kern_synch.c revision 1.241.2.3 1 1.241.2.3 wrstuden /* $NetBSD: kern_synch.c,v 1.241.2.3 2008/06/23 04:31:51 wrstuden Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.218 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej *
21 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
32 1.63 thorpej */
33 1.26 cgd
34 1.26 cgd /*-
35 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 1.26 cgd * The Regents of the University of California. All rights reserved.
37 1.26 cgd * (c) UNIX System Laboratories, Inc.
38 1.26 cgd * All or some portions of this file are derived from material licensed
39 1.26 cgd * to the University of California by American Telephone and Telegraph
40 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 1.26 cgd * the permission of UNIX System Laboratories, Inc.
42 1.26 cgd *
43 1.26 cgd * Redistribution and use in source and binary forms, with or without
44 1.26 cgd * modification, are permitted provided that the following conditions
45 1.26 cgd * are met:
46 1.26 cgd * 1. Redistributions of source code must retain the above copyright
47 1.26 cgd * notice, this list of conditions and the following disclaimer.
48 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.26 cgd * notice, this list of conditions and the following disclaimer in the
50 1.26 cgd * documentation and/or other materials provided with the distribution.
51 1.136 agc * 3. Neither the name of the University nor the names of its contributors
52 1.26 cgd * may be used to endorse or promote products derived from this software
53 1.26 cgd * without specific prior written permission.
54 1.26 cgd *
55 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.26 cgd * SUCH DAMAGE.
66 1.26 cgd *
67 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 1.26 cgd */
69 1.106 lukem
70 1.106 lukem #include <sys/cdefs.h>
71 1.241.2.3 wrstuden __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.241.2.3 2008/06/23 04:31:51 wrstuden Exp $");
72 1.48 mrg
73 1.109 yamt #include "opt_kstack.h"
74 1.110 briggs #include "opt_perfctrs.h"
75 1.26 cgd
76 1.174 ad #define __MUTEX_PRIVATE
77 1.174 ad
78 1.26 cgd #include <sys/param.h>
79 1.26 cgd #include <sys/systm.h>
80 1.26 cgd #include <sys/proc.h>
81 1.26 cgd #include <sys/kernel.h>
82 1.111 briggs #if defined(PERFCTRS)
83 1.110 briggs #include <sys/pmc.h>
84 1.111 briggs #endif
85 1.188 yamt #include <sys/cpu.h>
86 1.26 cgd #include <sys/resourcevar.h>
87 1.55 ross #include <sys/sched.h>
88 1.241.2.1 wrstuden #include <sys/sa.h>
89 1.241.2.1 wrstuden #include <sys/savar.h>
90 1.179 dsl #include <sys/syscall_stats.h>
91 1.174 ad #include <sys/sleepq.h>
92 1.174 ad #include <sys/lockdebug.h>
93 1.190 ad #include <sys/evcnt.h>
94 1.199 ad #include <sys/intr.h>
95 1.207 ad #include <sys/lwpctl.h>
96 1.209 ad #include <sys/atomic.h>
97 1.215 ad #include <sys/simplelock.h>
98 1.47 mrg
99 1.47 mrg #include <uvm/uvm_extern.h>
100 1.47 mrg
101 1.231 ad #include <dev/lockstat.h>
102 1.231 ad
103 1.221 ad static u_int sched_unsleep(struct lwp *, bool);
104 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
105 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
106 1.122 thorpej
107 1.174 ad syncobj_t sleep_syncobj = {
108 1.174 ad SOBJ_SLEEPQ_SORTED,
109 1.174 ad sleepq_unsleep,
110 1.184 yamt sleepq_changepri,
111 1.184 yamt sleepq_lendpri,
112 1.184 yamt syncobj_noowner,
113 1.174 ad };
114 1.174 ad
115 1.174 ad syncobj_t sched_syncobj = {
116 1.174 ad SOBJ_SLEEPQ_SORTED,
117 1.174 ad sched_unsleep,
118 1.184 yamt sched_changepri,
119 1.184 yamt sched_lendpri,
120 1.184 yamt syncobj_noowner,
121 1.174 ad };
122 1.122 thorpej
123 1.223 ad callout_t sched_pstats_ch;
124 1.223 ad unsigned sched_pstats_ticks;
125 1.223 ad kcondvar_t lbolt; /* once a second sleep address */
126 1.223 ad
127 1.237 rmind /* Preemption event counters */
128 1.231 ad static struct evcnt kpreempt_ev_crit;
129 1.231 ad static struct evcnt kpreempt_ev_klock;
130 1.231 ad static struct evcnt kpreempt_ev_ipl;
131 1.231 ad static struct evcnt kpreempt_ev_immed;
132 1.231 ad
133 1.231 ad /*
134 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
135 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
136 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
137 1.174 ad * maintained in the machine-dependent layers. This priority will typically
138 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
139 1.174 ad * it can be made higher to block network software interrupts after panics.
140 1.26 cgd */
141 1.174 ad int safepri;
142 1.26 cgd
143 1.237 rmind void
144 1.237 rmind sched_init(void)
145 1.237 rmind {
146 1.237 rmind
147 1.237 rmind cv_init(&lbolt, "lbolt");
148 1.237 rmind callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
149 1.237 rmind callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
150 1.237 rmind
151 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
152 1.237 rmind "kpreempt", "defer: critical section");
153 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
154 1.237 rmind "kpreempt", "defer: kernel_lock");
155 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
156 1.237 rmind "kpreempt", "defer: IPL");
157 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
158 1.237 rmind "kpreempt", "immediate");
159 1.237 rmind
160 1.237 rmind sched_pstats(NULL);
161 1.237 rmind }
162 1.237 rmind
163 1.26 cgd /*
164 1.174 ad * OBSOLETE INTERFACE
165 1.174 ad *
166 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
167 1.26 cgd * performed on the specified identifier. The process will then be made
168 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
169 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
170 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
171 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
172 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
173 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
174 1.26 cgd * call should be interrupted by the signal (return EINTR).
175 1.77 thorpej *
176 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
177 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
178 1.174 ad * is specified, in which case the interlock will always be unlocked upon
179 1.174 ad * return.
180 1.26 cgd */
181 1.26 cgd int
182 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
183 1.174 ad volatile struct simplelock *interlock)
184 1.26 cgd {
185 1.122 thorpej struct lwp *l = curlwp;
186 1.174 ad sleepq_t *sq;
187 1.241.2.3 wrstuden kmutex_t *mp;
188 1.188 yamt int error;
189 1.26 cgd
190 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
191 1.204 ad
192 1.174 ad if (sleepq_dontsleep(l)) {
193 1.174 ad (void)sleepq_abort(NULL, 0);
194 1.174 ad if ((priority & PNORELOCK) != 0)
195 1.77 thorpej simple_unlock(interlock);
196 1.174 ad return 0;
197 1.26 cgd }
198 1.78 sommerfe
199 1.204 ad l->l_kpriority = true;
200 1.241.2.3 wrstuden sq = sleeptab_lookup(&sleeptab, ident, &mp);
201 1.241.2.3 wrstuden sleepq_enter(sq, l, mp);
202 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
203 1.42 cgd
204 1.174 ad if (interlock != NULL) {
205 1.204 ad KASSERT(simple_lock_held(interlock));
206 1.174 ad simple_unlock(interlock);
207 1.150 chs }
208 1.150 chs
209 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
210 1.126 pk
211 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
212 1.126 pk simple_lock(interlock);
213 1.174 ad
214 1.174 ad return error;
215 1.26 cgd }
216 1.26 cgd
217 1.187 ad int
218 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
219 1.187 ad kmutex_t *mtx)
220 1.187 ad {
221 1.187 ad struct lwp *l = curlwp;
222 1.187 ad sleepq_t *sq;
223 1.241.2.3 wrstuden kmutex_t *mp;
224 1.188 yamt int error;
225 1.187 ad
226 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
227 1.204 ad
228 1.187 ad if (sleepq_dontsleep(l)) {
229 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
230 1.187 ad return 0;
231 1.187 ad }
232 1.187 ad
233 1.204 ad l->l_kpriority = true;
234 1.241.2.3 wrstuden sq = sleeptab_lookup(&sleeptab, ident, &mp);
235 1.241.2.3 wrstuden sleepq_enter(sq, l, mp);
236 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
237 1.187 ad mutex_exit(mtx);
238 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
239 1.187 ad
240 1.187 ad if ((priority & PNORELOCK) == 0)
241 1.187 ad mutex_enter(mtx);
242 1.187 ad
243 1.187 ad return error;
244 1.187 ad }
245 1.187 ad
246 1.26 cgd /*
247 1.174 ad * General sleep call for situations where a wake-up is not expected.
248 1.26 cgd */
249 1.174 ad int
250 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
251 1.26 cgd {
252 1.174 ad struct lwp *l = curlwp;
253 1.241.2.3 wrstuden kmutex_t *mp;
254 1.174 ad sleepq_t *sq;
255 1.174 ad int error;
256 1.26 cgd
257 1.174 ad if (sleepq_dontsleep(l))
258 1.174 ad return sleepq_abort(NULL, 0);
259 1.26 cgd
260 1.174 ad if (mtx != NULL)
261 1.174 ad mutex_exit(mtx);
262 1.204 ad l->l_kpriority = true;
263 1.241.2.3 wrstuden sq = sleeptab_lookup(&sleeptab, l, &mp);
264 1.241.2.3 wrstuden sleepq_enter(sq, l, mp);
265 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
266 1.188 yamt error = sleepq_block(timo, intr);
267 1.174 ad if (mtx != NULL)
268 1.174 ad mutex_enter(mtx);
269 1.83 thorpej
270 1.174 ad return error;
271 1.139 cl }
272 1.139 cl
273 1.26 cgd /*
274 1.241.2.2 wrstuden * sa_awaken:
275 1.241.2.2 wrstuden *
276 1.241.2.2 wrstuden * We believe this lwp is an SA lwp. If it's yielding,
277 1.241.2.2 wrstuden * let it know it needs to wake up.
278 1.241.2.2 wrstuden *
279 1.241.2.2 wrstuden * We are called and exit with the lwp locked. We are
280 1.241.2.2 wrstuden * called in the middle of wakeup operations, so we need
281 1.241.2.2 wrstuden * to not touch the locks at all.
282 1.241.2.2 wrstuden */
283 1.241.2.2 wrstuden void
284 1.241.2.2 wrstuden sa_awaken(struct lwp *l)
285 1.241.2.2 wrstuden {
286 1.241.2.2 wrstuden /* LOCK_ASSERT(lwp_locked(l, NULL)); */
287 1.241.2.2 wrstuden
288 1.241.2.2 wrstuden if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
289 1.241.2.2 wrstuden l->l_flag &= ~LW_SA_IDLE;
290 1.241.2.2 wrstuden }
291 1.241.2.2 wrstuden
292 1.241.2.2 wrstuden /*
293 1.174 ad * OBSOLETE INTERFACE
294 1.174 ad *
295 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
296 1.26 cgd */
297 1.26 cgd void
298 1.174 ad wakeup(wchan_t ident)
299 1.26 cgd {
300 1.174 ad sleepq_t *sq;
301 1.241.2.3 wrstuden kmutex_t *mp;
302 1.83 thorpej
303 1.174 ad if (cold)
304 1.174 ad return;
305 1.83 thorpej
306 1.241.2.3 wrstuden sq = sleeptab_lookup(&sleeptab, ident, &mp);
307 1.241.2.3 wrstuden sleepq_wake(sq, ident, (u_int)-1, mp);
308 1.63 thorpej }
309 1.63 thorpej
310 1.63 thorpej /*
311 1.174 ad * OBSOLETE INTERFACE
312 1.174 ad *
313 1.63 thorpej * Make the highest priority process first in line on the specified
314 1.63 thorpej * identifier runnable.
315 1.63 thorpej */
316 1.174 ad void
317 1.174 ad wakeup_one(wchan_t ident)
318 1.63 thorpej {
319 1.174 ad sleepq_t *sq;
320 1.241.2.3 wrstuden kmutex_t *mp;
321 1.63 thorpej
322 1.174 ad if (cold)
323 1.174 ad return;
324 1.188 yamt
325 1.241.2.3 wrstuden sq = sleeptab_lookup(&sleeptab, ident, &mp);
326 1.241.2.3 wrstuden sleepq_wake(sq, ident, 1, mp);
327 1.174 ad }
328 1.63 thorpej
329 1.117 gmcgarry
330 1.117 gmcgarry /*
331 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
332 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
333 1.198 ad * current process explicitly requests it (eg sched_yield(2)).
334 1.117 gmcgarry */
335 1.117 gmcgarry void
336 1.117 gmcgarry yield(void)
337 1.117 gmcgarry {
338 1.122 thorpej struct lwp *l = curlwp;
339 1.117 gmcgarry
340 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
341 1.174 ad lwp_lock(l);
342 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
343 1.188 yamt KASSERT(l->l_stat == LSONPROC);
344 1.204 ad l->l_kpriority = false;
345 1.188 yamt (void)mi_switch(l);
346 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
347 1.69 thorpej }
348 1.69 thorpej
349 1.69 thorpej /*
350 1.69 thorpej * General preemption call. Puts the current process back on its run queue
351 1.156 rpaulo * and performs an involuntary context switch.
352 1.69 thorpej */
353 1.69 thorpej void
354 1.174 ad preempt(void)
355 1.69 thorpej {
356 1.122 thorpej struct lwp *l = curlwp;
357 1.69 thorpej
358 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
359 1.174 ad lwp_lock(l);
360 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
361 1.188 yamt KASSERT(l->l_stat == LSONPROC);
362 1.204 ad l->l_kpriority = false;
363 1.174 ad l->l_nivcsw++;
364 1.188 yamt (void)mi_switch(l);
365 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
366 1.69 thorpej }
367 1.69 thorpej
368 1.234 ad /*
369 1.234 ad * Handle a request made by another agent to preempt the current LWP
370 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
371 1.234 ad *
372 1.234 ad * Character addresses for lockstat only.
373 1.234 ad */
374 1.231 ad static char in_critical_section;
375 1.231 ad static char kernel_lock_held;
376 1.231 ad static char spl_raised;
377 1.231 ad static char is_softint;
378 1.231 ad
379 1.231 ad bool
380 1.231 ad kpreempt(uintptr_t where)
381 1.231 ad {
382 1.231 ad uintptr_t failed;
383 1.231 ad lwp_t *l;
384 1.231 ad int s, dop;
385 1.231 ad
386 1.231 ad l = curlwp;
387 1.231 ad failed = 0;
388 1.231 ad while ((dop = l->l_dopreempt) != 0) {
389 1.231 ad if (l->l_stat != LSONPROC) {
390 1.231 ad /*
391 1.231 ad * About to block (or die), let it happen.
392 1.231 ad * Doesn't really count as "preemption has
393 1.231 ad * been blocked", since we're going to
394 1.231 ad * context switch.
395 1.231 ad */
396 1.231 ad l->l_dopreempt = 0;
397 1.231 ad return true;
398 1.231 ad }
399 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
400 1.231 ad /* Can't preempt idle loop, don't count as failure. */
401 1.231 ad l->l_dopreempt = 0;
402 1.231 ad return true;
403 1.231 ad }
404 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
405 1.231 ad /* LWP holds preemption disabled, explicitly. */
406 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
407 1.234 ad kpreempt_ev_crit.ev_count++;
408 1.231 ad }
409 1.231 ad failed = (uintptr_t)&in_critical_section;
410 1.231 ad break;
411 1.231 ad }
412 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
413 1.231 ad /* Can't preempt soft interrupts yet. */
414 1.231 ad l->l_dopreempt = 0;
415 1.231 ad failed = (uintptr_t)&is_softint;
416 1.231 ad break;
417 1.231 ad }
418 1.231 ad s = splsched();
419 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
420 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
421 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
422 1.231 ad splx(s);
423 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
424 1.234 ad kpreempt_ev_klock.ev_count++;
425 1.231 ad }
426 1.231 ad failed = (uintptr_t)&kernel_lock_held;
427 1.231 ad break;
428 1.231 ad }
429 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
430 1.231 ad /*
431 1.231 ad * It may be that the IPL is too high.
432 1.231 ad * kpreempt_enter() can schedule an
433 1.231 ad * interrupt to retry later.
434 1.231 ad */
435 1.231 ad splx(s);
436 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
437 1.234 ad kpreempt_ev_ipl.ev_count++;
438 1.231 ad }
439 1.231 ad failed = (uintptr_t)&spl_raised;
440 1.231 ad break;
441 1.231 ad }
442 1.231 ad /* Do it! */
443 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
444 1.234 ad kpreempt_ev_immed.ev_count++;
445 1.231 ad }
446 1.231 ad lwp_lock(l);
447 1.231 ad mi_switch(l);
448 1.231 ad l->l_nopreempt++;
449 1.231 ad splx(s);
450 1.231 ad
451 1.231 ad /* Take care of any MD cleanup. */
452 1.231 ad cpu_kpreempt_exit(where);
453 1.231 ad l->l_nopreempt--;
454 1.231 ad }
455 1.231 ad
456 1.231 ad /* Record preemption failure for reporting via lockstat. */
457 1.231 ad if (__predict_false(failed)) {
458 1.240 ad int lsflag = 0;
459 1.231 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
460 1.231 ad LOCKSTAT_ENTER(lsflag);
461 1.231 ad /* Might recurse, make it atomic. */
462 1.231 ad if (__predict_false(lsflag)) {
463 1.231 ad if (where == 0) {
464 1.231 ad where = (uintptr_t)__builtin_return_address(0);
465 1.231 ad }
466 1.231 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
467 1.231 ad NULL, (void *)where) == NULL) {
468 1.231 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
469 1.231 ad l->l_pfaillock = failed;
470 1.231 ad }
471 1.231 ad }
472 1.231 ad LOCKSTAT_EXIT(lsflag);
473 1.231 ad }
474 1.231 ad
475 1.231 ad return failed;
476 1.231 ad }
477 1.231 ad
478 1.69 thorpej /*
479 1.231 ad * Return true if preemption is explicitly disabled.
480 1.230 ad */
481 1.231 ad bool
482 1.231 ad kpreempt_disabled(void)
483 1.231 ad {
484 1.231 ad lwp_t *l;
485 1.231 ad
486 1.231 ad l = curlwp;
487 1.231 ad
488 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
489 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
490 1.231 ad }
491 1.230 ad
492 1.230 ad /*
493 1.231 ad * Disable kernel preemption.
494 1.230 ad */
495 1.230 ad void
496 1.231 ad kpreempt_disable(void)
497 1.230 ad {
498 1.230 ad
499 1.231 ad KPREEMPT_DISABLE(curlwp);
500 1.230 ad }
501 1.230 ad
502 1.230 ad /*
503 1.231 ad * Reenable kernel preemption.
504 1.230 ad */
505 1.231 ad void
506 1.231 ad kpreempt_enable(void)
507 1.230 ad {
508 1.230 ad
509 1.231 ad KPREEMPT_ENABLE(curlwp);
510 1.230 ad }
511 1.230 ad
512 1.230 ad /*
513 1.188 yamt * Compute the amount of time during which the current lwp was running.
514 1.130 nathanw *
515 1.188 yamt * - update l_rtime unless it's an idle lwp.
516 1.188 yamt */
517 1.188 yamt
518 1.199 ad void
519 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
520 1.188 yamt {
521 1.188 yamt
522 1.199 ad if ((l->l_flag & LW_IDLE) != 0)
523 1.188 yamt return;
524 1.188 yamt
525 1.212 yamt /* rtime += now - stime */
526 1.212 yamt bintime_add(&l->l_rtime, now);
527 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
528 1.188 yamt }
529 1.188 yamt
530 1.188 yamt /*
531 1.241.2.3 wrstuden * Select next LWP from the current CPU to run..
532 1.241.2.3 wrstuden */
533 1.241.2.3 wrstuden static inline lwp_t *
534 1.241.2.3 wrstuden nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
535 1.241.2.3 wrstuden {
536 1.241.2.3 wrstuden lwp_t *newl;
537 1.241.2.3 wrstuden
538 1.241.2.3 wrstuden /*
539 1.241.2.3 wrstuden * Let sched_nextlwp() select the LWP to run the CPU next.
540 1.241.2.3 wrstuden * If no LWP is runnable, select the idle LWP.
541 1.241.2.3 wrstuden *
542 1.241.2.3 wrstuden * Note that spc_lwplock might not necessary be held, and
543 1.241.2.3 wrstuden * new thread would be unlocked after setting the LWP-lock.
544 1.241.2.3 wrstuden */
545 1.241.2.3 wrstuden newl = sched_nextlwp();
546 1.241.2.3 wrstuden if (newl != NULL) {
547 1.241.2.3 wrstuden sched_dequeue(newl);
548 1.241.2.3 wrstuden KASSERT(lwp_locked(newl, spc->spc_mutex));
549 1.241.2.3 wrstuden newl->l_stat = LSONPROC;
550 1.241.2.3 wrstuden newl->l_cpu = ci;
551 1.241.2.3 wrstuden newl->l_pflag |= LP_RUNNING;
552 1.241.2.3 wrstuden lwp_setlock(newl, spc->spc_lwplock);
553 1.241.2.3 wrstuden } else {
554 1.241.2.3 wrstuden newl = ci->ci_data.cpu_idlelwp;
555 1.241.2.3 wrstuden newl->l_stat = LSONPROC;
556 1.241.2.3 wrstuden newl->l_pflag |= LP_RUNNING;
557 1.241.2.3 wrstuden }
558 1.241.2.3 wrstuden
559 1.241.2.3 wrstuden /*
560 1.241.2.3 wrstuden * Only clear want_resched if there are no pending (slow)
561 1.241.2.3 wrstuden * software interrupts.
562 1.241.2.3 wrstuden */
563 1.241.2.3 wrstuden ci->ci_want_resched = ci->ci_data.cpu_softints;
564 1.241.2.3 wrstuden spc->spc_flags &= ~SPCF_SWITCHCLEAR;
565 1.241.2.3 wrstuden spc->spc_curpriority = lwp_eprio(newl);
566 1.241.2.3 wrstuden
567 1.241.2.3 wrstuden return newl;
568 1.241.2.3 wrstuden }
569 1.241.2.3 wrstuden
570 1.241.2.3 wrstuden /*
571 1.188 yamt * The machine independent parts of context switch.
572 1.188 yamt *
573 1.188 yamt * Returns 1 if another LWP was actually run.
574 1.26 cgd */
575 1.122 thorpej int
576 1.199 ad mi_switch(lwp_t *l)
577 1.26 cgd {
578 1.241.2.3 wrstuden struct cpu_info *ci;
579 1.76 thorpej struct schedstate_percpu *spc;
580 1.188 yamt struct lwp *newl;
581 1.174 ad int retval, oldspl;
582 1.212 yamt struct bintime bt;
583 1.199 ad bool returning;
584 1.26 cgd
585 1.188 yamt KASSERT(lwp_locked(l, NULL));
586 1.231 ad KASSERT(kpreempt_disabled());
587 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
588 1.174 ad
589 1.174 ad #ifdef KSTACK_CHECK_MAGIC
590 1.174 ad kstack_check_magic(l);
591 1.174 ad #endif
592 1.83 thorpej
593 1.212 yamt binuptime(&bt);
594 1.199 ad
595 1.231 ad KASSERT(l->l_cpu == curcpu());
596 1.196 ad ci = l->l_cpu;
597 1.196 ad spc = &ci->ci_schedstate;
598 1.199 ad returning = false;
599 1.190 ad newl = NULL;
600 1.190 ad
601 1.199 ad /*
602 1.199 ad * If we have been asked to switch to a specific LWP, then there
603 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
604 1.199 ad * blocking, then return to the interrupted thread without adjusting
605 1.199 ad * VM context or its start time: neither have been changed in order
606 1.199 ad * to take the interrupt.
607 1.199 ad */
608 1.190 ad if (l->l_switchto != NULL) {
609 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
610 1.199 ad returning = true;
611 1.199 ad softint_block(l);
612 1.241.2.3 wrstuden if ((l->l_pflag & LP_TIMEINTR) != 0)
613 1.212 yamt updatertime(l, &bt);
614 1.199 ad }
615 1.190 ad newl = l->l_switchto;
616 1.190 ad l->l_switchto = NULL;
617 1.190 ad }
618 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
619 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
620 1.204 ad /* There are pending soft interrupts, so pick one. */
621 1.204 ad newl = softint_picklwp();
622 1.204 ad newl->l_stat = LSONPROC;
623 1.241.2.3 wrstuden newl->l_pflag |= LP_RUNNING;
624 1.204 ad }
625 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
626 1.190 ad
627 1.180 dsl /* Count time spent in current system call */
628 1.199 ad if (!returning) {
629 1.199 ad SYSCALL_TIME_SLEEP(l);
630 1.180 dsl
631 1.199 ad /*
632 1.199 ad * XXXSMP If we are using h/w performance counters,
633 1.199 ad * save context.
634 1.199 ad */
635 1.174 ad #if PERFCTRS
636 1.199 ad if (PMC_ENABLED(l->l_proc)) {
637 1.199 ad pmc_save_context(l->l_proc);
638 1.199 ad }
639 1.199 ad #endif
640 1.212 yamt updatertime(l, &bt);
641 1.174 ad }
642 1.113 gmcgarry
643 1.241.2.3 wrstuden /* Lock the runqueue */
644 1.241.2.3 wrstuden KASSERT(l->l_stat != LSRUN);
645 1.241.2.3 wrstuden mutex_spin_enter(spc->spc_mutex);
646 1.241.2.3 wrstuden
647 1.113 gmcgarry /*
648 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
649 1.113 gmcgarry */
650 1.241.2.3 wrstuden if (l->l_stat == LSONPROC && l != newl) {
651 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
652 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
653 1.188 yamt l->l_stat = LSRUN;
654 1.241.2.3 wrstuden lwp_setlock(l, spc->spc_mutex);
655 1.188 yamt sched_enqueue(l, true);
656 1.241.2.3 wrstuden /* Handle migration case */
657 1.241.2.3 wrstuden KASSERT(spc->spc_migrating == NULL);
658 1.241.2.3 wrstuden if (l->l_target_cpu != NULL) {
659 1.241.2.3 wrstuden spc->spc_migrating = l;
660 1.241.2.3 wrstuden }
661 1.241.2.3 wrstuden } else
662 1.188 yamt l->l_stat = LSIDL;
663 1.174 ad }
664 1.174 ad
665 1.241.2.3 wrstuden /* Pick new LWP to run. */
666 1.190 ad if (newl == NULL) {
667 1.241.2.3 wrstuden newl = nextlwp(ci, spc);
668 1.199 ad }
669 1.199 ad
670 1.204 ad /* Items that must be updated with the CPU locked. */
671 1.199 ad if (!returning) {
672 1.204 ad /* Update the new LWP's start time. */
673 1.212 yamt newl->l_stime = bt;
674 1.204 ad
675 1.199 ad /*
676 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
677 1.204 ad * We use cpu_onproc to keep track of which kernel or
678 1.204 ad * user thread is running 'underneath' the software
679 1.204 ad * interrupt. This is important for time accounting,
680 1.204 ad * itimers and forcing user threads to preempt (aston).
681 1.199 ad */
682 1.204 ad ci->ci_data.cpu_onproc = newl;
683 1.188 yamt }
684 1.188 yamt
685 1.241 ad /*
686 1.241 ad * Preemption related tasks. Must be done with the current
687 1.241 ad * CPU locked.
688 1.241 ad */
689 1.241 ad cpu_did_resched(l);
690 1.231 ad l->l_dopreempt = 0;
691 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
692 1.231 ad LOCKSTAT_FLAG(lsflag);
693 1.231 ad LOCKSTAT_ENTER(lsflag);
694 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
695 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
696 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
697 1.231 ad LOCKSTAT_EXIT(lsflag);
698 1.231 ad l->l_pfailtime = 0;
699 1.231 ad l->l_pfaillock = 0;
700 1.231 ad l->l_pfailaddr = 0;
701 1.231 ad }
702 1.231 ad
703 1.188 yamt if (l != newl) {
704 1.188 yamt struct lwp *prevlwp;
705 1.174 ad
706 1.209 ad /* Release all locks, but leave the current LWP locked */
707 1.241.2.3 wrstuden if (l->l_mutex == spc->spc_mutex) {
708 1.209 ad /*
709 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
710 1.209 ad * to the run queue (it is now locked by spc_mutex).
711 1.209 ad */
712 1.217 ad mutex_spin_exit(spc->spc_lwplock);
713 1.188 yamt } else {
714 1.209 ad /*
715 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
716 1.209 ad * run queues.
717 1.209 ad */
718 1.188 yamt mutex_spin_exit(spc->spc_mutex);
719 1.188 yamt }
720 1.188 yamt
721 1.209 ad /*
722 1.209 ad * Mark that context switch is going to be perfomed
723 1.209 ad * for this LWP, to protect it from being switched
724 1.209 ad * to on another CPU.
725 1.209 ad */
726 1.209 ad KASSERT(l->l_ctxswtch == 0);
727 1.209 ad l->l_ctxswtch = 1;
728 1.209 ad l->l_ncsw++;
729 1.241.2.3 wrstuden l->l_pflag &= ~LP_RUNNING;
730 1.209 ad
731 1.209 ad /*
732 1.209 ad * Increase the count of spin-mutexes before the release
733 1.209 ad * of the last lock - we must remain at IPL_SCHED during
734 1.209 ad * the context switch.
735 1.209 ad */
736 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
737 1.209 ad ci->ci_mtx_count--;
738 1.209 ad lwp_unlock(l);
739 1.209 ad
740 1.218 ad /* Count the context switch on this CPU. */
741 1.218 ad ci->ci_data.cpu_nswtch++;
742 1.188 yamt
743 1.209 ad /* Update status for lwpctl, if present. */
744 1.209 ad if (l->l_lwpctl != NULL)
745 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
746 1.209 ad
747 1.199 ad /*
748 1.199 ad * Save old VM context, unless a soft interrupt
749 1.199 ad * handler is blocking.
750 1.199 ad */
751 1.199 ad if (!returning)
752 1.199 ad pmap_deactivate(l);
753 1.188 yamt
754 1.209 ad /*
755 1.209 ad * We may need to spin-wait for if 'newl' is still
756 1.209 ad * context switching on another CPU.
757 1.209 ad */
758 1.209 ad if (newl->l_ctxswtch != 0) {
759 1.209 ad u_int count;
760 1.209 ad count = SPINLOCK_BACKOFF_MIN;
761 1.209 ad while (newl->l_ctxswtch)
762 1.209 ad SPINLOCK_BACKOFF(count);
763 1.209 ad }
764 1.207 ad
765 1.188 yamt /* Switch to the new LWP.. */
766 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
767 1.207 ad ci = curcpu();
768 1.207 ad
769 1.188 yamt /*
770 1.209 ad * Switched away - we have new curlwp.
771 1.209 ad * Restore VM context and IPL.
772 1.188 yamt */
773 1.209 ad pmap_activate(l);
774 1.188 yamt if (prevlwp != NULL) {
775 1.209 ad /* Normalize the count of the spin-mutexes */
776 1.209 ad ci->ci_mtx_count++;
777 1.209 ad /* Unmark the state of context switch */
778 1.209 ad membar_exit();
779 1.209 ad prevlwp->l_ctxswtch = 0;
780 1.188 yamt }
781 1.209 ad
782 1.209 ad /* Update status for lwpctl, if present. */
783 1.219 ad if (l->l_lwpctl != NULL) {
784 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
785 1.219 ad l->l_lwpctl->lc_pctr++;
786 1.219 ad }
787 1.174 ad
788 1.231 ad KASSERT(l->l_cpu == ci);
789 1.231 ad splx(oldspl);
790 1.188 yamt retval = 1;
791 1.188 yamt } else {
792 1.188 yamt /* Nothing to do - just unlock and return. */
793 1.241.2.3 wrstuden mutex_spin_exit(spc->spc_mutex);
794 1.188 yamt lwp_unlock(l);
795 1.122 thorpej retval = 0;
796 1.122 thorpej }
797 1.110 briggs
798 1.188 yamt KASSERT(l == curlwp);
799 1.188 yamt KASSERT(l->l_stat == LSONPROC);
800 1.188 yamt
801 1.110 briggs /*
802 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
803 1.231 ad * XXXSMP preemption problem.
804 1.26 cgd */
805 1.114 gmcgarry #if PERFCTRS
806 1.175 christos if (PMC_ENABLED(l->l_proc)) {
807 1.175 christos pmc_restore_context(l->l_proc);
808 1.166 christos }
809 1.114 gmcgarry #endif
810 1.180 dsl SYSCALL_TIME_WAKEUP(l);
811 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
812 1.169 yamt
813 1.122 thorpej return retval;
814 1.26 cgd }
815 1.26 cgd
816 1.26 cgd /*
817 1.241.2.3 wrstuden * The machine independent parts of context switch to oblivion.
818 1.241.2.3 wrstuden * Does not return. Call with the LWP unlocked.
819 1.241.2.3 wrstuden */
820 1.241.2.3 wrstuden void
821 1.241.2.3 wrstuden lwp_exit_switchaway(lwp_t *l)
822 1.241.2.3 wrstuden {
823 1.241.2.3 wrstuden struct cpu_info *ci;
824 1.241.2.3 wrstuden struct lwp *newl;
825 1.241.2.3 wrstuden struct bintime bt;
826 1.241.2.3 wrstuden
827 1.241.2.3 wrstuden ci = l->l_cpu;
828 1.241.2.3 wrstuden
829 1.241.2.3 wrstuden KASSERT(kpreempt_disabled());
830 1.241.2.3 wrstuden KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
831 1.241.2.3 wrstuden KASSERT(ci == curcpu());
832 1.241.2.3 wrstuden LOCKDEBUG_BARRIER(NULL, 0);
833 1.241.2.3 wrstuden
834 1.241.2.3 wrstuden #ifdef KSTACK_CHECK_MAGIC
835 1.241.2.3 wrstuden kstack_check_magic(l);
836 1.241.2.3 wrstuden #endif
837 1.241.2.3 wrstuden
838 1.241.2.3 wrstuden /* Count time spent in current system call */
839 1.241.2.3 wrstuden SYSCALL_TIME_SLEEP(l);
840 1.241.2.3 wrstuden binuptime(&bt);
841 1.241.2.3 wrstuden updatertime(l, &bt);
842 1.241.2.3 wrstuden
843 1.241.2.3 wrstuden /* Must stay at IPL_SCHED even after releasing run queue lock. */
844 1.241.2.3 wrstuden (void)splsched();
845 1.241.2.3 wrstuden
846 1.241.2.3 wrstuden /*
847 1.241.2.3 wrstuden * Let sched_nextlwp() select the LWP to run the CPU next.
848 1.241.2.3 wrstuden * If no LWP is runnable, select the idle LWP.
849 1.241.2.3 wrstuden *
850 1.241.2.3 wrstuden * Note that spc_lwplock might not necessary be held, and
851 1.241.2.3 wrstuden * new thread would be unlocked after setting the LWP-lock.
852 1.241.2.3 wrstuden */
853 1.241.2.3 wrstuden spc_lock(ci);
854 1.241.2.3 wrstuden #ifndef __HAVE_FAST_SOFTINTS
855 1.241.2.3 wrstuden if (ci->ci_data.cpu_softints != 0) {
856 1.241.2.3 wrstuden /* There are pending soft interrupts, so pick one. */
857 1.241.2.3 wrstuden newl = softint_picklwp();
858 1.241.2.3 wrstuden newl->l_stat = LSONPROC;
859 1.241.2.3 wrstuden newl->l_pflag |= LP_RUNNING;
860 1.241.2.3 wrstuden } else
861 1.241.2.3 wrstuden #endif /* !__HAVE_FAST_SOFTINTS */
862 1.241.2.3 wrstuden {
863 1.241.2.3 wrstuden newl = nextlwp(ci, &ci->ci_schedstate);
864 1.241.2.3 wrstuden }
865 1.241.2.3 wrstuden
866 1.241.2.3 wrstuden /* Update the new LWP's start time. */
867 1.241.2.3 wrstuden newl->l_stime = bt;
868 1.241.2.3 wrstuden l->l_pflag &= ~LP_RUNNING;
869 1.241.2.3 wrstuden
870 1.241.2.3 wrstuden /*
871 1.241.2.3 wrstuden * ci_curlwp changes when a fast soft interrupt occurs.
872 1.241.2.3 wrstuden * We use cpu_onproc to keep track of which kernel or
873 1.241.2.3 wrstuden * user thread is running 'underneath' the software
874 1.241.2.3 wrstuden * interrupt. This is important for time accounting,
875 1.241.2.3 wrstuden * itimers and forcing user threads to preempt (aston).
876 1.241.2.3 wrstuden */
877 1.241.2.3 wrstuden ci->ci_data.cpu_onproc = newl;
878 1.241.2.3 wrstuden
879 1.241.2.3 wrstuden /*
880 1.241.2.3 wrstuden * Preemption related tasks. Must be done with the current
881 1.241.2.3 wrstuden * CPU locked.
882 1.241.2.3 wrstuden */
883 1.241.2.3 wrstuden cpu_did_resched(l);
884 1.241.2.3 wrstuden
885 1.241.2.3 wrstuden /* Unlock the run queue. */
886 1.241.2.3 wrstuden spc_unlock(ci);
887 1.241.2.3 wrstuden
888 1.241.2.3 wrstuden /* Count the context switch on this CPU. */
889 1.241.2.3 wrstuden ci->ci_data.cpu_nswtch++;
890 1.241.2.3 wrstuden
891 1.241.2.3 wrstuden /* Update status for lwpctl, if present. */
892 1.241.2.3 wrstuden if (l->l_lwpctl != NULL)
893 1.241.2.3 wrstuden l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
894 1.241.2.3 wrstuden
895 1.241.2.3 wrstuden /*
896 1.241.2.3 wrstuden * We may need to spin-wait for if 'newl' is still
897 1.241.2.3 wrstuden * context switching on another CPU.
898 1.241.2.3 wrstuden */
899 1.241.2.3 wrstuden if (newl->l_ctxswtch != 0) {
900 1.241.2.3 wrstuden u_int count;
901 1.241.2.3 wrstuden count = SPINLOCK_BACKOFF_MIN;
902 1.241.2.3 wrstuden while (newl->l_ctxswtch)
903 1.241.2.3 wrstuden SPINLOCK_BACKOFF(count);
904 1.241.2.3 wrstuden }
905 1.241.2.3 wrstuden
906 1.241.2.3 wrstuden /* Switch to the new LWP.. */
907 1.241.2.3 wrstuden (void)cpu_switchto(NULL, newl, false);
908 1.241.2.3 wrstuden
909 1.241.2.3 wrstuden /* NOTREACHED */
910 1.241.2.3 wrstuden }
911 1.241.2.3 wrstuden
912 1.241.2.3 wrstuden /*
913 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
914 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
915 1.174 ad *
916 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
917 1.26 cgd */
918 1.26 cgd void
919 1.122 thorpej setrunnable(struct lwp *l)
920 1.26 cgd {
921 1.122 thorpej struct proc *p = l->l_proc;
922 1.205 ad struct cpu_info *ci;
923 1.174 ad sigset_t *ss;
924 1.26 cgd
925 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
926 1.229 ad KASSERT(mutex_owned(p->p_lock));
927 1.183 ad KASSERT(lwp_locked(l, NULL));
928 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
929 1.83 thorpej
930 1.122 thorpej switch (l->l_stat) {
931 1.122 thorpej case LSSTOP:
932 1.33 mycroft /*
933 1.33 mycroft * If we're being traced (possibly because someone attached us
934 1.33 mycroft * while we were stopped), check for a signal from the debugger.
935 1.33 mycroft */
936 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
937 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
938 1.174 ad ss = &l->l_sigpend.sp_set;
939 1.174 ad else
940 1.174 ad ss = &p->p_sigpend.sp_set;
941 1.174 ad sigaddset(ss, p->p_xstat);
942 1.174 ad signotify(l);
943 1.53 mycroft }
944 1.174 ad p->p_nrlwps++;
945 1.26 cgd break;
946 1.174 ad case LSSUSPENDED:
947 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
948 1.174 ad p->p_nrlwps++;
949 1.192 rmind cv_broadcast(&p->p_lwpcv);
950 1.122 thorpej break;
951 1.174 ad case LSSLEEP:
952 1.174 ad KASSERT(l->l_wchan != NULL);
953 1.26 cgd break;
954 1.174 ad default:
955 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
956 1.26 cgd }
957 1.139 cl
958 1.174 ad /*
959 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
960 1.174 ad * again. If not, mark it as still sleeping.
961 1.174 ad */
962 1.174 ad if (l->l_wchan != NULL) {
963 1.174 ad l->l_stat = LSSLEEP;
964 1.183 ad /* lwp_unsleep() will release the lock. */
965 1.221 ad lwp_unsleep(l, true);
966 1.174 ad return;
967 1.174 ad }
968 1.139 cl
969 1.241.2.2 wrstuden if (l->l_proc->p_sa)
970 1.241.2.2 wrstuden sa_awaken(l);
971 1.241.2.2 wrstuden
972 1.174 ad /*
973 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
974 1.174 ad * about to call mi_switch(), in which case it will yield.
975 1.174 ad */
976 1.241.2.3 wrstuden if ((l->l_pflag & LP_RUNNING) != 0) {
977 1.174 ad l->l_stat = LSONPROC;
978 1.174 ad l->l_slptime = 0;
979 1.174 ad lwp_unlock(l);
980 1.174 ad return;
981 1.174 ad }
982 1.122 thorpej
983 1.174 ad /*
984 1.205 ad * Look for a CPU to run.
985 1.205 ad * Set the LWP runnable.
986 1.174 ad */
987 1.205 ad ci = sched_takecpu(l);
988 1.205 ad l->l_cpu = ci;
989 1.236 ad spc_lock(ci);
990 1.236 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
991 1.188 yamt sched_setrunnable(l);
992 1.174 ad l->l_stat = LSRUN;
993 1.122 thorpej l->l_slptime = 0;
994 1.174 ad
995 1.205 ad /*
996 1.205 ad * If thread is swapped out - wake the swapper to bring it back in.
997 1.205 ad * Otherwise, enter it into a run queue.
998 1.205 ad */
999 1.178 pavel if (l->l_flag & LW_INMEM) {
1000 1.188 yamt sched_enqueue(l, false);
1001 1.188 yamt resched_cpu(l);
1002 1.174 ad lwp_unlock(l);
1003 1.174 ad } else {
1004 1.174 ad lwp_unlock(l);
1005 1.177 ad uvm_kick_scheduler();
1006 1.174 ad }
1007 1.26 cgd }
1008 1.26 cgd
1009 1.26 cgd /*
1010 1.174 ad * suspendsched:
1011 1.174 ad *
1012 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1013 1.174 ad */
1014 1.94 bouyer void
1015 1.174 ad suspendsched(void)
1016 1.94 bouyer {
1017 1.174 ad CPU_INFO_ITERATOR cii;
1018 1.174 ad struct cpu_info *ci;
1019 1.122 thorpej struct lwp *l;
1020 1.174 ad struct proc *p;
1021 1.94 bouyer
1022 1.94 bouyer /*
1023 1.174 ad * We do this by process in order not to violate the locking rules.
1024 1.94 bouyer */
1025 1.228 ad mutex_enter(proc_lock);
1026 1.174 ad PROCLIST_FOREACH(p, &allproc) {
1027 1.238 ad if ((p->p_flag & PK_MARKER) != 0)
1028 1.238 ad continue;
1029 1.238 ad
1030 1.229 ad mutex_enter(p->p_lock);
1031 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
1032 1.229 ad mutex_exit(p->p_lock);
1033 1.94 bouyer continue;
1034 1.174 ad }
1035 1.174 ad
1036 1.174 ad p->p_stat = SSTOP;
1037 1.174 ad
1038 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1039 1.174 ad if (l == curlwp)
1040 1.174 ad continue;
1041 1.174 ad
1042 1.174 ad lwp_lock(l);
1043 1.122 thorpej
1044 1.97 enami /*
1045 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
1046 1.174 ad * when it tries to return to user mode. We want to
1047 1.174 ad * try and get to get as many LWPs as possible to
1048 1.174 ad * the user / kernel boundary, so that they will
1049 1.174 ad * release any locks that they hold.
1050 1.97 enami */
1051 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1052 1.174 ad
1053 1.174 ad if (l->l_stat == LSSLEEP &&
1054 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1055 1.174 ad /* setrunnable() will release the lock. */
1056 1.174 ad setrunnable(l);
1057 1.174 ad continue;
1058 1.174 ad }
1059 1.174 ad
1060 1.174 ad lwp_unlock(l);
1061 1.94 bouyer }
1062 1.174 ad
1063 1.229 ad mutex_exit(p->p_lock);
1064 1.94 bouyer }
1065 1.228 ad mutex_exit(proc_lock);
1066 1.174 ad
1067 1.174 ad /*
1068 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1069 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
1070 1.174 ad */
1071 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1072 1.204 ad spc_lock(ci);
1073 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
1074 1.204 ad spc_unlock(ci);
1075 1.204 ad }
1076 1.174 ad }
1077 1.174 ad
1078 1.174 ad /*
1079 1.174 ad * sched_unsleep:
1080 1.174 ad *
1081 1.174 ad * The is called when the LWP has not been awoken normally but instead
1082 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1083 1.174 ad * it's not a valid action for running or idle LWPs.
1084 1.174 ad */
1085 1.221 ad static u_int
1086 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1087 1.174 ad {
1088 1.174 ad
1089 1.174 ad lwp_unlock(l);
1090 1.174 ad panic("sched_unsleep");
1091 1.174 ad }
1092 1.174 ad
1093 1.204 ad void
1094 1.188 yamt resched_cpu(struct lwp *l)
1095 1.188 yamt {
1096 1.188 yamt struct cpu_info *ci;
1097 1.188 yamt
1098 1.188 yamt /*
1099 1.188 yamt * XXXSMP
1100 1.188 yamt * Since l->l_cpu persists across a context switch,
1101 1.188 yamt * this gives us *very weak* processor affinity, in
1102 1.188 yamt * that we notify the CPU on which the process last
1103 1.188 yamt * ran that it should try to switch.
1104 1.188 yamt *
1105 1.188 yamt * This does not guarantee that the process will run on
1106 1.188 yamt * that processor next, because another processor might
1107 1.188 yamt * grab it the next time it performs a context switch.
1108 1.188 yamt *
1109 1.188 yamt * This also does not handle the case where its last
1110 1.188 yamt * CPU is running a higher-priority process, but every
1111 1.188 yamt * other CPU is running a lower-priority process. There
1112 1.188 yamt * are ways to handle this situation, but they're not
1113 1.188 yamt * currently very pretty, and we also need to weigh the
1114 1.188 yamt * cost of moving a process from one CPU to another.
1115 1.188 yamt */
1116 1.204 ad ci = l->l_cpu;
1117 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1118 1.188 yamt cpu_need_resched(ci, 0);
1119 1.188 yamt }
1120 1.188 yamt
1121 1.188 yamt static void
1122 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1123 1.174 ad {
1124 1.174 ad
1125 1.188 yamt KASSERT(lwp_locked(l, NULL));
1126 1.174 ad
1127 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1128 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1129 1.204 ad sched_dequeue(l);
1130 1.204 ad l->l_priority = pri;
1131 1.204 ad sched_enqueue(l, false);
1132 1.204 ad } else {
1133 1.174 ad l->l_priority = pri;
1134 1.157 yamt }
1135 1.188 yamt resched_cpu(l);
1136 1.184 yamt }
1137 1.184 yamt
1138 1.188 yamt static void
1139 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1140 1.184 yamt {
1141 1.184 yamt
1142 1.188 yamt KASSERT(lwp_locked(l, NULL));
1143 1.184 yamt
1144 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1145 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1146 1.204 ad sched_dequeue(l);
1147 1.204 ad l->l_inheritedprio = pri;
1148 1.204 ad sched_enqueue(l, false);
1149 1.204 ad } else {
1150 1.184 yamt l->l_inheritedprio = pri;
1151 1.184 yamt }
1152 1.188 yamt resched_cpu(l);
1153 1.184 yamt }
1154 1.184 yamt
1155 1.184 yamt struct lwp *
1156 1.184 yamt syncobj_noowner(wchan_t wchan)
1157 1.184 yamt {
1158 1.184 yamt
1159 1.184 yamt return NULL;
1160 1.151 yamt }
1161 1.151 yamt
1162 1.188 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
1163 1.188 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
1164 1.115 nisimura
1165 1.130 nathanw /*
1166 1.188 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
1167 1.188 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
1168 1.188 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
1169 1.188 yamt *
1170 1.188 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
1171 1.188 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
1172 1.188 yamt *
1173 1.188 yamt * If you dont want to bother with the faster/more-accurate formula, you
1174 1.188 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
1175 1.188 yamt * (more general) method of calculating the %age of CPU used by a process.
1176 1.134 matt */
1177 1.188 yamt #define CCPU_SHIFT (FSHIFT + 1)
1178 1.134 matt
1179 1.134 matt /*
1180 1.188 yamt * sched_pstats:
1181 1.188 yamt *
1182 1.188 yamt * Update process statistics and check CPU resource allocation.
1183 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
1184 1.188 yamt * priorities.
1185 1.130 nathanw */
1186 1.188 yamt /* ARGSUSED */
1187 1.113 gmcgarry void
1188 1.188 yamt sched_pstats(void *arg)
1189 1.113 gmcgarry {
1190 1.188 yamt struct rlimit *rlim;
1191 1.188 yamt struct lwp *l;
1192 1.188 yamt struct proc *p;
1193 1.204 ad int sig, clkhz;
1194 1.188 yamt long runtm;
1195 1.113 gmcgarry
1196 1.188 yamt sched_pstats_ticks++;
1197 1.174 ad
1198 1.228 ad mutex_enter(proc_lock);
1199 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1200 1.238 ad if ((p->p_flag & PK_MARKER) != 0)
1201 1.238 ad continue;
1202 1.238 ad
1203 1.188 yamt /*
1204 1.188 yamt * Increment time in/out of memory and sleep time (if
1205 1.188 yamt * sleeping). We ignore overflow; with 16-bit int's
1206 1.188 yamt * (remember them?) overflow takes 45 days.
1207 1.188 yamt */
1208 1.229 ad mutex_enter(p->p_lock);
1209 1.188 yamt mutex_spin_enter(&p->p_stmutex);
1210 1.212 yamt runtm = p->p_rtime.sec;
1211 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1212 1.188 yamt if ((l->l_flag & LW_IDLE) != 0)
1213 1.188 yamt continue;
1214 1.188 yamt lwp_lock(l);
1215 1.212 yamt runtm += l->l_rtime.sec;
1216 1.188 yamt l->l_swtime++;
1217 1.241.2.3 wrstuden sched_lwp_stats(l);
1218 1.188 yamt lwp_unlock(l);
1219 1.113 gmcgarry
1220 1.188 yamt /*
1221 1.188 yamt * p_pctcpu is only for ps.
1222 1.188 yamt */
1223 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1224 1.188 yamt if (l->l_slptime < 1) {
1225 1.188 yamt clkhz = stathz != 0 ? stathz : hz;
1226 1.188 yamt #if (FSHIFT >= CCPU_SHIFT)
1227 1.188 yamt l->l_pctcpu += (clkhz == 100) ?
1228 1.188 yamt ((fixpt_t)l->l_cpticks) <<
1229 1.188 yamt (FSHIFT - CCPU_SHIFT) :
1230 1.188 yamt 100 * (((fixpt_t) p->p_cpticks)
1231 1.188 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
1232 1.188 yamt #else
1233 1.188 yamt l->l_pctcpu += ((FSCALE - ccpu) *
1234 1.188 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
1235 1.146 matt #endif
1236 1.188 yamt l->l_cpticks = 0;
1237 1.188 yamt }
1238 1.188 yamt }
1239 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1240 1.188 yamt mutex_spin_exit(&p->p_stmutex);
1241 1.174 ad
1242 1.188 yamt /*
1243 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1244 1.188 yamt * If over max, kill it.
1245 1.188 yamt */
1246 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1247 1.188 yamt sig = 0;
1248 1.188 yamt if (runtm >= rlim->rlim_cur) {
1249 1.188 yamt if (runtm >= rlim->rlim_max)
1250 1.188 yamt sig = SIGKILL;
1251 1.188 yamt else {
1252 1.188 yamt sig = SIGXCPU;
1253 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1254 1.188 yamt rlim->rlim_cur += 5;
1255 1.188 yamt }
1256 1.188 yamt }
1257 1.229 ad mutex_exit(p->p_lock);
1258 1.228 ad if (sig)
1259 1.188 yamt psignal(p, sig);
1260 1.174 ad }
1261 1.228 ad mutex_exit(proc_lock);
1262 1.188 yamt uvm_meter();
1263 1.191 ad cv_wakeup(&lbolt);
1264 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
1265 1.113 gmcgarry }
1266