kern_synch.c revision 1.245 1 1.245 ad /* $NetBSD: kern_synch.c,v 1.245 2008/05/27 17:51:17 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.218 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej *
21 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
32 1.63 thorpej */
33 1.26 cgd
34 1.26 cgd /*-
35 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 1.26 cgd * The Regents of the University of California. All rights reserved.
37 1.26 cgd * (c) UNIX System Laboratories, Inc.
38 1.26 cgd * All or some portions of this file are derived from material licensed
39 1.26 cgd * to the University of California by American Telephone and Telegraph
40 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 1.26 cgd * the permission of UNIX System Laboratories, Inc.
42 1.26 cgd *
43 1.26 cgd * Redistribution and use in source and binary forms, with or without
44 1.26 cgd * modification, are permitted provided that the following conditions
45 1.26 cgd * are met:
46 1.26 cgd * 1. Redistributions of source code must retain the above copyright
47 1.26 cgd * notice, this list of conditions and the following disclaimer.
48 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.26 cgd * notice, this list of conditions and the following disclaimer in the
50 1.26 cgd * documentation and/or other materials provided with the distribution.
51 1.136 agc * 3. Neither the name of the University nor the names of its contributors
52 1.26 cgd * may be used to endorse or promote products derived from this software
53 1.26 cgd * without specific prior written permission.
54 1.26 cgd *
55 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.26 cgd * SUCH DAMAGE.
66 1.26 cgd *
67 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 1.26 cgd */
69 1.106 lukem
70 1.106 lukem #include <sys/cdefs.h>
71 1.245 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.245 2008/05/27 17:51:17 ad Exp $");
72 1.48 mrg
73 1.109 yamt #include "opt_kstack.h"
74 1.110 briggs #include "opt_perfctrs.h"
75 1.26 cgd
76 1.174 ad #define __MUTEX_PRIVATE
77 1.174 ad
78 1.26 cgd #include <sys/param.h>
79 1.26 cgd #include <sys/systm.h>
80 1.26 cgd #include <sys/proc.h>
81 1.26 cgd #include <sys/kernel.h>
82 1.111 briggs #if defined(PERFCTRS)
83 1.110 briggs #include <sys/pmc.h>
84 1.111 briggs #endif
85 1.188 yamt #include <sys/cpu.h>
86 1.26 cgd #include <sys/resourcevar.h>
87 1.55 ross #include <sys/sched.h>
88 1.179 dsl #include <sys/syscall_stats.h>
89 1.174 ad #include <sys/sleepq.h>
90 1.174 ad #include <sys/lockdebug.h>
91 1.190 ad #include <sys/evcnt.h>
92 1.199 ad #include <sys/intr.h>
93 1.207 ad #include <sys/lwpctl.h>
94 1.209 ad #include <sys/atomic.h>
95 1.215 ad #include <sys/simplelock.h>
96 1.47 mrg
97 1.47 mrg #include <uvm/uvm_extern.h>
98 1.47 mrg
99 1.231 ad #include <dev/lockstat.h>
100 1.231 ad
101 1.221 ad static u_int sched_unsleep(struct lwp *, bool);
102 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
103 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
104 1.122 thorpej
105 1.174 ad syncobj_t sleep_syncobj = {
106 1.174 ad SOBJ_SLEEPQ_SORTED,
107 1.174 ad sleepq_unsleep,
108 1.184 yamt sleepq_changepri,
109 1.184 yamt sleepq_lendpri,
110 1.184 yamt syncobj_noowner,
111 1.174 ad };
112 1.174 ad
113 1.174 ad syncobj_t sched_syncobj = {
114 1.174 ad SOBJ_SLEEPQ_SORTED,
115 1.174 ad sched_unsleep,
116 1.184 yamt sched_changepri,
117 1.184 yamt sched_lendpri,
118 1.184 yamt syncobj_noowner,
119 1.174 ad };
120 1.122 thorpej
121 1.223 ad callout_t sched_pstats_ch;
122 1.223 ad unsigned sched_pstats_ticks;
123 1.223 ad kcondvar_t lbolt; /* once a second sleep address */
124 1.223 ad
125 1.237 rmind /* Preemption event counters */
126 1.231 ad static struct evcnt kpreempt_ev_crit;
127 1.231 ad static struct evcnt kpreempt_ev_klock;
128 1.231 ad static struct evcnt kpreempt_ev_ipl;
129 1.231 ad static struct evcnt kpreempt_ev_immed;
130 1.231 ad
131 1.231 ad /*
132 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
133 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
134 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
135 1.174 ad * maintained in the machine-dependent layers. This priority will typically
136 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
137 1.174 ad * it can be made higher to block network software interrupts after panics.
138 1.26 cgd */
139 1.174 ad int safepri;
140 1.26 cgd
141 1.237 rmind void
142 1.237 rmind sched_init(void)
143 1.237 rmind {
144 1.237 rmind
145 1.237 rmind cv_init(&lbolt, "lbolt");
146 1.237 rmind callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
147 1.237 rmind callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
148 1.237 rmind
149 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
150 1.237 rmind "kpreempt", "defer: critical section");
151 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
152 1.237 rmind "kpreempt", "defer: kernel_lock");
153 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
154 1.237 rmind "kpreempt", "defer: IPL");
155 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
156 1.237 rmind "kpreempt", "immediate");
157 1.237 rmind
158 1.237 rmind sched_pstats(NULL);
159 1.237 rmind }
160 1.237 rmind
161 1.26 cgd /*
162 1.174 ad * OBSOLETE INTERFACE
163 1.174 ad *
164 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
165 1.26 cgd * performed on the specified identifier. The process will then be made
166 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
167 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
168 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
169 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
170 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
171 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
172 1.26 cgd * call should be interrupted by the signal (return EINTR).
173 1.77 thorpej *
174 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
175 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
176 1.174 ad * is specified, in which case the interlock will always be unlocked upon
177 1.174 ad * return.
178 1.26 cgd */
179 1.26 cgd int
180 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
181 1.174 ad volatile struct simplelock *interlock)
182 1.26 cgd {
183 1.122 thorpej struct lwp *l = curlwp;
184 1.174 ad sleepq_t *sq;
185 1.244 ad kmutex_t *mp;
186 1.188 yamt int error;
187 1.26 cgd
188 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
189 1.204 ad
190 1.174 ad if (sleepq_dontsleep(l)) {
191 1.174 ad (void)sleepq_abort(NULL, 0);
192 1.174 ad if ((priority & PNORELOCK) != 0)
193 1.77 thorpej simple_unlock(interlock);
194 1.174 ad return 0;
195 1.26 cgd }
196 1.78 sommerfe
197 1.204 ad l->l_kpriority = true;
198 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
199 1.244 ad sleepq_enter(sq, l, mp);
200 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
201 1.42 cgd
202 1.174 ad if (interlock != NULL) {
203 1.204 ad KASSERT(simple_lock_held(interlock));
204 1.174 ad simple_unlock(interlock);
205 1.150 chs }
206 1.150 chs
207 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
208 1.126 pk
209 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
210 1.126 pk simple_lock(interlock);
211 1.174 ad
212 1.174 ad return error;
213 1.26 cgd }
214 1.26 cgd
215 1.187 ad int
216 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
217 1.187 ad kmutex_t *mtx)
218 1.187 ad {
219 1.187 ad struct lwp *l = curlwp;
220 1.187 ad sleepq_t *sq;
221 1.244 ad kmutex_t *mp;
222 1.188 yamt int error;
223 1.187 ad
224 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
225 1.204 ad
226 1.187 ad if (sleepq_dontsleep(l)) {
227 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
228 1.187 ad return 0;
229 1.187 ad }
230 1.187 ad
231 1.204 ad l->l_kpriority = true;
232 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
233 1.244 ad sleepq_enter(sq, l, mp);
234 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
235 1.187 ad mutex_exit(mtx);
236 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
237 1.187 ad
238 1.187 ad if ((priority & PNORELOCK) == 0)
239 1.187 ad mutex_enter(mtx);
240 1.187 ad
241 1.187 ad return error;
242 1.187 ad }
243 1.187 ad
244 1.26 cgd /*
245 1.174 ad * General sleep call for situations where a wake-up is not expected.
246 1.26 cgd */
247 1.174 ad int
248 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
249 1.26 cgd {
250 1.174 ad struct lwp *l = curlwp;
251 1.244 ad kmutex_t *mp;
252 1.174 ad sleepq_t *sq;
253 1.174 ad int error;
254 1.26 cgd
255 1.174 ad if (sleepq_dontsleep(l))
256 1.174 ad return sleepq_abort(NULL, 0);
257 1.26 cgd
258 1.174 ad if (mtx != NULL)
259 1.174 ad mutex_exit(mtx);
260 1.204 ad l->l_kpriority = true;
261 1.244 ad sq = sleeptab_lookup(&sleeptab, l, &mp);
262 1.244 ad sleepq_enter(sq, l, mp);
263 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
264 1.188 yamt error = sleepq_block(timo, intr);
265 1.174 ad if (mtx != NULL)
266 1.174 ad mutex_enter(mtx);
267 1.83 thorpej
268 1.174 ad return error;
269 1.139 cl }
270 1.139 cl
271 1.26 cgd /*
272 1.174 ad * OBSOLETE INTERFACE
273 1.174 ad *
274 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
275 1.26 cgd */
276 1.26 cgd void
277 1.174 ad wakeup(wchan_t ident)
278 1.26 cgd {
279 1.174 ad sleepq_t *sq;
280 1.244 ad kmutex_t *mp;
281 1.83 thorpej
282 1.174 ad if (cold)
283 1.174 ad return;
284 1.83 thorpej
285 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
286 1.244 ad sleepq_wake(sq, ident, (u_int)-1, mp);
287 1.63 thorpej }
288 1.63 thorpej
289 1.63 thorpej /*
290 1.174 ad * OBSOLETE INTERFACE
291 1.174 ad *
292 1.63 thorpej * Make the highest priority process first in line on the specified
293 1.63 thorpej * identifier runnable.
294 1.63 thorpej */
295 1.174 ad void
296 1.174 ad wakeup_one(wchan_t ident)
297 1.63 thorpej {
298 1.174 ad sleepq_t *sq;
299 1.244 ad kmutex_t *mp;
300 1.63 thorpej
301 1.174 ad if (cold)
302 1.174 ad return;
303 1.188 yamt
304 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
305 1.244 ad sleepq_wake(sq, ident, 1, mp);
306 1.174 ad }
307 1.63 thorpej
308 1.117 gmcgarry
309 1.117 gmcgarry /*
310 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
311 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
312 1.198 ad * current process explicitly requests it (eg sched_yield(2)).
313 1.117 gmcgarry */
314 1.117 gmcgarry void
315 1.117 gmcgarry yield(void)
316 1.117 gmcgarry {
317 1.122 thorpej struct lwp *l = curlwp;
318 1.117 gmcgarry
319 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
320 1.174 ad lwp_lock(l);
321 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
322 1.188 yamt KASSERT(l->l_stat == LSONPROC);
323 1.204 ad l->l_kpriority = false;
324 1.188 yamt (void)mi_switch(l);
325 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
326 1.69 thorpej }
327 1.69 thorpej
328 1.69 thorpej /*
329 1.69 thorpej * General preemption call. Puts the current process back on its run queue
330 1.156 rpaulo * and performs an involuntary context switch.
331 1.69 thorpej */
332 1.69 thorpej void
333 1.174 ad preempt(void)
334 1.69 thorpej {
335 1.122 thorpej struct lwp *l = curlwp;
336 1.69 thorpej
337 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
338 1.174 ad lwp_lock(l);
339 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
340 1.188 yamt KASSERT(l->l_stat == LSONPROC);
341 1.204 ad l->l_kpriority = false;
342 1.174 ad l->l_nivcsw++;
343 1.188 yamt (void)mi_switch(l);
344 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
345 1.69 thorpej }
346 1.69 thorpej
347 1.234 ad /*
348 1.234 ad * Handle a request made by another agent to preempt the current LWP
349 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
350 1.234 ad *
351 1.234 ad * Character addresses for lockstat only.
352 1.234 ad */
353 1.231 ad static char in_critical_section;
354 1.231 ad static char kernel_lock_held;
355 1.231 ad static char spl_raised;
356 1.231 ad static char is_softint;
357 1.231 ad
358 1.231 ad bool
359 1.231 ad kpreempt(uintptr_t where)
360 1.231 ad {
361 1.231 ad uintptr_t failed;
362 1.231 ad lwp_t *l;
363 1.231 ad int s, dop;
364 1.231 ad
365 1.231 ad l = curlwp;
366 1.231 ad failed = 0;
367 1.231 ad while ((dop = l->l_dopreempt) != 0) {
368 1.231 ad if (l->l_stat != LSONPROC) {
369 1.231 ad /*
370 1.231 ad * About to block (or die), let it happen.
371 1.231 ad * Doesn't really count as "preemption has
372 1.231 ad * been blocked", since we're going to
373 1.231 ad * context switch.
374 1.231 ad */
375 1.231 ad l->l_dopreempt = 0;
376 1.231 ad return true;
377 1.231 ad }
378 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
379 1.231 ad /* Can't preempt idle loop, don't count as failure. */
380 1.231 ad l->l_dopreempt = 0;
381 1.231 ad return true;
382 1.231 ad }
383 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
384 1.231 ad /* LWP holds preemption disabled, explicitly. */
385 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
386 1.234 ad kpreempt_ev_crit.ev_count++;
387 1.231 ad }
388 1.231 ad failed = (uintptr_t)&in_critical_section;
389 1.231 ad break;
390 1.231 ad }
391 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
392 1.231 ad /* Can't preempt soft interrupts yet. */
393 1.231 ad l->l_dopreempt = 0;
394 1.231 ad failed = (uintptr_t)&is_softint;
395 1.231 ad break;
396 1.231 ad }
397 1.231 ad s = splsched();
398 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
399 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
400 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
401 1.231 ad splx(s);
402 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
403 1.234 ad kpreempt_ev_klock.ev_count++;
404 1.231 ad }
405 1.231 ad failed = (uintptr_t)&kernel_lock_held;
406 1.231 ad break;
407 1.231 ad }
408 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
409 1.231 ad /*
410 1.231 ad * It may be that the IPL is too high.
411 1.231 ad * kpreempt_enter() can schedule an
412 1.231 ad * interrupt to retry later.
413 1.231 ad */
414 1.231 ad splx(s);
415 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
416 1.234 ad kpreempt_ev_ipl.ev_count++;
417 1.231 ad }
418 1.231 ad failed = (uintptr_t)&spl_raised;
419 1.231 ad break;
420 1.231 ad }
421 1.231 ad /* Do it! */
422 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
423 1.234 ad kpreempt_ev_immed.ev_count++;
424 1.231 ad }
425 1.231 ad lwp_lock(l);
426 1.231 ad mi_switch(l);
427 1.231 ad l->l_nopreempt++;
428 1.231 ad splx(s);
429 1.231 ad
430 1.231 ad /* Take care of any MD cleanup. */
431 1.231 ad cpu_kpreempt_exit(where);
432 1.231 ad l->l_nopreempt--;
433 1.231 ad }
434 1.231 ad
435 1.231 ad /* Record preemption failure for reporting via lockstat. */
436 1.231 ad if (__predict_false(failed)) {
437 1.240 ad int lsflag = 0;
438 1.231 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
439 1.231 ad LOCKSTAT_ENTER(lsflag);
440 1.231 ad /* Might recurse, make it atomic. */
441 1.231 ad if (__predict_false(lsflag)) {
442 1.231 ad if (where == 0) {
443 1.231 ad where = (uintptr_t)__builtin_return_address(0);
444 1.231 ad }
445 1.231 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
446 1.231 ad NULL, (void *)where) == NULL) {
447 1.231 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
448 1.231 ad l->l_pfaillock = failed;
449 1.231 ad }
450 1.231 ad }
451 1.231 ad LOCKSTAT_EXIT(lsflag);
452 1.231 ad }
453 1.231 ad
454 1.231 ad return failed;
455 1.231 ad }
456 1.231 ad
457 1.69 thorpej /*
458 1.231 ad * Return true if preemption is explicitly disabled.
459 1.230 ad */
460 1.231 ad bool
461 1.231 ad kpreempt_disabled(void)
462 1.231 ad {
463 1.231 ad lwp_t *l;
464 1.231 ad
465 1.231 ad l = curlwp;
466 1.231 ad
467 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
468 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
469 1.231 ad }
470 1.230 ad
471 1.230 ad /*
472 1.231 ad * Disable kernel preemption.
473 1.230 ad */
474 1.230 ad void
475 1.231 ad kpreempt_disable(void)
476 1.230 ad {
477 1.230 ad
478 1.231 ad KPREEMPT_DISABLE(curlwp);
479 1.230 ad }
480 1.230 ad
481 1.230 ad /*
482 1.231 ad * Reenable kernel preemption.
483 1.230 ad */
484 1.231 ad void
485 1.231 ad kpreempt_enable(void)
486 1.230 ad {
487 1.230 ad
488 1.231 ad KPREEMPT_ENABLE(curlwp);
489 1.230 ad }
490 1.230 ad
491 1.230 ad /*
492 1.188 yamt * Compute the amount of time during which the current lwp was running.
493 1.130 nathanw *
494 1.188 yamt * - update l_rtime unless it's an idle lwp.
495 1.188 yamt */
496 1.188 yamt
497 1.199 ad void
498 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
499 1.188 yamt {
500 1.188 yamt
501 1.199 ad if ((l->l_flag & LW_IDLE) != 0)
502 1.188 yamt return;
503 1.188 yamt
504 1.212 yamt /* rtime += now - stime */
505 1.212 yamt bintime_add(&l->l_rtime, now);
506 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
507 1.188 yamt }
508 1.188 yamt
509 1.188 yamt /*
510 1.245 ad * Select next LWP from the current CPU to run..
511 1.245 ad */
512 1.245 ad static inline lwp_t *
513 1.245 ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
514 1.245 ad {
515 1.245 ad lwp_t *newl;
516 1.245 ad
517 1.245 ad /*
518 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
519 1.245 ad * If no LWP is runnable, select the idle LWP.
520 1.245 ad *
521 1.245 ad * Note that spc_lwplock might not necessary be held, and
522 1.245 ad * new thread would be unlocked after setting the LWP-lock.
523 1.245 ad */
524 1.245 ad newl = sched_nextlwp();
525 1.245 ad if (newl != NULL) {
526 1.245 ad sched_dequeue(newl);
527 1.245 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
528 1.245 ad newl->l_stat = LSONPROC;
529 1.245 ad newl->l_cpu = ci;
530 1.245 ad newl->l_flag |= LW_RUNNING;
531 1.245 ad lwp_setlock(newl, spc->spc_lwplock);
532 1.245 ad } else {
533 1.245 ad newl = ci->ci_data.cpu_idlelwp;
534 1.245 ad newl->l_stat = LSONPROC;
535 1.245 ad newl->l_flag |= LW_RUNNING;
536 1.245 ad }
537 1.245 ad
538 1.245 ad /*
539 1.245 ad * Only clear want_resched if there are no pending (slow)
540 1.245 ad * software interrupts.
541 1.245 ad */
542 1.245 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
543 1.245 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
544 1.245 ad spc->spc_curpriority = lwp_eprio(newl);
545 1.245 ad
546 1.245 ad return newl;
547 1.245 ad }
548 1.245 ad
549 1.245 ad /*
550 1.188 yamt * The machine independent parts of context switch.
551 1.188 yamt *
552 1.188 yamt * Returns 1 if another LWP was actually run.
553 1.26 cgd */
554 1.122 thorpej int
555 1.199 ad mi_switch(lwp_t *l)
556 1.26 cgd {
557 1.216 rmind struct cpu_info *ci, *tci = NULL;
558 1.76 thorpej struct schedstate_percpu *spc;
559 1.188 yamt struct lwp *newl;
560 1.174 ad int retval, oldspl;
561 1.212 yamt struct bintime bt;
562 1.199 ad bool returning;
563 1.26 cgd
564 1.188 yamt KASSERT(lwp_locked(l, NULL));
565 1.231 ad KASSERT(kpreempt_disabled());
566 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
567 1.174 ad
568 1.174 ad #ifdef KSTACK_CHECK_MAGIC
569 1.174 ad kstack_check_magic(l);
570 1.174 ad #endif
571 1.83 thorpej
572 1.212 yamt binuptime(&bt);
573 1.199 ad
574 1.231 ad KASSERT(l->l_cpu == curcpu());
575 1.196 ad ci = l->l_cpu;
576 1.196 ad spc = &ci->ci_schedstate;
577 1.199 ad returning = false;
578 1.190 ad newl = NULL;
579 1.190 ad
580 1.199 ad /*
581 1.199 ad * If we have been asked to switch to a specific LWP, then there
582 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
583 1.199 ad * blocking, then return to the interrupted thread without adjusting
584 1.199 ad * VM context or its start time: neither have been changed in order
585 1.199 ad * to take the interrupt.
586 1.199 ad */
587 1.190 ad if (l->l_switchto != NULL) {
588 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
589 1.199 ad returning = true;
590 1.199 ad softint_block(l);
591 1.199 ad if ((l->l_flag & LW_TIMEINTR) != 0)
592 1.212 yamt updatertime(l, &bt);
593 1.199 ad }
594 1.190 ad newl = l->l_switchto;
595 1.190 ad l->l_switchto = NULL;
596 1.190 ad }
597 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
598 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
599 1.204 ad /* There are pending soft interrupts, so pick one. */
600 1.204 ad newl = softint_picklwp();
601 1.204 ad newl->l_stat = LSONPROC;
602 1.204 ad newl->l_flag |= LW_RUNNING;
603 1.204 ad }
604 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
605 1.190 ad
606 1.180 dsl /* Count time spent in current system call */
607 1.199 ad if (!returning) {
608 1.199 ad SYSCALL_TIME_SLEEP(l);
609 1.180 dsl
610 1.199 ad /*
611 1.199 ad * XXXSMP If we are using h/w performance counters,
612 1.199 ad * save context.
613 1.199 ad */
614 1.174 ad #if PERFCTRS
615 1.199 ad if (PMC_ENABLED(l->l_proc)) {
616 1.199 ad pmc_save_context(l->l_proc);
617 1.199 ad }
618 1.199 ad #endif
619 1.212 yamt updatertime(l, &bt);
620 1.174 ad }
621 1.113 gmcgarry
622 1.113 gmcgarry /*
623 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
624 1.113 gmcgarry */
625 1.174 ad KASSERT(l->l_stat != LSRUN);
626 1.216 rmind if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
627 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
628 1.216 rmind
629 1.220 rmind if (l->l_target_cpu == l->l_cpu) {
630 1.220 rmind l->l_target_cpu = NULL;
631 1.220 rmind } else {
632 1.220 rmind tci = l->l_target_cpu;
633 1.220 rmind }
634 1.220 rmind
635 1.216 rmind if (__predict_false(tci != NULL)) {
636 1.216 rmind /* Double-lock the runqueues */
637 1.216 rmind spc_dlock(ci, tci);
638 1.216 rmind } else {
639 1.216 rmind /* Lock the runqueue */
640 1.216 rmind spc_lock(ci);
641 1.216 rmind }
642 1.216 rmind
643 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
644 1.188 yamt l->l_stat = LSRUN;
645 1.216 rmind if (__predict_false(tci != NULL)) {
646 1.216 rmind /*
647 1.216 rmind * Set the new CPU, lock and unset the
648 1.216 rmind * l_target_cpu - thread will be enqueued
649 1.216 rmind * to the runqueue of target CPU.
650 1.216 rmind */
651 1.216 rmind l->l_cpu = tci;
652 1.216 rmind lwp_setlock(l, tci->ci_schedstate.spc_mutex);
653 1.216 rmind l->l_target_cpu = NULL;
654 1.216 rmind } else {
655 1.216 rmind lwp_setlock(l, spc->spc_mutex);
656 1.216 rmind }
657 1.188 yamt sched_enqueue(l, true);
658 1.216 rmind } else {
659 1.216 rmind KASSERT(tci == NULL);
660 1.188 yamt l->l_stat = LSIDL;
661 1.216 rmind }
662 1.216 rmind } else {
663 1.216 rmind /* Lock the runqueue */
664 1.216 rmind spc_lock(ci);
665 1.174 ad }
666 1.174 ad
667 1.245 ad /* Pick new LWP to run. */
668 1.190 ad if (newl == NULL) {
669 1.245 ad newl = nextlwp(ci, spc);
670 1.199 ad }
671 1.199 ad
672 1.204 ad /* Items that must be updated with the CPU locked. */
673 1.199 ad if (!returning) {
674 1.204 ad /* Update the new LWP's start time. */
675 1.212 yamt newl->l_stime = bt;
676 1.204 ad
677 1.199 ad /*
678 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
679 1.204 ad * We use cpu_onproc to keep track of which kernel or
680 1.204 ad * user thread is running 'underneath' the software
681 1.204 ad * interrupt. This is important for time accounting,
682 1.204 ad * itimers and forcing user threads to preempt (aston).
683 1.199 ad */
684 1.204 ad ci->ci_data.cpu_onproc = newl;
685 1.188 yamt }
686 1.188 yamt
687 1.241 ad /*
688 1.241 ad * Preemption related tasks. Must be done with the current
689 1.241 ad * CPU locked.
690 1.241 ad */
691 1.241 ad cpu_did_resched(l);
692 1.231 ad l->l_dopreempt = 0;
693 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
694 1.231 ad LOCKSTAT_FLAG(lsflag);
695 1.231 ad LOCKSTAT_ENTER(lsflag);
696 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
697 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
698 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
699 1.231 ad LOCKSTAT_EXIT(lsflag);
700 1.231 ad l->l_pfailtime = 0;
701 1.231 ad l->l_pfaillock = 0;
702 1.231 ad l->l_pfailaddr = 0;
703 1.231 ad }
704 1.231 ad
705 1.188 yamt if (l != newl) {
706 1.188 yamt struct lwp *prevlwp;
707 1.174 ad
708 1.209 ad /* Release all locks, but leave the current LWP locked */
709 1.216 rmind if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
710 1.216 rmind /*
711 1.216 rmind * In case of migration, drop the local runqueue
712 1.216 rmind * lock, thread is on other runqueue now.
713 1.216 rmind */
714 1.216 rmind if (__predict_false(tci != NULL))
715 1.216 rmind spc_unlock(ci);
716 1.209 ad /*
717 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
718 1.209 ad * to the run queue (it is now locked by spc_mutex).
719 1.209 ad */
720 1.217 ad mutex_spin_exit(spc->spc_lwplock);
721 1.188 yamt } else {
722 1.209 ad /*
723 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
724 1.209 ad * run queues.
725 1.209 ad */
726 1.188 yamt mutex_spin_exit(spc->spc_mutex);
727 1.216 rmind KASSERT(tci == NULL);
728 1.188 yamt }
729 1.188 yamt
730 1.209 ad /*
731 1.209 ad * Mark that context switch is going to be perfomed
732 1.209 ad * for this LWP, to protect it from being switched
733 1.209 ad * to on another CPU.
734 1.209 ad */
735 1.209 ad KASSERT(l->l_ctxswtch == 0);
736 1.209 ad l->l_ctxswtch = 1;
737 1.209 ad l->l_ncsw++;
738 1.209 ad l->l_flag &= ~LW_RUNNING;
739 1.209 ad
740 1.209 ad /*
741 1.209 ad * Increase the count of spin-mutexes before the release
742 1.209 ad * of the last lock - we must remain at IPL_SCHED during
743 1.209 ad * the context switch.
744 1.209 ad */
745 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
746 1.209 ad ci->ci_mtx_count--;
747 1.209 ad lwp_unlock(l);
748 1.209 ad
749 1.218 ad /* Count the context switch on this CPU. */
750 1.218 ad ci->ci_data.cpu_nswtch++;
751 1.188 yamt
752 1.209 ad /* Update status for lwpctl, if present. */
753 1.209 ad if (l->l_lwpctl != NULL)
754 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
755 1.209 ad
756 1.199 ad /*
757 1.199 ad * Save old VM context, unless a soft interrupt
758 1.199 ad * handler is blocking.
759 1.199 ad */
760 1.199 ad if (!returning)
761 1.199 ad pmap_deactivate(l);
762 1.188 yamt
763 1.209 ad /*
764 1.209 ad * We may need to spin-wait for if 'newl' is still
765 1.209 ad * context switching on another CPU.
766 1.209 ad */
767 1.209 ad if (newl->l_ctxswtch != 0) {
768 1.209 ad u_int count;
769 1.209 ad count = SPINLOCK_BACKOFF_MIN;
770 1.209 ad while (newl->l_ctxswtch)
771 1.209 ad SPINLOCK_BACKOFF(count);
772 1.209 ad }
773 1.207 ad
774 1.188 yamt /* Switch to the new LWP.. */
775 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
776 1.207 ad ci = curcpu();
777 1.207 ad
778 1.188 yamt /*
779 1.209 ad * Switched away - we have new curlwp.
780 1.209 ad * Restore VM context and IPL.
781 1.188 yamt */
782 1.209 ad pmap_activate(l);
783 1.188 yamt if (prevlwp != NULL) {
784 1.209 ad /* Normalize the count of the spin-mutexes */
785 1.209 ad ci->ci_mtx_count++;
786 1.209 ad /* Unmark the state of context switch */
787 1.209 ad membar_exit();
788 1.209 ad prevlwp->l_ctxswtch = 0;
789 1.188 yamt }
790 1.209 ad
791 1.209 ad /* Update status for lwpctl, if present. */
792 1.219 ad if (l->l_lwpctl != NULL) {
793 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
794 1.219 ad l->l_lwpctl->lc_pctr++;
795 1.219 ad }
796 1.174 ad
797 1.231 ad KASSERT(l->l_cpu == ci);
798 1.231 ad splx(oldspl);
799 1.188 yamt retval = 1;
800 1.188 yamt } else {
801 1.188 yamt /* Nothing to do - just unlock and return. */
802 1.216 rmind KASSERT(tci == NULL);
803 1.216 rmind spc_unlock(ci);
804 1.188 yamt lwp_unlock(l);
805 1.122 thorpej retval = 0;
806 1.122 thorpej }
807 1.110 briggs
808 1.188 yamt KASSERT(l == curlwp);
809 1.188 yamt KASSERT(l->l_stat == LSONPROC);
810 1.188 yamt
811 1.110 briggs /*
812 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
813 1.231 ad * XXXSMP preemption problem.
814 1.26 cgd */
815 1.114 gmcgarry #if PERFCTRS
816 1.175 christos if (PMC_ENABLED(l->l_proc)) {
817 1.175 christos pmc_restore_context(l->l_proc);
818 1.166 christos }
819 1.114 gmcgarry #endif
820 1.180 dsl SYSCALL_TIME_WAKEUP(l);
821 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
822 1.169 yamt
823 1.122 thorpej return retval;
824 1.26 cgd }
825 1.26 cgd
826 1.26 cgd /*
827 1.245 ad * The machine independent parts of context switch to oblivion.
828 1.245 ad * Does not return. Call with the LWP unlocked.
829 1.245 ad */
830 1.245 ad void
831 1.245 ad lwp_exit_switchaway(lwp_t *l)
832 1.245 ad {
833 1.245 ad struct cpu_info *ci;
834 1.245 ad struct lwp *newl;
835 1.245 ad struct bintime bt;
836 1.245 ad
837 1.245 ad ci = l->l_cpu;
838 1.245 ad
839 1.245 ad KASSERT(kpreempt_disabled());
840 1.245 ad KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
841 1.245 ad KASSERT(ci == curcpu());
842 1.245 ad LOCKDEBUG_BARRIER(NULL, 0);
843 1.245 ad
844 1.245 ad #ifdef KSTACK_CHECK_MAGIC
845 1.245 ad kstack_check_magic(l);
846 1.245 ad #endif
847 1.245 ad
848 1.245 ad /* Count time spent in current system call */
849 1.245 ad SYSCALL_TIME_SLEEP(l);
850 1.245 ad binuptime(&bt);
851 1.245 ad updatertime(l, &bt);
852 1.245 ad
853 1.245 ad /* Must stay at IPL_SCHED even after releasing run queue lock. */
854 1.245 ad (void)splsched();
855 1.245 ad
856 1.245 ad /*
857 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
858 1.245 ad * If no LWP is runnable, select the idle LWP.
859 1.245 ad *
860 1.245 ad * Note that spc_lwplock might not necessary be held, and
861 1.245 ad * new thread would be unlocked after setting the LWP-lock.
862 1.245 ad */
863 1.245 ad spc_lock(ci);
864 1.245 ad #ifndef __HAVE_FAST_SOFTINTS
865 1.245 ad if (ci->ci_data.cpu_softints != 0) {
866 1.245 ad /* There are pending soft interrupts, so pick one. */
867 1.245 ad newl = softint_picklwp();
868 1.245 ad newl->l_stat = LSONPROC;
869 1.245 ad newl->l_flag |= LW_RUNNING;
870 1.245 ad } else
871 1.245 ad #endif /* !__HAVE_FAST_SOFTINTS */
872 1.245 ad {
873 1.245 ad newl = nextlwp(ci, &ci->ci_schedstate);
874 1.245 ad }
875 1.245 ad
876 1.245 ad /* Update the new LWP's start time. */
877 1.245 ad newl->l_stime = bt;
878 1.245 ad l->l_flag &= ~LW_RUNNING;
879 1.245 ad
880 1.245 ad /*
881 1.245 ad * ci_curlwp changes when a fast soft interrupt occurs.
882 1.245 ad * We use cpu_onproc to keep track of which kernel or
883 1.245 ad * user thread is running 'underneath' the software
884 1.245 ad * interrupt. This is important for time accounting,
885 1.245 ad * itimers and forcing user threads to preempt (aston).
886 1.245 ad */
887 1.245 ad ci->ci_data.cpu_onproc = newl;
888 1.245 ad
889 1.245 ad /*
890 1.245 ad * Preemption related tasks. Must be done with the current
891 1.245 ad * CPU locked.
892 1.245 ad */
893 1.245 ad cpu_did_resched(l);
894 1.245 ad
895 1.245 ad /* Unlock the run queue. */
896 1.245 ad spc_unlock(ci);
897 1.245 ad
898 1.245 ad /* Count the context switch on this CPU. */
899 1.245 ad ci->ci_data.cpu_nswtch++;
900 1.245 ad
901 1.245 ad /* Update status for lwpctl, if present. */
902 1.245 ad if (l->l_lwpctl != NULL)
903 1.245 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
904 1.245 ad
905 1.245 ad /*
906 1.245 ad * We may need to spin-wait for if 'newl' is still
907 1.245 ad * context switching on another CPU.
908 1.245 ad */
909 1.245 ad if (newl->l_ctxswtch != 0) {
910 1.245 ad u_int count;
911 1.245 ad count = SPINLOCK_BACKOFF_MIN;
912 1.245 ad while (newl->l_ctxswtch)
913 1.245 ad SPINLOCK_BACKOFF(count);
914 1.245 ad }
915 1.245 ad
916 1.245 ad /* Switch to the new LWP.. */
917 1.245 ad (void)cpu_switchto(NULL, newl, false);
918 1.245 ad
919 1.245 ad /* NOTREACHED */
920 1.245 ad }
921 1.245 ad
922 1.245 ad /*
923 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
924 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
925 1.174 ad *
926 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
927 1.26 cgd */
928 1.26 cgd void
929 1.122 thorpej setrunnable(struct lwp *l)
930 1.26 cgd {
931 1.122 thorpej struct proc *p = l->l_proc;
932 1.205 ad struct cpu_info *ci;
933 1.174 ad sigset_t *ss;
934 1.26 cgd
935 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
936 1.229 ad KASSERT(mutex_owned(p->p_lock));
937 1.183 ad KASSERT(lwp_locked(l, NULL));
938 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
939 1.83 thorpej
940 1.122 thorpej switch (l->l_stat) {
941 1.122 thorpej case LSSTOP:
942 1.33 mycroft /*
943 1.33 mycroft * If we're being traced (possibly because someone attached us
944 1.33 mycroft * while we were stopped), check for a signal from the debugger.
945 1.33 mycroft */
946 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
947 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
948 1.174 ad ss = &l->l_sigpend.sp_set;
949 1.174 ad else
950 1.174 ad ss = &p->p_sigpend.sp_set;
951 1.174 ad sigaddset(ss, p->p_xstat);
952 1.174 ad signotify(l);
953 1.53 mycroft }
954 1.174 ad p->p_nrlwps++;
955 1.26 cgd break;
956 1.174 ad case LSSUSPENDED:
957 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
958 1.174 ad p->p_nrlwps++;
959 1.192 rmind cv_broadcast(&p->p_lwpcv);
960 1.122 thorpej break;
961 1.174 ad case LSSLEEP:
962 1.174 ad KASSERT(l->l_wchan != NULL);
963 1.26 cgd break;
964 1.174 ad default:
965 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
966 1.26 cgd }
967 1.139 cl
968 1.174 ad /*
969 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
970 1.174 ad * again. If not, mark it as still sleeping.
971 1.174 ad */
972 1.174 ad if (l->l_wchan != NULL) {
973 1.174 ad l->l_stat = LSSLEEP;
974 1.183 ad /* lwp_unsleep() will release the lock. */
975 1.221 ad lwp_unsleep(l, true);
976 1.174 ad return;
977 1.174 ad }
978 1.139 cl
979 1.174 ad /*
980 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
981 1.174 ad * about to call mi_switch(), in which case it will yield.
982 1.174 ad */
983 1.188 yamt if ((l->l_flag & LW_RUNNING) != 0) {
984 1.174 ad l->l_stat = LSONPROC;
985 1.174 ad l->l_slptime = 0;
986 1.174 ad lwp_unlock(l);
987 1.174 ad return;
988 1.174 ad }
989 1.122 thorpej
990 1.174 ad /*
991 1.205 ad * Look for a CPU to run.
992 1.205 ad * Set the LWP runnable.
993 1.174 ad */
994 1.205 ad ci = sched_takecpu(l);
995 1.205 ad l->l_cpu = ci;
996 1.236 ad spc_lock(ci);
997 1.236 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
998 1.188 yamt sched_setrunnable(l);
999 1.174 ad l->l_stat = LSRUN;
1000 1.122 thorpej l->l_slptime = 0;
1001 1.174 ad
1002 1.205 ad /*
1003 1.205 ad * If thread is swapped out - wake the swapper to bring it back in.
1004 1.205 ad * Otherwise, enter it into a run queue.
1005 1.205 ad */
1006 1.178 pavel if (l->l_flag & LW_INMEM) {
1007 1.188 yamt sched_enqueue(l, false);
1008 1.188 yamt resched_cpu(l);
1009 1.174 ad lwp_unlock(l);
1010 1.174 ad } else {
1011 1.174 ad lwp_unlock(l);
1012 1.177 ad uvm_kick_scheduler();
1013 1.174 ad }
1014 1.26 cgd }
1015 1.26 cgd
1016 1.26 cgd /*
1017 1.174 ad * suspendsched:
1018 1.174 ad *
1019 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1020 1.174 ad */
1021 1.94 bouyer void
1022 1.174 ad suspendsched(void)
1023 1.94 bouyer {
1024 1.174 ad CPU_INFO_ITERATOR cii;
1025 1.174 ad struct cpu_info *ci;
1026 1.122 thorpej struct lwp *l;
1027 1.174 ad struct proc *p;
1028 1.94 bouyer
1029 1.94 bouyer /*
1030 1.174 ad * We do this by process in order not to violate the locking rules.
1031 1.94 bouyer */
1032 1.228 ad mutex_enter(proc_lock);
1033 1.174 ad PROCLIST_FOREACH(p, &allproc) {
1034 1.238 ad if ((p->p_flag & PK_MARKER) != 0)
1035 1.238 ad continue;
1036 1.238 ad
1037 1.229 ad mutex_enter(p->p_lock);
1038 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
1039 1.229 ad mutex_exit(p->p_lock);
1040 1.94 bouyer continue;
1041 1.174 ad }
1042 1.174 ad
1043 1.174 ad p->p_stat = SSTOP;
1044 1.174 ad
1045 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1046 1.174 ad if (l == curlwp)
1047 1.174 ad continue;
1048 1.174 ad
1049 1.174 ad lwp_lock(l);
1050 1.122 thorpej
1051 1.97 enami /*
1052 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
1053 1.174 ad * when it tries to return to user mode. We want to
1054 1.174 ad * try and get to get as many LWPs as possible to
1055 1.174 ad * the user / kernel boundary, so that they will
1056 1.174 ad * release any locks that they hold.
1057 1.97 enami */
1058 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1059 1.174 ad
1060 1.174 ad if (l->l_stat == LSSLEEP &&
1061 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1062 1.174 ad /* setrunnable() will release the lock. */
1063 1.174 ad setrunnable(l);
1064 1.174 ad continue;
1065 1.174 ad }
1066 1.174 ad
1067 1.174 ad lwp_unlock(l);
1068 1.94 bouyer }
1069 1.174 ad
1070 1.229 ad mutex_exit(p->p_lock);
1071 1.94 bouyer }
1072 1.228 ad mutex_exit(proc_lock);
1073 1.174 ad
1074 1.174 ad /*
1075 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1076 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
1077 1.174 ad */
1078 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1079 1.204 ad spc_lock(ci);
1080 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
1081 1.204 ad spc_unlock(ci);
1082 1.204 ad }
1083 1.174 ad }
1084 1.174 ad
1085 1.174 ad /*
1086 1.174 ad * sched_unsleep:
1087 1.174 ad *
1088 1.174 ad * The is called when the LWP has not been awoken normally but instead
1089 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1090 1.174 ad * it's not a valid action for running or idle LWPs.
1091 1.174 ad */
1092 1.221 ad static u_int
1093 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1094 1.174 ad {
1095 1.174 ad
1096 1.174 ad lwp_unlock(l);
1097 1.174 ad panic("sched_unsleep");
1098 1.174 ad }
1099 1.174 ad
1100 1.204 ad void
1101 1.188 yamt resched_cpu(struct lwp *l)
1102 1.188 yamt {
1103 1.188 yamt struct cpu_info *ci;
1104 1.188 yamt
1105 1.188 yamt /*
1106 1.188 yamt * XXXSMP
1107 1.188 yamt * Since l->l_cpu persists across a context switch,
1108 1.188 yamt * this gives us *very weak* processor affinity, in
1109 1.188 yamt * that we notify the CPU on which the process last
1110 1.188 yamt * ran that it should try to switch.
1111 1.188 yamt *
1112 1.188 yamt * This does not guarantee that the process will run on
1113 1.188 yamt * that processor next, because another processor might
1114 1.188 yamt * grab it the next time it performs a context switch.
1115 1.188 yamt *
1116 1.188 yamt * This also does not handle the case where its last
1117 1.188 yamt * CPU is running a higher-priority process, but every
1118 1.188 yamt * other CPU is running a lower-priority process. There
1119 1.188 yamt * are ways to handle this situation, but they're not
1120 1.188 yamt * currently very pretty, and we also need to weigh the
1121 1.188 yamt * cost of moving a process from one CPU to another.
1122 1.188 yamt */
1123 1.204 ad ci = l->l_cpu;
1124 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1125 1.188 yamt cpu_need_resched(ci, 0);
1126 1.188 yamt }
1127 1.188 yamt
1128 1.188 yamt static void
1129 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1130 1.174 ad {
1131 1.174 ad
1132 1.188 yamt KASSERT(lwp_locked(l, NULL));
1133 1.174 ad
1134 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1135 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1136 1.204 ad sched_dequeue(l);
1137 1.204 ad l->l_priority = pri;
1138 1.204 ad sched_enqueue(l, false);
1139 1.204 ad } else {
1140 1.174 ad l->l_priority = pri;
1141 1.157 yamt }
1142 1.188 yamt resched_cpu(l);
1143 1.184 yamt }
1144 1.184 yamt
1145 1.188 yamt static void
1146 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1147 1.184 yamt {
1148 1.184 yamt
1149 1.188 yamt KASSERT(lwp_locked(l, NULL));
1150 1.184 yamt
1151 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1152 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1153 1.204 ad sched_dequeue(l);
1154 1.204 ad l->l_inheritedprio = pri;
1155 1.204 ad sched_enqueue(l, false);
1156 1.204 ad } else {
1157 1.184 yamt l->l_inheritedprio = pri;
1158 1.184 yamt }
1159 1.188 yamt resched_cpu(l);
1160 1.184 yamt }
1161 1.184 yamt
1162 1.184 yamt struct lwp *
1163 1.184 yamt syncobj_noowner(wchan_t wchan)
1164 1.184 yamt {
1165 1.184 yamt
1166 1.184 yamt return NULL;
1167 1.151 yamt }
1168 1.151 yamt
1169 1.188 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
1170 1.188 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
1171 1.115 nisimura
1172 1.130 nathanw /*
1173 1.188 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
1174 1.188 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
1175 1.188 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
1176 1.188 yamt *
1177 1.188 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
1178 1.188 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
1179 1.188 yamt *
1180 1.188 yamt * If you dont want to bother with the faster/more-accurate formula, you
1181 1.188 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
1182 1.188 yamt * (more general) method of calculating the %age of CPU used by a process.
1183 1.134 matt */
1184 1.188 yamt #define CCPU_SHIFT (FSHIFT + 1)
1185 1.134 matt
1186 1.134 matt /*
1187 1.188 yamt * sched_pstats:
1188 1.188 yamt *
1189 1.188 yamt * Update process statistics and check CPU resource allocation.
1190 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
1191 1.188 yamt * priorities.
1192 1.130 nathanw */
1193 1.188 yamt /* ARGSUSED */
1194 1.113 gmcgarry void
1195 1.188 yamt sched_pstats(void *arg)
1196 1.113 gmcgarry {
1197 1.188 yamt struct rlimit *rlim;
1198 1.188 yamt struct lwp *l;
1199 1.188 yamt struct proc *p;
1200 1.204 ad int sig, clkhz;
1201 1.188 yamt long runtm;
1202 1.113 gmcgarry
1203 1.188 yamt sched_pstats_ticks++;
1204 1.174 ad
1205 1.228 ad mutex_enter(proc_lock);
1206 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1207 1.238 ad if ((p->p_flag & PK_MARKER) != 0)
1208 1.238 ad continue;
1209 1.238 ad
1210 1.188 yamt /*
1211 1.188 yamt * Increment time in/out of memory and sleep time (if
1212 1.188 yamt * sleeping). We ignore overflow; with 16-bit int's
1213 1.188 yamt * (remember them?) overflow takes 45 days.
1214 1.188 yamt */
1215 1.229 ad mutex_enter(p->p_lock);
1216 1.188 yamt mutex_spin_enter(&p->p_stmutex);
1217 1.212 yamt runtm = p->p_rtime.sec;
1218 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1219 1.188 yamt if ((l->l_flag & LW_IDLE) != 0)
1220 1.188 yamt continue;
1221 1.188 yamt lwp_lock(l);
1222 1.212 yamt runtm += l->l_rtime.sec;
1223 1.188 yamt l->l_swtime++;
1224 1.242 rmind sched_lwp_stats(l);
1225 1.188 yamt lwp_unlock(l);
1226 1.113 gmcgarry
1227 1.188 yamt /*
1228 1.188 yamt * p_pctcpu is only for ps.
1229 1.188 yamt */
1230 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1231 1.188 yamt if (l->l_slptime < 1) {
1232 1.188 yamt clkhz = stathz != 0 ? stathz : hz;
1233 1.188 yamt #if (FSHIFT >= CCPU_SHIFT)
1234 1.188 yamt l->l_pctcpu += (clkhz == 100) ?
1235 1.188 yamt ((fixpt_t)l->l_cpticks) <<
1236 1.188 yamt (FSHIFT - CCPU_SHIFT) :
1237 1.188 yamt 100 * (((fixpt_t) p->p_cpticks)
1238 1.188 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
1239 1.188 yamt #else
1240 1.188 yamt l->l_pctcpu += ((FSCALE - ccpu) *
1241 1.188 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
1242 1.146 matt #endif
1243 1.188 yamt l->l_cpticks = 0;
1244 1.188 yamt }
1245 1.188 yamt }
1246 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1247 1.188 yamt mutex_spin_exit(&p->p_stmutex);
1248 1.174 ad
1249 1.188 yamt /*
1250 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1251 1.188 yamt * If over max, kill it.
1252 1.188 yamt */
1253 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1254 1.188 yamt sig = 0;
1255 1.188 yamt if (runtm >= rlim->rlim_cur) {
1256 1.188 yamt if (runtm >= rlim->rlim_max)
1257 1.188 yamt sig = SIGKILL;
1258 1.188 yamt else {
1259 1.188 yamt sig = SIGXCPU;
1260 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1261 1.188 yamt rlim->rlim_cur += 5;
1262 1.188 yamt }
1263 1.188 yamt }
1264 1.229 ad mutex_exit(p->p_lock);
1265 1.228 ad if (sig)
1266 1.188 yamt psignal(p, sig);
1267 1.174 ad }
1268 1.228 ad mutex_exit(proc_lock);
1269 1.188 yamt uvm_meter();
1270 1.191 ad cv_wakeup(&lbolt);
1271 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
1272 1.113 gmcgarry }
1273