Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.241.2.2
      1  1.241.2.2  wrstuden /*	$NetBSD: kern_synch.c,v 1.241.2.2 2008/05/23 05:24:16 wrstuden Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4      1.218        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.63   thorpej  * All rights reserved.
      6       1.63   thorpej  *
      7       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9      1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10      1.188      yamt  * Daniel Sieger.
     11       1.63   thorpej  *
     12       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13       1.63   thorpej  * modification, are permitted provided that the following conditions
     14       1.63   thorpej  * are met:
     15       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20       1.63   thorpej  *
     21       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     32       1.63   thorpej  */
     33       1.26       cgd 
     34       1.26       cgd /*-
     35       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     37       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     38       1.26       cgd  * All or some portions of this file are derived from material licensed
     39       1.26       cgd  * to the University of California by American Telephone and Telegraph
     40       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     42       1.26       cgd  *
     43       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     44       1.26       cgd  * modification, are permitted provided that the following conditions
     45       1.26       cgd  * are met:
     46       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     47       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     48       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     50       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     51      1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     52       1.26       cgd  *    may be used to endorse or promote products derived from this software
     53       1.26       cgd  *    without specific prior written permission.
     54       1.26       cgd  *
     55       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65       1.26       cgd  * SUCH DAMAGE.
     66       1.26       cgd  *
     67       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68       1.26       cgd  */
     69      1.106     lukem 
     70      1.106     lukem #include <sys/cdefs.h>
     71  1.241.2.2  wrstuden __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.241.2.2 2008/05/23 05:24:16 wrstuden Exp $");
     72       1.48       mrg 
     73      1.109      yamt #include "opt_kstack.h"
     74       1.82   thorpej #include "opt_lockdebug.h"
     75       1.83   thorpej #include "opt_multiprocessor.h"
     76      1.110    briggs #include "opt_perfctrs.h"
     77       1.26       cgd 
     78      1.174        ad #define	__MUTEX_PRIVATE
     79      1.174        ad 
     80       1.26       cgd #include <sys/param.h>
     81       1.26       cgd #include <sys/systm.h>
     82       1.26       cgd #include <sys/proc.h>
     83       1.26       cgd #include <sys/kernel.h>
     84      1.111    briggs #if defined(PERFCTRS)
     85      1.110    briggs #include <sys/pmc.h>
     86      1.111    briggs #endif
     87      1.188      yamt #include <sys/cpu.h>
     88       1.26       cgd #include <sys/resourcevar.h>
     89       1.55      ross #include <sys/sched.h>
     90  1.241.2.1  wrstuden #include <sys/sa.h>
     91  1.241.2.1  wrstuden #include <sys/savar.h>
     92      1.179       dsl #include <sys/syscall_stats.h>
     93      1.174        ad #include <sys/sleepq.h>
     94      1.174        ad #include <sys/lockdebug.h>
     95      1.190        ad #include <sys/evcnt.h>
     96      1.199        ad #include <sys/intr.h>
     97      1.207        ad #include <sys/lwpctl.h>
     98      1.209        ad #include <sys/atomic.h>
     99      1.215        ad #include <sys/simplelock.h>
    100       1.47       mrg 
    101       1.47       mrg #include <uvm/uvm_extern.h>
    102       1.47       mrg 
    103      1.231        ad #include <dev/lockstat.h>
    104      1.231        ad 
    105      1.221        ad static u_int	sched_unsleep(struct lwp *, bool);
    106      1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    107      1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    108      1.122   thorpej 
    109      1.174        ad syncobj_t sleep_syncobj = {
    110      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    111      1.174        ad 	sleepq_unsleep,
    112      1.184      yamt 	sleepq_changepri,
    113      1.184      yamt 	sleepq_lendpri,
    114      1.184      yamt 	syncobj_noowner,
    115      1.174        ad };
    116      1.174        ad 
    117      1.174        ad syncobj_t sched_syncobj = {
    118      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    119      1.174        ad 	sched_unsleep,
    120      1.184      yamt 	sched_changepri,
    121      1.184      yamt 	sched_lendpri,
    122      1.184      yamt 	syncobj_noowner,
    123      1.174        ad };
    124      1.122   thorpej 
    125      1.223        ad callout_t 	sched_pstats_ch;
    126      1.223        ad unsigned	sched_pstats_ticks;
    127      1.223        ad kcondvar_t	lbolt;			/* once a second sleep address */
    128      1.223        ad 
    129      1.237     rmind /* Preemption event counters */
    130      1.231        ad static struct evcnt kpreempt_ev_crit;
    131      1.231        ad static struct evcnt kpreempt_ev_klock;
    132      1.231        ad static struct evcnt kpreempt_ev_ipl;
    133      1.231        ad static struct evcnt kpreempt_ev_immed;
    134      1.231        ad 
    135      1.231        ad /*
    136      1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    137      1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    138      1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    139      1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    140      1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    141      1.174        ad  * it can be made higher to block network software interrupts after panics.
    142       1.26       cgd  */
    143      1.174        ad int	safepri;
    144       1.26       cgd 
    145      1.237     rmind void
    146      1.237     rmind sched_init(void)
    147      1.237     rmind {
    148      1.237     rmind 
    149      1.237     rmind 	cv_init(&lbolt, "lbolt");
    150      1.237     rmind 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    151      1.237     rmind 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    152      1.237     rmind 
    153      1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    154      1.237     rmind 	   "kpreempt", "defer: critical section");
    155      1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    156      1.237     rmind 	   "kpreempt", "defer: kernel_lock");
    157      1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
    158      1.237     rmind 	   "kpreempt", "defer: IPL");
    159      1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    160      1.237     rmind 	   "kpreempt", "immediate");
    161      1.237     rmind 
    162      1.237     rmind 	sched_pstats(NULL);
    163      1.237     rmind }
    164      1.237     rmind 
    165       1.26       cgd /*
    166      1.174        ad  * OBSOLETE INTERFACE
    167      1.174        ad  *
    168       1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    169       1.26       cgd  * performed on the specified identifier.  The process will then be made
    170      1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    171      1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    172       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    173       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    174       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    175       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    176       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    177       1.77   thorpej  *
    178      1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    179      1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    180      1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    181      1.174        ad  * return.
    182       1.26       cgd  */
    183       1.26       cgd int
    184      1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    185      1.174        ad 	volatile struct simplelock *interlock)
    186       1.26       cgd {
    187      1.122   thorpej 	struct lwp *l = curlwp;
    188      1.174        ad 	sleepq_t *sq;
    189      1.188      yamt 	int error;
    190       1.26       cgd 
    191      1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    192      1.204        ad 
    193      1.174        ad 	if (sleepq_dontsleep(l)) {
    194      1.174        ad 		(void)sleepq_abort(NULL, 0);
    195      1.174        ad 		if ((priority & PNORELOCK) != 0)
    196       1.77   thorpej 			simple_unlock(interlock);
    197      1.174        ad 		return 0;
    198       1.26       cgd 	}
    199       1.78  sommerfe 
    200      1.204        ad 	l->l_kpriority = true;
    201      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    202      1.174        ad 	sleepq_enter(sq, l);
    203      1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    204       1.42       cgd 
    205      1.174        ad 	if (interlock != NULL) {
    206      1.204        ad 		KASSERT(simple_lock_held(interlock));
    207      1.174        ad 		simple_unlock(interlock);
    208      1.150       chs 	}
    209      1.150       chs 
    210      1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    211      1.126        pk 
    212      1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    213      1.126        pk 		simple_lock(interlock);
    214      1.174        ad 
    215      1.174        ad 	return error;
    216       1.26       cgd }
    217       1.26       cgd 
    218      1.187        ad int
    219      1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    220      1.187        ad 	kmutex_t *mtx)
    221      1.187        ad {
    222      1.187        ad 	struct lwp *l = curlwp;
    223      1.187        ad 	sleepq_t *sq;
    224      1.188      yamt 	int error;
    225      1.187        ad 
    226      1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    227      1.204        ad 
    228      1.187        ad 	if (sleepq_dontsleep(l)) {
    229      1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    230      1.187        ad 		return 0;
    231      1.187        ad 	}
    232      1.187        ad 
    233      1.204        ad 	l->l_kpriority = true;
    234      1.187        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    235      1.187        ad 	sleepq_enter(sq, l);
    236      1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    237      1.187        ad 	mutex_exit(mtx);
    238      1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    239      1.187        ad 
    240      1.187        ad 	if ((priority & PNORELOCK) == 0)
    241      1.187        ad 		mutex_enter(mtx);
    242      1.187        ad 
    243      1.187        ad 	return error;
    244      1.187        ad }
    245      1.187        ad 
    246       1.26       cgd /*
    247      1.174        ad  * General sleep call for situations where a wake-up is not expected.
    248       1.26       cgd  */
    249      1.174        ad int
    250      1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    251       1.26       cgd {
    252      1.174        ad 	struct lwp *l = curlwp;
    253      1.174        ad 	sleepq_t *sq;
    254      1.174        ad 	int error;
    255       1.26       cgd 
    256      1.174        ad 	if (sleepq_dontsleep(l))
    257      1.174        ad 		return sleepq_abort(NULL, 0);
    258       1.26       cgd 
    259      1.174        ad 	if (mtx != NULL)
    260      1.174        ad 		mutex_exit(mtx);
    261      1.204        ad 	l->l_kpriority = true;
    262      1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    263      1.174        ad 	sleepq_enter(sq, l);
    264      1.204        ad 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    265      1.188      yamt 	error = sleepq_block(timo, intr);
    266      1.174        ad 	if (mtx != NULL)
    267      1.174        ad 		mutex_enter(mtx);
    268       1.83   thorpej 
    269      1.174        ad 	return error;
    270      1.139        cl }
    271      1.139        cl 
    272       1.26       cgd /*
    273  1.241.2.2  wrstuden  * sa_awaken:
    274  1.241.2.2  wrstuden  *
    275  1.241.2.2  wrstuden  *	We believe this lwp is an SA lwp. If it's yielding,
    276  1.241.2.2  wrstuden  * let it know it needs to wake up.
    277  1.241.2.2  wrstuden  *
    278  1.241.2.2  wrstuden  *	We are called and exit with the lwp locked. We are
    279  1.241.2.2  wrstuden  * called in the middle of wakeup operations, so we need
    280  1.241.2.2  wrstuden  * to not touch the locks at all.
    281  1.241.2.2  wrstuden  */
    282  1.241.2.2  wrstuden void
    283  1.241.2.2  wrstuden sa_awaken(struct lwp *l)
    284  1.241.2.2  wrstuden {
    285  1.241.2.2  wrstuden 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
    286  1.241.2.2  wrstuden 
    287  1.241.2.2  wrstuden 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
    288  1.241.2.2  wrstuden 		l->l_flag &= ~LW_SA_IDLE;
    289  1.241.2.2  wrstuden }
    290  1.241.2.2  wrstuden 
    291  1.241.2.2  wrstuden /*
    292      1.174        ad  * OBSOLETE INTERFACE
    293      1.174        ad  *
    294       1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    295       1.26       cgd  */
    296       1.26       cgd void
    297      1.174        ad wakeup(wchan_t ident)
    298       1.26       cgd {
    299      1.174        ad 	sleepq_t *sq;
    300       1.83   thorpej 
    301      1.174        ad 	if (cold)
    302      1.174        ad 		return;
    303       1.83   thorpej 
    304      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    305      1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    306       1.63   thorpej }
    307       1.63   thorpej 
    308       1.63   thorpej /*
    309      1.174        ad  * OBSOLETE INTERFACE
    310      1.174        ad  *
    311       1.63   thorpej  * Make the highest priority process first in line on the specified
    312       1.63   thorpej  * identifier runnable.
    313       1.63   thorpej  */
    314      1.174        ad void
    315      1.174        ad wakeup_one(wchan_t ident)
    316       1.63   thorpej {
    317      1.174        ad 	sleepq_t *sq;
    318       1.63   thorpej 
    319      1.174        ad 	if (cold)
    320      1.174        ad 		return;
    321      1.188      yamt 
    322      1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    323      1.174        ad 	sleepq_wake(sq, ident, 1);
    324      1.174        ad }
    325       1.63   thorpej 
    326      1.117  gmcgarry 
    327      1.117  gmcgarry /*
    328      1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    329      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    330      1.198        ad  * current process explicitly requests it (eg sched_yield(2)).
    331      1.117  gmcgarry  */
    332      1.117  gmcgarry void
    333      1.117  gmcgarry yield(void)
    334      1.117  gmcgarry {
    335      1.122   thorpej 	struct lwp *l = curlwp;
    336      1.117  gmcgarry 
    337      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    338      1.174        ad 	lwp_lock(l);
    339      1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    340      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    341      1.204        ad 	l->l_kpriority = false;
    342      1.188      yamt 	(void)mi_switch(l);
    343      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    344       1.69   thorpej }
    345       1.69   thorpej 
    346       1.69   thorpej /*
    347       1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    348      1.156    rpaulo  * and performs an involuntary context switch.
    349       1.69   thorpej  */
    350       1.69   thorpej void
    351      1.174        ad preempt(void)
    352       1.69   thorpej {
    353      1.122   thorpej 	struct lwp *l = curlwp;
    354       1.69   thorpej 
    355      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    356      1.174        ad 	lwp_lock(l);
    357      1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    358      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    359      1.204        ad 	l->l_kpriority = false;
    360      1.174        ad 	l->l_nivcsw++;
    361      1.188      yamt 	(void)mi_switch(l);
    362      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    363       1.69   thorpej }
    364       1.69   thorpej 
    365      1.234        ad /*
    366      1.234        ad  * Handle a request made by another agent to preempt the current LWP
    367      1.234        ad  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    368      1.234        ad  *
    369      1.234        ad  * Character addresses for lockstat only.
    370      1.234        ad  */
    371      1.231        ad static char	in_critical_section;
    372      1.231        ad static char	kernel_lock_held;
    373      1.231        ad static char	spl_raised;
    374      1.231        ad static char	is_softint;
    375      1.231        ad 
    376      1.231        ad bool
    377      1.231        ad kpreempt(uintptr_t where)
    378      1.231        ad {
    379      1.231        ad 	uintptr_t failed;
    380      1.231        ad 	lwp_t *l;
    381      1.231        ad 	int s, dop;
    382      1.231        ad 
    383      1.231        ad 	l = curlwp;
    384      1.231        ad 	failed = 0;
    385      1.231        ad 	while ((dop = l->l_dopreempt) != 0) {
    386      1.231        ad 		if (l->l_stat != LSONPROC) {
    387      1.231        ad 			/*
    388      1.231        ad 			 * About to block (or die), let it happen.
    389      1.231        ad 			 * Doesn't really count as "preemption has
    390      1.231        ad 			 * been blocked", since we're going to
    391      1.231        ad 			 * context switch.
    392      1.231        ad 			 */
    393      1.231        ad 			l->l_dopreempt = 0;
    394      1.231        ad 			return true;
    395      1.231        ad 		}
    396      1.231        ad 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    397      1.231        ad 			/* Can't preempt idle loop, don't count as failure. */
    398      1.231        ad 		    	l->l_dopreempt = 0;
    399      1.231        ad 		    	return true;
    400      1.231        ad 		}
    401      1.231        ad 		if (__predict_false(l->l_nopreempt != 0)) {
    402      1.231        ad 			/* LWP holds preemption disabled, explicitly. */
    403      1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    404      1.234        ad 				kpreempt_ev_crit.ev_count++;
    405      1.231        ad 			}
    406      1.231        ad 			failed = (uintptr_t)&in_critical_section;
    407      1.231        ad 			break;
    408      1.231        ad 		}
    409      1.231        ad 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    410      1.231        ad 		    	/* Can't preempt soft interrupts yet. */
    411      1.231        ad 		    	l->l_dopreempt = 0;
    412      1.231        ad 		    	failed = (uintptr_t)&is_softint;
    413      1.231        ad 		    	break;
    414      1.231        ad 		}
    415      1.231        ad 		s = splsched();
    416      1.231        ad 		if (__predict_false(l->l_blcnt != 0 ||
    417      1.231        ad 		    curcpu()->ci_biglock_wanted != NULL)) {
    418      1.231        ad 			/* Hold or want kernel_lock, code is not MT safe. */
    419      1.231        ad 			splx(s);
    420      1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    421      1.234        ad 				kpreempt_ev_klock.ev_count++;
    422      1.231        ad 			}
    423      1.231        ad 			failed = (uintptr_t)&kernel_lock_held;
    424      1.231        ad 			break;
    425      1.231        ad 		}
    426      1.231        ad 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    427      1.231        ad 			/*
    428      1.231        ad 			 * It may be that the IPL is too high.
    429      1.231        ad 			 * kpreempt_enter() can schedule an
    430      1.231        ad 			 * interrupt to retry later.
    431      1.231        ad 			 */
    432      1.231        ad 			splx(s);
    433      1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    434      1.234        ad 				kpreempt_ev_ipl.ev_count++;
    435      1.231        ad 			}
    436      1.231        ad 			failed = (uintptr_t)&spl_raised;
    437      1.231        ad 			break;
    438      1.231        ad 		}
    439      1.231        ad 		/* Do it! */
    440      1.231        ad 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    441      1.234        ad 			kpreempt_ev_immed.ev_count++;
    442      1.231        ad 		}
    443      1.231        ad 		lwp_lock(l);
    444      1.231        ad 		mi_switch(l);
    445      1.231        ad 		l->l_nopreempt++;
    446      1.231        ad 		splx(s);
    447      1.231        ad 
    448      1.231        ad 		/* Take care of any MD cleanup. */
    449      1.231        ad 		cpu_kpreempt_exit(where);
    450      1.231        ad 		l->l_nopreempt--;
    451      1.231        ad 	}
    452      1.231        ad 
    453      1.231        ad 	/* Record preemption failure for reporting via lockstat. */
    454      1.231        ad 	if (__predict_false(failed)) {
    455      1.240        ad 		int lsflag = 0;
    456      1.231        ad 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    457      1.231        ad 		LOCKSTAT_ENTER(lsflag);
    458      1.231        ad 		/* Might recurse, make it atomic. */
    459      1.231        ad 		if (__predict_false(lsflag)) {
    460      1.231        ad 			if (where == 0) {
    461      1.231        ad 				where = (uintptr_t)__builtin_return_address(0);
    462      1.231        ad 			}
    463      1.231        ad 			if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
    464      1.231        ad 			    NULL, (void *)where) == NULL) {
    465      1.231        ad 				LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    466      1.231        ad 				l->l_pfaillock = failed;
    467      1.231        ad 			}
    468      1.231        ad 		}
    469      1.231        ad 		LOCKSTAT_EXIT(lsflag);
    470      1.231        ad 	}
    471      1.231        ad 
    472      1.231        ad 	return failed;
    473      1.231        ad }
    474      1.231        ad 
    475       1.69   thorpej /*
    476      1.231        ad  * Return true if preemption is explicitly disabled.
    477      1.230        ad  */
    478      1.231        ad bool
    479      1.231        ad kpreempt_disabled(void)
    480      1.231        ad {
    481      1.231        ad 	lwp_t *l;
    482      1.231        ad 
    483      1.231        ad 	l = curlwp;
    484      1.231        ad 
    485      1.231        ad 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    486      1.231        ad 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    487      1.231        ad }
    488      1.230        ad 
    489      1.230        ad /*
    490      1.231        ad  * Disable kernel preemption.
    491      1.230        ad  */
    492      1.230        ad void
    493      1.231        ad kpreempt_disable(void)
    494      1.230        ad {
    495      1.230        ad 
    496      1.231        ad 	KPREEMPT_DISABLE(curlwp);
    497      1.230        ad }
    498      1.230        ad 
    499      1.230        ad /*
    500      1.231        ad  * Reenable kernel preemption.
    501      1.230        ad  */
    502      1.231        ad void
    503      1.231        ad kpreempt_enable(void)
    504      1.230        ad {
    505      1.230        ad 
    506      1.231        ad 	KPREEMPT_ENABLE(curlwp);
    507      1.230        ad }
    508      1.230        ad 
    509      1.230        ad /*
    510      1.188      yamt  * Compute the amount of time during which the current lwp was running.
    511      1.130   nathanw  *
    512      1.188      yamt  * - update l_rtime unless it's an idle lwp.
    513      1.188      yamt  */
    514      1.188      yamt 
    515      1.199        ad void
    516      1.212      yamt updatertime(lwp_t *l, const struct bintime *now)
    517      1.188      yamt {
    518      1.188      yamt 
    519      1.199        ad 	if ((l->l_flag & LW_IDLE) != 0)
    520      1.188      yamt 		return;
    521      1.188      yamt 
    522      1.212      yamt 	/* rtime += now - stime */
    523      1.212      yamt 	bintime_add(&l->l_rtime, now);
    524      1.212      yamt 	bintime_sub(&l->l_rtime, &l->l_stime);
    525      1.188      yamt }
    526      1.188      yamt 
    527      1.188      yamt /*
    528      1.188      yamt  * The machine independent parts of context switch.
    529      1.188      yamt  *
    530      1.188      yamt  * Returns 1 if another LWP was actually run.
    531       1.26       cgd  */
    532      1.122   thorpej int
    533      1.199        ad mi_switch(lwp_t *l)
    534       1.26       cgd {
    535      1.216     rmind 	struct cpu_info *ci, *tci = NULL;
    536       1.76   thorpej 	struct schedstate_percpu *spc;
    537      1.188      yamt 	struct lwp *newl;
    538      1.174        ad 	int retval, oldspl;
    539      1.212      yamt 	struct bintime bt;
    540      1.199        ad 	bool returning;
    541       1.26       cgd 
    542      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    543      1.231        ad 	KASSERT(kpreempt_disabled());
    544      1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    545      1.174        ad 
    546      1.174        ad #ifdef KSTACK_CHECK_MAGIC
    547      1.174        ad 	kstack_check_magic(l);
    548      1.174        ad #endif
    549       1.83   thorpej 
    550      1.212      yamt 	binuptime(&bt);
    551      1.199        ad 
    552      1.231        ad 	KASSERT(l->l_cpu == curcpu());
    553      1.196        ad 	ci = l->l_cpu;
    554      1.196        ad 	spc = &ci->ci_schedstate;
    555      1.199        ad 	returning = false;
    556      1.190        ad 	newl = NULL;
    557      1.190        ad 
    558      1.199        ad 	/*
    559      1.199        ad 	 * If we have been asked to switch to a specific LWP, then there
    560      1.199        ad 	 * is no need to inspect the run queues.  If a soft interrupt is
    561      1.199        ad 	 * blocking, then return to the interrupted thread without adjusting
    562      1.199        ad 	 * VM context or its start time: neither have been changed in order
    563      1.199        ad 	 * to take the interrupt.
    564      1.199        ad 	 */
    565      1.190        ad 	if (l->l_switchto != NULL) {
    566      1.204        ad 		if ((l->l_pflag & LP_INTR) != 0) {
    567      1.199        ad 			returning = true;
    568      1.199        ad 			softint_block(l);
    569      1.199        ad 			if ((l->l_flag & LW_TIMEINTR) != 0)
    570      1.212      yamt 				updatertime(l, &bt);
    571      1.199        ad 		}
    572      1.190        ad 		newl = l->l_switchto;
    573      1.190        ad 		l->l_switchto = NULL;
    574      1.190        ad 	}
    575      1.204        ad #ifndef __HAVE_FAST_SOFTINTS
    576      1.204        ad 	else if (ci->ci_data.cpu_softints != 0) {
    577      1.204        ad 		/* There are pending soft interrupts, so pick one. */
    578      1.204        ad 		newl = softint_picklwp();
    579      1.204        ad 		newl->l_stat = LSONPROC;
    580      1.204        ad 		newl->l_flag |= LW_RUNNING;
    581      1.204        ad 	}
    582      1.204        ad #endif	/* !__HAVE_FAST_SOFTINTS */
    583      1.190        ad 
    584      1.180       dsl 	/* Count time spent in current system call */
    585      1.199        ad 	if (!returning) {
    586      1.199        ad 		SYSCALL_TIME_SLEEP(l);
    587      1.180       dsl 
    588      1.199        ad 		/*
    589      1.199        ad 		 * XXXSMP If we are using h/w performance counters,
    590      1.199        ad 		 * save context.
    591      1.199        ad 		 */
    592      1.174        ad #if PERFCTRS
    593      1.199        ad 		if (PMC_ENABLED(l->l_proc)) {
    594      1.199        ad 			pmc_save_context(l->l_proc);
    595      1.199        ad 		}
    596      1.199        ad #endif
    597      1.212      yamt 		updatertime(l, &bt);
    598      1.174        ad 	}
    599      1.113  gmcgarry 
    600      1.113  gmcgarry 	/*
    601      1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    602      1.113  gmcgarry 	 */
    603      1.174        ad 	KASSERT(l->l_stat != LSRUN);
    604      1.216     rmind 	if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
    605      1.217        ad 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    606      1.216     rmind 
    607      1.220     rmind 		if (l->l_target_cpu == l->l_cpu) {
    608      1.220     rmind 			l->l_target_cpu = NULL;
    609      1.220     rmind 		} else {
    610      1.220     rmind 			tci = l->l_target_cpu;
    611      1.220     rmind 		}
    612      1.220     rmind 
    613      1.216     rmind 		if (__predict_false(tci != NULL)) {
    614      1.216     rmind 			/* Double-lock the runqueues */
    615      1.216     rmind 			spc_dlock(ci, tci);
    616      1.216     rmind 		} else {
    617      1.216     rmind 			/* Lock the runqueue */
    618      1.216     rmind 			spc_lock(ci);
    619      1.216     rmind 		}
    620      1.216     rmind 
    621      1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    622      1.188      yamt 			l->l_stat = LSRUN;
    623      1.216     rmind 			if (__predict_false(tci != NULL)) {
    624      1.216     rmind 				/*
    625      1.216     rmind 				 * Set the new CPU, lock and unset the
    626      1.216     rmind 				 * l_target_cpu - thread will be enqueued
    627      1.216     rmind 				 * to the runqueue of target CPU.
    628      1.216     rmind 				 */
    629      1.216     rmind 				l->l_cpu = tci;
    630      1.216     rmind 				lwp_setlock(l, tci->ci_schedstate.spc_mutex);
    631      1.216     rmind 				l->l_target_cpu = NULL;
    632      1.216     rmind 			} else {
    633      1.216     rmind 				lwp_setlock(l, spc->spc_mutex);
    634      1.216     rmind 			}
    635      1.188      yamt 			sched_enqueue(l, true);
    636      1.216     rmind 		} else {
    637      1.216     rmind 			KASSERT(tci == NULL);
    638      1.188      yamt 			l->l_stat = LSIDL;
    639      1.216     rmind 		}
    640      1.216     rmind 	} else {
    641      1.216     rmind 		/* Lock the runqueue */
    642      1.216     rmind 		spc_lock(ci);
    643      1.174        ad 	}
    644      1.174        ad 
    645      1.174        ad 	/*
    646      1.201     rmind 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    647      1.209        ad 	 * If no LWP is runnable, select the idle LWP.
    648      1.209        ad 	 *
    649      1.209        ad 	 * Note that spc_lwplock might not necessary be held, and
    650      1.209        ad 	 * new thread would be unlocked after setting the LWP-lock.
    651      1.174        ad 	 */
    652      1.190        ad 	if (newl == NULL) {
    653      1.190        ad 		newl = sched_nextlwp();
    654      1.190        ad 		if (newl != NULL) {
    655      1.190        ad 			sched_dequeue(newl);
    656      1.190        ad 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    657      1.190        ad 			newl->l_stat = LSONPROC;
    658      1.196        ad 			newl->l_cpu = ci;
    659      1.190        ad 			newl->l_flag |= LW_RUNNING;
    660      1.217        ad 			lwp_setlock(newl, spc->spc_lwplock);
    661      1.190        ad 		} else {
    662      1.196        ad 			newl = ci->ci_data.cpu_idlelwp;
    663      1.190        ad 			newl->l_stat = LSONPROC;
    664      1.190        ad 			newl->l_flag |= LW_RUNNING;
    665      1.190        ad 		}
    666      1.204        ad 		/*
    667      1.204        ad 		 * Only clear want_resched if there are no
    668      1.204        ad 		 * pending (slow) software interrupts.
    669      1.204        ad 		 */
    670      1.204        ad 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    671      1.199        ad 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    672      1.204        ad 		spc->spc_curpriority = lwp_eprio(newl);
    673      1.199        ad 	}
    674      1.199        ad 
    675      1.204        ad 	/* Items that must be updated with the CPU locked. */
    676      1.199        ad 	if (!returning) {
    677      1.204        ad 		/* Update the new LWP's start time. */
    678      1.212      yamt 		newl->l_stime = bt;
    679      1.204        ad 
    680      1.199        ad 		/*
    681      1.204        ad 		 * ci_curlwp changes when a fast soft interrupt occurs.
    682      1.204        ad 		 * We use cpu_onproc to keep track of which kernel or
    683      1.204        ad 		 * user thread is running 'underneath' the software
    684      1.204        ad 		 * interrupt.  This is important for time accounting,
    685      1.204        ad 		 * itimers and forcing user threads to preempt (aston).
    686      1.199        ad 		 */
    687      1.204        ad 		ci->ci_data.cpu_onproc = newl;
    688      1.188      yamt 	}
    689      1.188      yamt 
    690      1.241        ad 	/*
    691      1.241        ad 	 * Preemption related tasks.  Must be done with the current
    692      1.241        ad 	 * CPU locked.
    693      1.241        ad 	 */
    694      1.241        ad 	cpu_did_resched(l);
    695      1.231        ad 	l->l_dopreempt = 0;
    696      1.231        ad 	if (__predict_false(l->l_pfailaddr != 0)) {
    697      1.231        ad 		LOCKSTAT_FLAG(lsflag);
    698      1.231        ad 		LOCKSTAT_ENTER(lsflag);
    699      1.231        ad 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    700      1.231        ad 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    701      1.231        ad 		    1, l->l_pfailtime, l->l_pfailaddr);
    702      1.231        ad 		LOCKSTAT_EXIT(lsflag);
    703      1.231        ad 		l->l_pfailtime = 0;
    704      1.231        ad 		l->l_pfaillock = 0;
    705      1.231        ad 		l->l_pfailaddr = 0;
    706      1.231        ad 	}
    707      1.231        ad 
    708      1.188      yamt 	if (l != newl) {
    709      1.188      yamt 		struct lwp *prevlwp;
    710      1.174        ad 
    711      1.209        ad 		/* Release all locks, but leave the current LWP locked */
    712      1.216     rmind 		if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
    713      1.216     rmind 			/*
    714      1.216     rmind 			 * In case of migration, drop the local runqueue
    715      1.216     rmind 			 * lock, thread is on other runqueue now.
    716      1.216     rmind 			 */
    717      1.216     rmind 			if (__predict_false(tci != NULL))
    718      1.216     rmind 				spc_unlock(ci);
    719      1.209        ad 			/*
    720      1.209        ad 			 * Drop spc_lwplock, if the current LWP has been moved
    721      1.209        ad 			 * to the run queue (it is now locked by spc_mutex).
    722      1.209        ad 			 */
    723      1.217        ad 			mutex_spin_exit(spc->spc_lwplock);
    724      1.188      yamt 		} else {
    725      1.209        ad 			/*
    726      1.209        ad 			 * Otherwise, drop the spc_mutex, we are done with the
    727      1.209        ad 			 * run queues.
    728      1.209        ad 			 */
    729      1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    730      1.216     rmind 			KASSERT(tci == NULL);
    731      1.188      yamt 		}
    732      1.188      yamt 
    733      1.209        ad 		/*
    734      1.209        ad 		 * Mark that context switch is going to be perfomed
    735      1.209        ad 		 * for this LWP, to protect it from being switched
    736      1.209        ad 		 * to on another CPU.
    737      1.209        ad 		 */
    738      1.209        ad 		KASSERT(l->l_ctxswtch == 0);
    739      1.209        ad 		l->l_ctxswtch = 1;
    740      1.209        ad 		l->l_ncsw++;
    741      1.209        ad 		l->l_flag &= ~LW_RUNNING;
    742      1.209        ad 
    743      1.209        ad 		/*
    744      1.209        ad 		 * Increase the count of spin-mutexes before the release
    745      1.209        ad 		 * of the last lock - we must remain at IPL_SCHED during
    746      1.209        ad 		 * the context switch.
    747      1.209        ad 		 */
    748      1.209        ad 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    749      1.209        ad 		ci->ci_mtx_count--;
    750      1.209        ad 		lwp_unlock(l);
    751      1.209        ad 
    752      1.218        ad 		/* Count the context switch on this CPU. */
    753      1.218        ad 		ci->ci_data.cpu_nswtch++;
    754      1.188      yamt 
    755      1.209        ad 		/* Update status for lwpctl, if present. */
    756      1.209        ad 		if (l->l_lwpctl != NULL)
    757      1.209        ad 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    758      1.209        ad 
    759      1.199        ad 		/*
    760      1.199        ad 		 * Save old VM context, unless a soft interrupt
    761      1.199        ad 		 * handler is blocking.
    762      1.199        ad 		 */
    763      1.199        ad 		if (!returning)
    764      1.199        ad 			pmap_deactivate(l);
    765      1.188      yamt 
    766      1.209        ad 		/*
    767      1.209        ad 		 * We may need to spin-wait for if 'newl' is still
    768      1.209        ad 		 * context switching on another CPU.
    769      1.209        ad 		 */
    770      1.209        ad 		if (newl->l_ctxswtch != 0) {
    771      1.209        ad 			u_int count;
    772      1.209        ad 			count = SPINLOCK_BACKOFF_MIN;
    773      1.209        ad 			while (newl->l_ctxswtch)
    774      1.209        ad 				SPINLOCK_BACKOFF(count);
    775      1.209        ad 		}
    776      1.207        ad 
    777      1.188      yamt 		/* Switch to the new LWP.. */
    778      1.204        ad 		prevlwp = cpu_switchto(l, newl, returning);
    779      1.207        ad 		ci = curcpu();
    780      1.207        ad 
    781      1.188      yamt 		/*
    782      1.209        ad 		 * Switched away - we have new curlwp.
    783      1.209        ad 		 * Restore VM context and IPL.
    784      1.188      yamt 		 */
    785      1.209        ad 		pmap_activate(l);
    786      1.188      yamt 		if (prevlwp != NULL) {
    787      1.209        ad 			/* Normalize the count of the spin-mutexes */
    788      1.209        ad 			ci->ci_mtx_count++;
    789      1.209        ad 			/* Unmark the state of context switch */
    790      1.209        ad 			membar_exit();
    791      1.209        ad 			prevlwp->l_ctxswtch = 0;
    792      1.188      yamt 		}
    793      1.209        ad 
    794      1.209        ad 		/* Update status for lwpctl, if present. */
    795      1.219        ad 		if (l->l_lwpctl != NULL) {
    796      1.209        ad 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    797      1.219        ad 			l->l_lwpctl->lc_pctr++;
    798      1.219        ad 		}
    799      1.174        ad 
    800      1.231        ad 		KASSERT(l->l_cpu == ci);
    801      1.231        ad 		splx(oldspl);
    802      1.188      yamt 		retval = 1;
    803      1.188      yamt 	} else {
    804      1.188      yamt 		/* Nothing to do - just unlock and return. */
    805      1.216     rmind 		KASSERT(tci == NULL);
    806      1.216     rmind 		spc_unlock(ci);
    807      1.188      yamt 		lwp_unlock(l);
    808      1.122   thorpej 		retval = 0;
    809      1.122   thorpej 	}
    810      1.110    briggs 
    811      1.188      yamt 	KASSERT(l == curlwp);
    812      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    813      1.188      yamt 
    814      1.110    briggs 	/*
    815      1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    816      1.231        ad 	 * XXXSMP preemption problem.
    817       1.26       cgd 	 */
    818      1.114  gmcgarry #if PERFCTRS
    819      1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    820      1.175  christos 		pmc_restore_context(l->l_proc);
    821      1.166  christos 	}
    822      1.114  gmcgarry #endif
    823      1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    824      1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    825      1.169      yamt 
    826      1.122   thorpej 	return retval;
    827       1.26       cgd }
    828       1.26       cgd 
    829       1.26       cgd /*
    830      1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    831      1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    832      1.174        ad  *
    833      1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    834       1.26       cgd  */
    835       1.26       cgd void
    836      1.122   thorpej setrunnable(struct lwp *l)
    837       1.26       cgd {
    838      1.122   thorpej 	struct proc *p = l->l_proc;
    839      1.205        ad 	struct cpu_info *ci;
    840      1.174        ad 	sigset_t *ss;
    841       1.26       cgd 
    842      1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    843      1.229        ad 	KASSERT(mutex_owned(p->p_lock));
    844      1.183        ad 	KASSERT(lwp_locked(l, NULL));
    845      1.205        ad 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    846       1.83   thorpej 
    847      1.122   thorpej 	switch (l->l_stat) {
    848      1.122   thorpej 	case LSSTOP:
    849       1.33   mycroft 		/*
    850       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    851       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    852       1.33   mycroft 		 */
    853      1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    854      1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    855      1.174        ad 				ss = &l->l_sigpend.sp_set;
    856      1.174        ad 			else
    857      1.174        ad 				ss = &p->p_sigpend.sp_set;
    858      1.174        ad 			sigaddset(ss, p->p_xstat);
    859      1.174        ad 			signotify(l);
    860       1.53   mycroft 		}
    861      1.174        ad 		p->p_nrlwps++;
    862       1.26       cgd 		break;
    863      1.174        ad 	case LSSUSPENDED:
    864      1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    865      1.174        ad 		p->p_nrlwps++;
    866      1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    867      1.122   thorpej 		break;
    868      1.174        ad 	case LSSLEEP:
    869      1.174        ad 		KASSERT(l->l_wchan != NULL);
    870       1.26       cgd 		break;
    871      1.174        ad 	default:
    872      1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    873       1.26       cgd 	}
    874      1.139        cl 
    875      1.174        ad 	/*
    876      1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    877      1.174        ad 	 * again.  If not, mark it as still sleeping.
    878      1.174        ad 	 */
    879      1.174        ad 	if (l->l_wchan != NULL) {
    880      1.174        ad 		l->l_stat = LSSLEEP;
    881      1.183        ad 		/* lwp_unsleep() will release the lock. */
    882      1.221        ad 		lwp_unsleep(l, true);
    883      1.174        ad 		return;
    884      1.174        ad 	}
    885      1.139        cl 
    886  1.241.2.2  wrstuden 	if (l->l_proc->p_sa)
    887  1.241.2.2  wrstuden 		sa_awaken(l);
    888  1.241.2.2  wrstuden 
    889      1.174        ad 	/*
    890      1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    891      1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    892      1.174        ad 	 */
    893      1.188      yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    894      1.174        ad 		l->l_stat = LSONPROC;
    895      1.174        ad 		l->l_slptime = 0;
    896      1.174        ad 		lwp_unlock(l);
    897      1.174        ad 		return;
    898      1.174        ad 	}
    899      1.122   thorpej 
    900      1.174        ad 	/*
    901      1.205        ad 	 * Look for a CPU to run.
    902      1.205        ad 	 * Set the LWP runnable.
    903      1.174        ad 	 */
    904      1.205        ad 	ci = sched_takecpu(l);
    905      1.205        ad 	l->l_cpu = ci;
    906      1.236        ad 	spc_lock(ci);
    907      1.236        ad 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    908      1.188      yamt 	sched_setrunnable(l);
    909      1.174        ad 	l->l_stat = LSRUN;
    910      1.122   thorpej 	l->l_slptime = 0;
    911      1.174        ad 
    912      1.205        ad 	/*
    913      1.205        ad 	 * If thread is swapped out - wake the swapper to bring it back in.
    914      1.205        ad 	 * Otherwise, enter it into a run queue.
    915      1.205        ad 	 */
    916      1.178     pavel 	if (l->l_flag & LW_INMEM) {
    917      1.188      yamt 		sched_enqueue(l, false);
    918      1.188      yamt 		resched_cpu(l);
    919      1.174        ad 		lwp_unlock(l);
    920      1.174        ad 	} else {
    921      1.174        ad 		lwp_unlock(l);
    922      1.177        ad 		uvm_kick_scheduler();
    923      1.174        ad 	}
    924       1.26       cgd }
    925       1.26       cgd 
    926       1.26       cgd /*
    927      1.174        ad  * suspendsched:
    928      1.174        ad  *
    929      1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    930      1.174        ad  */
    931       1.94    bouyer void
    932      1.174        ad suspendsched(void)
    933       1.94    bouyer {
    934      1.174        ad 	CPU_INFO_ITERATOR cii;
    935      1.174        ad 	struct cpu_info *ci;
    936      1.122   thorpej 	struct lwp *l;
    937      1.174        ad 	struct proc *p;
    938       1.94    bouyer 
    939       1.94    bouyer 	/*
    940      1.174        ad 	 * We do this by process in order not to violate the locking rules.
    941       1.94    bouyer 	 */
    942      1.228        ad 	mutex_enter(proc_lock);
    943      1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    944      1.238        ad 		if ((p->p_flag & PK_MARKER) != 0)
    945      1.238        ad 			continue;
    946      1.238        ad 
    947      1.229        ad 		mutex_enter(p->p_lock);
    948      1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    949      1.229        ad 			mutex_exit(p->p_lock);
    950       1.94    bouyer 			continue;
    951      1.174        ad 		}
    952      1.174        ad 
    953      1.174        ad 		p->p_stat = SSTOP;
    954      1.174        ad 
    955      1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    956      1.174        ad 			if (l == curlwp)
    957      1.174        ad 				continue;
    958      1.174        ad 
    959      1.174        ad 			lwp_lock(l);
    960      1.122   thorpej 
    961       1.97     enami 			/*
    962      1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    963      1.174        ad 			 * when it tries to return to user mode.  We want to
    964      1.174        ad 			 * try and get to get as many LWPs as possible to
    965      1.174        ad 			 * the user / kernel boundary, so that they will
    966      1.174        ad 			 * release any locks that they hold.
    967       1.97     enami 			 */
    968      1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    969      1.174        ad 
    970      1.174        ad 			if (l->l_stat == LSSLEEP &&
    971      1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    972      1.174        ad 				/* setrunnable() will release the lock. */
    973      1.174        ad 				setrunnable(l);
    974      1.174        ad 				continue;
    975      1.174        ad 			}
    976      1.174        ad 
    977      1.174        ad 			lwp_unlock(l);
    978       1.94    bouyer 		}
    979      1.174        ad 
    980      1.229        ad 		mutex_exit(p->p_lock);
    981       1.94    bouyer 	}
    982      1.228        ad 	mutex_exit(proc_lock);
    983      1.174        ad 
    984      1.174        ad 	/*
    985      1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    986      1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    987      1.174        ad 	 */
    988      1.204        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    989      1.204        ad 		spc_lock(ci);
    990      1.204        ad 		cpu_need_resched(ci, RESCHED_IMMED);
    991      1.204        ad 		spc_unlock(ci);
    992      1.204        ad 	}
    993      1.174        ad }
    994      1.174        ad 
    995      1.174        ad /*
    996      1.174        ad  * sched_unsleep:
    997      1.174        ad  *
    998      1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    999      1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
   1000      1.174        ad  *	it's not a valid action for running or idle LWPs.
   1001      1.174        ad  */
   1002      1.221        ad static u_int
   1003      1.221        ad sched_unsleep(struct lwp *l, bool cleanup)
   1004      1.174        ad {
   1005      1.174        ad 
   1006      1.174        ad 	lwp_unlock(l);
   1007      1.174        ad 	panic("sched_unsleep");
   1008      1.174        ad }
   1009      1.174        ad 
   1010      1.204        ad void
   1011      1.188      yamt resched_cpu(struct lwp *l)
   1012      1.188      yamt {
   1013      1.188      yamt 	struct cpu_info *ci;
   1014      1.188      yamt 
   1015      1.188      yamt 	/*
   1016      1.188      yamt 	 * XXXSMP
   1017      1.188      yamt 	 * Since l->l_cpu persists across a context switch,
   1018      1.188      yamt 	 * this gives us *very weak* processor affinity, in
   1019      1.188      yamt 	 * that we notify the CPU on which the process last
   1020      1.188      yamt 	 * ran that it should try to switch.
   1021      1.188      yamt 	 *
   1022      1.188      yamt 	 * This does not guarantee that the process will run on
   1023      1.188      yamt 	 * that processor next, because another processor might
   1024      1.188      yamt 	 * grab it the next time it performs a context switch.
   1025      1.188      yamt 	 *
   1026      1.188      yamt 	 * This also does not handle the case where its last
   1027      1.188      yamt 	 * CPU is running a higher-priority process, but every
   1028      1.188      yamt 	 * other CPU is running a lower-priority process.  There
   1029      1.188      yamt 	 * are ways to handle this situation, but they're not
   1030      1.188      yamt 	 * currently very pretty, and we also need to weigh the
   1031      1.188      yamt 	 * cost of moving a process from one CPU to another.
   1032      1.188      yamt 	 */
   1033      1.204        ad 	ci = l->l_cpu;
   1034      1.204        ad 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1035      1.188      yamt 		cpu_need_resched(ci, 0);
   1036      1.188      yamt }
   1037      1.188      yamt 
   1038      1.188      yamt static void
   1039      1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
   1040      1.174        ad {
   1041      1.174        ad 
   1042      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
   1043      1.174        ad 
   1044      1.204        ad 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1045      1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1046      1.204        ad 		sched_dequeue(l);
   1047      1.204        ad 		l->l_priority = pri;
   1048      1.204        ad 		sched_enqueue(l, false);
   1049      1.204        ad 	} else {
   1050      1.174        ad 		l->l_priority = pri;
   1051      1.157      yamt 	}
   1052      1.188      yamt 	resched_cpu(l);
   1053      1.184      yamt }
   1054      1.184      yamt 
   1055      1.188      yamt static void
   1056      1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
   1057      1.184      yamt {
   1058      1.184      yamt 
   1059      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
   1060      1.184      yamt 
   1061      1.204        ad 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1062      1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1063      1.204        ad 		sched_dequeue(l);
   1064      1.204        ad 		l->l_inheritedprio = pri;
   1065      1.204        ad 		sched_enqueue(l, false);
   1066      1.204        ad 	} else {
   1067      1.184      yamt 		l->l_inheritedprio = pri;
   1068      1.184      yamt 	}
   1069      1.188      yamt 	resched_cpu(l);
   1070      1.184      yamt }
   1071      1.184      yamt 
   1072      1.184      yamt struct lwp *
   1073      1.184      yamt syncobj_noowner(wchan_t wchan)
   1074      1.184      yamt {
   1075      1.184      yamt 
   1076      1.184      yamt 	return NULL;
   1077      1.151      yamt }
   1078      1.151      yamt 
   1079      1.188      yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
   1080      1.188      yamt fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
   1081      1.115  nisimura 
   1082      1.130   nathanw /*
   1083      1.188      yamt  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
   1084      1.188      yamt  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
   1085      1.188      yamt  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
   1086      1.188      yamt  *
   1087      1.188      yamt  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
   1088      1.188      yamt  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
   1089      1.188      yamt  *
   1090      1.188      yamt  * If you dont want to bother with the faster/more-accurate formula, you
   1091      1.188      yamt  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
   1092      1.188      yamt  * (more general) method of calculating the %age of CPU used by a process.
   1093      1.134      matt  */
   1094      1.188      yamt #define	CCPU_SHIFT	(FSHIFT + 1)
   1095      1.134      matt 
   1096      1.134      matt /*
   1097      1.188      yamt  * sched_pstats:
   1098      1.188      yamt  *
   1099      1.188      yamt  * Update process statistics and check CPU resource allocation.
   1100      1.188      yamt  * Call scheduler-specific hook to eventually adjust process/LWP
   1101      1.188      yamt  * priorities.
   1102      1.130   nathanw  */
   1103      1.188      yamt /* ARGSUSED */
   1104      1.113  gmcgarry void
   1105      1.188      yamt sched_pstats(void *arg)
   1106      1.113  gmcgarry {
   1107      1.188      yamt 	struct rlimit *rlim;
   1108      1.188      yamt 	struct lwp *l;
   1109      1.188      yamt 	struct proc *p;
   1110      1.204        ad 	int sig, clkhz;
   1111      1.188      yamt 	long runtm;
   1112      1.113  gmcgarry 
   1113      1.188      yamt 	sched_pstats_ticks++;
   1114      1.174        ad 
   1115      1.228        ad 	mutex_enter(proc_lock);
   1116      1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
   1117      1.238        ad 		if ((p->p_flag & PK_MARKER) != 0)
   1118      1.238        ad 			continue;
   1119      1.238        ad 
   1120      1.188      yamt 		/*
   1121      1.188      yamt 		 * Increment time in/out of memory and sleep time (if
   1122      1.188      yamt 		 * sleeping).  We ignore overflow; with 16-bit int's
   1123      1.188      yamt 		 * (remember them?) overflow takes 45 days.
   1124      1.188      yamt 		 */
   1125      1.229        ad 		mutex_enter(p->p_lock);
   1126      1.188      yamt 		mutex_spin_enter(&p->p_stmutex);
   1127      1.212      yamt 		runtm = p->p_rtime.sec;
   1128      1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1129      1.188      yamt 			if ((l->l_flag & LW_IDLE) != 0)
   1130      1.188      yamt 				continue;
   1131      1.188      yamt 			lwp_lock(l);
   1132      1.212      yamt 			runtm += l->l_rtime.sec;
   1133      1.188      yamt 			l->l_swtime++;
   1134      1.200     rmind 			sched_pstats_hook(l);
   1135      1.188      yamt 			lwp_unlock(l);
   1136      1.113  gmcgarry 
   1137      1.188      yamt 			/*
   1138      1.188      yamt 			 * p_pctcpu is only for ps.
   1139      1.188      yamt 			 */
   1140      1.188      yamt 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1141      1.188      yamt 			if (l->l_slptime < 1) {
   1142      1.188      yamt 				clkhz = stathz != 0 ? stathz : hz;
   1143      1.188      yamt #if	(FSHIFT >= CCPU_SHIFT)
   1144      1.188      yamt 				l->l_pctcpu += (clkhz == 100) ?
   1145      1.188      yamt 				    ((fixpt_t)l->l_cpticks) <<
   1146      1.188      yamt 				        (FSHIFT - CCPU_SHIFT) :
   1147      1.188      yamt 				    100 * (((fixpt_t) p->p_cpticks)
   1148      1.188      yamt 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
   1149      1.188      yamt #else
   1150      1.188      yamt 				l->l_pctcpu += ((FSCALE - ccpu) *
   1151      1.188      yamt 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
   1152      1.146      matt #endif
   1153      1.188      yamt 				l->l_cpticks = 0;
   1154      1.188      yamt 			}
   1155      1.188      yamt 		}
   1156      1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1157      1.188      yamt 		mutex_spin_exit(&p->p_stmutex);
   1158      1.174        ad 
   1159      1.188      yamt 		/*
   1160      1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
   1161      1.188      yamt 		 * If over max, kill it.
   1162      1.188      yamt 		 */
   1163      1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1164      1.188      yamt 		sig = 0;
   1165      1.188      yamt 		if (runtm >= rlim->rlim_cur) {
   1166      1.188      yamt 			if (runtm >= rlim->rlim_max)
   1167      1.188      yamt 				sig = SIGKILL;
   1168      1.188      yamt 			else {
   1169      1.188      yamt 				sig = SIGXCPU;
   1170      1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
   1171      1.188      yamt 					rlim->rlim_cur += 5;
   1172      1.188      yamt 			}
   1173      1.188      yamt 		}
   1174      1.229        ad 		mutex_exit(p->p_lock);
   1175      1.228        ad 		if (sig)
   1176      1.188      yamt 			psignal(p, sig);
   1177      1.174        ad 	}
   1178      1.228        ad 	mutex_exit(proc_lock);
   1179      1.188      yamt 	uvm_meter();
   1180      1.191        ad 	cv_wakeup(&lbolt);
   1181      1.188      yamt 	callout_schedule(&sched_pstats_ch, hz);
   1182      1.113  gmcgarry }
   1183