preemption.
472 1.230 ad */
473 1.230 ad void
474 1.231 ad kpreempt_disable(void)
475 1.230 ad {
476 1.230 ad
477 1.231 ad KPREEMPT_DISABLE(curlwp);
478 1.230 ad }
479 1.230 ad
480 1.230 ad /*
481 1.231 ad * Reenable kernel preemption.
482 1.230 ad */
483 1.231 ad void
484 1.231 ad kpreempt_enable(void)
485 1.230 ad {
486 1.230 ad
487 1.231 ad KPREEMPT_ENABLE(curlwp);
488 1.230 ad }
489 1.230 ad
490 1.230 ad /*
491 1.188 yamt * Compute the amount of time during which the current lwp was running.
492 1.130 nathanw *
493 1.188 yamt * - update l_rtime unless it's an idle lwp.
494 1.188 yamt */
495 1.188 yamt
496 1.199 ad void
497 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
498 1.188 yamt {
499 1.188 yamt
500 1.199 ad if ((l->l_flag & LW_IDLE) != 0)
501 1.188 yamt return;
502 1.188 yamt
503 1.212 yamt /* rtime += now - stime */
504 1.212 yamt bintime_add(&l->l_rtime, now);
505 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
506 1.188 yamt }
507 1.188 yamt
508 1.188 yamt /*
509 1.188 yamt * The machine independent parts of context switch.
510 1.188 yamt *
511 1.188 yamt * Returns 1 if another LWP was actually run.
512 1.26 cgd */
513 1.122 thorpej int
514 1.199 ad mi_switch(lwp_t *l)
515 1.26 cgd {
516 1.216 rmind struct cpu_info *ci, *tci = NULL;
517 1.76 thorpej struct schedstate_percpu *spc;
518 1.188 yamt struct lwp *newl;
519 1.174 ad int retval, oldspl;
520 1.212 yamt struct bintime bt;
521 1.199 ad bool returning;
522 1.26 cgd
523 1.188 yamt KASSERT(lwp_locked(l, NULL));
524 1.231 ad KASSERT(kpreempt_disabled());
525 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
526 1.174 ad
527 1.174 ad #ifdef KSTACK_CHECK_MAGIC
528 1.174 ad kstack_check_magic(l);
529 1.174 ad #endif
530 1.83 thorpej
531 1.212 yamt binuptime(&bt);
532 1.199 ad
533 1.231 ad KASSERT(l->l_cpu == curcpu());
534 1.196 ad ci = l->l_cpu;
535 1.196 ad spc = &ci->ci_schedstate;
536 1.199 ad returning = false;
537 1.190 ad newl = NULL;
538 1.190 ad
539 1.199 ad /*
540 1.199 ad * If we have been asked to switch to a specific LWP, then there
541 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
542 1.199 ad * blocking, then return to the interrupted thread without adjusting
543 1.199 ad * VM context or its start time: neither have been changed in order
544 1.199 ad * to take the interrupt.
545 1.199 ad */
546 1.190 ad if (l->l_switchto != NULL) {
547 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
548 1.199 ad returning = true;
549 1.199 ad softint_block(l);
550 1.199 ad if ((l->l_flag & LW_TIMEINTR) != 0)
551 1.212 yamt updatertime(l, &bt);
552 1.199 ad }
553 1.190 ad newl = l->l_switchto;
554 1.190 ad l->l_switchto = NULL;
555 1.190 ad }
556 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
557 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
558 1.204 ad /* There are pending soft interrupts, so pick one. */
559 1.204 ad newl = softint_picklwp();
560 1.204 ad newl->l_stat = LSONPROC;
561 1.204 ad newl->l_flag |= LW_RUNNING;
562 1.204 ad }
563 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
564 1.190 ad
565 1.180 dsl /* Count time spent in current system call */
566 1.199 ad if (!returning) {
567 1.199 ad SYSCALL_TIME_SLEEP(l);
568 1.180 dsl
569 1.199 ad /*
570 1.199 ad * XXXSMP If we are using h/w performance counters,
571 1.199 ad * save context.
572 1.199 ad */
573 1.174 ad #if PERFCTRS
574 1.199 ad if (PMC_ENABLED(l->l_proc)) {
575 1.199 ad pmc_save_context(l->l_proc);
576 1.199 ad }
577 1.199 ad #endif
578 1.212 yamt updatertime(l, &bt);
579 1.174 ad }
580 1.113 gmcgarry
581 1.113 gmcgarry /*
582 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
583 1.113 gmcgarry */
584 1.174 ad KASSERT(l->l_stat != LSRUN);
585 1.216 rmind if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
586 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
587 1.216 rmind
588 1.220 rmind if (l->l_target_cpu == l->l_cpu) {
589 1.220 rmind l->l_target_cpu = NULL;
590 1.220 rmind } else {
591 1.220 rmind tci = l->l_target_cpu;
592 1.220 rmind }
593 1.220 rmind
594 1.216 rmind if (__predict_false(tci != NULL)) {
595 1.216 rmind /* Double-lock the runqueues */
596 1.216 rmind spc_dlock(ci, tci);
597 1.216 rmind } else {
598 1.216 rmind /* Lock the runqueue */
599 1.216 rmind spc_lock(ci);
600 1.216 rmind }
601 1.216 rmind
602 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
603 1.188 yamt l->l_stat = LSRUN;
604 1.216 rmind if (__predict_false(tci != NULL)) {
605 1.216 rmind /*
606 1.216 rmind * Set the new CPU, lock and unset the
607 1.216 rmind * l_target_cpu - thread will be enqueued
608 1.216 rmind * to the runqueue of target CPU.
609 1.216 rmind */
610 1.216 rmind l->l_cpu = tci;
611 1.216 rmind lwp_setlock(l, tci->ci_schedstate.spc_mutex);
612 1.216 rmind l->l_target_cpu = NULL;
613 1.216 rmind } else {
614 1.216 rmind lwp_setlock(l, spc->spc_mutex);
615 1.216 rmind }
616 1.188 yamt sched_enqueue(l, true);
617 1.216 rmind } else {
618 1.216 rmind KASSERT(tci == NULL);
619 1.188 yamt l->l_stat = LSIDL;
620 1.216 rmind }
621 1.216 rmind } else {
622 1.216 rmind /* Lock the runqueue */
623 1.216 rmind spc_lock(ci);
624 1.174 ad }
625 1.174 ad
626 1.174 ad /*
627 1.201 rmind * Let sched_nextlwp() select the LWP to run the CPU next.
628 1.209 ad * If no LWP is runnable, select the idle LWP.
629 1.209 ad *
630 1.209 ad * Note that spc_lwplock might not necessary be held, and
631 1.209 ad * new thread would be unlocked after setting the LWP-lock.
632 1.174 ad */
633 1.190 ad if (newl == NULL) {
634 1.190 ad newl = sched_nextlwp();
635 1.190 ad if (newl != NULL) {
636 1.190 ad sched_dequeue(newl);
637 1.190 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
638 1.190 ad newl->l_stat = LSONPROC;
639 1.196 ad newl->l_cpu = ci;
640 1.190 ad newl->l_flag |= LW_RUNNING;
641 1.217 ad lwp_setlock(newl, spc->spc_lwplock);
642 1.190 ad } else {
643 1.196 ad newl = ci->ci_data.cpu_idlelwp;
644 1.190 ad newl->l_stat = LSONPROC;
645 1.190 ad newl->l_flag |= LW_RUNNING;
646 1.190 ad }
647 1.204 ad /*
648 1.204 ad * Only clear want_resched if there are no
649 1.204 ad * pending (slow) software interrupts.
650 1.204 ad */
651 1.204 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
652 1.199 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
653 1.204 ad spc->spc_curpriority = lwp_eprio(newl);
654 1.199 ad }
655 1.199 ad
656 1.204 ad /* Items that must be updated with the CPU locked. */
657 1.199 ad if (!returning) {
658 1.204 ad /* Update the new LWP's start time. */
659 1.212 yamt newl->l_stime = bt;
660 1.204 ad
661 1.199 ad /*
662 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
663 1.204 ad * We use cpu_onproc to keep track of which kernel or
664 1.204 ad * user thread is running 'underneath' the software
665 1.204 ad * interrupt. This is important for time accounting,
666 1.204 ad * itimers and forcing user threads to preempt (aston).
667 1.199 ad */
668 1.204 ad ci->ci_data.cpu_onproc = newl;
669 1.188 yamt }
670 1.188 yamt
671 1.241 ad /*
672 1.241 ad * Preemption related tasks. Must be done with the current
673 1.241 ad * CPU locked.
674 1.241 ad */
675 1.241 ad cpu_did_resched(l);
676 1.231 ad l->l_dopreempt = 0;
677 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
678 1.231 ad LOCKSTAT_FLAG(lsflag);
679 1.231 ad LOCKSTAT_ENTER(lsflag);
680 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
681 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
682 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
683 1.231 ad LOCKSTAT_EXIT(lsflag);
684 1.231 ad l->l_pfailtime = 0;
685 1.231 ad l->l_pfaillock = 0;
686 1.231 ad l->l_pfailaddr = 0;
687 1.231 ad }
688 1.231 ad
689 1.188 yamt if (l != newl) {
690 1.188 yamt struct lwp *prevlwp;
691 1.174 ad
692 1.209 ad /* Release all locks, but leave the current LWP locked */
693 1.216 rmind if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
694 1.216 rmind /*
695 1.216 rmind * In case of migration, drop the local runqueue
696 1.216 rmind * lock, thread is on other runqueue now.
697 1.216 rmind */
698 1.216 rmind if (__predict_false(tci != NULL))
699 1.216 rmind spc_unlock(ci);
700 1.209 ad /*
701 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
702 1.209 ad * to the run queue (it is now locked by spc_mutex).
703 1.209 ad */
704 1.217 ad mutex_spin_exit(spc->spc_lwplock);
705 1.188 yamt } else {
706 1.209 ad /*
707 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
708 1.209 ad * run queues.
709 1.209 ad */
710 1.188 yamt mutex_spin_exit(spc->spc_mutex);
711 1.216 rmind KASSERT(tci == NULL);
712 1.188 yamt }
713 1.188 yamt
714 1.209 ad /*
715 1.209 ad * Mark that context switch is going to be perfomed
716 1.209 ad * for this LWP, to protect it from being switched
717 1.209 ad * to on another CPU.
718 1.209 ad */
719 1.209 ad KASSERT(l->l_ctxswtch == 0);
720 1.209 ad l->l_ctxswtch = 1;
721 1.209 ad l->l_ncsw++;
722 1.209 ad l->l_flag &= ~LW_RUNNING;
723 1.209 ad
724 1.209 ad /*
725 1.209 ad * Increase the count of spin-mutexes before the release
726 1.209 ad * of the last lock - we must remain at IPL_SCHED during
727 1.209 ad * the context switch.
728 1.209 ad */
729 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
730 1.209 ad ci->ci_mtx_count--;
731 1.209 ad lwp_unlock(l);
732 1.209 ad
733 1.218 ad /* Count the context switch on this CPU. */
734 1.218 ad ci->ci_data.cpu_nswtch++;
735 1.188 yamt
736 1.209 ad /* Update status for lwpctl, if present. */
737 1.209 ad if (l->l_lwpctl != NULL)
738 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
739 1.209 ad
740 1.199 ad /*
741 1.199 ad * Save old VM context, unless a soft interrupt
742 1.199 ad * handler is blocking.
743 1.199 ad */
744 1.199 ad if (!returning)
745 1.199 ad pmap_deactivate(l);
746 1.188 yamt
747 1.209 ad /*
748 1.209 ad * We may need to spin-wait for if 'newl' is still
749 1.209 ad * context switching on another CPU.
750 1.209 ad */
751 1.209 ad if (newl->l_ctxswtch != 0) {
752 1.209 ad u_int count;
753 1.209 ad count = SPINLOCK_BACKOFF_MIN;
754 1.209 ad while (newl->l_ctxswtch)
755 1.209 ad SPINLOCK_BACKOFF(count);
756 1.209 ad }
757 1.207 ad
758 1.188 yamt /* Switch to the new LWP.. */
759 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
760 1.207 ad ci = curcpu();
761 1.207 ad
762 1.188 yamt /*
763 1.209 ad * Switched away - we have new curlwp.
764 1.209 ad * Restore VM context and IPL.
765 1.188 yamt */
766 1.209 ad pmap_activate(l);
767 1.188 yamt if (prevlwp != NULL) {
768 1.209 ad /* Normalize the count of the spin-mutexes */
769 1.209 ad ci->ci_mtx_count++;
770 1.209 ad /* Unmark the state of context switch */
771 1.209 ad membar_exit();
772 1.209 ad prevlwp->l_ctxswtch = 0;
773 1.188 yamt }
774 1.209 ad
775 1.209 ad /* Update status for lwpctl, if present. */
776 1.219 ad if (l->l_lwpctl != NULL) {
777 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
778 1.219 ad l->l_lwpctl->lc_pctr++;
779 1.219 ad }
780 1.174 ad
781 1.231 ad KASSERT(l->l_cpu == ci);
782 1.231 ad splx(oldspl);
783 1.188 yamt retval = 1;
784 1.188 yamt } else {
785 1.188 yamt /* Nothing to do - just unlock and return. */
786 1.216 rmind KASSERT(tci == NULL);
787 1.216 rmind spc_unlock(ci);
788 1.188 yamt lwp_unlock(l);
789 1.122 thorpej retval = 0;
790 1.122 thorpej }
791 1.110 briggs
792 1.188 yamt KASSERT(l == curlwp);
793 1.188 yamt KASSERT(l->l_stat == LSONPROC);
794 1.188 yamt
795 1.110 briggs /*
796 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
797 1.231 ad * XXXSMP preemption problem.
798 1.26 cgd */
799 1.114 gmcgarry #if PERFCTRS
800 1.175 christos if (PMC_ENABLED(l->l_proc)) {
801 1.175 christos pmc_restore_context(l->l_proc);
802 1.166 christos }
803 1.114 gmcgarry #endif
804 1.180 dsl SYSCALL_TIME_WAKEUP(l);
805 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
806 1.169 yamt
807 1.122 thorpej return retval;
808 1.26 cgd }
809 1.26 cgd
810 1.26 cgd /*
811 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
812 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
813 1.174 ad *
814 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
815 1.26 cgd */
816 1.26 cgd void
817 1.122 thorpej setrunnable(struct lwp *l)
818 1.26 cgd {
819 1.122 thorpej struct proc *p = l->l_proc;
820 1.205 ad struct cpu_info *ci;
821 1.174 ad sigset_t *ss;
822 1.26 cgd
823 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
824 1.229 ad KASSERT(mutex_owned(p->p_lock));
825 1.183 ad KASSERT(lwp_locked(l, NULL));
826 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
827 1.83 thorpej
828 1.122 thorpej switch (l->l_stat) {
829 1.122 thorpej case LSSTOP:
830 1.33 mycroft /*
831 1.33 mycroft * If we're being traced (possibly because someone attached us
832 1.33 mycroft * while we were stopped), check for a signal from the debugger.
833 1.33 mycroft */
834 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
835 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
836 1.174 ad ss = &l->l_sigpend.sp_set;
837 1.174 ad else
838 1.174 ad ss = &p->p_sigpend.sp_set;
839 1.174 ad sigaddset(ss, p->p_xstat);
840 1.174 ad signotify(l);
841 1.53 mycroft }
842 1.174 ad p->p_nrlwps++;
843 1.26 cgd break;
844 1.174 ad case LSSUSPENDED:
845 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
846 1.174 ad p->p_nrlwps++;
847 1.192 rmind cv_broadcast(&p->p_lwpcv);
848 1.122 thorpej break;
849 1.174 ad case LSSLEEP:
850 1.174 ad KASSERT(l->l_wchan != NULL);
851 1.26 cgd break;
852 1.174 ad default:
853 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
854 1.26 cgd }
855 1.139 cl
856 1.174 ad /*
857 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
858 1.174 ad * again. If not, mark it as still sleeping.
859 1.174 ad */
860 1.174 ad if (l->l_wchan != NULL) {
861 1.174 ad l->l_stat = LSSLEEP;
862 1.183 ad /* lwp_unsleep() will release the lock. */
863 1.221 ad lwp_unsleep(l, true);
864 1.174 ad return;
865 1.174 ad }
866 1.139 cl
867 1.174 ad /*
868 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
869 1.174 ad * about to call mi_switch(), in which case it will yield.
870 1.174 ad */
871 1.188 yamt if ((l->l_flag & LW_RUNNING) != 0) {
872 1.174 ad l->l_stat = LSONPROC;
873 1.174 ad l->l_slptime = 0;
874 1.174 ad lwp_unlock(l);
875 1.174 ad return;
876 1.174 ad }
877 1.122 thorpej
878 1.174 ad /*
879 1.205 ad * Look for a CPU to run.
880 1.205 ad * Set the LWP runnable.
881 1.174 ad */
882 1.205 ad ci = sched_takecpu(l);
883 1.205 ad l->l_cpu = ci;
884 1.236 ad spc_lock(ci);
885 1.236 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
886 1.188 yamt sched_setrunnable(l);
887 1.174 ad l->l_stat = LSRUN;
888 1.122 thorpej l->l_slptime = 0;
889 1.174 ad
890 1.205 ad /*
891 1.205 ad * If thread is swapped out - wake the swapper to bring it back in.
892 1.205 ad * Otherwise, enter it into a run queue.
893 1.205 ad */
894 1.178 pavel if (l->l_flag & LW_INMEM) {
895 1.188 yamt sched_enqueue(l, false);
896 1.188 yamt resched_cpu(l);
897 1.174 ad lwp_unlock(l);
898 1.174 ad } else {
899 1.174 ad lwp_unlock(l);
900 1.177 ad uvm_kick_scheduler();
901 1.174 ad }
902 1.26 cgd }
903 1.26 cgd
904 1.26 cgd /*
905 1.174 ad * suspendsched:
906 1.174 ad *
907 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
908 1.174 ad */
909 1.94 bouyer void
910 1.174 ad suspendsched(void)
911 1.94 bouyer {
912 1.174 ad CPU_INFO_ITERATOR cii;
913 1.174 ad struct cpu_info *ci;
914 1.122 thorpej struct lwp *l;
915 1.174 ad struct proc *p;
916 1.94 bouyer
917 1.94 bouyer /*
918 1.174 ad * We do this by process in order not to violate the locking rules.
919 1.94 bouyer */
920 1.228 ad mutex_enter(proc_lock);
921 1.174 ad PROCLIST_FOREACH(p, &allproc) {
922 1.238 ad if ((p->p_flag & PK_MARKER) != 0)
923 1.238 ad continue;
924 1.238 ad
925 1.229 ad mutex_enter(p->p_lock);
926 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
927 1.229 ad mutex_exit(p->p_lock);
928 1.94 bouyer continue;
929 1.174 ad }
930 1.174 ad
931 1.174 ad p->p_stat = SSTOP;
932 1.174 ad
933 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
934 1.174 ad if (l == curlwp)
935 1.174 ad continue;
936 1.174 ad
937 1.174 ad lwp_lock(l);
938 1.122 thorpej
939 1.97 enami /*
940 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
941 1.174 ad * when it tries to return to user mode. We want to
942 1.174 ad * try and get to get as many LWPs as possible to
943 1.174 ad * the user / kernel boundary, so that they will
944 1.174 ad * release any locks that they hold.
945 1.97 enami */
946 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
947 1.174 ad
948 1.174 ad if (l->l_stat == LSSLEEP &&
949 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
950 1.174 ad /* setrunnable() will release the lock. */
951 1.174 ad setrunnable(l);
952 1.174 ad continue;
953 1.174 ad }
954 1.174 ad
955 1.174 ad lwp_unlock(l);
956 1.94 bouyer }
957 1.174 ad
958 1.229 ad mutex_exit(p->p_lock);
959 1.94 bouyer }
960 1.228 ad mutex_exit(proc_lock);
961 1.174 ad
962 1.174 ad /*
963 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
964 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
965 1.174 ad */
966 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
967 1.204 ad spc_lock(ci);
968 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
969 1.204 ad spc_unlock(ci);
970 1.204 ad }
971 1.174 ad }
972 1.174 ad
973 1.174 ad /*
974 1.174 ad * sched_unsleep:
975 1.174 ad *
976 1.174 ad * The is called when the LWP has not been awoken normally but instead
977 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
978 1.174 ad * it's not a valid action for running or idle LWPs.
979 1.174 ad */
980 1.221 ad static u_int
981 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
982 1.174 ad {
983 1.174 ad
984 1.174 ad lwp_unlock(l);
985 1.174 ad panic("sched_unsleep");
986 1.174 ad }
987 1.174 ad
988 1.204 ad void
989 1.188 yamt resched_cpu(struct lwp *l)
990 1.188 yamt {
991 1.188 yamt struct cpu_info *ci;
992 1.188 yamt
993 1.188 yamt /*
994 1.188 yamt * XXXSMP
995 1.188 yamt * Since l->l_cpu persists across a context switch,
996 1.188 yamt * this gives us *very weak* processor affinity, in
997 1.188 yamt * that we notify the CPU on which the process last
998 1.188 yamt * ran that it should try to switch.
999 1.188 yamt *
1000 1.188 yamt * This does not guarantee that the process will run on
1001 1.188 yamt * that processor next, because another processor might
1002 1.188 yamt * grab it the next time it performs a context switch.
1003 1.188 yamt *
1004 1.188 yamt * This also does not handle the case where its last
1005 1.188 yamt * CPU is running a higher-priority process, but every
1006 1.188 yamt * other CPU is running a lower-priority process. There
1007 1.188 yamt * are ways to handle this situation, but they're not
1008 1.188 yamt * currently very pretty, and we also need to weigh the
1009 1.188 yamt * cost of moving a process from one CPU to another.
1010 1.188 yamt */
1011 1.204 ad ci = l->l_cpu;
1012 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1013 1.188 yamt cpu_need_resched(ci, 0);
1014 1.188 yamt }
1015 1.188 yamt
1016 1.188 yamt static void
1017 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1018 1.174 ad {
1019 1.174 ad
1020 1.188 yamt KASSERT(lwp_locked(l, NULL));
1021 1.174 ad
1022 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1023 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1024 1.204 ad sched_dequeue(l);
1025 1.204 ad l->l_priority = pri;
1026 1.204 ad sched_enqueue(l, false);
1027 1.204 ad } else {
1028 1.174 ad l->l_priority = pri;
1029 1.157 yamt }
1030 1.188 yamt resched_cpu(l);
1031 1.184 yamt }
1032 1.184 yamt
1033 1.188 yamt static void
1034 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1035 1.184 yamt {
1036 1.184 yamt
1037 1.188 yamt KASSERT(lwp_locked(l, NULL));
1038 1.184 yamt
1039 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1040 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1041 1.204 ad sched_dequeue(l);
1042 1.204 ad l->l_inheritedprio = pri;
1043 1.204 ad sched_enqueue(l, false);
1044 1.204 ad } else {
1045 1.184 yamt l->l_inheritedprio = pri;
1046 1.184 yamt }
1047 1.188 yamt resched_cpu(l);
1048 1.184 yamt }
1049 1.184 yamt
1050 1.184 yamt struct lwp *
1051 1.184 yamt syncobj_noowner(wchan_t wchan)
1052 1.184 yamt {
1053 1.184 yamt
1054 1.184 yamt return NULL;
1055 1.151 yamt }
1056 1.151 yamt
1057 1.188 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
1058 1.188 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
1059 1.115 nisimura
1060 1.130 nathanw /*
1061 1.188 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
1062 1.188 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
1063 1.188 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
1064 1.188 yamt *
1065 1.188 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
1066 1.188 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
1067 1.188 yamt *
1068 1.188 yamt * If you dont want to bother with the faster/more-accurate formula, you
1069 1.188 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
1070 1.188 yamt * (more general) method of calculating the %age of CPU used by a process.
1071 1.134 matt */
1072 1.188 yamt #define CCPU_SHIFT (FSHIFT + 1)
1073 1.134 matt
1074 1.134 matt /*
1075 1.188 yamt * sched_pstats:
1076 1.188 yamt *
1077 1.188 yamt * Update process statistics and check CPU resource allocation.
1078 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
1079 1.188 yamt * priorities.
1080 1.130 nathanw */
1081 1.188 yamt /* ARGSUSED */
1082 1.113 gmcgarry void
1083 1.188 yamt sched_pstats(void *arg)
1084 1.113 gmcgarry {
1085 1.188 yamt struct rlimit *rlim;
1086 1.188 yamt struct lwp *l;
1087 1.188 yamt struct proc *p;
1088 1.204 ad int sig, clkhz;
1089 1.188 yamt long runtm;
1090 1.113 gmcgarry
1091 1.188 yamt sched_pstats_ticks++;
1092 1.174 ad
1093 1.228 ad mutex_enter(proc_lock);
1094 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1095 1.238 ad if ((p->p_flag & PK_MARKER) != 0)
1096 1.238 ad continue;
1097 1.238 ad
1098 1.188 yamt /*
1099 1.188 yamt * Increment time in/out of memory and sleep time (if
1100 1.188 yamt * sleeping). We ignore overflow; with 16-bit int's
1101 1.188 yamt * (remember them?) overflow takes 45 days.
1102 1.188 yamt */
1103 1.229 ad mutex_enter(p->p_lock);
1104 1.188 yamt mutex_spin_enter(&p->p_stmutex);
1105 1.212 yamt runtm = p->p_rtime.sec;
1106 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1107 1.188 yamt if ((l->l_flag & LW_IDLE) != 0)
1108 1.188 yamt continue;
1109 1.188 yamt lwp_lock(l);
1110 1.212 yamt runtm += l->l_rtime.sec;
1111 1.188 yamt l->l_swtime++;
1112 1.200 rmind sched_pstats_hook(l);
1113 1.188 yamt lwp_unlock(l);
1114 1.113 gmcgarry
1115 1.188 yamt /*
1116 1.188 yamt * p_pctcpu is only for ps.
1117 1.188 yamt */
1118 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1119 1.188 yamt if (l->l_slptime < 1) {
1120 1.188 yamt clkhz = stathz != 0 ? stathz : hz;
1121 1.188 yamt #if (FSHIFT >= CCPU_SHIFT)
1122 1.188 yamt l->l_pctcpu += (clkhz == 100) ?
1123 1.188 yamt ((fixpt_t)l->l_cpticks) <<
1124 1.188 yamt (FSHIFT - CCPU_SHIFT) :
1125 1.188 yamt 100 * (((fixpt_t) p->p_cpticks)
1126 1.188 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
1127 1.188 yamt #else
1128 1.188 yamt l->l_pctcpu += ((FSCALE - ccpu) *
1129 1.188 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
1130 1.146 matt #endif
1131 1.188 yamt l->l_cpticks = 0;
1132 1.188 yamt }
1133 1.188 yamt }
1134 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1135 1.188 yamt mutex_spin_exit(&p->p_stmutex);
1136 1.174 ad
1137 1.188 yamt /*
1138 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1139 1.188 yamt * If over max, kill it.
1140 1.188 yamt */
1141 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1142 1.188 yamt sig = 0;
1143 1.188 yamt if (runtm >= rlim->rlim_cur) {
1144 1.188 yamt if (runtm >= rlim->rlim_max)
1145 1.188 yamt sig = SIGKILL;
1146 1.188 yamt else {
1147 1.188 yamt sig = SIGXCPU;
1148 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1149 1.188 yamt rlim->rlim_cur += 5;
1150 1.188 yamt }
1151 1.188 yamt }
1152 1.229 ad mutex_exit(p->p_lock);
1153 1.228 ad if (sig)
1154 1.188 yamt psignal(p, sig);
1155 1.174 ad }
1156 1.228 ad mutex_exit(proc_lock);
1157 1.188 yamt uvm_meter();
1158 1.191 ad cv_wakeup(&lbolt);
1159 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
1160 1.113 gmcgarry }
1161