kern_synch.c revision 1.243 1 1.243 ad /* $NetBSD: kern_synch.c,v 1.243 2008/05/19 17:06:02 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.218 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej *
21 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
32 1.63 thorpej */
33 1.26 cgd
34 1.26 cgd /*-
35 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 1.26 cgd * The Regents of the University of California. All rights reserved.
37 1.26 cgd * (c) UNIX System Laboratories, Inc.
38 1.26 cgd * All or some portions of this file are derived from material licensed
39 1.26 cgd * to the University of California by American Telephone and Telegraph
40 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 1.26 cgd * the permission of UNIX System Laboratories, Inc.
42 1.26 cgd *
43 1.26 cgd * Redistribution and use in source and binary forms, with or without
44 1.26 cgd * modification, are permitted provided that the following conditions
45 1.26 cgd * are met:
46 1.26 cgd * 1. Redistributions of source code must retain the above copyright
47 1.26 cgd * notice, this list of conditions and the following disclaimer.
48 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.26 cgd * notice, this list of conditions and the following disclaimer in the
50 1.26 cgd * documentation and/or other materials provided with the distribution.
51 1.136 agc * 3. Neither the name of the University nor the names of its contributors
52 1.26 cgd * may be used to endorse or promote products derived from this software
53 1.26 cgd * without specific prior written permission.
54 1.26 cgd *
55 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.26 cgd * SUCH DAMAGE.
66 1.26 cgd *
67 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 1.26 cgd */
69 1.106 lukem
70 1.106 lukem #include <sys/cdefs.h>
71 1.243 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.243 2008/05/19 17:06:02 ad Exp $");
72 1.48 mrg
73 1.109 yamt #include "opt_kstack.h"
74 1.110 briggs #include "opt_perfctrs.h"
75 1.26 cgd
76 1.174 ad #define __MUTEX_PRIVATE
77 1.174 ad
78 1.26 cgd #include <sys/param.h>
79 1.26 cgd #include <sys/systm.h>
80 1.26 cgd #include <sys/proc.h>
81 1.26 cgd #include <sys/kernel.h>
82 1.111 briggs #if defined(PERFCTRS)
83 1.110 briggs #include <sys/pmc.h>
84 1.111 briggs #endif
85 1.188 yamt #include <sys/cpu.h>
86 1.26 cgd #include <sys/resourcevar.h>
87 1.55 ross #include <sys/sched.h>
88 1.179 dsl #include <sys/syscall_stats.h>
89 1.174 ad #include <sys/sleepq.h>
90 1.174 ad #include <sys/lockdebug.h>
91 1.190 ad #include <sys/evcnt.h>
92 1.199 ad #include <sys/intr.h>
93 1.207 ad #include <sys/lwpctl.h>
94 1.209 ad #include <sys/atomic.h>
95 1.215 ad #include <sys/simplelock.h>
96 1.47 mrg
97 1.47 mrg #include <uvm/uvm_extern.h>
98 1.47 mrg
99 1.231 ad #include <dev/lockstat.h>
100 1.231 ad
101 1.221 ad static u_int sched_unsleep(struct lwp *, bool);
102 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
103 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
104 1.122 thorpej
105 1.174 ad syncobj_t sleep_syncobj = {
106 1.174 ad SOBJ_SLEEPQ_SORTED,
107 1.174 ad sleepq_unsleep,
108 1.184 yamt sleepq_changepri,
109 1.184 yamt sleepq_lendpri,
110 1.184 yamt syncobj_noowner,
111 1.174 ad };
112 1.174 ad
113 1.174 ad syncobj_t sched_syncobj = {
114 1.174 ad SOBJ_SLEEPQ_SORTED,
115 1.174 ad sched_unsleep,
116 1.184 yamt sched_changepri,
117 1.184 yamt sched_lendpri,
118 1.184 yamt syncobj_noowner,
119 1.174 ad };
120 1.122 thorpej
121 1.223 ad callout_t sched_pstats_ch;
122 1.223 ad unsigned sched_pstats_ticks;
123 1.223 ad kcondvar_t lbolt; /* once a second sleep address */
124 1.223 ad
125 1.237 rmind /* Preemption event counters */
126 1.231 ad static struct evcnt kpreempt_ev_crit;
127 1.231 ad static struct evcnt kpreempt_ev_klock;
128 1.231 ad static struct evcnt kpreempt_ev_ipl;
129 1.231 ad static struct evcnt kpreempt_ev_immed;
130 1.231 ad
131 1.231 ad /*
132 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
133 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
134 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
135 1.174 ad * maintained in the machine-dependent layers. This priority will typically
136 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
137 1.174 ad * it can be made higher to block network software interrupts after panics.
138 1.26 cgd */
139 1.174 ad int safepri;
140 1.26 cgd
141 1.237 rmind void
142 1.237 rmind sched_init(void)
143 1.237 rmind {
144 1.237 rmind
145 1.237 rmind cv_init(&lbolt, "lbolt");
146 1.237 rmind callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
147 1.237 rmind callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
148 1.237 rmind
149 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
150 1.237 rmind "kpreempt", "defer: critical section");
151 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
152 1.237 rmind "kpreempt", "defer: kernel_lock");
153 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
154 1.237 rmind "kpreempt", "defer: IPL");
155 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
156 1.237 rmind "kpreempt", "immediate");
157 1.237 rmind
158 1.237 rmind sched_pstats(NULL);
159 1.237 rmind }
160 1.237 rmind
161 1.26 cgd /*
162 1.174 ad * OBSOLETE INTERFACE
163 1.174 ad *
164 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
165 1.26 cgd * performed on the specified identifier. The process will then be made
166 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
167 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
168 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
169 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
170 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
171 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
172 1.26 cgd * call should be interrupted by the signal (return EINTR).
173 1.77 thorpej *
174 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
175 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
176 1.174 ad * is specified, in which case the interlock will always be unlocked upon
177 1.174 ad * return.
178 1.26 cgd */
179 1.26 cgd int
180 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
181 1.174 ad volatile struct simplelock *interlock)
182 1.26 cgd {
183 1.122 thorpej struct lwp *l = curlwp;
184 1.174 ad sleepq_t *sq;
185 1.188 yamt int error;
186 1.26 cgd
187 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
188 1.204 ad
189 1.174 ad if (sleepq_dontsleep(l)) {
190 1.174 ad (void)sleepq_abort(NULL, 0);
191 1.174 ad if ((priority & PNORELOCK) != 0)
192 1.77 thorpej simple_unlock(interlock);
193 1.174 ad return 0;
194 1.26 cgd }
195 1.78 sommerfe
196 1.204 ad l->l_kpriority = true;
197 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
198 1.174 ad sleepq_enter(sq, l);
199 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
200 1.42 cgd
201 1.174 ad if (interlock != NULL) {
202 1.204 ad KASSERT(simple_lock_held(interlock));
203 1.174 ad simple_unlock(interlock);
204 1.150 chs }
205 1.150 chs
206 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
207 1.126 pk
208 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
209 1.126 pk simple_lock(interlock);
210 1.174 ad
211 1.174 ad return error;
212 1.26 cgd }
213 1.26 cgd
214 1.187 ad int
215 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
216 1.187 ad kmutex_t *mtx)
217 1.187 ad {
218 1.187 ad struct lwp *l = curlwp;
219 1.187 ad sleepq_t *sq;
220 1.188 yamt int error;
221 1.187 ad
222 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
223 1.204 ad
224 1.187 ad if (sleepq_dontsleep(l)) {
225 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
226 1.187 ad return 0;
227 1.187 ad }
228 1.187 ad
229 1.204 ad l->l_kpriority = true;
230 1.187 ad sq = sleeptab_lookup(&sleeptab, ident);
231 1.187 ad sleepq_enter(sq, l);
232 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
233 1.187 ad mutex_exit(mtx);
234 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
235 1.187 ad
236 1.187 ad if ((priority & PNORELOCK) == 0)
237 1.187 ad mutex_enter(mtx);
238 1.187 ad
239 1.187 ad return error;
240 1.187 ad }
241 1.187 ad
242 1.26 cgd /*
243 1.174 ad * General sleep call for situations where a wake-up is not expected.
244 1.26 cgd */
245 1.174 ad int
246 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
247 1.26 cgd {
248 1.174 ad struct lwp *l = curlwp;
249 1.174 ad sleepq_t *sq;
250 1.174 ad int error;
251 1.26 cgd
252 1.174 ad if (sleepq_dontsleep(l))
253 1.174 ad return sleepq_abort(NULL, 0);
254 1.26 cgd
255 1.174 ad if (mtx != NULL)
256 1.174 ad mutex_exit(mtx);
257 1.204 ad l->l_kpriority = true;
258 1.174 ad sq = sleeptab_lookup(&sleeptab, l);
259 1.174 ad sleepq_enter(sq, l);
260 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
261 1.188 yamt error = sleepq_block(timo, intr);
262 1.174 ad if (mtx != NULL)
263 1.174 ad mutex_enter(mtx);
264 1.83 thorpej
265 1.174 ad return error;
266 1.139 cl }
267 1.139 cl
268 1.26 cgd /*
269 1.174 ad * OBSOLETE INTERFACE
270 1.174 ad *
271 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
272 1.26 cgd */
273 1.26 cgd void
274 1.174 ad wakeup(wchan_t ident)
275 1.26 cgd {
276 1.174 ad sleepq_t *sq;
277 1.83 thorpej
278 1.174 ad if (cold)
279 1.174 ad return;
280 1.83 thorpej
281 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
282 1.174 ad sleepq_wake(sq, ident, (u_int)-1);
283 1.63 thorpej }
284 1.63 thorpej
285 1.63 thorpej /*
286 1.174 ad * OBSOLETE INTERFACE
287 1.174 ad *
288 1.63 thorpej * Make the highest priority process first in line on the specified
289 1.63 thorpej * identifier runnable.
290 1.63 thorpej */
291 1.174 ad void
292 1.174 ad wakeup_one(wchan_t ident)
293 1.63 thorpej {
294 1.174 ad sleepq_t *sq;
295 1.63 thorpej
296 1.174 ad if (cold)
297 1.174 ad return;
298 1.188 yamt
299 1.174 ad sq = sleeptab_lookup(&sleeptab, ident);
300 1.174 ad sleepq_wake(sq, ident, 1);
301 1.174 ad }
302 1.63 thorpej
303 1.117 gmcgarry
304 1.117 gmcgarry /*
305 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
306 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
307 1.198 ad * current process explicitly requests it (eg sched_yield(2)).
308 1.117 gmcgarry */
309 1.117 gmcgarry void
310 1.117 gmcgarry yield(void)
311 1.117 gmcgarry {
312 1.122 thorpej struct lwp *l = curlwp;
313 1.117 gmcgarry
314 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
315 1.174 ad lwp_lock(l);
316 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
317 1.188 yamt KASSERT(l->l_stat == LSONPROC);
318 1.204 ad l->l_kpriority = false;
319 1.188 yamt (void)mi_switch(l);
320 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
321 1.69 thorpej }
322 1.69 thorpej
323 1.69 thorpej /*
324 1.69 thorpej * General preemption call. Puts the current process back on its run queue
325 1.156 rpaulo * and performs an involuntary context switch.
326 1.69 thorpej */
327 1.69 thorpej void
328 1.174 ad preempt(void)
329 1.69 thorpej {
330 1.122 thorpej struct lwp *l = curlwp;
331 1.69 thorpej
332 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
333 1.174 ad lwp_lock(l);
334 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
335 1.188 yamt KASSERT(l->l_stat == LSONPROC);
336 1.204 ad l->l_kpriority = false;
337 1.174 ad l->l_nivcsw++;
338 1.188 yamt (void)mi_switch(l);
339 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
340 1.69 thorpej }
341 1.69 thorpej
342 1.234 ad /*
343 1.234 ad * Handle a request made by another agent to preempt the current LWP
344 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
345 1.234 ad *
346 1.234 ad * Character addresses for lockstat only.
347 1.234 ad */
348 1.231 ad static char in_critical_section;
349 1.231 ad static char kernel_lock_held;
350 1.231 ad static char spl_raised;
351 1.231 ad static char is_softint;
352 1.231 ad
353 1.231 ad bool
354 1.231 ad kpreempt(uintptr_t where)
355 1.231 ad {
356 1.231 ad uintptr_t failed;
357 1.231 ad lwp_t *l;
358 1.231 ad int s, dop;
359 1.231 ad
360 1.231 ad l = curlwp;
361 1.231 ad failed = 0;
362 1.231 ad while ((dop = l->l_dopreempt) != 0) {
363 1.231 ad if (l->l_stat != LSONPROC) {
364 1.231 ad /*
365 1.231 ad * About to block (or die), let it happen.
366 1.231 ad * Doesn't really count as "preemption has
367 1.231 ad * been blocked", since we're going to
368 1.231 ad * context switch.
369 1.231 ad */
370 1.231 ad l->l_dopreempt = 0;
371 1.231 ad return true;
372 1.231 ad }
373 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
374 1.231 ad /* Can't preempt idle loop, don't count as failure. */
375 1.231 ad l->l_dopreempt = 0;
376 1.231 ad return true;
377 1.231 ad }
378 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
379 1.231 ad /* LWP holds preemption disabled, explicitly. */
380 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
381 1.234 ad kpreempt_ev_crit.ev_count++;
382 1.231 ad }
383 1.231 ad failed = (uintptr_t)&in_critical_section;
384 1.231 ad break;
385 1.231 ad }
386 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
387 1.231 ad /* Can't preempt soft interrupts yet. */
388 1.231 ad l->l_dopreempt = 0;
389 1.231 ad failed = (uintptr_t)&is_softint;
390 1.231 ad break;
391 1.231 ad }
392 1.231 ad s = splsched();
393 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
394 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
395 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
396 1.231 ad splx(s);
397 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
398 1.234 ad kpreempt_ev_klock.ev_count++;
399 1.231 ad }
400 1.231 ad failed = (uintptr_t)&kernel_lock_held;
401 1.231 ad break;
402 1.231 ad }
403 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
404 1.231 ad /*
405 1.231 ad * It may be that the IPL is too high.
406 1.231 ad * kpreempt_enter() can schedule an
407 1.231 ad * interrupt to retry later.
408 1.231 ad */
409 1.231 ad splx(s);
410 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
411 1.234 ad kpreempt_ev_ipl.ev_count++;
412 1.231 ad }
413 1.231 ad failed = (uintptr_t)&spl_raised;
414 1.231 ad break;
415 1.231 ad }
416 1.231 ad /* Do it! */
417 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
418 1.234 ad kpreempt_ev_immed.ev_count++;
419 1.231 ad }
420 1.231 ad lwp_lock(l);
421 1.231 ad mi_switch(l);
422 1.231 ad l->l_nopreempt++;
423 1.231 ad splx(s);
424 1.231 ad
425 1.231 ad /* Take care of any MD cleanup. */
426 1.231 ad cpu_kpreempt_exit(where);
427 1.231 ad l->l_nopreempt--;
428 1.231 ad }
429 1.231 ad
430 1.231 ad /* Record preemption failure for reporting via lockstat. */
431 1.231 ad if (__predict_false(failed)) {
432 1.240 ad int lsflag = 0;
433 1.231 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
434 1.231 ad LOCKSTAT_ENTER(lsflag);
435 1.231 ad /* Might recurse, make it atomic. */
436 1.231 ad if (__predict_false(lsflag)) {
437 1.231 ad if (where == 0) {
438 1.231 ad where = (uintptr_t)__builtin_return_address(0);
439 1.231 ad }
440 1.231 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
441 1.231 ad NULL, (void *)where) == NULL) {
442 1.231 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
443 1.231 ad l->l_pfaillock = failed;
444 1.231 ad }
445 1.231 ad }
446 1.231 ad LOCKSTAT_EXIT(lsflag);
447 1.231 ad }
448 1.231 ad
449 1.231 ad return failed;
450 1.231 ad }
451 1.231 ad
452 1.69 thorpej /*
453 1.231 ad * Return true if preemption is explicitly disabled.
454 1.230 ad */
455 1.231 ad bool
456 1.231 ad kpreempt_disabled(void)
457 1.231 ad {
458 1.231 ad lwp_t *l;
459 1.231 ad
460 1.231 ad l = curlwp;
461 1.231 ad
462 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
463 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
464 1.231 ad }
465 1.230 ad
466 1.230 ad /*
467 1.231 ad * Disable kernel preemption.
468 1.230 ad */
469 1.230 ad void
470 1.231 ad kpreempt_disable(void)
471 1.230 ad {
472 1.230 ad
473 1.231 ad KPREEMPT_DISABLE(curlwp);
474 1.230 ad }
475 1.230 ad
476 1.230 ad /*
477 1.231 ad * Reenable kernel preemption.
478 1.230 ad */
479 1.231 ad void
480 1.231 ad kpreempt_enable(void)
481 1.230 ad {
482 1.230 ad
483 1.231 ad KPREEMPT_ENABLE(curlwp);
484 1.230 ad }
485 1.230 ad
486 1.230 ad /*
487 1.188 yamt * Compute the amount of time during which the current lwp was running.
488 1.130 nathanw *
489 1.188 yamt * - update l_rtime unless it's an idle lwp.
490 1.188 yamt */
491 1.188 yamt
492 1.199 ad void
493 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
494 1.188 yamt {
495 1.188 yamt
496 1.199 ad if ((l->l_flag & LW_IDLE) != 0)
497 1.188 yamt return;
498 1.188 yamt
499 1.212 yamt /* rtime += now - stime */
500 1.212 yamt bintime_add(&l->l_rtime, now);
501 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
502 1.188 yamt }
503 1.188 yamt
504 1.188 yamt /*
505 1.188 yamt * The machine independent parts of context switch.
506 1.188 yamt *
507 1.188 yamt * Returns 1 if another LWP was actually run.
508 1.26 cgd */
509 1.122 thorpej int
510 1.199 ad mi_switch(lwp_t *l)
511 1.26 cgd {
512 1.216 rmind struct cpu_info *ci, *tci = NULL;
513 1.76 thorpej struct schedstate_percpu *spc;
514 1.188 yamt struct lwp *newl;
515 1.174 ad int retval, oldspl;
516 1.212 yamt struct bintime bt;
517 1.199 ad bool returning;
518 1.26 cgd
519 1.188 yamt KASSERT(lwp_locked(l, NULL));
520 1.231 ad KASSERT(kpreempt_disabled());
521 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
522 1.174 ad
523 1.174 ad #ifdef KSTACK_CHECK_MAGIC
524 1.174 ad kstack_check_magic(l);
525 1.174 ad #endif
526 1.83 thorpej
527 1.212 yamt binuptime(&bt);
528 1.199 ad
529 1.231 ad KASSERT(l->l_cpu == curcpu());
530 1.196 ad ci = l->l_cpu;
531 1.196 ad spc = &ci->ci_schedstate;
532 1.199 ad returning = false;
533 1.190 ad newl = NULL;
534 1.190 ad
535 1.199 ad /*
536 1.199 ad * If we have been asked to switch to a specific LWP, then there
537 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
538 1.199 ad * blocking, then return to the interrupted thread without adjusting
539 1.199 ad * VM context or its start time: neither have been changed in order
540 1.199 ad * to take the interrupt.
541 1.199 ad */
542 1.190 ad if (l->l_switchto != NULL) {
543 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
544 1.199 ad returning = true;
545 1.199 ad softint_block(l);
546 1.199 ad if ((l->l_flag & LW_TIMEINTR) != 0)
547 1.212 yamt updatertime(l, &bt);
548 1.199 ad }
549 1.190 ad newl = l->l_switchto;
550 1.190 ad l->l_switchto = NULL;
551 1.190 ad }
552 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
553 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
554 1.204 ad /* There are pending soft interrupts, so pick one. */
555 1.204 ad newl = softint_picklwp();
556 1.204 ad newl->l_stat = LSONPROC;
557 1.204 ad newl->l_flag |= LW_RUNNING;
558 1.204 ad }
559 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
560 1.190 ad
561 1.180 dsl /* Count time spent in current system call */
562 1.199 ad if (!returning) {
563 1.199 ad SYSCALL_TIME_SLEEP(l);
564 1.180 dsl
565 1.199 ad /*
566 1.199 ad * XXXSMP If we are using h/w performance counters,
567 1.199 ad * save context.
568 1.199 ad */
569 1.174 ad #if PERFCTRS
570 1.199 ad if (PMC_ENABLED(l->l_proc)) {
571 1.199 ad pmc_save_context(l->l_proc);
572 1.199 ad }
573 1.199 ad #endif
574 1.212 yamt updatertime(l, &bt);
575 1.174 ad }
576 1.113 gmcgarry
577 1.113 gmcgarry /*
578 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
579 1.113 gmcgarry */
580 1.174 ad KASSERT(l->l_stat != LSRUN);
581 1.216 rmind if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
582 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
583 1.216 rmind
584 1.220 rmind if (l->l_target_cpu == l->l_cpu) {
585 1.220 rmind l->l_target_cpu = NULL;
586 1.220 rmind } else {
587 1.220 rmind tci = l->l_target_cpu;
588 1.220 rmind }
589 1.220 rmind
590 1.216 rmind if (__predict_false(tci != NULL)) {
591 1.216 rmind /* Double-lock the runqueues */
592 1.216 rmind spc_dlock(ci, tci);
593 1.216 rmind } else {
594 1.216 rmind /* Lock the runqueue */
595 1.216 rmind spc_lock(ci);
596 1.216 rmind }
597 1.216 rmind
598 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
599 1.188 yamt l->l_stat = LSRUN;
600 1.216 rmind if (__predict_false(tci != NULL)) {
601 1.216 rmind /*
602 1.216 rmind * Set the new CPU, lock and unset the
603 1.216 rmind * l_target_cpu - thread will be enqueued
604 1.216 rmind * to the runqueue of target CPU.
605 1.216 rmind */
606 1.216 rmind l->l_cpu = tci;
607 1.216 rmind lwp_setlock(l, tci->ci_schedstate.spc_mutex);
608 1.216 rmind l->l_target_cpu = NULL;
609 1.216 rmind } else {
610 1.216 rmind lwp_setlock(l, spc->spc_mutex);
611 1.216 rmind }
612 1.188 yamt sched_enqueue(l, true);
613 1.216 rmind } else {
614 1.216 rmind KASSERT(tci == NULL);
615 1.188 yamt l->l_stat = LSIDL;
616 1.216 rmind }
617 1.216 rmind } else {
618 1.216 rmind /* Lock the runqueue */
619 1.216 rmind spc_lock(ci);
620 1.174 ad }
621 1.174 ad
622 1.174 ad /*
623 1.201 rmind * Let sched_nextlwp() select the LWP to run the CPU next.
624 1.209 ad * If no LWP is runnable, select the idle LWP.
625 1.209 ad *
626 1.209 ad * Note that spc_lwplock might not necessary be held, and
627 1.209 ad * new thread would be unlocked after setting the LWP-lock.
628 1.174 ad */
629 1.190 ad if (newl == NULL) {
630 1.190 ad newl = sched_nextlwp();
631 1.190 ad if (newl != NULL) {
632 1.190 ad sched_dequeue(newl);
633 1.190 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
634 1.190 ad newl->l_stat = LSONPROC;
635 1.196 ad newl->l_cpu = ci;
636 1.190 ad newl->l_flag |= LW_RUNNING;
637 1.217 ad lwp_setlock(newl, spc->spc_lwplock);
638 1.190 ad } else {
639 1.196 ad newl = ci->ci_data.cpu_idlelwp;
640 1.190 ad newl->l_stat = LSONPROC;
641 1.190 ad newl->l_flag |= LW_RUNNING;
642 1.190 ad }
643 1.204 ad /*
644 1.204 ad * Only clear want_resched if there are no
645 1.204 ad * pending (slow) software interrupts.
646 1.204 ad */
647 1.204 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
648 1.199 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
649 1.204 ad spc->spc_curpriority = lwp_eprio(newl);
650 1.199 ad }
651 1.199 ad
652 1.204 ad /* Items that must be updated with the CPU locked. */
653 1.199 ad if (!returning) {
654 1.204 ad /* Update the new LWP's start time. */
655 1.212 yamt newl->l_stime = bt;
656 1.204 ad
657 1.199 ad /*
658 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
659 1.204 ad * We use cpu_onproc to keep track of which kernel or
660 1.204 ad * user thread is running 'underneath' the software
661 1.204 ad * interrupt. This is important for time accounting,
662 1.204 ad * itimers and forcing user threads to preempt (aston).
663 1.199 ad */
664 1.204 ad ci->ci_data.cpu_onproc = newl;
665 1.188 yamt }
666 1.188 yamt
667 1.241 ad /*
668 1.241 ad * Preemption related tasks. Must be done with the current
669 1.241 ad * CPU locked.
670 1.241 ad */
671 1.241 ad cpu_did_resched(l);
672 1.231 ad l->l_dopreempt = 0;
673 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
674 1.231 ad LOCKSTAT_FLAG(lsflag);
675 1.231 ad LOCKSTAT_ENTER(lsflag);
676 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
677 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
678 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
679 1.231 ad LOCKSTAT_EXIT(lsflag);
680 1.231 ad l->l_pfailtime = 0;
681 1.231 ad l->l_pfaillock = 0;
682 1.231 ad l->l_pfailaddr = 0;
683 1.231 ad }
684 1.231 ad
685 1.188 yamt if (l != newl) {
686 1.188 yamt struct lwp *prevlwp;
687 1.174 ad
688 1.209 ad /* Release all locks, but leave the current LWP locked */
689 1.216 rmind if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
690 1.216 rmind /*
691 1.216 rmind * In case of migration, drop the local runqueue
692 1.216 rmind * lock, thread is on other runqueue now.
693 1.216 rmind */
694 1.216 rmind if (__predict_false(tci != NULL))
695 1.216 rmind spc_unlock(ci);
696 1.209 ad /*
697 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
698 1.209 ad * to the run queue (it is now locked by spc_mutex).
699 1.209 ad */
700 1.217 ad mutex_spin_exit(spc->spc_lwplock);
701 1.188 yamt } else {
702 1.209 ad /*
703 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
704 1.209 ad * run queues.
705 1.209 ad */
706 1.188 yamt mutex_spin_exit(spc->spc_mutex);
707 1.216 rmind KASSERT(tci == NULL);
708 1.188 yamt }
709 1.188 yamt
710 1.209 ad /*
711 1.209 ad * Mark that context switch is going to be perfomed
712 1.209 ad * for this LWP, to protect it from being switched
713 1.209 ad * to on another CPU.
714 1.209 ad */
715 1.209 ad KASSERT(l->l_ctxswtch == 0);
716 1.209 ad l->l_ctxswtch = 1;
717 1.209 ad l->l_ncsw++;
718 1.209 ad l->l_flag &= ~LW_RUNNING;
719 1.209 ad
720 1.209 ad /*
721 1.209 ad * Increase the count of spin-mutexes before the release
722 1.209 ad * of the last lock - we must remain at IPL_SCHED during
723 1.209 ad * the context switch.
724 1.209 ad */
725 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
726 1.209 ad ci->ci_mtx_count--;
727 1.209 ad lwp_unlock(l);
728 1.209 ad
729 1.218 ad /* Count the context switch on this CPU. */
730 1.218 ad ci->ci_data.cpu_nswtch++;
731 1.188 yamt
732 1.209 ad /* Update status for lwpctl, if present. */
733 1.209 ad if (l->l_lwpctl != NULL)
734 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
735 1.209 ad
736 1.199 ad /*
737 1.199 ad * Save old VM context, unless a soft interrupt
738 1.199 ad * handler is blocking.
739 1.199 ad */
740 1.199 ad if (!returning)
741 1.199 ad pmap_deactivate(l);
742 1.188 yamt
743 1.209 ad /*
744 1.209 ad * We may need to spin-wait for if 'newl' is still
745 1.209 ad * context switching on another CPU.
746 1.209 ad */
747 1.209 ad if (newl->l_ctxswtch != 0) {
748 1.209 ad u_int count;
749 1.209 ad count = SPINLOCK_BACKOFF_MIN;
750 1.209 ad while (newl->l_ctxswtch)
751 1.209 ad SPINLOCK_BACKOFF(count);
752 1.209 ad }
753 1.207 ad
754 1.188 yamt /* Switch to the new LWP.. */
755 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
756 1.207 ad ci = curcpu();
757 1.207 ad
758 1.188 yamt /*
759 1.209 ad * Switched away - we have new curlwp.
760 1.209 ad * Restore VM context and IPL.
761 1.188 yamt */
762 1.209 ad pmap_activate(l);
763 1.188 yamt if (prevlwp != NULL) {
764 1.209 ad /* Normalize the count of the spin-mutexes */
765 1.209 ad ci->ci_mtx_count++;
766 1.209 ad /* Unmark the state of context switch */
767 1.209 ad membar_exit();
768 1.209 ad prevlwp->l_ctxswtch = 0;
769 1.188 yamt }
770 1.209 ad
771 1.209 ad /* Update status for lwpctl, if present. */
772 1.219 ad if (l->l_lwpctl != NULL) {
773 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
774 1.219 ad l->l_lwpctl->lc_pctr++;
775 1.219 ad }
776 1.174 ad
777 1.231 ad KASSERT(l->l_cpu == ci);
778 1.231 ad splx(oldspl);
779 1.188 yamt retval = 1;
780 1.188 yamt } else {
781 1.188 yamt /* Nothing to do - just unlock and return. */
782 1.216 rmind KASSERT(tci == NULL);
783 1.216 rmind spc_unlock(ci);
784 1.188 yamt lwp_unlock(l);
785 1.122 thorpej retval = 0;
786 1.122 thorpej }
787 1.110 briggs
788 1.188 yamt KASSERT(l == curlwp);
789 1.188 yamt KASSERT(l->l_stat == LSONPROC);
790 1.188 yamt
791 1.110 briggs /*
792 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
793 1.231 ad * XXXSMP preemption problem.
794 1.26 cgd */
795 1.114 gmcgarry #if PERFCTRS
796 1.175 christos if (PMC_ENABLED(l->l_proc)) {
797 1.175 christos pmc_restore_context(l->l_proc);
798 1.166 christos }
799 1.114 gmcgarry #endif
800 1.180 dsl SYSCALL_TIME_WAKEUP(l);
801 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
802 1.169 yamt
803 1.122 thorpej return retval;
804 1.26 cgd }
805 1.26 cgd
806 1.26 cgd /*
807 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
808 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
809 1.174 ad *
810 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
811 1.26 cgd */
812 1.26 cgd void
813 1.122 thorpej setrunnable(struct lwp *l)
814 1.26 cgd {
815 1.122 thorpej struct proc *p = l->l_proc;
816 1.205 ad struct cpu_info *ci;
817 1.174 ad sigset_t *ss;
818 1.26 cgd
819 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
820 1.229 ad KASSERT(mutex_owned(p->p_lock));
821 1.183 ad KASSERT(lwp_locked(l, NULL));
822 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
823 1.83 thorpej
824 1.122 thorpej switch (l->l_stat) {
825 1.122 thorpej case LSSTOP:
826 1.33 mycroft /*
827 1.33 mycroft * If we're being traced (possibly because someone attached us
828 1.33 mycroft * while we were stopped), check for a signal from the debugger.
829 1.33 mycroft */
830 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
831 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
832 1.174 ad ss = &l->l_sigpend.sp_set;
833 1.174 ad else
834 1.174 ad ss = &p->p_sigpend.sp_set;
835 1.174 ad sigaddset(ss, p->p_xstat);
836 1.174 ad signotify(l);
837 1.53 mycroft }
838 1.174 ad p->p_nrlwps++;
839 1.26 cgd break;
840 1.174 ad case LSSUSPENDED:
841 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
842 1.174 ad p->p_nrlwps++;
843 1.192 rmind cv_broadcast(&p->p_lwpcv);
844 1.122 thorpej break;
845 1.174 ad case LSSLEEP:
846 1.174 ad KASSERT(l->l_wchan != NULL);
847 1.26 cgd break;
848 1.174 ad default:
849 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
850 1.26 cgd }
851 1.139 cl
852 1.174 ad /*
853 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
854 1.174 ad * again. If not, mark it as still sleeping.
855 1.174 ad */
856 1.174 ad if (l->l_wchan != NULL) {
857 1.174 ad l->l_stat = LSSLEEP;
858 1.183 ad /* lwp_unsleep() will release the lock. */
859 1.221 ad lwp_unsleep(l, true);
860 1.174 ad return;
861 1.174 ad }
862 1.139 cl
863 1.174 ad /*
864 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
865 1.174 ad * about to call mi_switch(), in which case it will yield.
866 1.174 ad */
867 1.188 yamt if ((l->l_flag & LW_RUNNING) != 0) {
868 1.174 ad l->l_stat = LSONPROC;
869 1.174 ad l->l_slptime = 0;
870 1.174 ad lwp_unlock(l);
871 1.174 ad return;
872 1.174 ad }
873 1.122 thorpej
874 1.174 ad /*
875 1.205 ad * Look for a CPU to run.
876 1.205 ad * Set the LWP runnable.
877 1.174 ad */
878 1.205 ad ci = sched_takecpu(l);
879 1.205 ad l->l_cpu = ci;
880 1.236 ad spc_lock(ci);
881 1.236 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
882 1.188 yamt sched_setrunnable(l);
883 1.174 ad l->l_stat = LSRUN;
884 1.122 thorpej l->l_slptime = 0;
885 1.174 ad
886 1.205 ad /*
887 1.205 ad * If thread is swapped out - wake the swapper to bring it back in.
888 1.205 ad * Otherwise, enter it into a run queue.
889 1.205 ad */
890 1.178 pavel if (l->l_flag & LW_INMEM) {
891 1.188 yamt sched_enqueue(l, false);
892 1.188 yamt resched_cpu(l);
893 1.174 ad lwp_unlock(l);
894 1.174 ad } else {
895 1.174 ad lwp_unlock(l);
896 1.177 ad uvm_kick_scheduler();
897 1.174 ad }
898 1.26 cgd }
899 1.26 cgd
900 1.26 cgd /*
901 1.174 ad * suspendsched:
902 1.174 ad *
903 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
904 1.174 ad */
905 1.94 bouyer void
906 1.174 ad suspendsched(void)
907 1.94 bouyer {
908 1.174 ad CPU_INFO_ITERATOR cii;
909 1.174 ad struct cpu_info *ci;
910 1.122 thorpej struct lwp *l;
911 1.174 ad struct proc *p;
912 1.94 bouyer
913 1.94 bouyer /*
914 1.174 ad * We do this by process in order not to violate the locking rules.
915 1.94 bouyer */
916 1.228 ad mutex_enter(proc_lock);
917 1.174 ad PROCLIST_FOREACH(p, &allproc) {
918 1.238 ad if ((p->p_flag & PK_MARKER) != 0)
919 1.238 ad continue;
920 1.238 ad
921 1.229 ad mutex_enter(p->p_lock);
922 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
923 1.229 ad mutex_exit(p->p_lock);
924 1.94 bouyer continue;
925 1.174 ad }
926 1.174 ad
927 1.174 ad p->p_stat = SSTOP;
928 1.174 ad
929 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
930 1.174 ad if (l == curlwp)
931 1.174 ad continue;
932 1.174 ad
933 1.174 ad lwp_lock(l);
934 1.122 thorpej
935 1.97 enami /*
936 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
937 1.174 ad * when it tries to return to user mode. We want to
938 1.174 ad * try and get to get as many LWPs as possible to
939 1.174 ad * the user / kernel boundary, so that they will
940 1.174 ad * release any locks that they hold.
941 1.97 enami */
942 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
943 1.174 ad
944 1.174 ad if (l->l_stat == LSSLEEP &&
945 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
946 1.174 ad /* setrunnable() will release the lock. */
947 1.174 ad setrunnable(l);
948 1.174 ad continue;
949 1.174 ad }
950 1.174 ad
951 1.174 ad lwp_unlock(l);
952 1.94 bouyer }
953 1.174 ad
954 1.229 ad mutex_exit(p->p_lock);
955 1.94 bouyer }
956 1.228 ad mutex_exit(proc_lock);
957 1.174 ad
958 1.174 ad /*
959 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
960 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
961 1.174 ad */
962 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
963 1.204 ad spc_lock(ci);
964 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
965 1.204 ad spc_unlock(ci);
966 1.204 ad }
967 1.174 ad }
968 1.174 ad
969 1.174 ad /*
970 1.174 ad * sched_unsleep:
971 1.174 ad *
972 1.174 ad * The is called when the LWP has not been awoken normally but instead
973 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
974 1.174 ad * it's not a valid action for running or idle LWPs.
975 1.174 ad */
976 1.221 ad static u_int
977 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
978 1.174 ad {
979 1.174 ad
980 1.174 ad lwp_unlock(l);
981 1.174 ad panic("sched_unsleep");
982 1.174 ad }
983 1.174 ad
984 1.204 ad void
985 1.188 yamt resched_cpu(struct lwp *l)
986 1.188 yamt {
987 1.188 yamt struct cpu_info *ci;
988 1.188 yamt
989 1.188 yamt /*
990 1.188 yamt * XXXSMP
991 1.188 yamt * Since l->l_cpu persists across a context switch,
992 1.188 yamt * this gives us *very weak* processor affinity, in
993 1.188 yamt * that we notify the CPU on which the process last
994 1.188 yamt * ran that it should try to switch.
995 1.188 yamt *
996 1.188 yamt * This does not guarantee that the process will run on
997 1.188 yamt * that processor next, because another processor might
998 1.188 yamt * grab it the next time it performs a context switch.
999 1.188 yamt *
1000 1.188 yamt * This also does not handle the case where its last
1001 1.188 yamt * CPU is running a higher-priority process, but every
1002 1.188 yamt * other CPU is running a lower-priority process. There
1003 1.188 yamt * are ways to handle this situation, but they're not
1004 1.188 yamt * currently very pretty, and we also need to weigh the
1005 1.188 yamt * cost of moving a process from one CPU to another.
1006 1.188 yamt */
1007 1.204 ad ci = l->l_cpu;
1008 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1009 1.188 yamt cpu_need_resched(ci, 0);
1010 1.188 yamt }
1011 1.188 yamt
1012 1.188 yamt static void
1013 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1014 1.174 ad {
1015 1.174 ad
1016 1.188 yamt KASSERT(lwp_locked(l, NULL));
1017 1.174 ad
1018 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1019 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1020 1.204 ad sched_dequeue(l);
1021 1.204 ad l->l_priority = pri;
1022 1.204 ad sched_enqueue(l, false);
1023 1.204 ad } else {
1024 1.174 ad l->l_priority = pri;
1025 1.157 yamt }
1026 1.188 yamt resched_cpu(l);
1027 1.184 yamt }
1028 1.184 yamt
1029 1.188 yamt static void
1030 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1031 1.184 yamt {
1032 1.184 yamt
1033 1.188 yamt KASSERT(lwp_locked(l, NULL));
1034 1.184 yamt
1035 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1036 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1037 1.204 ad sched_dequeue(l);
1038 1.204 ad l->l_inheritedprio = pri;
1039 1.204 ad sched_enqueue(l, false);
1040 1.204 ad } else {
1041 1.184 yamt l->l_inheritedprio = pri;
1042 1.184 yamt }
1043 1.188 yamt resched_cpu(l);
1044 1.184 yamt }
1045 1.184 yamt
1046 1.184 yamt struct lwp *
1047 1.184 yamt syncobj_noowner(wchan_t wchan)
1048 1.184 yamt {
1049 1.184 yamt
1050 1.184 yamt return NULL;
1051 1.151 yamt }
1052 1.151 yamt
1053 1.188 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
1054 1.188 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
1055 1.115 nisimura
1056 1.130 nathanw /*
1057 1.188 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
1058 1.188 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
1059 1.188 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
1060 1.188 yamt *
1061 1.188 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
1062 1.188 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
1063 1.188 yamt *
1064 1.188 yamt * If you dont want to bother with the faster/more-accurate formula, you
1065 1.188 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
1066 1.188 yamt * (more general) method of calculating the %age of CPU used by a process.
1067 1.134 matt */
1068 1.188 yamt #define CCPU_SHIFT (FSHIFT + 1)
1069 1.134 matt
1070 1.134 matt /*
1071 1.188 yamt * sched_pstats:
1072 1.188 yamt *
1073 1.188 yamt * Update process statistics and check CPU resource allocation.
1074 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
1075 1.188 yamt * priorities.
1076 1.130 nathanw */
1077 1.188 yamt /* ARGSUSED */
1078 1.113 gmcgarry void
1079 1.188 yamt sched_pstats(void *arg)
1080 1.113 gmcgarry {
1081 1.188 yamt struct rlimit *rlim;
1082 1.188 yamt struct lwp *l;
1083 1.188 yamt struct proc *p;
1084 1.204 ad int sig, clkhz;
1085 1.188 yamt long runtm;
1086 1.113 gmcgarry
1087 1.188 yamt sched_pstats_ticks++;
1088 1.174 ad
1089 1.228 ad mutex_enter(proc_lock);
1090 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1091 1.238 ad if ((p->p_flag & PK_MARKER) != 0)
1092 1.238 ad continue;
1093 1.238 ad
1094 1.188 yamt /*
1095 1.188 yamt * Increment time in/out of memory and sleep time (if
1096 1.188 yamt * sleeping). We ignore overflow; with 16-bit int's
1097 1.188 yamt * (remember them?) overflow takes 45 days.
1098 1.188 yamt */
1099 1.229 ad mutex_enter(p->p_lock);
1100 1.188 yamt mutex_spin_enter(&p->p_stmutex);
1101 1.212 yamt runtm = p->p_rtime.sec;
1102 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1103 1.188 yamt if ((l->l_flag & LW_IDLE) != 0)
1104 1.188 yamt continue;
1105 1.188 yamt lwp_lock(l);
1106 1.212 yamt runtm += l->l_rtime.sec;
1107 1.188 yamt l->l_swtime++;
1108 1.242 rmind sched_lwp_stats(l);
1109 1.188 yamt lwp_unlock(l);
1110 1.113 gmcgarry
1111 1.188 yamt /*
1112 1.188 yamt * p_pctcpu is only for ps.
1113 1.188 yamt */
1114 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1115 1.188 yamt if (l->l_slptime < 1) {
1116 1.188 yamt clkhz = stathz != 0 ? stathz : hz;
1117 1.188 yamt #if (FSHIFT >= CCPU_SHIFT)
1118 1.188 yamt l->l_pctcpu += (clkhz == 100) ?
1119 1.188 yamt ((fixpt_t)l->l_cpticks) <<
1120 1.188 yamt (FSHIFT - CCPU_SHIFT) :
1121 1.188 yamt 100 * (((fixpt_t) p->p_cpticks)
1122 1.188 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
1123 1.188 yamt #else
1124 1.188 yamt l->l_pctcpu += ((FSCALE - ccpu) *
1125 1.188 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
1126 1.146 matt #endif
1127 1.188 yamt l->l_cpticks = 0;
1128 1.188 yamt }
1129 1.188 yamt }
1130 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1131 1.188 yamt mutex_spin_exit(&p->p_stmutex);
1132 1.174 ad
1133 1.188 yamt /*
1134 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1135 1.188 yamt * If over max, kill it.
1136 1.188 yamt */
1137 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1138 1.188 yamt sig = 0;
1139 1.188 yamt if (runtm >= rlim->rlim_cur) {
1140 1.188 yamt if (runtm >= rlim->rlim_max)
1141 1.188 yamt sig = SIGKILL;
1142 1.188 yamt else {
1143 1.188 yamt sig = SIGXCPU;
1144 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1145 1.188 yamt rlim->rlim_cur += 5;
1146 1.188 yamt }
1147 1.188 yamt }
1148 1.229 ad mutex_exit(p->p_lock);
1149 1.228 ad if (sig)
1150 1.188 yamt psignal(p, sig);
1151 1.174 ad }
1152 1.228 ad mutex_exit(proc_lock);
1153 1.188 yamt uvm_meter();
1154 1.191 ad cv_wakeup(&lbolt);
1155 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
1156 1.113 gmcgarry }
1157