kern_synch.c revision 1.248 1 1.248 ad /* $NetBSD: kern_synch.c,v 1.248 2008/05/31 21:26:01 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.218 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej *
21 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
32 1.63 thorpej */
33 1.26 cgd
34 1.26 cgd /*-
35 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 1.26 cgd * The Regents of the University of California. All rights reserved.
37 1.26 cgd * (c) UNIX System Laboratories, Inc.
38 1.26 cgd * All or some portions of this file are derived from material licensed
39 1.26 cgd * to the University of California by American Telephone and Telegraph
40 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 1.26 cgd * the permission of UNIX System Laboratories, Inc.
42 1.26 cgd *
43 1.26 cgd * Redistribution and use in source and binary forms, with or without
44 1.26 cgd * modification, are permitted provided that the following conditions
45 1.26 cgd * are met:
46 1.26 cgd * 1. Redistributions of source code must retain the above copyright
47 1.26 cgd * notice, this list of conditions and the following disclaimer.
48 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.26 cgd * notice, this list of conditions and the following disclaimer in the
50 1.26 cgd * documentation and/or other materials provided with the distribution.
51 1.136 agc * 3. Neither the name of the University nor the names of its contributors
52 1.26 cgd * may be used to endorse or promote products derived from this software
53 1.26 cgd * without specific prior written permission.
54 1.26 cgd *
55 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.26 cgd * SUCH DAMAGE.
66 1.26 cgd *
67 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 1.26 cgd */
69 1.106 lukem
70 1.106 lukem #include <sys/cdefs.h>
71 1.248 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.248 2008/05/31 21:26:01 ad Exp $");
72 1.48 mrg
73 1.109 yamt #include "opt_kstack.h"
74 1.110 briggs #include "opt_perfctrs.h"
75 1.26 cgd
76 1.174 ad #define __MUTEX_PRIVATE
77 1.174 ad
78 1.26 cgd #include <sys/param.h>
79 1.26 cgd #include <sys/systm.h>
80 1.26 cgd #include <sys/proc.h>
81 1.26 cgd #include <sys/kernel.h>
82 1.111 briggs #if defined(PERFCTRS)
83 1.110 briggs #include <sys/pmc.h>
84 1.111 briggs #endif
85 1.188 yamt #include <sys/cpu.h>
86 1.26 cgd #include <sys/resourcevar.h>
87 1.55 ross #include <sys/sched.h>
88 1.179 dsl #include <sys/syscall_stats.h>
89 1.174 ad #include <sys/sleepq.h>
90 1.174 ad #include <sys/lockdebug.h>
91 1.190 ad #include <sys/evcnt.h>
92 1.199 ad #include <sys/intr.h>
93 1.207 ad #include <sys/lwpctl.h>
94 1.209 ad #include <sys/atomic.h>
95 1.215 ad #include <sys/simplelock.h>
96 1.47 mrg
97 1.47 mrg #include <uvm/uvm_extern.h>
98 1.47 mrg
99 1.231 ad #include <dev/lockstat.h>
100 1.231 ad
101 1.221 ad static u_int sched_unsleep(struct lwp *, bool);
102 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
103 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
104 1.122 thorpej
105 1.174 ad syncobj_t sleep_syncobj = {
106 1.174 ad SOBJ_SLEEPQ_SORTED,
107 1.174 ad sleepq_unsleep,
108 1.184 yamt sleepq_changepri,
109 1.184 yamt sleepq_lendpri,
110 1.184 yamt syncobj_noowner,
111 1.174 ad };
112 1.174 ad
113 1.174 ad syncobj_t sched_syncobj = {
114 1.174 ad SOBJ_SLEEPQ_SORTED,
115 1.174 ad sched_unsleep,
116 1.184 yamt sched_changepri,
117 1.184 yamt sched_lendpri,
118 1.184 yamt syncobj_noowner,
119 1.174 ad };
120 1.122 thorpej
121 1.223 ad callout_t sched_pstats_ch;
122 1.223 ad unsigned sched_pstats_ticks;
123 1.223 ad kcondvar_t lbolt; /* once a second sleep address */
124 1.223 ad
125 1.237 rmind /* Preemption event counters */
126 1.231 ad static struct evcnt kpreempt_ev_crit;
127 1.231 ad static struct evcnt kpreempt_ev_klock;
128 1.231 ad static struct evcnt kpreempt_ev_ipl;
129 1.231 ad static struct evcnt kpreempt_ev_immed;
130 1.231 ad
131 1.231 ad /*
132 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
133 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
134 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
135 1.174 ad * maintained in the machine-dependent layers. This priority will typically
136 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
137 1.174 ad * it can be made higher to block network software interrupts after panics.
138 1.26 cgd */
139 1.174 ad int safepri;
140 1.26 cgd
141 1.237 rmind void
142 1.237 rmind sched_init(void)
143 1.237 rmind {
144 1.237 rmind
145 1.237 rmind cv_init(&lbolt, "lbolt");
146 1.237 rmind callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
147 1.237 rmind callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
148 1.237 rmind
149 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
150 1.237 rmind "kpreempt", "defer: critical section");
151 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
152 1.237 rmind "kpreempt", "defer: kernel_lock");
153 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
154 1.237 rmind "kpreempt", "defer: IPL");
155 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
156 1.237 rmind "kpreempt", "immediate");
157 1.237 rmind
158 1.237 rmind sched_pstats(NULL);
159 1.237 rmind }
160 1.237 rmind
161 1.26 cgd /*
162 1.174 ad * OBSOLETE INTERFACE
163 1.174 ad *
164 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
165 1.26 cgd * performed on the specified identifier. The process will then be made
166 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
167 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
168 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
169 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
170 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
171 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
172 1.26 cgd * call should be interrupted by the signal (return EINTR).
173 1.77 thorpej *
174 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
175 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
176 1.174 ad * is specified, in which case the interlock will always be unlocked upon
177 1.174 ad * return.
178 1.26 cgd */
179 1.26 cgd int
180 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
181 1.174 ad volatile struct simplelock *interlock)
182 1.26 cgd {
183 1.122 thorpej struct lwp *l = curlwp;
184 1.174 ad sleepq_t *sq;
185 1.244 ad kmutex_t *mp;
186 1.188 yamt int error;
187 1.26 cgd
188 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
189 1.204 ad
190 1.174 ad if (sleepq_dontsleep(l)) {
191 1.174 ad (void)sleepq_abort(NULL, 0);
192 1.174 ad if ((priority & PNORELOCK) != 0)
193 1.77 thorpej simple_unlock(interlock);
194 1.174 ad return 0;
195 1.26 cgd }
196 1.78 sommerfe
197 1.204 ad l->l_kpriority = true;
198 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
199 1.244 ad sleepq_enter(sq, l, mp);
200 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
201 1.42 cgd
202 1.174 ad if (interlock != NULL) {
203 1.204 ad KASSERT(simple_lock_held(interlock));
204 1.174 ad simple_unlock(interlock);
205 1.150 chs }
206 1.150 chs
207 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
208 1.126 pk
209 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
210 1.126 pk simple_lock(interlock);
211 1.174 ad
212 1.174 ad return error;
213 1.26 cgd }
214 1.26 cgd
215 1.187 ad int
216 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
217 1.187 ad kmutex_t *mtx)
218 1.187 ad {
219 1.187 ad struct lwp *l = curlwp;
220 1.187 ad sleepq_t *sq;
221 1.244 ad kmutex_t *mp;
222 1.188 yamt int error;
223 1.187 ad
224 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
225 1.204 ad
226 1.187 ad if (sleepq_dontsleep(l)) {
227 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
228 1.187 ad return 0;
229 1.187 ad }
230 1.187 ad
231 1.204 ad l->l_kpriority = true;
232 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
233 1.244 ad sleepq_enter(sq, l, mp);
234 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
235 1.187 ad mutex_exit(mtx);
236 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
237 1.187 ad
238 1.187 ad if ((priority & PNORELOCK) == 0)
239 1.187 ad mutex_enter(mtx);
240 1.187 ad
241 1.187 ad return error;
242 1.187 ad }
243 1.187 ad
244 1.26 cgd /*
245 1.174 ad * General sleep call for situations where a wake-up is not expected.
246 1.26 cgd */
247 1.174 ad int
248 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
249 1.26 cgd {
250 1.174 ad struct lwp *l = curlwp;
251 1.244 ad kmutex_t *mp;
252 1.174 ad sleepq_t *sq;
253 1.174 ad int error;
254 1.26 cgd
255 1.174 ad if (sleepq_dontsleep(l))
256 1.174 ad return sleepq_abort(NULL, 0);
257 1.26 cgd
258 1.174 ad if (mtx != NULL)
259 1.174 ad mutex_exit(mtx);
260 1.204 ad l->l_kpriority = true;
261 1.244 ad sq = sleeptab_lookup(&sleeptab, l, &mp);
262 1.244 ad sleepq_enter(sq, l, mp);
263 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
264 1.188 yamt error = sleepq_block(timo, intr);
265 1.174 ad if (mtx != NULL)
266 1.174 ad mutex_enter(mtx);
267 1.83 thorpej
268 1.174 ad return error;
269 1.139 cl }
270 1.139 cl
271 1.26 cgd /*
272 1.174 ad * OBSOLETE INTERFACE
273 1.174 ad *
274 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
275 1.26 cgd */
276 1.26 cgd void
277 1.174 ad wakeup(wchan_t ident)
278 1.26 cgd {
279 1.174 ad sleepq_t *sq;
280 1.244 ad kmutex_t *mp;
281 1.83 thorpej
282 1.174 ad if (cold)
283 1.174 ad return;
284 1.83 thorpej
285 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
286 1.244 ad sleepq_wake(sq, ident, (u_int)-1, mp);
287 1.63 thorpej }
288 1.63 thorpej
289 1.63 thorpej /*
290 1.174 ad * OBSOLETE INTERFACE
291 1.174 ad *
292 1.63 thorpej * Make the highest priority process first in line on the specified
293 1.63 thorpej * identifier runnable.
294 1.63 thorpej */
295 1.174 ad void
296 1.174 ad wakeup_one(wchan_t ident)
297 1.63 thorpej {
298 1.174 ad sleepq_t *sq;
299 1.244 ad kmutex_t *mp;
300 1.63 thorpej
301 1.174 ad if (cold)
302 1.174 ad return;
303 1.188 yamt
304 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
305 1.244 ad sleepq_wake(sq, ident, 1, mp);
306 1.174 ad }
307 1.63 thorpej
308 1.117 gmcgarry
309 1.117 gmcgarry /*
310 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
311 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
312 1.198 ad * current process explicitly requests it (eg sched_yield(2)).
313 1.117 gmcgarry */
314 1.117 gmcgarry void
315 1.117 gmcgarry yield(void)
316 1.117 gmcgarry {
317 1.122 thorpej struct lwp *l = curlwp;
318 1.117 gmcgarry
319 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
320 1.174 ad lwp_lock(l);
321 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
322 1.188 yamt KASSERT(l->l_stat == LSONPROC);
323 1.204 ad l->l_kpriority = false;
324 1.188 yamt (void)mi_switch(l);
325 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
326 1.69 thorpej }
327 1.69 thorpej
328 1.69 thorpej /*
329 1.69 thorpej * General preemption call. Puts the current process back on its run queue
330 1.156 rpaulo * and performs an involuntary context switch.
331 1.69 thorpej */
332 1.69 thorpej void
333 1.174 ad preempt(void)
334 1.69 thorpej {
335 1.122 thorpej struct lwp *l = curlwp;
336 1.69 thorpej
337 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
338 1.174 ad lwp_lock(l);
339 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
340 1.188 yamt KASSERT(l->l_stat == LSONPROC);
341 1.204 ad l->l_kpriority = false;
342 1.174 ad l->l_nivcsw++;
343 1.188 yamt (void)mi_switch(l);
344 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
345 1.69 thorpej }
346 1.69 thorpej
347 1.234 ad /*
348 1.234 ad * Handle a request made by another agent to preempt the current LWP
349 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
350 1.234 ad *
351 1.234 ad * Character addresses for lockstat only.
352 1.234 ad */
353 1.231 ad static char in_critical_section;
354 1.231 ad static char kernel_lock_held;
355 1.231 ad static char spl_raised;
356 1.231 ad static char is_softint;
357 1.231 ad
358 1.231 ad bool
359 1.231 ad kpreempt(uintptr_t where)
360 1.231 ad {
361 1.231 ad uintptr_t failed;
362 1.231 ad lwp_t *l;
363 1.231 ad int s, dop;
364 1.231 ad
365 1.231 ad l = curlwp;
366 1.231 ad failed = 0;
367 1.231 ad while ((dop = l->l_dopreempt) != 0) {
368 1.231 ad if (l->l_stat != LSONPROC) {
369 1.231 ad /*
370 1.231 ad * About to block (or die), let it happen.
371 1.231 ad * Doesn't really count as "preemption has
372 1.231 ad * been blocked", since we're going to
373 1.231 ad * context switch.
374 1.231 ad */
375 1.231 ad l->l_dopreempt = 0;
376 1.231 ad return true;
377 1.231 ad }
378 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
379 1.231 ad /* Can't preempt idle loop, don't count as failure. */
380 1.231 ad l->l_dopreempt = 0;
381 1.231 ad return true;
382 1.231 ad }
383 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
384 1.231 ad /* LWP holds preemption disabled, explicitly. */
385 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
386 1.234 ad kpreempt_ev_crit.ev_count++;
387 1.231 ad }
388 1.231 ad failed = (uintptr_t)&in_critical_section;
389 1.231 ad break;
390 1.231 ad }
391 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
392 1.231 ad /* Can't preempt soft interrupts yet. */
393 1.231 ad l->l_dopreempt = 0;
394 1.231 ad failed = (uintptr_t)&is_softint;
395 1.231 ad break;
396 1.231 ad }
397 1.231 ad s = splsched();
398 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
399 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
400 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
401 1.231 ad splx(s);
402 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
403 1.234 ad kpreempt_ev_klock.ev_count++;
404 1.231 ad }
405 1.231 ad failed = (uintptr_t)&kernel_lock_held;
406 1.231 ad break;
407 1.231 ad }
408 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
409 1.231 ad /*
410 1.231 ad * It may be that the IPL is too high.
411 1.231 ad * kpreempt_enter() can schedule an
412 1.231 ad * interrupt to retry later.
413 1.231 ad */
414 1.231 ad splx(s);
415 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
416 1.234 ad kpreempt_ev_ipl.ev_count++;
417 1.231 ad }
418 1.231 ad failed = (uintptr_t)&spl_raised;
419 1.231 ad break;
420 1.231 ad }
421 1.231 ad /* Do it! */
422 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
423 1.234 ad kpreempt_ev_immed.ev_count++;
424 1.231 ad }
425 1.231 ad lwp_lock(l);
426 1.231 ad mi_switch(l);
427 1.231 ad l->l_nopreempt++;
428 1.231 ad splx(s);
429 1.231 ad
430 1.231 ad /* Take care of any MD cleanup. */
431 1.231 ad cpu_kpreempt_exit(where);
432 1.231 ad l->l_nopreempt--;
433 1.231 ad }
434 1.231 ad
435 1.231 ad /* Record preemption failure for reporting via lockstat. */
436 1.231 ad if (__predict_false(failed)) {
437 1.240 ad int lsflag = 0;
438 1.231 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
439 1.231 ad LOCKSTAT_ENTER(lsflag);
440 1.231 ad /* Might recurse, make it atomic. */
441 1.231 ad if (__predict_false(lsflag)) {
442 1.231 ad if (where == 0) {
443 1.231 ad where = (uintptr_t)__builtin_return_address(0);
444 1.231 ad }
445 1.231 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
446 1.231 ad NULL, (void *)where) == NULL) {
447 1.231 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
448 1.231 ad l->l_pfaillock = failed;
449 1.231 ad }
450 1.231 ad }
451 1.231 ad LOCKSTAT_EXIT(lsflag);
452 1.231 ad }
453 1.231 ad
454 1.231 ad return failed;
455 1.231 ad }
456 1.231 ad
457 1.69 thorpej /*
458 1.231 ad * Return true if preemption is explicitly disabled.
459 1.230 ad */
460 1.231 ad bool
461 1.231 ad kpreempt_disabled(void)
462 1.231 ad {
463 1.231 ad lwp_t *l;
464 1.231 ad
465 1.231 ad l = curlwp;
466 1.231 ad
467 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
468 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
469 1.231 ad }
470 1.230 ad
471 1.230 ad /*
472 1.231 ad * Disable kernel preemption.
473 1.230 ad */
474 1.230 ad void
475 1.231 ad kpreempt_disable(void)
476 1.230 ad {
477 1.230 ad
478 1.231 ad KPREEMPT_DISABLE(curlwp);
479 1.230 ad }
480 1.230 ad
481 1.230 ad /*
482 1.231 ad * Reenable kernel preemption.
483 1.230 ad */
484 1.231 ad void
485 1.231 ad kpreempt_enable(void)
486 1.230 ad {
487 1.230 ad
488 1.231 ad KPREEMPT_ENABLE(curlwp);
489 1.230 ad }
490 1.230 ad
491 1.230 ad /*
492 1.188 yamt * Compute the amount of time during which the current lwp was running.
493 1.130 nathanw *
494 1.188 yamt * - update l_rtime unless it's an idle lwp.
495 1.188 yamt */
496 1.188 yamt
497 1.199 ad void
498 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
499 1.188 yamt {
500 1.188 yamt
501 1.199 ad if ((l->l_flag & LW_IDLE) != 0)
502 1.188 yamt return;
503 1.188 yamt
504 1.212 yamt /* rtime += now - stime */
505 1.212 yamt bintime_add(&l->l_rtime, now);
506 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
507 1.188 yamt }
508 1.188 yamt
509 1.188 yamt /*
510 1.245 ad * Select next LWP from the current CPU to run..
511 1.245 ad */
512 1.245 ad static inline lwp_t *
513 1.245 ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
514 1.245 ad {
515 1.245 ad lwp_t *newl;
516 1.245 ad
517 1.245 ad /*
518 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
519 1.245 ad * If no LWP is runnable, select the idle LWP.
520 1.245 ad *
521 1.245 ad * Note that spc_lwplock might not necessary be held, and
522 1.245 ad * new thread would be unlocked after setting the LWP-lock.
523 1.245 ad */
524 1.245 ad newl = sched_nextlwp();
525 1.245 ad if (newl != NULL) {
526 1.245 ad sched_dequeue(newl);
527 1.245 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
528 1.245 ad newl->l_stat = LSONPROC;
529 1.245 ad newl->l_cpu = ci;
530 1.248 ad newl->l_pflag |= LP_RUNNING;
531 1.245 ad lwp_setlock(newl, spc->spc_lwplock);
532 1.245 ad } else {
533 1.245 ad newl = ci->ci_data.cpu_idlelwp;
534 1.245 ad newl->l_stat = LSONPROC;
535 1.248 ad newl->l_pflag |= LP_RUNNING;
536 1.245 ad }
537 1.245 ad
538 1.245 ad /*
539 1.245 ad * Only clear want_resched if there are no pending (slow)
540 1.245 ad * software interrupts.
541 1.245 ad */
542 1.245 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
543 1.245 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
544 1.245 ad spc->spc_curpriority = lwp_eprio(newl);
545 1.245 ad
546 1.245 ad return newl;
547 1.245 ad }
548 1.245 ad
549 1.245 ad /*
550 1.188 yamt * The machine independent parts of context switch.
551 1.188 yamt *
552 1.188 yamt * Returns 1 if another LWP was actually run.
553 1.26 cgd */
554 1.122 thorpej int
555 1.199 ad mi_switch(lwp_t *l)
556 1.26 cgd {
557 1.246 rmind struct cpu_info *ci;
558 1.76 thorpej struct schedstate_percpu *spc;
559 1.188 yamt struct lwp *newl;
560 1.174 ad int retval, oldspl;
561 1.212 yamt struct bintime bt;
562 1.199 ad bool returning;
563 1.26 cgd
564 1.188 yamt KASSERT(lwp_locked(l, NULL));
565 1.231 ad KASSERT(kpreempt_disabled());
566 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
567 1.174 ad
568 1.174 ad #ifdef KSTACK_CHECK_MAGIC
569 1.174 ad kstack_check_magic(l);
570 1.174 ad #endif
571 1.83 thorpej
572 1.212 yamt binuptime(&bt);
573 1.199 ad
574 1.231 ad KASSERT(l->l_cpu == curcpu());
575 1.196 ad ci = l->l_cpu;
576 1.196 ad spc = &ci->ci_schedstate;
577 1.199 ad returning = false;
578 1.190 ad newl = NULL;
579 1.190 ad
580 1.199 ad /*
581 1.199 ad * If we have been asked to switch to a specific LWP, then there
582 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
583 1.199 ad * blocking, then return to the interrupted thread without adjusting
584 1.199 ad * VM context or its start time: neither have been changed in order
585 1.199 ad * to take the interrupt.
586 1.199 ad */
587 1.190 ad if (l->l_switchto != NULL) {
588 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
589 1.199 ad returning = true;
590 1.199 ad softint_block(l);
591 1.248 ad if ((l->l_pflag & LP_TIMEINTR) != 0)
592 1.212 yamt updatertime(l, &bt);
593 1.199 ad }
594 1.190 ad newl = l->l_switchto;
595 1.190 ad l->l_switchto = NULL;
596 1.190 ad }
597 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
598 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
599 1.204 ad /* There are pending soft interrupts, so pick one. */
600 1.204 ad newl = softint_picklwp();
601 1.204 ad newl->l_stat = LSONPROC;
602 1.248 ad newl->l_pflag |= LP_RUNNING;
603 1.204 ad }
604 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
605 1.190 ad
606 1.180 dsl /* Count time spent in current system call */
607 1.199 ad if (!returning) {
608 1.199 ad SYSCALL_TIME_SLEEP(l);
609 1.180 dsl
610 1.199 ad /*
611 1.199 ad * XXXSMP If we are using h/w performance counters,
612 1.199 ad * save context.
613 1.199 ad */
614 1.174 ad #if PERFCTRS
615 1.199 ad if (PMC_ENABLED(l->l_proc)) {
616 1.199 ad pmc_save_context(l->l_proc);
617 1.199 ad }
618 1.199 ad #endif
619 1.212 yamt updatertime(l, &bt);
620 1.174 ad }
621 1.113 gmcgarry
622 1.246 rmind /* Lock the runqueue */
623 1.246 rmind KASSERT(l->l_stat != LSRUN);
624 1.246 rmind mutex_spin_enter(spc->spc_mutex);
625 1.246 rmind
626 1.113 gmcgarry /*
627 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
628 1.113 gmcgarry */
629 1.246 rmind if (l->l_stat == LSONPROC && l != newl) {
630 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
631 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
632 1.188 yamt l->l_stat = LSRUN;
633 1.246 rmind lwp_setlock(l, spc->spc_mutex);
634 1.246 rmind sched_enqueue(l, true);
635 1.246 rmind /* Handle migration case */
636 1.246 rmind KASSERT(spc->spc_migrating == NULL);
637 1.246 rmind if (l->l_target_cpu != NULL) {
638 1.246 rmind spc->spc_migrating = l;
639 1.216 rmind }
640 1.246 rmind } else
641 1.188 yamt l->l_stat = LSIDL;
642 1.174 ad }
643 1.174 ad
644 1.245 ad /* Pick new LWP to run. */
645 1.190 ad if (newl == NULL) {
646 1.245 ad newl = nextlwp(ci, spc);
647 1.199 ad }
648 1.199 ad
649 1.204 ad /* Items that must be updated with the CPU locked. */
650 1.199 ad if (!returning) {
651 1.204 ad /* Update the new LWP's start time. */
652 1.212 yamt newl->l_stime = bt;
653 1.204 ad
654 1.199 ad /*
655 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
656 1.204 ad * We use cpu_onproc to keep track of which kernel or
657 1.204 ad * user thread is running 'underneath' the software
658 1.204 ad * interrupt. This is important for time accounting,
659 1.204 ad * itimers and forcing user threads to preempt (aston).
660 1.199 ad */
661 1.204 ad ci->ci_data.cpu_onproc = newl;
662 1.188 yamt }
663 1.188 yamt
664 1.241 ad /*
665 1.241 ad * Preemption related tasks. Must be done with the current
666 1.241 ad * CPU locked.
667 1.241 ad */
668 1.241 ad cpu_did_resched(l);
669 1.231 ad l->l_dopreempt = 0;
670 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
671 1.231 ad LOCKSTAT_FLAG(lsflag);
672 1.231 ad LOCKSTAT_ENTER(lsflag);
673 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
674 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
675 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
676 1.231 ad LOCKSTAT_EXIT(lsflag);
677 1.231 ad l->l_pfailtime = 0;
678 1.231 ad l->l_pfaillock = 0;
679 1.231 ad l->l_pfailaddr = 0;
680 1.231 ad }
681 1.231 ad
682 1.188 yamt if (l != newl) {
683 1.188 yamt struct lwp *prevlwp;
684 1.174 ad
685 1.209 ad /* Release all locks, but leave the current LWP locked */
686 1.246 rmind if (l->l_mutex == spc->spc_mutex) {
687 1.209 ad /*
688 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
689 1.209 ad * to the run queue (it is now locked by spc_mutex).
690 1.209 ad */
691 1.217 ad mutex_spin_exit(spc->spc_lwplock);
692 1.188 yamt } else {
693 1.209 ad /*
694 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
695 1.209 ad * run queues.
696 1.209 ad */
697 1.188 yamt mutex_spin_exit(spc->spc_mutex);
698 1.188 yamt }
699 1.188 yamt
700 1.209 ad /*
701 1.209 ad * Mark that context switch is going to be perfomed
702 1.209 ad * for this LWP, to protect it from being switched
703 1.209 ad * to on another CPU.
704 1.209 ad */
705 1.209 ad KASSERT(l->l_ctxswtch == 0);
706 1.209 ad l->l_ctxswtch = 1;
707 1.209 ad l->l_ncsw++;
708 1.248 ad l->l_pflag &= ~LP_RUNNING;
709 1.209 ad
710 1.209 ad /*
711 1.209 ad * Increase the count of spin-mutexes before the release
712 1.209 ad * of the last lock - we must remain at IPL_SCHED during
713 1.209 ad * the context switch.
714 1.209 ad */
715 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
716 1.209 ad ci->ci_mtx_count--;
717 1.209 ad lwp_unlock(l);
718 1.209 ad
719 1.218 ad /* Count the context switch on this CPU. */
720 1.218 ad ci->ci_data.cpu_nswtch++;
721 1.188 yamt
722 1.209 ad /* Update status for lwpctl, if present. */
723 1.209 ad if (l->l_lwpctl != NULL)
724 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
725 1.209 ad
726 1.199 ad /*
727 1.199 ad * Save old VM context, unless a soft interrupt
728 1.199 ad * handler is blocking.
729 1.199 ad */
730 1.199 ad if (!returning)
731 1.199 ad pmap_deactivate(l);
732 1.188 yamt
733 1.209 ad /*
734 1.209 ad * We may need to spin-wait for if 'newl' is still
735 1.209 ad * context switching on another CPU.
736 1.209 ad */
737 1.209 ad if (newl->l_ctxswtch != 0) {
738 1.209 ad u_int count;
739 1.209 ad count = SPINLOCK_BACKOFF_MIN;
740 1.209 ad while (newl->l_ctxswtch)
741 1.209 ad SPINLOCK_BACKOFF(count);
742 1.209 ad }
743 1.207 ad
744 1.188 yamt /* Switch to the new LWP.. */
745 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
746 1.207 ad ci = curcpu();
747 1.207 ad
748 1.188 yamt /*
749 1.209 ad * Switched away - we have new curlwp.
750 1.209 ad * Restore VM context and IPL.
751 1.188 yamt */
752 1.209 ad pmap_activate(l);
753 1.188 yamt if (prevlwp != NULL) {
754 1.209 ad /* Normalize the count of the spin-mutexes */
755 1.209 ad ci->ci_mtx_count++;
756 1.209 ad /* Unmark the state of context switch */
757 1.209 ad membar_exit();
758 1.209 ad prevlwp->l_ctxswtch = 0;
759 1.188 yamt }
760 1.209 ad
761 1.209 ad /* Update status for lwpctl, if present. */
762 1.219 ad if (l->l_lwpctl != NULL) {
763 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
764 1.219 ad l->l_lwpctl->lc_pctr++;
765 1.219 ad }
766 1.174 ad
767 1.231 ad KASSERT(l->l_cpu == ci);
768 1.231 ad splx(oldspl);
769 1.188 yamt retval = 1;
770 1.188 yamt } else {
771 1.188 yamt /* Nothing to do - just unlock and return. */
772 1.246 rmind mutex_spin_exit(spc->spc_mutex);
773 1.188 yamt lwp_unlock(l);
774 1.122 thorpej retval = 0;
775 1.122 thorpej }
776 1.110 briggs
777 1.188 yamt KASSERT(l == curlwp);
778 1.188 yamt KASSERT(l->l_stat == LSONPROC);
779 1.188 yamt
780 1.110 briggs /*
781 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
782 1.231 ad * XXXSMP preemption problem.
783 1.26 cgd */
784 1.114 gmcgarry #if PERFCTRS
785 1.175 christos if (PMC_ENABLED(l->l_proc)) {
786 1.175 christos pmc_restore_context(l->l_proc);
787 1.166 christos }
788 1.114 gmcgarry #endif
789 1.180 dsl SYSCALL_TIME_WAKEUP(l);
790 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
791 1.169 yamt
792 1.122 thorpej return retval;
793 1.26 cgd }
794 1.26 cgd
795 1.26 cgd /*
796 1.245 ad * The machine independent parts of context switch to oblivion.
797 1.245 ad * Does not return. Call with the LWP unlocked.
798 1.245 ad */
799 1.245 ad void
800 1.245 ad lwp_exit_switchaway(lwp_t *l)
801 1.245 ad {
802 1.245 ad struct cpu_info *ci;
803 1.245 ad struct lwp *newl;
804 1.245 ad struct bintime bt;
805 1.245 ad
806 1.245 ad ci = l->l_cpu;
807 1.245 ad
808 1.245 ad KASSERT(kpreempt_disabled());
809 1.245 ad KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
810 1.245 ad KASSERT(ci == curcpu());
811 1.245 ad LOCKDEBUG_BARRIER(NULL, 0);
812 1.245 ad
813 1.245 ad #ifdef KSTACK_CHECK_MAGIC
814 1.245 ad kstack_check_magic(l);
815 1.245 ad #endif
816 1.245 ad
817 1.245 ad /* Count time spent in current system call */
818 1.245 ad SYSCALL_TIME_SLEEP(l);
819 1.245 ad binuptime(&bt);
820 1.245 ad updatertime(l, &bt);
821 1.245 ad
822 1.245 ad /* Must stay at IPL_SCHED even after releasing run queue lock. */
823 1.245 ad (void)splsched();
824 1.245 ad
825 1.245 ad /*
826 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
827 1.245 ad * If no LWP is runnable, select the idle LWP.
828 1.245 ad *
829 1.245 ad * Note that spc_lwplock might not necessary be held, and
830 1.245 ad * new thread would be unlocked after setting the LWP-lock.
831 1.245 ad */
832 1.245 ad spc_lock(ci);
833 1.245 ad #ifndef __HAVE_FAST_SOFTINTS
834 1.245 ad if (ci->ci_data.cpu_softints != 0) {
835 1.245 ad /* There are pending soft interrupts, so pick one. */
836 1.245 ad newl = softint_picklwp();
837 1.245 ad newl->l_stat = LSONPROC;
838 1.248 ad newl->l_pflag |= LP_RUNNING;
839 1.245 ad } else
840 1.245 ad #endif /* !__HAVE_FAST_SOFTINTS */
841 1.245 ad {
842 1.245 ad newl = nextlwp(ci, &ci->ci_schedstate);
843 1.245 ad }
844 1.245 ad
845 1.245 ad /* Update the new LWP's start time. */
846 1.245 ad newl->l_stime = bt;
847 1.248 ad l->l_pflag &= ~LP_RUNNING;
848 1.245 ad
849 1.245 ad /*
850 1.245 ad * ci_curlwp changes when a fast soft interrupt occurs.
851 1.245 ad * We use cpu_onproc to keep track of which kernel or
852 1.245 ad * user thread is running 'underneath' the software
853 1.245 ad * interrupt. This is important for time accounting,
854 1.245 ad * itimers and forcing user threads to preempt (aston).
855 1.245 ad */
856 1.245 ad ci->ci_data.cpu_onproc = newl;
857 1.245 ad
858 1.245 ad /*
859 1.245 ad * Preemption related tasks. Must be done with the current
860 1.245 ad * CPU locked.
861 1.245 ad */
862 1.245 ad cpu_did_resched(l);
863 1.245 ad
864 1.245 ad /* Unlock the run queue. */
865 1.245 ad spc_unlock(ci);
866 1.245 ad
867 1.245 ad /* Count the context switch on this CPU. */
868 1.245 ad ci->ci_data.cpu_nswtch++;
869 1.245 ad
870 1.245 ad /* Update status for lwpctl, if present. */
871 1.245 ad if (l->l_lwpctl != NULL)
872 1.247 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
873 1.245 ad
874 1.245 ad /*
875 1.245 ad * We may need to spin-wait for if 'newl' is still
876 1.245 ad * context switching on another CPU.
877 1.245 ad */
878 1.245 ad if (newl->l_ctxswtch != 0) {
879 1.245 ad u_int count;
880 1.245 ad count = SPINLOCK_BACKOFF_MIN;
881 1.245 ad while (newl->l_ctxswtch)
882 1.245 ad SPINLOCK_BACKOFF(count);
883 1.245 ad }
884 1.245 ad
885 1.245 ad /* Switch to the new LWP.. */
886 1.245 ad (void)cpu_switchto(NULL, newl, false);
887 1.245 ad
888 1.245 ad /* NOTREACHED */
889 1.245 ad }
890 1.245 ad
891 1.245 ad /*
892 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
893 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
894 1.174 ad *
895 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
896 1.26 cgd */
897 1.26 cgd void
898 1.122 thorpej setrunnable(struct lwp *l)
899 1.26 cgd {
900 1.122 thorpej struct proc *p = l->l_proc;
901 1.205 ad struct cpu_info *ci;
902 1.174 ad sigset_t *ss;
903 1.26 cgd
904 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
905 1.229 ad KASSERT(mutex_owned(p->p_lock));
906 1.183 ad KASSERT(lwp_locked(l, NULL));
907 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
908 1.83 thorpej
909 1.122 thorpej switch (l->l_stat) {
910 1.122 thorpej case LSSTOP:
911 1.33 mycroft /*
912 1.33 mycroft * If we're being traced (possibly because someone attached us
913 1.33 mycroft * while we were stopped), check for a signal from the debugger.
914 1.33 mycroft */
915 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
916 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
917 1.174 ad ss = &l->l_sigpend.sp_set;
918 1.174 ad else
919 1.174 ad ss = &p->p_sigpend.sp_set;
920 1.174 ad sigaddset(ss, p->p_xstat);
921 1.174 ad signotify(l);
922 1.53 mycroft }
923 1.174 ad p->p_nrlwps++;
924 1.26 cgd break;
925 1.174 ad case LSSUSPENDED:
926 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
927 1.174 ad p->p_nrlwps++;
928 1.192 rmind cv_broadcast(&p->p_lwpcv);
929 1.122 thorpej break;
930 1.174 ad case LSSLEEP:
931 1.174 ad KASSERT(l->l_wchan != NULL);
932 1.26 cgd break;
933 1.174 ad default:
934 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
935 1.26 cgd }
936 1.139 cl
937 1.174 ad /*
938 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
939 1.174 ad * again. If not, mark it as still sleeping.
940 1.174 ad */
941 1.174 ad if (l->l_wchan != NULL) {
942 1.174 ad l->l_stat = LSSLEEP;
943 1.183 ad /* lwp_unsleep() will release the lock. */
944 1.221 ad lwp_unsleep(l, true);
945 1.174 ad return;
946 1.174 ad }
947 1.139 cl
948 1.174 ad /*
949 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
950 1.174 ad * about to call mi_switch(), in which case it will yield.
951 1.174 ad */
952 1.248 ad if ((l->l_pflag & LP_RUNNING) != 0) {
953 1.174 ad l->l_stat = LSONPROC;
954 1.174 ad l->l_slptime = 0;
955 1.174 ad lwp_unlock(l);
956 1.174 ad return;
957 1.174 ad }
958 1.122 thorpej
959 1.174 ad /*
960 1.205 ad * Look for a CPU to run.
961 1.205 ad * Set the LWP runnable.
962 1.174 ad */
963 1.205 ad ci = sched_takecpu(l);
964 1.205 ad l->l_cpu = ci;
965 1.236 ad spc_lock(ci);
966 1.236 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
967 1.188 yamt sched_setrunnable(l);
968 1.174 ad l->l_stat = LSRUN;
969 1.122 thorpej l->l_slptime = 0;
970 1.174 ad
971 1.205 ad /*
972 1.205 ad * If thread is swapped out - wake the swapper to bring it back in.
973 1.205 ad * Otherwise, enter it into a run queue.
974 1.205 ad */
975 1.178 pavel if (l->l_flag & LW_INMEM) {
976 1.188 yamt sched_enqueue(l, false);
977 1.188 yamt resched_cpu(l);
978 1.174 ad lwp_unlock(l);
979 1.174 ad } else {
980 1.174 ad lwp_unlock(l);
981 1.177 ad uvm_kick_scheduler();
982 1.174 ad }
983 1.26 cgd }
984 1.26 cgd
985 1.26 cgd /*
986 1.174 ad * suspendsched:
987 1.174 ad *
988 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
989 1.174 ad */
990 1.94 bouyer void
991 1.174 ad suspendsched(void)
992 1.94 bouyer {
993 1.174 ad CPU_INFO_ITERATOR cii;
994 1.174 ad struct cpu_info *ci;
995 1.122 thorpej struct lwp *l;
996 1.174 ad struct proc *p;
997 1.94 bouyer
998 1.94 bouyer /*
999 1.174 ad * We do this by process in order not to violate the locking rules.
1000 1.94 bouyer */
1001 1.228 ad mutex_enter(proc_lock);
1002 1.174 ad PROCLIST_FOREACH(p, &allproc) {
1003 1.238 ad if ((p->p_flag & PK_MARKER) != 0)
1004 1.238 ad continue;
1005 1.238 ad
1006 1.229 ad mutex_enter(p->p_lock);
1007 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
1008 1.229 ad mutex_exit(p->p_lock);
1009 1.94 bouyer continue;
1010 1.174 ad }
1011 1.174 ad
1012 1.174 ad p->p_stat = SSTOP;
1013 1.174 ad
1014 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1015 1.174 ad if (l == curlwp)
1016 1.174 ad continue;
1017 1.174 ad
1018 1.174 ad lwp_lock(l);
1019 1.122 thorpej
1020 1.97 enami /*
1021 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
1022 1.174 ad * when it tries to return to user mode. We want to
1023 1.174 ad * try and get to get as many LWPs as possible to
1024 1.174 ad * the user / kernel boundary, so that they will
1025 1.174 ad * release any locks that they hold.
1026 1.97 enami */
1027 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1028 1.174 ad
1029 1.174 ad if (l->l_stat == LSSLEEP &&
1030 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1031 1.174 ad /* setrunnable() will release the lock. */
1032 1.174 ad setrunnable(l);
1033 1.174 ad continue;
1034 1.174 ad }
1035 1.174 ad
1036 1.174 ad lwp_unlock(l);
1037 1.94 bouyer }
1038 1.174 ad
1039 1.229 ad mutex_exit(p->p_lock);
1040 1.94 bouyer }
1041 1.228 ad mutex_exit(proc_lock);
1042 1.174 ad
1043 1.174 ad /*
1044 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1045 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
1046 1.174 ad */
1047 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1048 1.204 ad spc_lock(ci);
1049 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
1050 1.204 ad spc_unlock(ci);
1051 1.204 ad }
1052 1.174 ad }
1053 1.174 ad
1054 1.174 ad /*
1055 1.174 ad * sched_unsleep:
1056 1.174 ad *
1057 1.174 ad * The is called when the LWP has not been awoken normally but instead
1058 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1059 1.174 ad * it's not a valid action for running or idle LWPs.
1060 1.174 ad */
1061 1.221 ad static u_int
1062 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1063 1.174 ad {
1064 1.174 ad
1065 1.174 ad lwp_unlock(l);
1066 1.174 ad panic("sched_unsleep");
1067 1.174 ad }
1068 1.174 ad
1069 1.204 ad void
1070 1.188 yamt resched_cpu(struct lwp *l)
1071 1.188 yamt {
1072 1.188 yamt struct cpu_info *ci;
1073 1.188 yamt
1074 1.188 yamt /*
1075 1.188 yamt * XXXSMP
1076 1.188 yamt * Since l->l_cpu persists across a context switch,
1077 1.188 yamt * this gives us *very weak* processor affinity, in
1078 1.188 yamt * that we notify the CPU on which the process last
1079 1.188 yamt * ran that it should try to switch.
1080 1.188 yamt *
1081 1.188 yamt * This does not guarantee that the process will run on
1082 1.188 yamt * that processor next, because another processor might
1083 1.188 yamt * grab it the next time it performs a context switch.
1084 1.188 yamt *
1085 1.188 yamt * This also does not handle the case where its last
1086 1.188 yamt * CPU is running a higher-priority process, but every
1087 1.188 yamt * other CPU is running a lower-priority process. There
1088 1.188 yamt * are ways to handle this situation, but they're not
1089 1.188 yamt * currently very pretty, and we also need to weigh the
1090 1.188 yamt * cost of moving a process from one CPU to another.
1091 1.188 yamt */
1092 1.204 ad ci = l->l_cpu;
1093 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1094 1.188 yamt cpu_need_resched(ci, 0);
1095 1.188 yamt }
1096 1.188 yamt
1097 1.188 yamt static void
1098 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1099 1.174 ad {
1100 1.174 ad
1101 1.188 yamt KASSERT(lwp_locked(l, NULL));
1102 1.174 ad
1103 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1104 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1105 1.204 ad sched_dequeue(l);
1106 1.204 ad l->l_priority = pri;
1107 1.204 ad sched_enqueue(l, false);
1108 1.204 ad } else {
1109 1.174 ad l->l_priority = pri;
1110 1.157 yamt }
1111 1.188 yamt resched_cpu(l);
1112 1.184 yamt }
1113 1.184 yamt
1114 1.188 yamt static void
1115 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1116 1.184 yamt {
1117 1.184 yamt
1118 1.188 yamt KASSERT(lwp_locked(l, NULL));
1119 1.184 yamt
1120 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1121 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1122 1.204 ad sched_dequeue(l);
1123 1.204 ad l->l_inheritedprio = pri;
1124 1.204 ad sched_enqueue(l, false);
1125 1.204 ad } else {
1126 1.184 yamt l->l_inheritedprio = pri;
1127 1.184 yamt }
1128 1.188 yamt resched_cpu(l);
1129 1.184 yamt }
1130 1.184 yamt
1131 1.184 yamt struct lwp *
1132 1.184 yamt syncobj_noowner(wchan_t wchan)
1133 1.184 yamt {
1134 1.184 yamt
1135 1.184 yamt return NULL;
1136 1.151 yamt }
1137 1.151 yamt
1138 1.188 yamt /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
1139 1.188 yamt fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
1140 1.115 nisimura
1141 1.130 nathanw /*
1142 1.188 yamt * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
1143 1.188 yamt * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
1144 1.188 yamt * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
1145 1.188 yamt *
1146 1.188 yamt * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
1147 1.188 yamt * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
1148 1.188 yamt *
1149 1.188 yamt * If you dont want to bother with the faster/more-accurate formula, you
1150 1.188 yamt * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
1151 1.188 yamt * (more general) method of calculating the %age of CPU used by a process.
1152 1.134 matt */
1153 1.188 yamt #define CCPU_SHIFT (FSHIFT + 1)
1154 1.134 matt
1155 1.134 matt /*
1156 1.188 yamt * sched_pstats:
1157 1.188 yamt *
1158 1.188 yamt * Update process statistics and check CPU resource allocation.
1159 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
1160 1.188 yamt * priorities.
1161 1.130 nathanw */
1162 1.188 yamt /* ARGSUSED */
1163 1.113 gmcgarry void
1164 1.188 yamt sched_pstats(void *arg)
1165 1.113 gmcgarry {
1166 1.188 yamt struct rlimit *rlim;
1167 1.188 yamt struct lwp *l;
1168 1.188 yamt struct proc *p;
1169 1.204 ad int sig, clkhz;
1170 1.188 yamt long runtm;
1171 1.113 gmcgarry
1172 1.188 yamt sched_pstats_ticks++;
1173 1.174 ad
1174 1.228 ad mutex_enter(proc_lock);
1175 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1176 1.238 ad if ((p->p_flag & PK_MARKER) != 0)
1177 1.238 ad continue;
1178 1.238 ad
1179 1.188 yamt /*
1180 1.188 yamt * Increment time in/out of memory and sleep time (if
1181 1.188 yamt * sleeping). We ignore overflow; with 16-bit int's
1182 1.188 yamt * (remember them?) overflow takes 45 days.
1183 1.188 yamt */
1184 1.229 ad mutex_enter(p->p_lock);
1185 1.188 yamt mutex_spin_enter(&p->p_stmutex);
1186 1.212 yamt runtm = p->p_rtime.sec;
1187 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1188 1.188 yamt if ((l->l_flag & LW_IDLE) != 0)
1189 1.188 yamt continue;
1190 1.188 yamt lwp_lock(l);
1191 1.212 yamt runtm += l->l_rtime.sec;
1192 1.188 yamt l->l_swtime++;
1193 1.242 rmind sched_lwp_stats(l);
1194 1.188 yamt lwp_unlock(l);
1195 1.113 gmcgarry
1196 1.188 yamt /*
1197 1.188 yamt * p_pctcpu is only for ps.
1198 1.188 yamt */
1199 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1200 1.188 yamt if (l->l_slptime < 1) {
1201 1.188 yamt clkhz = stathz != 0 ? stathz : hz;
1202 1.188 yamt #if (FSHIFT >= CCPU_SHIFT)
1203 1.188 yamt l->l_pctcpu += (clkhz == 100) ?
1204 1.188 yamt ((fixpt_t)l->l_cpticks) <<
1205 1.188 yamt (FSHIFT - CCPU_SHIFT) :
1206 1.188 yamt 100 * (((fixpt_t) p->p_cpticks)
1207 1.188 yamt << (FSHIFT - CCPU_SHIFT)) / clkhz;
1208 1.188 yamt #else
1209 1.188 yamt l->l_pctcpu += ((FSCALE - ccpu) *
1210 1.188 yamt (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
1211 1.146 matt #endif
1212 1.188 yamt l->l_cpticks = 0;
1213 1.188 yamt }
1214 1.188 yamt }
1215 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1216 1.188 yamt mutex_spin_exit(&p->p_stmutex);
1217 1.174 ad
1218 1.188 yamt /*
1219 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1220 1.188 yamt * If over max, kill it.
1221 1.188 yamt */
1222 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1223 1.188 yamt sig = 0;
1224 1.188 yamt if (runtm >= rlim->rlim_cur) {
1225 1.188 yamt if (runtm >= rlim->rlim_max)
1226 1.188 yamt sig = SIGKILL;
1227 1.188 yamt else {
1228 1.188 yamt sig = SIGXCPU;
1229 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1230 1.188 yamt rlim->rlim_cur += 5;
1231 1.188 yamt }
1232 1.188 yamt }
1233 1.229 ad mutex_exit(p->p_lock);
1234 1.228 ad if (sig)
1235 1.188 yamt psignal(p, sig);
1236 1.174 ad }
1237 1.228 ad mutex_exit(proc_lock);
1238 1.188 yamt uvm_meter();
1239 1.191 ad cv_wakeup(&lbolt);
1240 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
1241 1.113 gmcgarry }
1242