Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.243
      1  1.243        ad /*	$NetBSD: kern_synch.c,v 1.243 2008/05/19 17:06:02 ad Exp $	*/
      2   1.63   thorpej 
      3   1.63   thorpej /*-
      4  1.218        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.63   thorpej  * All rights reserved.
      6   1.63   thorpej  *
      7   1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  1.188      yamt  * Daniel Sieger.
     11   1.63   thorpej  *
     12   1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13   1.63   thorpej  * modification, are permitted provided that the following conditions
     14   1.63   thorpej  * are met:
     15   1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16   1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17   1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19   1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20   1.63   thorpej  *
     21   1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22   1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23   1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24   1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25   1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26   1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27   1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28   1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29   1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30   1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31   1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     32   1.63   thorpej  */
     33   1.26       cgd 
     34   1.26       cgd /*-
     35   1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36   1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     37   1.26       cgd  * (c) UNIX System Laboratories, Inc.
     38   1.26       cgd  * All or some portions of this file are derived from material licensed
     39   1.26       cgd  * to the University of California by American Telephone and Telegraph
     40   1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41   1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     42   1.26       cgd  *
     43   1.26       cgd  * Redistribution and use in source and binary forms, with or without
     44   1.26       cgd  * modification, are permitted provided that the following conditions
     45   1.26       cgd  * are met:
     46   1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     47   1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     48   1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49   1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     50   1.26       cgd  *    documentation and/or other materials provided with the distribution.
     51  1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     52   1.26       cgd  *    may be used to endorse or promote products derived from this software
     53   1.26       cgd  *    without specific prior written permission.
     54   1.26       cgd  *
     55   1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56   1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57   1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58   1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59   1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60   1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61   1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62   1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63   1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64   1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65   1.26       cgd  * SUCH DAMAGE.
     66   1.26       cgd  *
     67   1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68   1.26       cgd  */
     69  1.106     lukem 
     70  1.106     lukem #include <sys/cdefs.h>
     71  1.243        ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.243 2008/05/19 17:06:02 ad Exp $");
     72   1.48       mrg 
     73  1.109      yamt #include "opt_kstack.h"
     74  1.110    briggs #include "opt_perfctrs.h"
     75   1.26       cgd 
     76  1.174        ad #define	__MUTEX_PRIVATE
     77  1.174        ad 
     78   1.26       cgd #include <sys/param.h>
     79   1.26       cgd #include <sys/systm.h>
     80   1.26       cgd #include <sys/proc.h>
     81   1.26       cgd #include <sys/kernel.h>
     82  1.111    briggs #if defined(PERFCTRS)
     83  1.110    briggs #include <sys/pmc.h>
     84  1.111    briggs #endif
     85  1.188      yamt #include <sys/cpu.h>
     86   1.26       cgd #include <sys/resourcevar.h>
     87   1.55      ross #include <sys/sched.h>
     88  1.179       dsl #include <sys/syscall_stats.h>
     89  1.174        ad #include <sys/sleepq.h>
     90  1.174        ad #include <sys/lockdebug.h>
     91  1.190        ad #include <sys/evcnt.h>
     92  1.199        ad #include <sys/intr.h>
     93  1.207        ad #include <sys/lwpctl.h>
     94  1.209        ad #include <sys/atomic.h>
     95  1.215        ad #include <sys/simplelock.h>
     96   1.47       mrg 
     97   1.47       mrg #include <uvm/uvm_extern.h>
     98   1.47       mrg 
     99  1.231        ad #include <dev/lockstat.h>
    100  1.231        ad 
    101  1.221        ad static u_int	sched_unsleep(struct lwp *, bool);
    102  1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    103  1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    104  1.122   thorpej 
    105  1.174        ad syncobj_t sleep_syncobj = {
    106  1.174        ad 	SOBJ_SLEEPQ_SORTED,
    107  1.174        ad 	sleepq_unsleep,
    108  1.184      yamt 	sleepq_changepri,
    109  1.184      yamt 	sleepq_lendpri,
    110  1.184      yamt 	syncobj_noowner,
    111  1.174        ad };
    112  1.174        ad 
    113  1.174        ad syncobj_t sched_syncobj = {
    114  1.174        ad 	SOBJ_SLEEPQ_SORTED,
    115  1.174        ad 	sched_unsleep,
    116  1.184      yamt 	sched_changepri,
    117  1.184      yamt 	sched_lendpri,
    118  1.184      yamt 	syncobj_noowner,
    119  1.174        ad };
    120  1.122   thorpej 
    121  1.223        ad callout_t 	sched_pstats_ch;
    122  1.223        ad unsigned	sched_pstats_ticks;
    123  1.223        ad kcondvar_t	lbolt;			/* once a second sleep address */
    124  1.223        ad 
    125  1.237     rmind /* Preemption event counters */
    126  1.231        ad static struct evcnt kpreempt_ev_crit;
    127  1.231        ad static struct evcnt kpreempt_ev_klock;
    128  1.231        ad static struct evcnt kpreempt_ev_ipl;
    129  1.231        ad static struct evcnt kpreempt_ev_immed;
    130  1.231        ad 
    131  1.231        ad /*
    132  1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    133  1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    134  1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    135  1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    136  1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    137  1.174        ad  * it can be made higher to block network software interrupts after panics.
    138   1.26       cgd  */
    139  1.174        ad int	safepri;
    140   1.26       cgd 
    141  1.237     rmind void
    142  1.237     rmind sched_init(void)
    143  1.237     rmind {
    144  1.237     rmind 
    145  1.237     rmind 	cv_init(&lbolt, "lbolt");
    146  1.237     rmind 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    147  1.237     rmind 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    148  1.237     rmind 
    149  1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    150  1.237     rmind 	   "kpreempt", "defer: critical section");
    151  1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    152  1.237     rmind 	   "kpreempt", "defer: kernel_lock");
    153  1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
    154  1.237     rmind 	   "kpreempt", "defer: IPL");
    155  1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    156  1.237     rmind 	   "kpreempt", "immediate");
    157  1.237     rmind 
    158  1.237     rmind 	sched_pstats(NULL);
    159  1.237     rmind }
    160  1.237     rmind 
    161   1.26       cgd /*
    162  1.174        ad  * OBSOLETE INTERFACE
    163  1.174        ad  *
    164   1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    165   1.26       cgd  * performed on the specified identifier.  The process will then be made
    166  1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    167  1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    168   1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    169   1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    170   1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    171   1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    172   1.26       cgd  * call should be interrupted by the signal (return EINTR).
    173   1.77   thorpej  *
    174  1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    175  1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    176  1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    177  1.174        ad  * return.
    178   1.26       cgd  */
    179   1.26       cgd int
    180  1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    181  1.174        ad 	volatile struct simplelock *interlock)
    182   1.26       cgd {
    183  1.122   thorpej 	struct lwp *l = curlwp;
    184  1.174        ad 	sleepq_t *sq;
    185  1.188      yamt 	int error;
    186   1.26       cgd 
    187  1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    188  1.204        ad 
    189  1.174        ad 	if (sleepq_dontsleep(l)) {
    190  1.174        ad 		(void)sleepq_abort(NULL, 0);
    191  1.174        ad 		if ((priority & PNORELOCK) != 0)
    192   1.77   thorpej 			simple_unlock(interlock);
    193  1.174        ad 		return 0;
    194   1.26       cgd 	}
    195   1.78  sommerfe 
    196  1.204        ad 	l->l_kpriority = true;
    197  1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    198  1.174        ad 	sleepq_enter(sq, l);
    199  1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    200   1.42       cgd 
    201  1.174        ad 	if (interlock != NULL) {
    202  1.204        ad 		KASSERT(simple_lock_held(interlock));
    203  1.174        ad 		simple_unlock(interlock);
    204  1.150       chs 	}
    205  1.150       chs 
    206  1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    207  1.126        pk 
    208  1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    209  1.126        pk 		simple_lock(interlock);
    210  1.174        ad 
    211  1.174        ad 	return error;
    212   1.26       cgd }
    213   1.26       cgd 
    214  1.187        ad int
    215  1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    216  1.187        ad 	kmutex_t *mtx)
    217  1.187        ad {
    218  1.187        ad 	struct lwp *l = curlwp;
    219  1.187        ad 	sleepq_t *sq;
    220  1.188      yamt 	int error;
    221  1.187        ad 
    222  1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    223  1.204        ad 
    224  1.187        ad 	if (sleepq_dontsleep(l)) {
    225  1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    226  1.187        ad 		return 0;
    227  1.187        ad 	}
    228  1.187        ad 
    229  1.204        ad 	l->l_kpriority = true;
    230  1.187        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    231  1.187        ad 	sleepq_enter(sq, l);
    232  1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    233  1.187        ad 	mutex_exit(mtx);
    234  1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    235  1.187        ad 
    236  1.187        ad 	if ((priority & PNORELOCK) == 0)
    237  1.187        ad 		mutex_enter(mtx);
    238  1.187        ad 
    239  1.187        ad 	return error;
    240  1.187        ad }
    241  1.187        ad 
    242   1.26       cgd /*
    243  1.174        ad  * General sleep call for situations where a wake-up is not expected.
    244   1.26       cgd  */
    245  1.174        ad int
    246  1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    247   1.26       cgd {
    248  1.174        ad 	struct lwp *l = curlwp;
    249  1.174        ad 	sleepq_t *sq;
    250  1.174        ad 	int error;
    251   1.26       cgd 
    252  1.174        ad 	if (sleepq_dontsleep(l))
    253  1.174        ad 		return sleepq_abort(NULL, 0);
    254   1.26       cgd 
    255  1.174        ad 	if (mtx != NULL)
    256  1.174        ad 		mutex_exit(mtx);
    257  1.204        ad 	l->l_kpriority = true;
    258  1.174        ad 	sq = sleeptab_lookup(&sleeptab, l);
    259  1.174        ad 	sleepq_enter(sq, l);
    260  1.204        ad 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    261  1.188      yamt 	error = sleepq_block(timo, intr);
    262  1.174        ad 	if (mtx != NULL)
    263  1.174        ad 		mutex_enter(mtx);
    264   1.83   thorpej 
    265  1.174        ad 	return error;
    266  1.139        cl }
    267  1.139        cl 
    268   1.26       cgd /*
    269  1.174        ad  * OBSOLETE INTERFACE
    270  1.174        ad  *
    271   1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    272   1.26       cgd  */
    273   1.26       cgd void
    274  1.174        ad wakeup(wchan_t ident)
    275   1.26       cgd {
    276  1.174        ad 	sleepq_t *sq;
    277   1.83   thorpej 
    278  1.174        ad 	if (cold)
    279  1.174        ad 		return;
    280   1.83   thorpej 
    281  1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    282  1.174        ad 	sleepq_wake(sq, ident, (u_int)-1);
    283   1.63   thorpej }
    284   1.63   thorpej 
    285   1.63   thorpej /*
    286  1.174        ad  * OBSOLETE INTERFACE
    287  1.174        ad  *
    288   1.63   thorpej  * Make the highest priority process first in line on the specified
    289   1.63   thorpej  * identifier runnable.
    290   1.63   thorpej  */
    291  1.174        ad void
    292  1.174        ad wakeup_one(wchan_t ident)
    293   1.63   thorpej {
    294  1.174        ad 	sleepq_t *sq;
    295   1.63   thorpej 
    296  1.174        ad 	if (cold)
    297  1.174        ad 		return;
    298  1.188      yamt 
    299  1.174        ad 	sq = sleeptab_lookup(&sleeptab, ident);
    300  1.174        ad 	sleepq_wake(sq, ident, 1);
    301  1.174        ad }
    302   1.63   thorpej 
    303  1.117  gmcgarry 
    304  1.117  gmcgarry /*
    305  1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    306  1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    307  1.198        ad  * current process explicitly requests it (eg sched_yield(2)).
    308  1.117  gmcgarry  */
    309  1.117  gmcgarry void
    310  1.117  gmcgarry yield(void)
    311  1.117  gmcgarry {
    312  1.122   thorpej 	struct lwp *l = curlwp;
    313  1.117  gmcgarry 
    314  1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    315  1.174        ad 	lwp_lock(l);
    316  1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    317  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    318  1.204        ad 	l->l_kpriority = false;
    319  1.188      yamt 	(void)mi_switch(l);
    320  1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    321   1.69   thorpej }
    322   1.69   thorpej 
    323   1.69   thorpej /*
    324   1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    325  1.156    rpaulo  * and performs an involuntary context switch.
    326   1.69   thorpej  */
    327   1.69   thorpej void
    328  1.174        ad preempt(void)
    329   1.69   thorpej {
    330  1.122   thorpej 	struct lwp *l = curlwp;
    331   1.69   thorpej 
    332  1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    333  1.174        ad 	lwp_lock(l);
    334  1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    335  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    336  1.204        ad 	l->l_kpriority = false;
    337  1.174        ad 	l->l_nivcsw++;
    338  1.188      yamt 	(void)mi_switch(l);
    339  1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    340   1.69   thorpej }
    341   1.69   thorpej 
    342  1.234        ad /*
    343  1.234        ad  * Handle a request made by another agent to preempt the current LWP
    344  1.234        ad  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    345  1.234        ad  *
    346  1.234        ad  * Character addresses for lockstat only.
    347  1.234        ad  */
    348  1.231        ad static char	in_critical_section;
    349  1.231        ad static char	kernel_lock_held;
    350  1.231        ad static char	spl_raised;
    351  1.231        ad static char	is_softint;
    352  1.231        ad 
    353  1.231        ad bool
    354  1.231        ad kpreempt(uintptr_t where)
    355  1.231        ad {
    356  1.231        ad 	uintptr_t failed;
    357  1.231        ad 	lwp_t *l;
    358  1.231        ad 	int s, dop;
    359  1.231        ad 
    360  1.231        ad 	l = curlwp;
    361  1.231        ad 	failed = 0;
    362  1.231        ad 	while ((dop = l->l_dopreempt) != 0) {
    363  1.231        ad 		if (l->l_stat != LSONPROC) {
    364  1.231        ad 			/*
    365  1.231        ad 			 * About to block (or die), let it happen.
    366  1.231        ad 			 * Doesn't really count as "preemption has
    367  1.231        ad 			 * been blocked", since we're going to
    368  1.231        ad 			 * context switch.
    369  1.231        ad 			 */
    370  1.231        ad 			l->l_dopreempt = 0;
    371  1.231        ad 			return true;
    372  1.231        ad 		}
    373  1.231        ad 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    374  1.231        ad 			/* Can't preempt idle loop, don't count as failure. */
    375  1.231        ad 		    	l->l_dopreempt = 0;
    376  1.231        ad 		    	return true;
    377  1.231        ad 		}
    378  1.231        ad 		if (__predict_false(l->l_nopreempt != 0)) {
    379  1.231        ad 			/* LWP holds preemption disabled, explicitly. */
    380  1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    381  1.234        ad 				kpreempt_ev_crit.ev_count++;
    382  1.231        ad 			}
    383  1.231        ad 			failed = (uintptr_t)&in_critical_section;
    384  1.231        ad 			break;
    385  1.231        ad 		}
    386  1.231        ad 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    387  1.231        ad 		    	/* Can't preempt soft interrupts yet. */
    388  1.231        ad 		    	l->l_dopreempt = 0;
    389  1.231        ad 		    	failed = (uintptr_t)&is_softint;
    390  1.231        ad 		    	break;
    391  1.231        ad 		}
    392  1.231        ad 		s = splsched();
    393  1.231        ad 		if (__predict_false(l->l_blcnt != 0 ||
    394  1.231        ad 		    curcpu()->ci_biglock_wanted != NULL)) {
    395  1.231        ad 			/* Hold or want kernel_lock, code is not MT safe. */
    396  1.231        ad 			splx(s);
    397  1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    398  1.234        ad 				kpreempt_ev_klock.ev_count++;
    399  1.231        ad 			}
    400  1.231        ad 			failed = (uintptr_t)&kernel_lock_held;
    401  1.231        ad 			break;
    402  1.231        ad 		}
    403  1.231        ad 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    404  1.231        ad 			/*
    405  1.231        ad 			 * It may be that the IPL is too high.
    406  1.231        ad 			 * kpreempt_enter() can schedule an
    407  1.231        ad 			 * interrupt to retry later.
    408  1.231        ad 			 */
    409  1.231        ad 			splx(s);
    410  1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    411  1.234        ad 				kpreempt_ev_ipl.ev_count++;
    412  1.231        ad 			}
    413  1.231        ad 			failed = (uintptr_t)&spl_raised;
    414  1.231        ad 			break;
    415  1.231        ad 		}
    416  1.231        ad 		/* Do it! */
    417  1.231        ad 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    418  1.234        ad 			kpreempt_ev_immed.ev_count++;
    419  1.231        ad 		}
    420  1.231        ad 		lwp_lock(l);
    421  1.231        ad 		mi_switch(l);
    422  1.231        ad 		l->l_nopreempt++;
    423  1.231        ad 		splx(s);
    424  1.231        ad 
    425  1.231        ad 		/* Take care of any MD cleanup. */
    426  1.231        ad 		cpu_kpreempt_exit(where);
    427  1.231        ad 		l->l_nopreempt--;
    428  1.231        ad 	}
    429  1.231        ad 
    430  1.231        ad 	/* Record preemption failure for reporting via lockstat. */
    431  1.231        ad 	if (__predict_false(failed)) {
    432  1.240        ad 		int lsflag = 0;
    433  1.231        ad 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    434  1.231        ad 		LOCKSTAT_ENTER(lsflag);
    435  1.231        ad 		/* Might recurse, make it atomic. */
    436  1.231        ad 		if (__predict_false(lsflag)) {
    437  1.231        ad 			if (where == 0) {
    438  1.231        ad 				where = (uintptr_t)__builtin_return_address(0);
    439  1.231        ad 			}
    440  1.231        ad 			if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
    441  1.231        ad 			    NULL, (void *)where) == NULL) {
    442  1.231        ad 				LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    443  1.231        ad 				l->l_pfaillock = failed;
    444  1.231        ad 			}
    445  1.231        ad 		}
    446  1.231        ad 		LOCKSTAT_EXIT(lsflag);
    447  1.231        ad 	}
    448  1.231        ad 
    449  1.231        ad 	return failed;
    450  1.231        ad }
    451  1.231        ad 
    452   1.69   thorpej /*
    453  1.231        ad  * Return true if preemption is explicitly disabled.
    454  1.230        ad  */
    455  1.231        ad bool
    456  1.231        ad kpreempt_disabled(void)
    457  1.231        ad {
    458  1.231        ad 	lwp_t *l;
    459  1.231        ad 
    460  1.231        ad 	l = curlwp;
    461  1.231        ad 
    462  1.231        ad 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    463  1.231        ad 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    464  1.231        ad }
    465  1.230        ad 
    466  1.230        ad /*
    467  1.231        ad  * Disable kernel preemption.
    468  1.230        ad  */
    469  1.230        ad void
    470  1.231        ad kpreempt_disable(void)
    471  1.230        ad {
    472  1.230        ad 
    473  1.231        ad 	KPREEMPT_DISABLE(curlwp);
    474  1.230        ad }
    475  1.230        ad 
    476  1.230        ad /*
    477  1.231        ad  * Reenable kernel preemption.
    478  1.230        ad  */
    479  1.231        ad void
    480  1.231        ad kpreempt_enable(void)
    481  1.230        ad {
    482  1.230        ad 
    483  1.231        ad 	KPREEMPT_ENABLE(curlwp);
    484  1.230        ad }
    485  1.230        ad 
    486  1.230        ad /*
    487  1.188      yamt  * Compute the amount of time during which the current lwp was running.
    488  1.130   nathanw  *
    489  1.188      yamt  * - update l_rtime unless it's an idle lwp.
    490  1.188      yamt  */
    491  1.188      yamt 
    492  1.199        ad void
    493  1.212      yamt updatertime(lwp_t *l, const struct bintime *now)
    494  1.188      yamt {
    495  1.188      yamt 
    496  1.199        ad 	if ((l->l_flag & LW_IDLE) != 0)
    497  1.188      yamt 		return;
    498  1.188      yamt 
    499  1.212      yamt 	/* rtime += now - stime */
    500  1.212      yamt 	bintime_add(&l->l_rtime, now);
    501  1.212      yamt 	bintime_sub(&l->l_rtime, &l->l_stime);
    502  1.188      yamt }
    503  1.188      yamt 
    504  1.188      yamt /*
    505  1.188      yamt  * The machine independent parts of context switch.
    506  1.188      yamt  *
    507  1.188      yamt  * Returns 1 if another LWP was actually run.
    508   1.26       cgd  */
    509  1.122   thorpej int
    510  1.199        ad mi_switch(lwp_t *l)
    511   1.26       cgd {
    512  1.216     rmind 	struct cpu_info *ci, *tci = NULL;
    513   1.76   thorpej 	struct schedstate_percpu *spc;
    514  1.188      yamt 	struct lwp *newl;
    515  1.174        ad 	int retval, oldspl;
    516  1.212      yamt 	struct bintime bt;
    517  1.199        ad 	bool returning;
    518   1.26       cgd 
    519  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    520  1.231        ad 	KASSERT(kpreempt_disabled());
    521  1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    522  1.174        ad 
    523  1.174        ad #ifdef KSTACK_CHECK_MAGIC
    524  1.174        ad 	kstack_check_magic(l);
    525  1.174        ad #endif
    526   1.83   thorpej 
    527  1.212      yamt 	binuptime(&bt);
    528  1.199        ad 
    529  1.231        ad 	KASSERT(l->l_cpu == curcpu());
    530  1.196        ad 	ci = l->l_cpu;
    531  1.196        ad 	spc = &ci->ci_schedstate;
    532  1.199        ad 	returning = false;
    533  1.190        ad 	newl = NULL;
    534  1.190        ad 
    535  1.199        ad 	/*
    536  1.199        ad 	 * If we have been asked to switch to a specific LWP, then there
    537  1.199        ad 	 * is no need to inspect the run queues.  If a soft interrupt is
    538  1.199        ad 	 * blocking, then return to the interrupted thread without adjusting
    539  1.199        ad 	 * VM context or its start time: neither have been changed in order
    540  1.199        ad 	 * to take the interrupt.
    541  1.199        ad 	 */
    542  1.190        ad 	if (l->l_switchto != NULL) {
    543  1.204        ad 		if ((l->l_pflag & LP_INTR) != 0) {
    544  1.199        ad 			returning = true;
    545  1.199        ad 			softint_block(l);
    546  1.199        ad 			if ((l->l_flag & LW_TIMEINTR) != 0)
    547  1.212      yamt 				updatertime(l, &bt);
    548  1.199        ad 		}
    549  1.190        ad 		newl = l->l_switchto;
    550  1.190        ad 		l->l_switchto = NULL;
    551  1.190        ad 	}
    552  1.204        ad #ifndef __HAVE_FAST_SOFTINTS
    553  1.204        ad 	else if (ci->ci_data.cpu_softints != 0) {
    554  1.204        ad 		/* There are pending soft interrupts, so pick one. */
    555  1.204        ad 		newl = softint_picklwp();
    556  1.204        ad 		newl->l_stat = LSONPROC;
    557  1.204        ad 		newl->l_flag |= LW_RUNNING;
    558  1.204        ad 	}
    559  1.204        ad #endif	/* !__HAVE_FAST_SOFTINTS */
    560  1.190        ad 
    561  1.180       dsl 	/* Count time spent in current system call */
    562  1.199        ad 	if (!returning) {
    563  1.199        ad 		SYSCALL_TIME_SLEEP(l);
    564  1.180       dsl 
    565  1.199        ad 		/*
    566  1.199        ad 		 * XXXSMP If we are using h/w performance counters,
    567  1.199        ad 		 * save context.
    568  1.199        ad 		 */
    569  1.174        ad #if PERFCTRS
    570  1.199        ad 		if (PMC_ENABLED(l->l_proc)) {
    571  1.199        ad 			pmc_save_context(l->l_proc);
    572  1.199        ad 		}
    573  1.199        ad #endif
    574  1.212      yamt 		updatertime(l, &bt);
    575  1.174        ad 	}
    576  1.113  gmcgarry 
    577  1.113  gmcgarry 	/*
    578  1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    579  1.113  gmcgarry 	 */
    580  1.174        ad 	KASSERT(l->l_stat != LSRUN);
    581  1.216     rmind 	if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
    582  1.217        ad 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    583  1.216     rmind 
    584  1.220     rmind 		if (l->l_target_cpu == l->l_cpu) {
    585  1.220     rmind 			l->l_target_cpu = NULL;
    586  1.220     rmind 		} else {
    587  1.220     rmind 			tci = l->l_target_cpu;
    588  1.220     rmind 		}
    589  1.220     rmind 
    590  1.216     rmind 		if (__predict_false(tci != NULL)) {
    591  1.216     rmind 			/* Double-lock the runqueues */
    592  1.216     rmind 			spc_dlock(ci, tci);
    593  1.216     rmind 		} else {
    594  1.216     rmind 			/* Lock the runqueue */
    595  1.216     rmind 			spc_lock(ci);
    596  1.216     rmind 		}
    597  1.216     rmind 
    598  1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    599  1.188      yamt 			l->l_stat = LSRUN;
    600  1.216     rmind 			if (__predict_false(tci != NULL)) {
    601  1.216     rmind 				/*
    602  1.216     rmind 				 * Set the new CPU, lock and unset the
    603  1.216     rmind 				 * l_target_cpu - thread will be enqueued
    604  1.216     rmind 				 * to the runqueue of target CPU.
    605  1.216     rmind 				 */
    606  1.216     rmind 				l->l_cpu = tci;
    607  1.216     rmind 				lwp_setlock(l, tci->ci_schedstate.spc_mutex);
    608  1.216     rmind 				l->l_target_cpu = NULL;
    609  1.216     rmind 			} else {
    610  1.216     rmind 				lwp_setlock(l, spc->spc_mutex);
    611  1.216     rmind 			}
    612  1.188      yamt 			sched_enqueue(l, true);
    613  1.216     rmind 		} else {
    614  1.216     rmind 			KASSERT(tci == NULL);
    615  1.188      yamt 			l->l_stat = LSIDL;
    616  1.216     rmind 		}
    617  1.216     rmind 	} else {
    618  1.216     rmind 		/* Lock the runqueue */
    619  1.216     rmind 		spc_lock(ci);
    620  1.174        ad 	}
    621  1.174        ad 
    622  1.174        ad 	/*
    623  1.201     rmind 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    624  1.209        ad 	 * If no LWP is runnable, select the idle LWP.
    625  1.209        ad 	 *
    626  1.209        ad 	 * Note that spc_lwplock might not necessary be held, and
    627  1.209        ad 	 * new thread would be unlocked after setting the LWP-lock.
    628  1.174        ad 	 */
    629  1.190        ad 	if (newl == NULL) {
    630  1.190        ad 		newl = sched_nextlwp();
    631  1.190        ad 		if (newl != NULL) {
    632  1.190        ad 			sched_dequeue(newl);
    633  1.190        ad 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    634  1.190        ad 			newl->l_stat = LSONPROC;
    635  1.196        ad 			newl->l_cpu = ci;
    636  1.190        ad 			newl->l_flag |= LW_RUNNING;
    637  1.217        ad 			lwp_setlock(newl, spc->spc_lwplock);
    638  1.190        ad 		} else {
    639  1.196        ad 			newl = ci->ci_data.cpu_idlelwp;
    640  1.190        ad 			newl->l_stat = LSONPROC;
    641  1.190        ad 			newl->l_flag |= LW_RUNNING;
    642  1.190        ad 		}
    643  1.204        ad 		/*
    644  1.204        ad 		 * Only clear want_resched if there are no
    645  1.204        ad 		 * pending (slow) software interrupts.
    646  1.204        ad 		 */
    647  1.204        ad 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    648  1.199        ad 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    649  1.204        ad 		spc->spc_curpriority = lwp_eprio(newl);
    650  1.199        ad 	}
    651  1.199        ad 
    652  1.204        ad 	/* Items that must be updated with the CPU locked. */
    653  1.199        ad 	if (!returning) {
    654  1.204        ad 		/* Update the new LWP's start time. */
    655  1.212      yamt 		newl->l_stime = bt;
    656  1.204        ad 
    657  1.199        ad 		/*
    658  1.204        ad 		 * ci_curlwp changes when a fast soft interrupt occurs.
    659  1.204        ad 		 * We use cpu_onproc to keep track of which kernel or
    660  1.204        ad 		 * user thread is running 'underneath' the software
    661  1.204        ad 		 * interrupt.  This is important for time accounting,
    662  1.204        ad 		 * itimers and forcing user threads to preempt (aston).
    663  1.199        ad 		 */
    664  1.204        ad 		ci->ci_data.cpu_onproc = newl;
    665  1.188      yamt 	}
    666  1.188      yamt 
    667  1.241        ad 	/*
    668  1.241        ad 	 * Preemption related tasks.  Must be done with the current
    669  1.241        ad 	 * CPU locked.
    670  1.241        ad 	 */
    671  1.241        ad 	cpu_did_resched(l);
    672  1.231        ad 	l->l_dopreempt = 0;
    673  1.231        ad 	if (__predict_false(l->l_pfailaddr != 0)) {
    674  1.231        ad 		LOCKSTAT_FLAG(lsflag);
    675  1.231        ad 		LOCKSTAT_ENTER(lsflag);
    676  1.231        ad 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    677  1.231        ad 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    678  1.231        ad 		    1, l->l_pfailtime, l->l_pfailaddr);
    679  1.231        ad 		LOCKSTAT_EXIT(lsflag);
    680  1.231        ad 		l->l_pfailtime = 0;
    681  1.231        ad 		l->l_pfaillock = 0;
    682  1.231        ad 		l->l_pfailaddr = 0;
    683  1.231        ad 	}
    684  1.231        ad 
    685  1.188      yamt 	if (l != newl) {
    686  1.188      yamt 		struct lwp *prevlwp;
    687  1.174        ad 
    688  1.209        ad 		/* Release all locks, but leave the current LWP locked */
    689  1.216     rmind 		if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
    690  1.216     rmind 			/*
    691  1.216     rmind 			 * In case of migration, drop the local runqueue
    692  1.216     rmind 			 * lock, thread is on other runqueue now.
    693  1.216     rmind 			 */
    694  1.216     rmind 			if (__predict_false(tci != NULL))
    695  1.216     rmind 				spc_unlock(ci);
    696  1.209        ad 			/*
    697  1.209        ad 			 * Drop spc_lwplock, if the current LWP has been moved
    698  1.209        ad 			 * to the run queue (it is now locked by spc_mutex).
    699  1.209        ad 			 */
    700  1.217        ad 			mutex_spin_exit(spc->spc_lwplock);
    701  1.188      yamt 		} else {
    702  1.209        ad 			/*
    703  1.209        ad 			 * Otherwise, drop the spc_mutex, we are done with the
    704  1.209        ad 			 * run queues.
    705  1.209        ad 			 */
    706  1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    707  1.216     rmind 			KASSERT(tci == NULL);
    708  1.188      yamt 		}
    709  1.188      yamt 
    710  1.209        ad 		/*
    711  1.209        ad 		 * Mark that context switch is going to be perfomed
    712  1.209        ad 		 * for this LWP, to protect it from being switched
    713  1.209        ad 		 * to on another CPU.
    714  1.209        ad 		 */
    715  1.209        ad 		KASSERT(l->l_ctxswtch == 0);
    716  1.209        ad 		l->l_ctxswtch = 1;
    717  1.209        ad 		l->l_ncsw++;
    718  1.209        ad 		l->l_flag &= ~LW_RUNNING;
    719  1.209        ad 
    720  1.209        ad 		/*
    721  1.209        ad 		 * Increase the count of spin-mutexes before the release
    722  1.209        ad 		 * of the last lock - we must remain at IPL_SCHED during
    723  1.209        ad 		 * the context switch.
    724  1.209        ad 		 */
    725  1.209        ad 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    726  1.209        ad 		ci->ci_mtx_count--;
    727  1.209        ad 		lwp_unlock(l);
    728  1.209        ad 
    729  1.218        ad 		/* Count the context switch on this CPU. */
    730  1.218        ad 		ci->ci_data.cpu_nswtch++;
    731  1.188      yamt 
    732  1.209        ad 		/* Update status for lwpctl, if present. */
    733  1.209        ad 		if (l->l_lwpctl != NULL)
    734  1.209        ad 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    735  1.209        ad 
    736  1.199        ad 		/*
    737  1.199        ad 		 * Save old VM context, unless a soft interrupt
    738  1.199        ad 		 * handler is blocking.
    739  1.199        ad 		 */
    740  1.199        ad 		if (!returning)
    741  1.199        ad 			pmap_deactivate(l);
    742  1.188      yamt 
    743  1.209        ad 		/*
    744  1.209        ad 		 * We may need to spin-wait for if 'newl' is still
    745  1.209        ad 		 * context switching on another CPU.
    746  1.209        ad 		 */
    747  1.209        ad 		if (newl->l_ctxswtch != 0) {
    748  1.209        ad 			u_int count;
    749  1.209        ad 			count = SPINLOCK_BACKOFF_MIN;
    750  1.209        ad 			while (newl->l_ctxswtch)
    751  1.209        ad 				SPINLOCK_BACKOFF(count);
    752  1.209        ad 		}
    753  1.207        ad 
    754  1.188      yamt 		/* Switch to the new LWP.. */
    755  1.204        ad 		prevlwp = cpu_switchto(l, newl, returning);
    756  1.207        ad 		ci = curcpu();
    757  1.207        ad 
    758  1.188      yamt 		/*
    759  1.209        ad 		 * Switched away - we have new curlwp.
    760  1.209        ad 		 * Restore VM context and IPL.
    761  1.188      yamt 		 */
    762  1.209        ad 		pmap_activate(l);
    763  1.188      yamt 		if (prevlwp != NULL) {
    764  1.209        ad 			/* Normalize the count of the spin-mutexes */
    765  1.209        ad 			ci->ci_mtx_count++;
    766  1.209        ad 			/* Unmark the state of context switch */
    767  1.209        ad 			membar_exit();
    768  1.209        ad 			prevlwp->l_ctxswtch = 0;
    769  1.188      yamt 		}
    770  1.209        ad 
    771  1.209        ad 		/* Update status for lwpctl, if present. */
    772  1.219        ad 		if (l->l_lwpctl != NULL) {
    773  1.209        ad 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    774  1.219        ad 			l->l_lwpctl->lc_pctr++;
    775  1.219        ad 		}
    776  1.174        ad 
    777  1.231        ad 		KASSERT(l->l_cpu == ci);
    778  1.231        ad 		splx(oldspl);
    779  1.188      yamt 		retval = 1;
    780  1.188      yamt 	} else {
    781  1.188      yamt 		/* Nothing to do - just unlock and return. */
    782  1.216     rmind 		KASSERT(tci == NULL);
    783  1.216     rmind 		spc_unlock(ci);
    784  1.188      yamt 		lwp_unlock(l);
    785  1.122   thorpej 		retval = 0;
    786  1.122   thorpej 	}
    787  1.110    briggs 
    788  1.188      yamt 	KASSERT(l == curlwp);
    789  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    790  1.188      yamt 
    791  1.110    briggs 	/*
    792  1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    793  1.231        ad 	 * XXXSMP preemption problem.
    794   1.26       cgd 	 */
    795  1.114  gmcgarry #if PERFCTRS
    796  1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    797  1.175  christos 		pmc_restore_context(l->l_proc);
    798  1.166  christos 	}
    799  1.114  gmcgarry #endif
    800  1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    801  1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    802  1.169      yamt 
    803  1.122   thorpej 	return retval;
    804   1.26       cgd }
    805   1.26       cgd 
    806   1.26       cgd /*
    807  1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    808  1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    809  1.174        ad  *
    810  1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    811   1.26       cgd  */
    812   1.26       cgd void
    813  1.122   thorpej setrunnable(struct lwp *l)
    814   1.26       cgd {
    815  1.122   thorpej 	struct proc *p = l->l_proc;
    816  1.205        ad 	struct cpu_info *ci;
    817  1.174        ad 	sigset_t *ss;
    818   1.26       cgd 
    819  1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    820  1.229        ad 	KASSERT(mutex_owned(p->p_lock));
    821  1.183        ad 	KASSERT(lwp_locked(l, NULL));
    822  1.205        ad 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    823   1.83   thorpej 
    824  1.122   thorpej 	switch (l->l_stat) {
    825  1.122   thorpej 	case LSSTOP:
    826   1.33   mycroft 		/*
    827   1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    828   1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    829   1.33   mycroft 		 */
    830  1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    831  1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    832  1.174        ad 				ss = &l->l_sigpend.sp_set;
    833  1.174        ad 			else
    834  1.174        ad 				ss = &p->p_sigpend.sp_set;
    835  1.174        ad 			sigaddset(ss, p->p_xstat);
    836  1.174        ad 			signotify(l);
    837   1.53   mycroft 		}
    838  1.174        ad 		p->p_nrlwps++;
    839   1.26       cgd 		break;
    840  1.174        ad 	case LSSUSPENDED:
    841  1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    842  1.174        ad 		p->p_nrlwps++;
    843  1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    844  1.122   thorpej 		break;
    845  1.174        ad 	case LSSLEEP:
    846  1.174        ad 		KASSERT(l->l_wchan != NULL);
    847   1.26       cgd 		break;
    848  1.174        ad 	default:
    849  1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    850   1.26       cgd 	}
    851  1.139        cl 
    852  1.174        ad 	/*
    853  1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    854  1.174        ad 	 * again.  If not, mark it as still sleeping.
    855  1.174        ad 	 */
    856  1.174        ad 	if (l->l_wchan != NULL) {
    857  1.174        ad 		l->l_stat = LSSLEEP;
    858  1.183        ad 		/* lwp_unsleep() will release the lock. */
    859  1.221        ad 		lwp_unsleep(l, true);
    860  1.174        ad 		return;
    861  1.174        ad 	}
    862  1.139        cl 
    863  1.174        ad 	/*
    864  1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    865  1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    866  1.174        ad 	 */
    867  1.188      yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    868  1.174        ad 		l->l_stat = LSONPROC;
    869  1.174        ad 		l->l_slptime = 0;
    870  1.174        ad 		lwp_unlock(l);
    871  1.174        ad 		return;
    872  1.174        ad 	}
    873  1.122   thorpej 
    874  1.174        ad 	/*
    875  1.205        ad 	 * Look for a CPU to run.
    876  1.205        ad 	 * Set the LWP runnable.
    877  1.174        ad 	 */
    878  1.205        ad 	ci = sched_takecpu(l);
    879  1.205        ad 	l->l_cpu = ci;
    880  1.236        ad 	spc_lock(ci);
    881  1.236        ad 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    882  1.188      yamt 	sched_setrunnable(l);
    883  1.174        ad 	l->l_stat = LSRUN;
    884  1.122   thorpej 	l->l_slptime = 0;
    885  1.174        ad 
    886  1.205        ad 	/*
    887  1.205        ad 	 * If thread is swapped out - wake the swapper to bring it back in.
    888  1.205        ad 	 * Otherwise, enter it into a run queue.
    889  1.205        ad 	 */
    890  1.178     pavel 	if (l->l_flag & LW_INMEM) {
    891  1.188      yamt 		sched_enqueue(l, false);
    892  1.188      yamt 		resched_cpu(l);
    893  1.174        ad 		lwp_unlock(l);
    894  1.174        ad 	} else {
    895  1.174        ad 		lwp_unlock(l);
    896  1.177        ad 		uvm_kick_scheduler();
    897  1.174        ad 	}
    898   1.26       cgd }
    899   1.26       cgd 
    900   1.26       cgd /*
    901  1.174        ad  * suspendsched:
    902  1.174        ad  *
    903  1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    904  1.174        ad  */
    905   1.94    bouyer void
    906  1.174        ad suspendsched(void)
    907   1.94    bouyer {
    908  1.174        ad 	CPU_INFO_ITERATOR cii;
    909  1.174        ad 	struct cpu_info *ci;
    910  1.122   thorpej 	struct lwp *l;
    911  1.174        ad 	struct proc *p;
    912   1.94    bouyer 
    913   1.94    bouyer 	/*
    914  1.174        ad 	 * We do this by process in order not to violate the locking rules.
    915   1.94    bouyer 	 */
    916  1.228        ad 	mutex_enter(proc_lock);
    917  1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    918  1.238        ad 		if ((p->p_flag & PK_MARKER) != 0)
    919  1.238        ad 			continue;
    920  1.238        ad 
    921  1.229        ad 		mutex_enter(p->p_lock);
    922  1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    923  1.229        ad 			mutex_exit(p->p_lock);
    924   1.94    bouyer 			continue;
    925  1.174        ad 		}
    926  1.174        ad 
    927  1.174        ad 		p->p_stat = SSTOP;
    928  1.174        ad 
    929  1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    930  1.174        ad 			if (l == curlwp)
    931  1.174        ad 				continue;
    932  1.174        ad 
    933  1.174        ad 			lwp_lock(l);
    934  1.122   thorpej 
    935   1.97     enami 			/*
    936  1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
    937  1.174        ad 			 * when it tries to return to user mode.  We want to
    938  1.174        ad 			 * try and get to get as many LWPs as possible to
    939  1.174        ad 			 * the user / kernel boundary, so that they will
    940  1.174        ad 			 * release any locks that they hold.
    941   1.97     enami 			 */
    942  1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    943  1.174        ad 
    944  1.174        ad 			if (l->l_stat == LSSLEEP &&
    945  1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
    946  1.174        ad 				/* setrunnable() will release the lock. */
    947  1.174        ad 				setrunnable(l);
    948  1.174        ad 				continue;
    949  1.174        ad 			}
    950  1.174        ad 
    951  1.174        ad 			lwp_unlock(l);
    952   1.94    bouyer 		}
    953  1.174        ad 
    954  1.229        ad 		mutex_exit(p->p_lock);
    955   1.94    bouyer 	}
    956  1.228        ad 	mutex_exit(proc_lock);
    957  1.174        ad 
    958  1.174        ad 	/*
    959  1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    960  1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
    961  1.174        ad 	 */
    962  1.204        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    963  1.204        ad 		spc_lock(ci);
    964  1.204        ad 		cpu_need_resched(ci, RESCHED_IMMED);
    965  1.204        ad 		spc_unlock(ci);
    966  1.204        ad 	}
    967  1.174        ad }
    968  1.174        ad 
    969  1.174        ad /*
    970  1.174        ad  * sched_unsleep:
    971  1.174        ad  *
    972  1.174        ad  *	The is called when the LWP has not been awoken normally but instead
    973  1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
    974  1.174        ad  *	it's not a valid action for running or idle LWPs.
    975  1.174        ad  */
    976  1.221        ad static u_int
    977  1.221        ad sched_unsleep(struct lwp *l, bool cleanup)
    978  1.174        ad {
    979  1.174        ad 
    980  1.174        ad 	lwp_unlock(l);
    981  1.174        ad 	panic("sched_unsleep");
    982  1.174        ad }
    983  1.174        ad 
    984  1.204        ad void
    985  1.188      yamt resched_cpu(struct lwp *l)
    986  1.188      yamt {
    987  1.188      yamt 	struct cpu_info *ci;
    988  1.188      yamt 
    989  1.188      yamt 	/*
    990  1.188      yamt 	 * XXXSMP
    991  1.188      yamt 	 * Since l->l_cpu persists across a context switch,
    992  1.188      yamt 	 * this gives us *very weak* processor affinity, in
    993  1.188      yamt 	 * that we notify the CPU on which the process last
    994  1.188      yamt 	 * ran that it should try to switch.
    995  1.188      yamt 	 *
    996  1.188      yamt 	 * This does not guarantee that the process will run on
    997  1.188      yamt 	 * that processor next, because another processor might
    998  1.188      yamt 	 * grab it the next time it performs a context switch.
    999  1.188      yamt 	 *
   1000  1.188      yamt 	 * This also does not handle the case where its last
   1001  1.188      yamt 	 * CPU is running a higher-priority process, but every
   1002  1.188      yamt 	 * other CPU is running a lower-priority process.  There
   1003  1.188      yamt 	 * are ways to handle this situation, but they're not
   1004  1.188      yamt 	 * currently very pretty, and we also need to weigh the
   1005  1.188      yamt 	 * cost of moving a process from one CPU to another.
   1006  1.188      yamt 	 */
   1007  1.204        ad 	ci = l->l_cpu;
   1008  1.204        ad 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1009  1.188      yamt 		cpu_need_resched(ci, 0);
   1010  1.188      yamt }
   1011  1.188      yamt 
   1012  1.188      yamt static void
   1013  1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
   1014  1.174        ad {
   1015  1.174        ad 
   1016  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
   1017  1.174        ad 
   1018  1.204        ad 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1019  1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1020  1.204        ad 		sched_dequeue(l);
   1021  1.204        ad 		l->l_priority = pri;
   1022  1.204        ad 		sched_enqueue(l, false);
   1023  1.204        ad 	} else {
   1024  1.174        ad 		l->l_priority = pri;
   1025  1.157      yamt 	}
   1026  1.188      yamt 	resched_cpu(l);
   1027  1.184      yamt }
   1028  1.184      yamt 
   1029  1.188      yamt static void
   1030  1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
   1031  1.184      yamt {
   1032  1.184      yamt 
   1033  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
   1034  1.184      yamt 
   1035  1.204        ad 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1036  1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1037  1.204        ad 		sched_dequeue(l);
   1038  1.204        ad 		l->l_inheritedprio = pri;
   1039  1.204        ad 		sched_enqueue(l, false);
   1040  1.204        ad 	} else {
   1041  1.184      yamt 		l->l_inheritedprio = pri;
   1042  1.184      yamt 	}
   1043  1.188      yamt 	resched_cpu(l);
   1044  1.184      yamt }
   1045  1.184      yamt 
   1046  1.184      yamt struct lwp *
   1047  1.184      yamt syncobj_noowner(wchan_t wchan)
   1048  1.184      yamt {
   1049  1.184      yamt 
   1050  1.184      yamt 	return NULL;
   1051  1.151      yamt }
   1052  1.151      yamt 
   1053  1.188      yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
   1054  1.188      yamt fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
   1055  1.115  nisimura 
   1056  1.130   nathanw /*
   1057  1.188      yamt  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
   1058  1.188      yamt  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
   1059  1.188      yamt  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
   1060  1.188      yamt  *
   1061  1.188      yamt  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
   1062  1.188      yamt  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
   1063  1.188      yamt  *
   1064  1.188      yamt  * If you dont want to bother with the faster/more-accurate formula, you
   1065  1.188      yamt  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
   1066  1.188      yamt  * (more general) method of calculating the %age of CPU used by a process.
   1067  1.134      matt  */
   1068  1.188      yamt #define	CCPU_SHIFT	(FSHIFT + 1)
   1069  1.134      matt 
   1070  1.134      matt /*
   1071  1.188      yamt  * sched_pstats:
   1072  1.188      yamt  *
   1073  1.188      yamt  * Update process statistics and check CPU resource allocation.
   1074  1.188      yamt  * Call scheduler-specific hook to eventually adjust process/LWP
   1075  1.188      yamt  * priorities.
   1076  1.130   nathanw  */
   1077  1.188      yamt /* ARGSUSED */
   1078  1.113  gmcgarry void
   1079  1.188      yamt sched_pstats(void *arg)
   1080  1.113  gmcgarry {
   1081  1.188      yamt 	struct rlimit *rlim;
   1082  1.188      yamt 	struct lwp *l;
   1083  1.188      yamt 	struct proc *p;
   1084  1.204        ad 	int sig, clkhz;
   1085  1.188      yamt 	long runtm;
   1086  1.113  gmcgarry 
   1087  1.188      yamt 	sched_pstats_ticks++;
   1088  1.174        ad 
   1089  1.228        ad 	mutex_enter(proc_lock);
   1090  1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
   1091  1.238        ad 		if ((p->p_flag & PK_MARKER) != 0)
   1092  1.238        ad 			continue;
   1093  1.238        ad 
   1094  1.188      yamt 		/*
   1095  1.188      yamt 		 * Increment time in/out of memory and sleep time (if
   1096  1.188      yamt 		 * sleeping).  We ignore overflow; with 16-bit int's
   1097  1.188      yamt 		 * (remember them?) overflow takes 45 days.
   1098  1.188      yamt 		 */
   1099  1.229        ad 		mutex_enter(p->p_lock);
   1100  1.188      yamt 		mutex_spin_enter(&p->p_stmutex);
   1101  1.212      yamt 		runtm = p->p_rtime.sec;
   1102  1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1103  1.188      yamt 			if ((l->l_flag & LW_IDLE) != 0)
   1104  1.188      yamt 				continue;
   1105  1.188      yamt 			lwp_lock(l);
   1106  1.212      yamt 			runtm += l->l_rtime.sec;
   1107  1.188      yamt 			l->l_swtime++;
   1108  1.242     rmind 			sched_lwp_stats(l);
   1109  1.188      yamt 			lwp_unlock(l);
   1110  1.113  gmcgarry 
   1111  1.188      yamt 			/*
   1112  1.188      yamt 			 * p_pctcpu is only for ps.
   1113  1.188      yamt 			 */
   1114  1.188      yamt 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1115  1.188      yamt 			if (l->l_slptime < 1) {
   1116  1.188      yamt 				clkhz = stathz != 0 ? stathz : hz;
   1117  1.188      yamt #if	(FSHIFT >= CCPU_SHIFT)
   1118  1.188      yamt 				l->l_pctcpu += (clkhz == 100) ?
   1119  1.188      yamt 				    ((fixpt_t)l->l_cpticks) <<
   1120  1.188      yamt 				        (FSHIFT - CCPU_SHIFT) :
   1121  1.188      yamt 				    100 * (((fixpt_t) p->p_cpticks)
   1122  1.188      yamt 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
   1123  1.188      yamt #else
   1124  1.188      yamt 				l->l_pctcpu += ((FSCALE - ccpu) *
   1125  1.188      yamt 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
   1126  1.146      matt #endif
   1127  1.188      yamt 				l->l_cpticks = 0;
   1128  1.188      yamt 			}
   1129  1.188      yamt 		}
   1130  1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1131  1.188      yamt 		mutex_spin_exit(&p->p_stmutex);
   1132  1.174        ad 
   1133  1.188      yamt 		/*
   1134  1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
   1135  1.188      yamt 		 * If over max, kill it.
   1136  1.188      yamt 		 */
   1137  1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1138  1.188      yamt 		sig = 0;
   1139  1.188      yamt 		if (runtm >= rlim->rlim_cur) {
   1140  1.188      yamt 			if (runtm >= rlim->rlim_max)
   1141  1.188      yamt 				sig = SIGKILL;
   1142  1.188      yamt 			else {
   1143  1.188      yamt 				sig = SIGXCPU;
   1144  1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
   1145  1.188      yamt 					rlim->rlim_cur += 5;
   1146  1.188      yamt 			}
   1147  1.188      yamt 		}
   1148  1.229        ad 		mutex_exit(p->p_lock);
   1149  1.228        ad 		if (sig)
   1150  1.188      yamt 			psignal(p, sig);
   1151  1.174        ad 	}
   1152  1.228        ad 	mutex_exit(proc_lock);
   1153  1.188      yamt 	uvm_meter();
   1154  1.191        ad 	cv_wakeup(&lbolt);
   1155  1.188      yamt 	callout_schedule(&sched_pstats_ch, hz);
   1156  1.113  gmcgarry }
   1157