Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.245
      1  1.245        ad /*	$NetBSD: kern_synch.c,v 1.245 2008/05/27 17:51:17 ad Exp $	*/
      2   1.63   thorpej 
      3   1.63   thorpej /*-
      4  1.218        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.63   thorpej  * All rights reserved.
      6   1.63   thorpej  *
      7   1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  1.188      yamt  * Daniel Sieger.
     11   1.63   thorpej  *
     12   1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     13   1.63   thorpej  * modification, are permitted provided that the following conditions
     14   1.63   thorpej  * are met:
     15   1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     16   1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     17   1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     19   1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     20   1.63   thorpej  *
     21   1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22   1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23   1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24   1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25   1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26   1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27   1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28   1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29   1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30   1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31   1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     32   1.63   thorpej  */
     33   1.26       cgd 
     34   1.26       cgd /*-
     35   1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36   1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     37   1.26       cgd  * (c) UNIX System Laboratories, Inc.
     38   1.26       cgd  * All or some portions of this file are derived from material licensed
     39   1.26       cgd  * to the University of California by American Telephone and Telegraph
     40   1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41   1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     42   1.26       cgd  *
     43   1.26       cgd  * Redistribution and use in source and binary forms, with or without
     44   1.26       cgd  * modification, are permitted provided that the following conditions
     45   1.26       cgd  * are met:
     46   1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     47   1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     48   1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49   1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     50   1.26       cgd  *    documentation and/or other materials provided with the distribution.
     51  1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     52   1.26       cgd  *    may be used to endorse or promote products derived from this software
     53   1.26       cgd  *    without specific prior written permission.
     54   1.26       cgd  *
     55   1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56   1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57   1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58   1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59   1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60   1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61   1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62   1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63   1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64   1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65   1.26       cgd  * SUCH DAMAGE.
     66   1.26       cgd  *
     67   1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68   1.26       cgd  */
     69  1.106     lukem 
     70  1.106     lukem #include <sys/cdefs.h>
     71  1.245        ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.245 2008/05/27 17:51:17 ad Exp $");
     72   1.48       mrg 
     73  1.109      yamt #include "opt_kstack.h"
     74  1.110    briggs #include "opt_perfctrs.h"
     75   1.26       cgd 
     76  1.174        ad #define	__MUTEX_PRIVATE
     77  1.174        ad 
     78   1.26       cgd #include <sys/param.h>
     79   1.26       cgd #include <sys/systm.h>
     80   1.26       cgd #include <sys/proc.h>
     81   1.26       cgd #include <sys/kernel.h>
     82  1.111    briggs #if defined(PERFCTRS)
     83  1.110    briggs #include <sys/pmc.h>
     84  1.111    briggs #endif
     85  1.188      yamt #include <sys/cpu.h>
     86   1.26       cgd #include <sys/resourcevar.h>
     87   1.55      ross #include <sys/sched.h>
     88  1.179       dsl #include <sys/syscall_stats.h>
     89  1.174        ad #include <sys/sleepq.h>
     90  1.174        ad #include <sys/lockdebug.h>
     91  1.190        ad #include <sys/evcnt.h>
     92  1.199        ad #include <sys/intr.h>
     93  1.207        ad #include <sys/lwpctl.h>
     94  1.209        ad #include <sys/atomic.h>
     95  1.215        ad #include <sys/simplelock.h>
     96   1.47       mrg 
     97   1.47       mrg #include <uvm/uvm_extern.h>
     98   1.47       mrg 
     99  1.231        ad #include <dev/lockstat.h>
    100  1.231        ad 
    101  1.221        ad static u_int	sched_unsleep(struct lwp *, bool);
    102  1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    103  1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    104  1.122   thorpej 
    105  1.174        ad syncobj_t sleep_syncobj = {
    106  1.174        ad 	SOBJ_SLEEPQ_SORTED,
    107  1.174        ad 	sleepq_unsleep,
    108  1.184      yamt 	sleepq_changepri,
    109  1.184      yamt 	sleepq_lendpri,
    110  1.184      yamt 	syncobj_noowner,
    111  1.174        ad };
    112  1.174        ad 
    113  1.174        ad syncobj_t sched_syncobj = {
    114  1.174        ad 	SOBJ_SLEEPQ_SORTED,
    115  1.174        ad 	sched_unsleep,
    116  1.184      yamt 	sched_changepri,
    117  1.184      yamt 	sched_lendpri,
    118  1.184      yamt 	syncobj_noowner,
    119  1.174        ad };
    120  1.122   thorpej 
    121  1.223        ad callout_t 	sched_pstats_ch;
    122  1.223        ad unsigned	sched_pstats_ticks;
    123  1.223        ad kcondvar_t	lbolt;			/* once a second sleep address */
    124  1.223        ad 
    125  1.237     rmind /* Preemption event counters */
    126  1.231        ad static struct evcnt kpreempt_ev_crit;
    127  1.231        ad static struct evcnt kpreempt_ev_klock;
    128  1.231        ad static struct evcnt kpreempt_ev_ipl;
    129  1.231        ad static struct evcnt kpreempt_ev_immed;
    130  1.231        ad 
    131  1.231        ad /*
    132  1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    133  1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    134  1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    135  1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    136  1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    137  1.174        ad  * it can be made higher to block network software interrupts after panics.
    138   1.26       cgd  */
    139  1.174        ad int	safepri;
    140   1.26       cgd 
    141  1.237     rmind void
    142  1.237     rmind sched_init(void)
    143  1.237     rmind {
    144  1.237     rmind 
    145  1.237     rmind 	cv_init(&lbolt, "lbolt");
    146  1.237     rmind 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    147  1.237     rmind 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    148  1.237     rmind 
    149  1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    150  1.237     rmind 	   "kpreempt", "defer: critical section");
    151  1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    152  1.237     rmind 	   "kpreempt", "defer: kernel_lock");
    153  1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
    154  1.237     rmind 	   "kpreempt", "defer: IPL");
    155  1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    156  1.237     rmind 	   "kpreempt", "immediate");
    157  1.237     rmind 
    158  1.237     rmind 	sched_pstats(NULL);
    159  1.237     rmind }
    160  1.237     rmind 
    161   1.26       cgd /*
    162  1.174        ad  * OBSOLETE INTERFACE
    163  1.174        ad  *
    164   1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    165   1.26       cgd  * performed on the specified identifier.  The process will then be made
    166  1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    167  1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    168   1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    169   1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    170   1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    171   1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    172   1.26       cgd  * call should be interrupted by the signal (return EINTR).
    173   1.77   thorpej  *
    174  1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    175  1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    176  1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    177  1.174        ad  * return.
    178   1.26       cgd  */
    179   1.26       cgd int
    180  1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    181  1.174        ad 	volatile struct simplelock *interlock)
    182   1.26       cgd {
    183  1.122   thorpej 	struct lwp *l = curlwp;
    184  1.174        ad 	sleepq_t *sq;
    185  1.244        ad 	kmutex_t *mp;
    186  1.188      yamt 	int error;
    187   1.26       cgd 
    188  1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    189  1.204        ad 
    190  1.174        ad 	if (sleepq_dontsleep(l)) {
    191  1.174        ad 		(void)sleepq_abort(NULL, 0);
    192  1.174        ad 		if ((priority & PNORELOCK) != 0)
    193   1.77   thorpej 			simple_unlock(interlock);
    194  1.174        ad 		return 0;
    195   1.26       cgd 	}
    196   1.78  sommerfe 
    197  1.204        ad 	l->l_kpriority = true;
    198  1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    199  1.244        ad 	sleepq_enter(sq, l, mp);
    200  1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    201   1.42       cgd 
    202  1.174        ad 	if (interlock != NULL) {
    203  1.204        ad 		KASSERT(simple_lock_held(interlock));
    204  1.174        ad 		simple_unlock(interlock);
    205  1.150       chs 	}
    206  1.150       chs 
    207  1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    208  1.126        pk 
    209  1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    210  1.126        pk 		simple_lock(interlock);
    211  1.174        ad 
    212  1.174        ad 	return error;
    213   1.26       cgd }
    214   1.26       cgd 
    215  1.187        ad int
    216  1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    217  1.187        ad 	kmutex_t *mtx)
    218  1.187        ad {
    219  1.187        ad 	struct lwp *l = curlwp;
    220  1.187        ad 	sleepq_t *sq;
    221  1.244        ad 	kmutex_t *mp;
    222  1.188      yamt 	int error;
    223  1.187        ad 
    224  1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    225  1.204        ad 
    226  1.187        ad 	if (sleepq_dontsleep(l)) {
    227  1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    228  1.187        ad 		return 0;
    229  1.187        ad 	}
    230  1.187        ad 
    231  1.204        ad 	l->l_kpriority = true;
    232  1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    233  1.244        ad 	sleepq_enter(sq, l, mp);
    234  1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    235  1.187        ad 	mutex_exit(mtx);
    236  1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    237  1.187        ad 
    238  1.187        ad 	if ((priority & PNORELOCK) == 0)
    239  1.187        ad 		mutex_enter(mtx);
    240  1.187        ad 
    241  1.187        ad 	return error;
    242  1.187        ad }
    243  1.187        ad 
    244   1.26       cgd /*
    245  1.174        ad  * General sleep call for situations where a wake-up is not expected.
    246   1.26       cgd  */
    247  1.174        ad int
    248  1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    249   1.26       cgd {
    250  1.174        ad 	struct lwp *l = curlwp;
    251  1.244        ad 	kmutex_t *mp;
    252  1.174        ad 	sleepq_t *sq;
    253  1.174        ad 	int error;
    254   1.26       cgd 
    255  1.174        ad 	if (sleepq_dontsleep(l))
    256  1.174        ad 		return sleepq_abort(NULL, 0);
    257   1.26       cgd 
    258  1.174        ad 	if (mtx != NULL)
    259  1.174        ad 		mutex_exit(mtx);
    260  1.204        ad 	l->l_kpriority = true;
    261  1.244        ad 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    262  1.244        ad 	sleepq_enter(sq, l, mp);
    263  1.204        ad 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    264  1.188      yamt 	error = sleepq_block(timo, intr);
    265  1.174        ad 	if (mtx != NULL)
    266  1.174        ad 		mutex_enter(mtx);
    267   1.83   thorpej 
    268  1.174        ad 	return error;
    269  1.139        cl }
    270  1.139        cl 
    271   1.26       cgd /*
    272  1.174        ad  * OBSOLETE INTERFACE
    273  1.174        ad  *
    274   1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    275   1.26       cgd  */
    276   1.26       cgd void
    277  1.174        ad wakeup(wchan_t ident)
    278   1.26       cgd {
    279  1.174        ad 	sleepq_t *sq;
    280  1.244        ad 	kmutex_t *mp;
    281   1.83   thorpej 
    282  1.174        ad 	if (cold)
    283  1.174        ad 		return;
    284   1.83   thorpej 
    285  1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    286  1.244        ad 	sleepq_wake(sq, ident, (u_int)-1, mp);
    287   1.63   thorpej }
    288   1.63   thorpej 
    289   1.63   thorpej /*
    290  1.174        ad  * OBSOLETE INTERFACE
    291  1.174        ad  *
    292   1.63   thorpej  * Make the highest priority process first in line on the specified
    293   1.63   thorpej  * identifier runnable.
    294   1.63   thorpej  */
    295  1.174        ad void
    296  1.174        ad wakeup_one(wchan_t ident)
    297   1.63   thorpej {
    298  1.174        ad 	sleepq_t *sq;
    299  1.244        ad 	kmutex_t *mp;
    300   1.63   thorpej 
    301  1.174        ad 	if (cold)
    302  1.174        ad 		return;
    303  1.188      yamt 
    304  1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    305  1.244        ad 	sleepq_wake(sq, ident, 1, mp);
    306  1.174        ad }
    307   1.63   thorpej 
    308  1.117  gmcgarry 
    309  1.117  gmcgarry /*
    310  1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    311  1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    312  1.198        ad  * current process explicitly requests it (eg sched_yield(2)).
    313  1.117  gmcgarry  */
    314  1.117  gmcgarry void
    315  1.117  gmcgarry yield(void)
    316  1.117  gmcgarry {
    317  1.122   thorpej 	struct lwp *l = curlwp;
    318  1.117  gmcgarry 
    319  1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    320  1.174        ad 	lwp_lock(l);
    321  1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    322  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    323  1.204        ad 	l->l_kpriority = false;
    324  1.188      yamt 	(void)mi_switch(l);
    325  1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    326   1.69   thorpej }
    327   1.69   thorpej 
    328   1.69   thorpej /*
    329   1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    330  1.156    rpaulo  * and performs an involuntary context switch.
    331   1.69   thorpej  */
    332   1.69   thorpej void
    333  1.174        ad preempt(void)
    334   1.69   thorpej {
    335  1.122   thorpej 	struct lwp *l = curlwp;
    336   1.69   thorpej 
    337  1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    338  1.174        ad 	lwp_lock(l);
    339  1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    340  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    341  1.204        ad 	l->l_kpriority = false;
    342  1.174        ad 	l->l_nivcsw++;
    343  1.188      yamt 	(void)mi_switch(l);
    344  1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    345   1.69   thorpej }
    346   1.69   thorpej 
    347  1.234        ad /*
    348  1.234        ad  * Handle a request made by another agent to preempt the current LWP
    349  1.234        ad  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    350  1.234        ad  *
    351  1.234        ad  * Character addresses for lockstat only.
    352  1.234        ad  */
    353  1.231        ad static char	in_critical_section;
    354  1.231        ad static char	kernel_lock_held;
    355  1.231        ad static char	spl_raised;
    356  1.231        ad static char	is_softint;
    357  1.231        ad 
    358  1.231        ad bool
    359  1.231        ad kpreempt(uintptr_t where)
    360  1.231        ad {
    361  1.231        ad 	uintptr_t failed;
    362  1.231        ad 	lwp_t *l;
    363  1.231        ad 	int s, dop;
    364  1.231        ad 
    365  1.231        ad 	l = curlwp;
    366  1.231        ad 	failed = 0;
    367  1.231        ad 	while ((dop = l->l_dopreempt) != 0) {
    368  1.231        ad 		if (l->l_stat != LSONPROC) {
    369  1.231        ad 			/*
    370  1.231        ad 			 * About to block (or die), let it happen.
    371  1.231        ad 			 * Doesn't really count as "preemption has
    372  1.231        ad 			 * been blocked", since we're going to
    373  1.231        ad 			 * context switch.
    374  1.231        ad 			 */
    375  1.231        ad 			l->l_dopreempt = 0;
    376  1.231        ad 			return true;
    377  1.231        ad 		}
    378  1.231        ad 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    379  1.231        ad 			/* Can't preempt idle loop, don't count as failure. */
    380  1.231        ad 		    	l->l_dopreempt = 0;
    381  1.231        ad 		    	return true;
    382  1.231        ad 		}
    383  1.231        ad 		if (__predict_false(l->l_nopreempt != 0)) {
    384  1.231        ad 			/* LWP holds preemption disabled, explicitly. */
    385  1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    386  1.234        ad 				kpreempt_ev_crit.ev_count++;
    387  1.231        ad 			}
    388  1.231        ad 			failed = (uintptr_t)&in_critical_section;
    389  1.231        ad 			break;
    390  1.231        ad 		}
    391  1.231        ad 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    392  1.231        ad 		    	/* Can't preempt soft interrupts yet. */
    393  1.231        ad 		    	l->l_dopreempt = 0;
    394  1.231        ad 		    	failed = (uintptr_t)&is_softint;
    395  1.231        ad 		    	break;
    396  1.231        ad 		}
    397  1.231        ad 		s = splsched();
    398  1.231        ad 		if (__predict_false(l->l_blcnt != 0 ||
    399  1.231        ad 		    curcpu()->ci_biglock_wanted != NULL)) {
    400  1.231        ad 			/* Hold or want kernel_lock, code is not MT safe. */
    401  1.231        ad 			splx(s);
    402  1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    403  1.234        ad 				kpreempt_ev_klock.ev_count++;
    404  1.231        ad 			}
    405  1.231        ad 			failed = (uintptr_t)&kernel_lock_held;
    406  1.231        ad 			break;
    407  1.231        ad 		}
    408  1.231        ad 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    409  1.231        ad 			/*
    410  1.231        ad 			 * It may be that the IPL is too high.
    411  1.231        ad 			 * kpreempt_enter() can schedule an
    412  1.231        ad 			 * interrupt to retry later.
    413  1.231        ad 			 */
    414  1.231        ad 			splx(s);
    415  1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    416  1.234        ad 				kpreempt_ev_ipl.ev_count++;
    417  1.231        ad 			}
    418  1.231        ad 			failed = (uintptr_t)&spl_raised;
    419  1.231        ad 			break;
    420  1.231        ad 		}
    421  1.231        ad 		/* Do it! */
    422  1.231        ad 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    423  1.234        ad 			kpreempt_ev_immed.ev_count++;
    424  1.231        ad 		}
    425  1.231        ad 		lwp_lock(l);
    426  1.231        ad 		mi_switch(l);
    427  1.231        ad 		l->l_nopreempt++;
    428  1.231        ad 		splx(s);
    429  1.231        ad 
    430  1.231        ad 		/* Take care of any MD cleanup. */
    431  1.231        ad 		cpu_kpreempt_exit(where);
    432  1.231        ad 		l->l_nopreempt--;
    433  1.231        ad 	}
    434  1.231        ad 
    435  1.231        ad 	/* Record preemption failure for reporting via lockstat. */
    436  1.231        ad 	if (__predict_false(failed)) {
    437  1.240        ad 		int lsflag = 0;
    438  1.231        ad 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    439  1.231        ad 		LOCKSTAT_ENTER(lsflag);
    440  1.231        ad 		/* Might recurse, make it atomic. */
    441  1.231        ad 		if (__predict_false(lsflag)) {
    442  1.231        ad 			if (where == 0) {
    443  1.231        ad 				where = (uintptr_t)__builtin_return_address(0);
    444  1.231        ad 			}
    445  1.231        ad 			if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
    446  1.231        ad 			    NULL, (void *)where) == NULL) {
    447  1.231        ad 				LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    448  1.231        ad 				l->l_pfaillock = failed;
    449  1.231        ad 			}
    450  1.231        ad 		}
    451  1.231        ad 		LOCKSTAT_EXIT(lsflag);
    452  1.231        ad 	}
    453  1.231        ad 
    454  1.231        ad 	return failed;
    455  1.231        ad }
    456  1.231        ad 
    457   1.69   thorpej /*
    458  1.231        ad  * Return true if preemption is explicitly disabled.
    459  1.230        ad  */
    460  1.231        ad bool
    461  1.231        ad kpreempt_disabled(void)
    462  1.231        ad {
    463  1.231        ad 	lwp_t *l;
    464  1.231        ad 
    465  1.231        ad 	l = curlwp;
    466  1.231        ad 
    467  1.231        ad 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    468  1.231        ad 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    469  1.231        ad }
    470  1.230        ad 
    471  1.230        ad /*
    472  1.231        ad  * Disable kernel preemption.
    473  1.230        ad  */
    474  1.230        ad void
    475  1.231        ad kpreempt_disable(void)
    476  1.230        ad {
    477  1.230        ad 
    478  1.231        ad 	KPREEMPT_DISABLE(curlwp);
    479  1.230        ad }
    480  1.230        ad 
    481  1.230        ad /*
    482  1.231        ad  * Reenable kernel preemption.
    483  1.230        ad  */
    484  1.231        ad void
    485  1.231        ad kpreempt_enable(void)
    486  1.230        ad {
    487  1.230        ad 
    488  1.231        ad 	KPREEMPT_ENABLE(curlwp);
    489  1.230        ad }
    490  1.230        ad 
    491  1.230        ad /*
    492  1.188      yamt  * Compute the amount of time during which the current lwp was running.
    493  1.130   nathanw  *
    494  1.188      yamt  * - update l_rtime unless it's an idle lwp.
    495  1.188      yamt  */
    496  1.188      yamt 
    497  1.199        ad void
    498  1.212      yamt updatertime(lwp_t *l, const struct bintime *now)
    499  1.188      yamt {
    500  1.188      yamt 
    501  1.199        ad 	if ((l->l_flag & LW_IDLE) != 0)
    502  1.188      yamt 		return;
    503  1.188      yamt 
    504  1.212      yamt 	/* rtime += now - stime */
    505  1.212      yamt 	bintime_add(&l->l_rtime, now);
    506  1.212      yamt 	bintime_sub(&l->l_rtime, &l->l_stime);
    507  1.188      yamt }
    508  1.188      yamt 
    509  1.188      yamt /*
    510  1.245        ad  * Select next LWP from the current CPU to run..
    511  1.245        ad  */
    512  1.245        ad static inline lwp_t *
    513  1.245        ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    514  1.245        ad {
    515  1.245        ad 	lwp_t *newl;
    516  1.245        ad 
    517  1.245        ad 	/*
    518  1.245        ad 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    519  1.245        ad 	 * If no LWP is runnable, select the idle LWP.
    520  1.245        ad 	 *
    521  1.245        ad 	 * Note that spc_lwplock might not necessary be held, and
    522  1.245        ad 	 * new thread would be unlocked after setting the LWP-lock.
    523  1.245        ad 	 */
    524  1.245        ad 	newl = sched_nextlwp();
    525  1.245        ad 	if (newl != NULL) {
    526  1.245        ad 		sched_dequeue(newl);
    527  1.245        ad 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    528  1.245        ad 		newl->l_stat = LSONPROC;
    529  1.245        ad 		newl->l_cpu = ci;
    530  1.245        ad 		newl->l_flag |= LW_RUNNING;
    531  1.245        ad 		lwp_setlock(newl, spc->spc_lwplock);
    532  1.245        ad 	} else {
    533  1.245        ad 		newl = ci->ci_data.cpu_idlelwp;
    534  1.245        ad 		newl->l_stat = LSONPROC;
    535  1.245        ad 		newl->l_flag |= LW_RUNNING;
    536  1.245        ad 	}
    537  1.245        ad 
    538  1.245        ad 	/*
    539  1.245        ad 	 * Only clear want_resched if there are no pending (slow)
    540  1.245        ad 	 * software interrupts.
    541  1.245        ad 	 */
    542  1.245        ad 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    543  1.245        ad 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    544  1.245        ad 	spc->spc_curpriority = lwp_eprio(newl);
    545  1.245        ad 
    546  1.245        ad 	return newl;
    547  1.245        ad }
    548  1.245        ad 
    549  1.245        ad /*
    550  1.188      yamt  * The machine independent parts of context switch.
    551  1.188      yamt  *
    552  1.188      yamt  * Returns 1 if another LWP was actually run.
    553   1.26       cgd  */
    554  1.122   thorpej int
    555  1.199        ad mi_switch(lwp_t *l)
    556   1.26       cgd {
    557  1.216     rmind 	struct cpu_info *ci, *tci = NULL;
    558   1.76   thorpej 	struct schedstate_percpu *spc;
    559  1.188      yamt 	struct lwp *newl;
    560  1.174        ad 	int retval, oldspl;
    561  1.212      yamt 	struct bintime bt;
    562  1.199        ad 	bool returning;
    563   1.26       cgd 
    564  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    565  1.231        ad 	KASSERT(kpreempt_disabled());
    566  1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    567  1.174        ad 
    568  1.174        ad #ifdef KSTACK_CHECK_MAGIC
    569  1.174        ad 	kstack_check_magic(l);
    570  1.174        ad #endif
    571   1.83   thorpej 
    572  1.212      yamt 	binuptime(&bt);
    573  1.199        ad 
    574  1.231        ad 	KASSERT(l->l_cpu == curcpu());
    575  1.196        ad 	ci = l->l_cpu;
    576  1.196        ad 	spc = &ci->ci_schedstate;
    577  1.199        ad 	returning = false;
    578  1.190        ad 	newl = NULL;
    579  1.190        ad 
    580  1.199        ad 	/*
    581  1.199        ad 	 * If we have been asked to switch to a specific LWP, then there
    582  1.199        ad 	 * is no need to inspect the run queues.  If a soft interrupt is
    583  1.199        ad 	 * blocking, then return to the interrupted thread without adjusting
    584  1.199        ad 	 * VM context or its start time: neither have been changed in order
    585  1.199        ad 	 * to take the interrupt.
    586  1.199        ad 	 */
    587  1.190        ad 	if (l->l_switchto != NULL) {
    588  1.204        ad 		if ((l->l_pflag & LP_INTR) != 0) {
    589  1.199        ad 			returning = true;
    590  1.199        ad 			softint_block(l);
    591  1.199        ad 			if ((l->l_flag & LW_TIMEINTR) != 0)
    592  1.212      yamt 				updatertime(l, &bt);
    593  1.199        ad 		}
    594  1.190        ad 		newl = l->l_switchto;
    595  1.190        ad 		l->l_switchto = NULL;
    596  1.190        ad 	}
    597  1.204        ad #ifndef __HAVE_FAST_SOFTINTS
    598  1.204        ad 	else if (ci->ci_data.cpu_softints != 0) {
    599  1.204        ad 		/* There are pending soft interrupts, so pick one. */
    600  1.204        ad 		newl = softint_picklwp();
    601  1.204        ad 		newl->l_stat = LSONPROC;
    602  1.204        ad 		newl->l_flag |= LW_RUNNING;
    603  1.204        ad 	}
    604  1.204        ad #endif	/* !__HAVE_FAST_SOFTINTS */
    605  1.190        ad 
    606  1.180       dsl 	/* Count time spent in current system call */
    607  1.199        ad 	if (!returning) {
    608  1.199        ad 		SYSCALL_TIME_SLEEP(l);
    609  1.180       dsl 
    610  1.199        ad 		/*
    611  1.199        ad 		 * XXXSMP If we are using h/w performance counters,
    612  1.199        ad 		 * save context.
    613  1.199        ad 		 */
    614  1.174        ad #if PERFCTRS
    615  1.199        ad 		if (PMC_ENABLED(l->l_proc)) {
    616  1.199        ad 			pmc_save_context(l->l_proc);
    617  1.199        ad 		}
    618  1.199        ad #endif
    619  1.212      yamt 		updatertime(l, &bt);
    620  1.174        ad 	}
    621  1.113  gmcgarry 
    622  1.113  gmcgarry 	/*
    623  1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    624  1.113  gmcgarry 	 */
    625  1.174        ad 	KASSERT(l->l_stat != LSRUN);
    626  1.216     rmind 	if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
    627  1.217        ad 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    628  1.216     rmind 
    629  1.220     rmind 		if (l->l_target_cpu == l->l_cpu) {
    630  1.220     rmind 			l->l_target_cpu = NULL;
    631  1.220     rmind 		} else {
    632  1.220     rmind 			tci = l->l_target_cpu;
    633  1.220     rmind 		}
    634  1.220     rmind 
    635  1.216     rmind 		if (__predict_false(tci != NULL)) {
    636  1.216     rmind 			/* Double-lock the runqueues */
    637  1.216     rmind 			spc_dlock(ci, tci);
    638  1.216     rmind 		} else {
    639  1.216     rmind 			/* Lock the runqueue */
    640  1.216     rmind 			spc_lock(ci);
    641  1.216     rmind 		}
    642  1.216     rmind 
    643  1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    644  1.188      yamt 			l->l_stat = LSRUN;
    645  1.216     rmind 			if (__predict_false(tci != NULL)) {
    646  1.216     rmind 				/*
    647  1.216     rmind 				 * Set the new CPU, lock and unset the
    648  1.216     rmind 				 * l_target_cpu - thread will be enqueued
    649  1.216     rmind 				 * to the runqueue of target CPU.
    650  1.216     rmind 				 */
    651  1.216     rmind 				l->l_cpu = tci;
    652  1.216     rmind 				lwp_setlock(l, tci->ci_schedstate.spc_mutex);
    653  1.216     rmind 				l->l_target_cpu = NULL;
    654  1.216     rmind 			} else {
    655  1.216     rmind 				lwp_setlock(l, spc->spc_mutex);
    656  1.216     rmind 			}
    657  1.188      yamt 			sched_enqueue(l, true);
    658  1.216     rmind 		} else {
    659  1.216     rmind 			KASSERT(tci == NULL);
    660  1.188      yamt 			l->l_stat = LSIDL;
    661  1.216     rmind 		}
    662  1.216     rmind 	} else {
    663  1.216     rmind 		/* Lock the runqueue */
    664  1.216     rmind 		spc_lock(ci);
    665  1.174        ad 	}
    666  1.174        ad 
    667  1.245        ad 	/* Pick new LWP to run. */
    668  1.190        ad 	if (newl == NULL) {
    669  1.245        ad 		newl = nextlwp(ci, spc);
    670  1.199        ad 	}
    671  1.199        ad 
    672  1.204        ad 	/* Items that must be updated with the CPU locked. */
    673  1.199        ad 	if (!returning) {
    674  1.204        ad 		/* Update the new LWP's start time. */
    675  1.212      yamt 		newl->l_stime = bt;
    676  1.204        ad 
    677  1.199        ad 		/*
    678  1.204        ad 		 * ci_curlwp changes when a fast soft interrupt occurs.
    679  1.204        ad 		 * We use cpu_onproc to keep track of which kernel or
    680  1.204        ad 		 * user thread is running 'underneath' the software
    681  1.204        ad 		 * interrupt.  This is important for time accounting,
    682  1.204        ad 		 * itimers and forcing user threads to preempt (aston).
    683  1.199        ad 		 */
    684  1.204        ad 		ci->ci_data.cpu_onproc = newl;
    685  1.188      yamt 	}
    686  1.188      yamt 
    687  1.241        ad 	/*
    688  1.241        ad 	 * Preemption related tasks.  Must be done with the current
    689  1.241        ad 	 * CPU locked.
    690  1.241        ad 	 */
    691  1.241        ad 	cpu_did_resched(l);
    692  1.231        ad 	l->l_dopreempt = 0;
    693  1.231        ad 	if (__predict_false(l->l_pfailaddr != 0)) {
    694  1.231        ad 		LOCKSTAT_FLAG(lsflag);
    695  1.231        ad 		LOCKSTAT_ENTER(lsflag);
    696  1.231        ad 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    697  1.231        ad 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    698  1.231        ad 		    1, l->l_pfailtime, l->l_pfailaddr);
    699  1.231        ad 		LOCKSTAT_EXIT(lsflag);
    700  1.231        ad 		l->l_pfailtime = 0;
    701  1.231        ad 		l->l_pfaillock = 0;
    702  1.231        ad 		l->l_pfailaddr = 0;
    703  1.231        ad 	}
    704  1.231        ad 
    705  1.188      yamt 	if (l != newl) {
    706  1.188      yamt 		struct lwp *prevlwp;
    707  1.174        ad 
    708  1.209        ad 		/* Release all locks, but leave the current LWP locked */
    709  1.216     rmind 		if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
    710  1.216     rmind 			/*
    711  1.216     rmind 			 * In case of migration, drop the local runqueue
    712  1.216     rmind 			 * lock, thread is on other runqueue now.
    713  1.216     rmind 			 */
    714  1.216     rmind 			if (__predict_false(tci != NULL))
    715  1.216     rmind 				spc_unlock(ci);
    716  1.209        ad 			/*
    717  1.209        ad 			 * Drop spc_lwplock, if the current LWP has been moved
    718  1.209        ad 			 * to the run queue (it is now locked by spc_mutex).
    719  1.209        ad 			 */
    720  1.217        ad 			mutex_spin_exit(spc->spc_lwplock);
    721  1.188      yamt 		} else {
    722  1.209        ad 			/*
    723  1.209        ad 			 * Otherwise, drop the spc_mutex, we are done with the
    724  1.209        ad 			 * run queues.
    725  1.209        ad 			 */
    726  1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    727  1.216     rmind 			KASSERT(tci == NULL);
    728  1.188      yamt 		}
    729  1.188      yamt 
    730  1.209        ad 		/*
    731  1.209        ad 		 * Mark that context switch is going to be perfomed
    732  1.209        ad 		 * for this LWP, to protect it from being switched
    733  1.209        ad 		 * to on another CPU.
    734  1.209        ad 		 */
    735  1.209        ad 		KASSERT(l->l_ctxswtch == 0);
    736  1.209        ad 		l->l_ctxswtch = 1;
    737  1.209        ad 		l->l_ncsw++;
    738  1.209        ad 		l->l_flag &= ~LW_RUNNING;
    739  1.209        ad 
    740  1.209        ad 		/*
    741  1.209        ad 		 * Increase the count of spin-mutexes before the release
    742  1.209        ad 		 * of the last lock - we must remain at IPL_SCHED during
    743  1.209        ad 		 * the context switch.
    744  1.209        ad 		 */
    745  1.209        ad 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    746  1.209        ad 		ci->ci_mtx_count--;
    747  1.209        ad 		lwp_unlock(l);
    748  1.209        ad 
    749  1.218        ad 		/* Count the context switch on this CPU. */
    750  1.218        ad 		ci->ci_data.cpu_nswtch++;
    751  1.188      yamt 
    752  1.209        ad 		/* Update status for lwpctl, if present. */
    753  1.209        ad 		if (l->l_lwpctl != NULL)
    754  1.209        ad 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    755  1.209        ad 
    756  1.199        ad 		/*
    757  1.199        ad 		 * Save old VM context, unless a soft interrupt
    758  1.199        ad 		 * handler is blocking.
    759  1.199        ad 		 */
    760  1.199        ad 		if (!returning)
    761  1.199        ad 			pmap_deactivate(l);
    762  1.188      yamt 
    763  1.209        ad 		/*
    764  1.209        ad 		 * We may need to spin-wait for if 'newl' is still
    765  1.209        ad 		 * context switching on another CPU.
    766  1.209        ad 		 */
    767  1.209        ad 		if (newl->l_ctxswtch != 0) {
    768  1.209        ad 			u_int count;
    769  1.209        ad 			count = SPINLOCK_BACKOFF_MIN;
    770  1.209        ad 			while (newl->l_ctxswtch)
    771  1.209        ad 				SPINLOCK_BACKOFF(count);
    772  1.209        ad 		}
    773  1.207        ad 
    774  1.188      yamt 		/* Switch to the new LWP.. */
    775  1.204        ad 		prevlwp = cpu_switchto(l, newl, returning);
    776  1.207        ad 		ci = curcpu();
    777  1.207        ad 
    778  1.188      yamt 		/*
    779  1.209        ad 		 * Switched away - we have new curlwp.
    780  1.209        ad 		 * Restore VM context and IPL.
    781  1.188      yamt 		 */
    782  1.209        ad 		pmap_activate(l);
    783  1.188      yamt 		if (prevlwp != NULL) {
    784  1.209        ad 			/* Normalize the count of the spin-mutexes */
    785  1.209        ad 			ci->ci_mtx_count++;
    786  1.209        ad 			/* Unmark the state of context switch */
    787  1.209        ad 			membar_exit();
    788  1.209        ad 			prevlwp->l_ctxswtch = 0;
    789  1.188      yamt 		}
    790  1.209        ad 
    791  1.209        ad 		/* Update status for lwpctl, if present. */
    792  1.219        ad 		if (l->l_lwpctl != NULL) {
    793  1.209        ad 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    794  1.219        ad 			l->l_lwpctl->lc_pctr++;
    795  1.219        ad 		}
    796  1.174        ad 
    797  1.231        ad 		KASSERT(l->l_cpu == ci);
    798  1.231        ad 		splx(oldspl);
    799  1.188      yamt 		retval = 1;
    800  1.188      yamt 	} else {
    801  1.188      yamt 		/* Nothing to do - just unlock and return. */
    802  1.216     rmind 		KASSERT(tci == NULL);
    803  1.216     rmind 		spc_unlock(ci);
    804  1.188      yamt 		lwp_unlock(l);
    805  1.122   thorpej 		retval = 0;
    806  1.122   thorpej 	}
    807  1.110    briggs 
    808  1.188      yamt 	KASSERT(l == curlwp);
    809  1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    810  1.188      yamt 
    811  1.110    briggs 	/*
    812  1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    813  1.231        ad 	 * XXXSMP preemption problem.
    814   1.26       cgd 	 */
    815  1.114  gmcgarry #if PERFCTRS
    816  1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    817  1.175  christos 		pmc_restore_context(l->l_proc);
    818  1.166  christos 	}
    819  1.114  gmcgarry #endif
    820  1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    821  1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    822  1.169      yamt 
    823  1.122   thorpej 	return retval;
    824   1.26       cgd }
    825   1.26       cgd 
    826   1.26       cgd /*
    827  1.245        ad  * The machine independent parts of context switch to oblivion.
    828  1.245        ad  * Does not return.  Call with the LWP unlocked.
    829  1.245        ad  */
    830  1.245        ad void
    831  1.245        ad lwp_exit_switchaway(lwp_t *l)
    832  1.245        ad {
    833  1.245        ad 	struct cpu_info *ci;
    834  1.245        ad 	struct lwp *newl;
    835  1.245        ad 	struct bintime bt;
    836  1.245        ad 
    837  1.245        ad 	ci = l->l_cpu;
    838  1.245        ad 
    839  1.245        ad 	KASSERT(kpreempt_disabled());
    840  1.245        ad 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    841  1.245        ad 	KASSERT(ci == curcpu());
    842  1.245        ad 	LOCKDEBUG_BARRIER(NULL, 0);
    843  1.245        ad 
    844  1.245        ad #ifdef KSTACK_CHECK_MAGIC
    845  1.245        ad 	kstack_check_magic(l);
    846  1.245        ad #endif
    847  1.245        ad 
    848  1.245        ad 	/* Count time spent in current system call */
    849  1.245        ad 	SYSCALL_TIME_SLEEP(l);
    850  1.245        ad 	binuptime(&bt);
    851  1.245        ad 	updatertime(l, &bt);
    852  1.245        ad 
    853  1.245        ad 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    854  1.245        ad 	(void)splsched();
    855  1.245        ad 
    856  1.245        ad 	/*
    857  1.245        ad 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    858  1.245        ad 	 * If no LWP is runnable, select the idle LWP.
    859  1.245        ad 	 *
    860  1.245        ad 	 * Note that spc_lwplock might not necessary be held, and
    861  1.245        ad 	 * new thread would be unlocked after setting the LWP-lock.
    862  1.245        ad 	 */
    863  1.245        ad 	spc_lock(ci);
    864  1.245        ad #ifndef __HAVE_FAST_SOFTINTS
    865  1.245        ad 	if (ci->ci_data.cpu_softints != 0) {
    866  1.245        ad 		/* There are pending soft interrupts, so pick one. */
    867  1.245        ad 		newl = softint_picklwp();
    868  1.245        ad 		newl->l_stat = LSONPROC;
    869  1.245        ad 		newl->l_flag |= LW_RUNNING;
    870  1.245        ad 	} else
    871  1.245        ad #endif	/* !__HAVE_FAST_SOFTINTS */
    872  1.245        ad 	{
    873  1.245        ad 		newl = nextlwp(ci, &ci->ci_schedstate);
    874  1.245        ad 	}
    875  1.245        ad 
    876  1.245        ad 	/* Update the new LWP's start time. */
    877  1.245        ad 	newl->l_stime = bt;
    878  1.245        ad 	l->l_flag &= ~LW_RUNNING;
    879  1.245        ad 
    880  1.245        ad 	/*
    881  1.245        ad 	 * ci_curlwp changes when a fast soft interrupt occurs.
    882  1.245        ad 	 * We use cpu_onproc to keep track of which kernel or
    883  1.245        ad 	 * user thread is running 'underneath' the software
    884  1.245        ad 	 * interrupt.  This is important for time accounting,
    885  1.245        ad 	 * itimers and forcing user threads to preempt (aston).
    886  1.245        ad 	 */
    887  1.245        ad 	ci->ci_data.cpu_onproc = newl;
    888  1.245        ad 
    889  1.245        ad 	/*
    890  1.245        ad 	 * Preemption related tasks.  Must be done with the current
    891  1.245        ad 	 * CPU locked.
    892  1.245        ad 	 */
    893  1.245        ad 	cpu_did_resched(l);
    894  1.245        ad 
    895  1.245        ad 	/* Unlock the run queue. */
    896  1.245        ad 	spc_unlock(ci);
    897  1.245        ad 
    898  1.245        ad 	/* Count the context switch on this CPU. */
    899  1.245        ad 	ci->ci_data.cpu_nswtch++;
    900  1.245        ad 
    901  1.245        ad 	/* Update status for lwpctl, if present. */
    902  1.245        ad 	if (l->l_lwpctl != NULL)
    903  1.245        ad 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    904  1.245        ad 
    905  1.245        ad 	/*
    906  1.245        ad 	 * We may need to spin-wait for if 'newl' is still
    907  1.245        ad 	 * context switching on another CPU.
    908  1.245        ad 	 */
    909  1.245        ad 	if (newl->l_ctxswtch != 0) {
    910  1.245        ad 		u_int count;
    911  1.245        ad 		count = SPINLOCK_BACKOFF_MIN;
    912  1.245        ad 		while (newl->l_ctxswtch)
    913  1.245        ad 			SPINLOCK_BACKOFF(count);
    914  1.245        ad 	}
    915  1.245        ad 
    916  1.245        ad 	/* Switch to the new LWP.. */
    917  1.245        ad 	(void)cpu_switchto(NULL, newl, false);
    918  1.245        ad 
    919  1.245        ad 	/* NOTREACHED */
    920  1.245        ad }
    921  1.245        ad 
    922  1.245        ad /*
    923  1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    924  1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    925  1.174        ad  *
    926  1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    927   1.26       cgd  */
    928   1.26       cgd void
    929  1.122   thorpej setrunnable(struct lwp *l)
    930   1.26       cgd {
    931  1.122   thorpej 	struct proc *p = l->l_proc;
    932  1.205        ad 	struct cpu_info *ci;
    933  1.174        ad 	sigset_t *ss;
    934   1.26       cgd 
    935  1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    936  1.229        ad 	KASSERT(mutex_owned(p->p_lock));
    937  1.183        ad 	KASSERT(lwp_locked(l, NULL));
    938  1.205        ad 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    939   1.83   thorpej 
    940  1.122   thorpej 	switch (l->l_stat) {
    941  1.122   thorpej 	case LSSTOP:
    942   1.33   mycroft 		/*
    943   1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    944   1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    945   1.33   mycroft 		 */
    946  1.174        ad 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    947  1.174        ad 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    948  1.174        ad 				ss = &l->l_sigpend.sp_set;
    949  1.174        ad 			else
    950  1.174        ad 				ss = &p->p_sigpend.sp_set;
    951  1.174        ad 			sigaddset(ss, p->p_xstat);
    952  1.174        ad 			signotify(l);
    953   1.53   mycroft 		}
    954  1.174        ad 		p->p_nrlwps++;
    955   1.26       cgd 		break;
    956  1.174        ad 	case LSSUSPENDED:
    957  1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    958  1.174        ad 		p->p_nrlwps++;
    959  1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    960  1.122   thorpej 		break;
    961  1.174        ad 	case LSSLEEP:
    962  1.174        ad 		KASSERT(l->l_wchan != NULL);
    963   1.26       cgd 		break;
    964  1.174        ad 	default:
    965  1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    966   1.26       cgd 	}
    967  1.139        cl 
    968  1.174        ad 	/*
    969  1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    970  1.174        ad 	 * again.  If not, mark it as still sleeping.
    971  1.174        ad 	 */
    972  1.174        ad 	if (l->l_wchan != NULL) {
    973  1.174        ad 		l->l_stat = LSSLEEP;
    974  1.183        ad 		/* lwp_unsleep() will release the lock. */
    975  1.221        ad 		lwp_unsleep(l, true);
    976  1.174        ad 		return;
    977  1.174        ad 	}
    978  1.139        cl 
    979  1.174        ad 	/*
    980  1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    981  1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    982  1.174        ad 	 */
    983  1.188      yamt 	if ((l->l_flag & LW_RUNNING) != 0) {
    984  1.174        ad 		l->l_stat = LSONPROC;
    985  1.174        ad 		l->l_slptime = 0;
    986  1.174        ad 		lwp_unlock(l);
    987  1.174        ad 		return;
    988  1.174        ad 	}
    989  1.122   thorpej 
    990  1.174        ad 	/*
    991  1.205        ad 	 * Look for a CPU to run.
    992  1.205        ad 	 * Set the LWP runnable.
    993  1.174        ad 	 */
    994  1.205        ad 	ci = sched_takecpu(l);
    995  1.205        ad 	l->l_cpu = ci;
    996  1.236        ad 	spc_lock(ci);
    997  1.236        ad 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    998  1.188      yamt 	sched_setrunnable(l);
    999  1.174        ad 	l->l_stat = LSRUN;
   1000  1.122   thorpej 	l->l_slptime = 0;
   1001  1.174        ad 
   1002  1.205        ad 	/*
   1003  1.205        ad 	 * If thread is swapped out - wake the swapper to bring it back in.
   1004  1.205        ad 	 * Otherwise, enter it into a run queue.
   1005  1.205        ad 	 */
   1006  1.178     pavel 	if (l->l_flag & LW_INMEM) {
   1007  1.188      yamt 		sched_enqueue(l, false);
   1008  1.188      yamt 		resched_cpu(l);
   1009  1.174        ad 		lwp_unlock(l);
   1010  1.174        ad 	} else {
   1011  1.174        ad 		lwp_unlock(l);
   1012  1.177        ad 		uvm_kick_scheduler();
   1013  1.174        ad 	}
   1014   1.26       cgd }
   1015   1.26       cgd 
   1016   1.26       cgd /*
   1017  1.174        ad  * suspendsched:
   1018  1.174        ad  *
   1019  1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
   1020  1.174        ad  */
   1021   1.94    bouyer void
   1022  1.174        ad suspendsched(void)
   1023   1.94    bouyer {
   1024  1.174        ad 	CPU_INFO_ITERATOR cii;
   1025  1.174        ad 	struct cpu_info *ci;
   1026  1.122   thorpej 	struct lwp *l;
   1027  1.174        ad 	struct proc *p;
   1028   1.94    bouyer 
   1029   1.94    bouyer 	/*
   1030  1.174        ad 	 * We do this by process in order not to violate the locking rules.
   1031   1.94    bouyer 	 */
   1032  1.228        ad 	mutex_enter(proc_lock);
   1033  1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
   1034  1.238        ad 		if ((p->p_flag & PK_MARKER) != 0)
   1035  1.238        ad 			continue;
   1036  1.238        ad 
   1037  1.229        ad 		mutex_enter(p->p_lock);
   1038  1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
   1039  1.229        ad 			mutex_exit(p->p_lock);
   1040   1.94    bouyer 			continue;
   1041  1.174        ad 		}
   1042  1.174        ad 
   1043  1.174        ad 		p->p_stat = SSTOP;
   1044  1.174        ad 
   1045  1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1046  1.174        ad 			if (l == curlwp)
   1047  1.174        ad 				continue;
   1048  1.174        ad 
   1049  1.174        ad 			lwp_lock(l);
   1050  1.122   thorpej 
   1051   1.97     enami 			/*
   1052  1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
   1053  1.174        ad 			 * when it tries to return to user mode.  We want to
   1054  1.174        ad 			 * try and get to get as many LWPs as possible to
   1055  1.174        ad 			 * the user / kernel boundary, so that they will
   1056  1.174        ad 			 * release any locks that they hold.
   1057   1.97     enami 			 */
   1058  1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1059  1.174        ad 
   1060  1.174        ad 			if (l->l_stat == LSSLEEP &&
   1061  1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
   1062  1.174        ad 				/* setrunnable() will release the lock. */
   1063  1.174        ad 				setrunnable(l);
   1064  1.174        ad 				continue;
   1065  1.174        ad 			}
   1066  1.174        ad 
   1067  1.174        ad 			lwp_unlock(l);
   1068   1.94    bouyer 		}
   1069  1.174        ad 
   1070  1.229        ad 		mutex_exit(p->p_lock);
   1071   1.94    bouyer 	}
   1072  1.228        ad 	mutex_exit(proc_lock);
   1073  1.174        ad 
   1074  1.174        ad 	/*
   1075  1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1076  1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
   1077  1.174        ad 	 */
   1078  1.204        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
   1079  1.204        ad 		spc_lock(ci);
   1080  1.204        ad 		cpu_need_resched(ci, RESCHED_IMMED);
   1081  1.204        ad 		spc_unlock(ci);
   1082  1.204        ad 	}
   1083  1.174        ad }
   1084  1.174        ad 
   1085  1.174        ad /*
   1086  1.174        ad  * sched_unsleep:
   1087  1.174        ad  *
   1088  1.174        ad  *	The is called when the LWP has not been awoken normally but instead
   1089  1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
   1090  1.174        ad  *	it's not a valid action for running or idle LWPs.
   1091  1.174        ad  */
   1092  1.221        ad static u_int
   1093  1.221        ad sched_unsleep(struct lwp *l, bool cleanup)
   1094  1.174        ad {
   1095  1.174        ad 
   1096  1.174        ad 	lwp_unlock(l);
   1097  1.174        ad 	panic("sched_unsleep");
   1098  1.174        ad }
   1099  1.174        ad 
   1100  1.204        ad void
   1101  1.188      yamt resched_cpu(struct lwp *l)
   1102  1.188      yamt {
   1103  1.188      yamt 	struct cpu_info *ci;
   1104  1.188      yamt 
   1105  1.188      yamt 	/*
   1106  1.188      yamt 	 * XXXSMP
   1107  1.188      yamt 	 * Since l->l_cpu persists across a context switch,
   1108  1.188      yamt 	 * this gives us *very weak* processor affinity, in
   1109  1.188      yamt 	 * that we notify the CPU on which the process last
   1110  1.188      yamt 	 * ran that it should try to switch.
   1111  1.188      yamt 	 *
   1112  1.188      yamt 	 * This does not guarantee that the process will run on
   1113  1.188      yamt 	 * that processor next, because another processor might
   1114  1.188      yamt 	 * grab it the next time it performs a context switch.
   1115  1.188      yamt 	 *
   1116  1.188      yamt 	 * This also does not handle the case where its last
   1117  1.188      yamt 	 * CPU is running a higher-priority process, but every
   1118  1.188      yamt 	 * other CPU is running a lower-priority process.  There
   1119  1.188      yamt 	 * are ways to handle this situation, but they're not
   1120  1.188      yamt 	 * currently very pretty, and we also need to weigh the
   1121  1.188      yamt 	 * cost of moving a process from one CPU to another.
   1122  1.188      yamt 	 */
   1123  1.204        ad 	ci = l->l_cpu;
   1124  1.204        ad 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1125  1.188      yamt 		cpu_need_resched(ci, 0);
   1126  1.188      yamt }
   1127  1.188      yamt 
   1128  1.188      yamt static void
   1129  1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
   1130  1.174        ad {
   1131  1.174        ad 
   1132  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
   1133  1.174        ad 
   1134  1.204        ad 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1135  1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1136  1.204        ad 		sched_dequeue(l);
   1137  1.204        ad 		l->l_priority = pri;
   1138  1.204        ad 		sched_enqueue(l, false);
   1139  1.204        ad 	} else {
   1140  1.174        ad 		l->l_priority = pri;
   1141  1.157      yamt 	}
   1142  1.188      yamt 	resched_cpu(l);
   1143  1.184      yamt }
   1144  1.184      yamt 
   1145  1.188      yamt static void
   1146  1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
   1147  1.184      yamt {
   1148  1.184      yamt 
   1149  1.188      yamt 	KASSERT(lwp_locked(l, NULL));
   1150  1.184      yamt 
   1151  1.204        ad 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1152  1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1153  1.204        ad 		sched_dequeue(l);
   1154  1.204        ad 		l->l_inheritedprio = pri;
   1155  1.204        ad 		sched_enqueue(l, false);
   1156  1.204        ad 	} else {
   1157  1.184      yamt 		l->l_inheritedprio = pri;
   1158  1.184      yamt 	}
   1159  1.188      yamt 	resched_cpu(l);
   1160  1.184      yamt }
   1161  1.184      yamt 
   1162  1.184      yamt struct lwp *
   1163  1.184      yamt syncobj_noowner(wchan_t wchan)
   1164  1.184      yamt {
   1165  1.184      yamt 
   1166  1.184      yamt 	return NULL;
   1167  1.151      yamt }
   1168  1.151      yamt 
   1169  1.188      yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
   1170  1.188      yamt fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
   1171  1.115  nisimura 
   1172  1.130   nathanw /*
   1173  1.188      yamt  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
   1174  1.188      yamt  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
   1175  1.188      yamt  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
   1176  1.188      yamt  *
   1177  1.188      yamt  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
   1178  1.188      yamt  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
   1179  1.188      yamt  *
   1180  1.188      yamt  * If you dont want to bother with the faster/more-accurate formula, you
   1181  1.188      yamt  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
   1182  1.188      yamt  * (more general) method of calculating the %age of CPU used by a process.
   1183  1.134      matt  */
   1184  1.188      yamt #define	CCPU_SHIFT	(FSHIFT + 1)
   1185  1.134      matt 
   1186  1.134      matt /*
   1187  1.188      yamt  * sched_pstats:
   1188  1.188      yamt  *
   1189  1.188      yamt  * Update process statistics and check CPU resource allocation.
   1190  1.188      yamt  * Call scheduler-specific hook to eventually adjust process/LWP
   1191  1.188      yamt  * priorities.
   1192  1.130   nathanw  */
   1193  1.188      yamt /* ARGSUSED */
   1194  1.113  gmcgarry void
   1195  1.188      yamt sched_pstats(void *arg)
   1196  1.113  gmcgarry {
   1197  1.188      yamt 	struct rlimit *rlim;
   1198  1.188      yamt 	struct lwp *l;
   1199  1.188      yamt 	struct proc *p;
   1200  1.204        ad 	int sig, clkhz;
   1201  1.188      yamt 	long runtm;
   1202  1.113  gmcgarry 
   1203  1.188      yamt 	sched_pstats_ticks++;
   1204  1.174        ad 
   1205  1.228        ad 	mutex_enter(proc_lock);
   1206  1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
   1207  1.238        ad 		if ((p->p_flag & PK_MARKER) != 0)
   1208  1.238        ad 			continue;
   1209  1.238        ad 
   1210  1.188      yamt 		/*
   1211  1.188      yamt 		 * Increment time in/out of memory and sleep time (if
   1212  1.188      yamt 		 * sleeping).  We ignore overflow; with 16-bit int's
   1213  1.188      yamt 		 * (remember them?) overflow takes 45 days.
   1214  1.188      yamt 		 */
   1215  1.229        ad 		mutex_enter(p->p_lock);
   1216  1.188      yamt 		mutex_spin_enter(&p->p_stmutex);
   1217  1.212      yamt 		runtm = p->p_rtime.sec;
   1218  1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1219  1.188      yamt 			if ((l->l_flag & LW_IDLE) != 0)
   1220  1.188      yamt 				continue;
   1221  1.188      yamt 			lwp_lock(l);
   1222  1.212      yamt 			runtm += l->l_rtime.sec;
   1223  1.188      yamt 			l->l_swtime++;
   1224  1.242     rmind 			sched_lwp_stats(l);
   1225  1.188      yamt 			lwp_unlock(l);
   1226  1.113  gmcgarry 
   1227  1.188      yamt 			/*
   1228  1.188      yamt 			 * p_pctcpu is only for ps.
   1229  1.188      yamt 			 */
   1230  1.188      yamt 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1231  1.188      yamt 			if (l->l_slptime < 1) {
   1232  1.188      yamt 				clkhz = stathz != 0 ? stathz : hz;
   1233  1.188      yamt #if	(FSHIFT >= CCPU_SHIFT)
   1234  1.188      yamt 				l->l_pctcpu += (clkhz == 100) ?
   1235  1.188      yamt 				    ((fixpt_t)l->l_cpticks) <<
   1236  1.188      yamt 				        (FSHIFT - CCPU_SHIFT) :
   1237  1.188      yamt 				    100 * (((fixpt_t) p->p_cpticks)
   1238  1.188      yamt 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
   1239  1.188      yamt #else
   1240  1.188      yamt 				l->l_pctcpu += ((FSCALE - ccpu) *
   1241  1.188      yamt 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
   1242  1.146      matt #endif
   1243  1.188      yamt 				l->l_cpticks = 0;
   1244  1.188      yamt 			}
   1245  1.188      yamt 		}
   1246  1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1247  1.188      yamt 		mutex_spin_exit(&p->p_stmutex);
   1248  1.174        ad 
   1249  1.188      yamt 		/*
   1250  1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
   1251  1.188      yamt 		 * If over max, kill it.
   1252  1.188      yamt 		 */
   1253  1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1254  1.188      yamt 		sig = 0;
   1255  1.188      yamt 		if (runtm >= rlim->rlim_cur) {
   1256  1.188      yamt 			if (runtm >= rlim->rlim_max)
   1257  1.188      yamt 				sig = SIGKILL;
   1258  1.188      yamt 			else {
   1259  1.188      yamt 				sig = SIGXCPU;
   1260  1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
   1261  1.188      yamt 					rlim->rlim_cur += 5;
   1262  1.188      yamt 			}
   1263  1.188      yamt 		}
   1264  1.229        ad 		mutex_exit(p->p_lock);
   1265  1.228        ad 		if (sig)
   1266  1.188      yamt 			psignal(p, sig);
   1267  1.174        ad 	}
   1268  1.228        ad 	mutex_exit(proc_lock);
   1269  1.188      yamt 	uvm_meter();
   1270  1.191        ad 	cv_wakeup(&lbolt);
   1271  1.188      yamt 	callout_schedule(&sched_pstats_ch, hz);
   1272  1.113  gmcgarry }
   1273