kern_synch.c revision 1.251 1 1.251 uwe /* $NetBSD: kern_synch.c,v 1.251 2008/07/25 00:48:59 uwe Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.218 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej *
21 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
32 1.63 thorpej */
33 1.26 cgd
34 1.26 cgd /*-
35 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 1.26 cgd * The Regents of the University of California. All rights reserved.
37 1.26 cgd * (c) UNIX System Laboratories, Inc.
38 1.26 cgd * All or some portions of this file are derived from material licensed
39 1.26 cgd * to the University of California by American Telephone and Telegraph
40 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 1.26 cgd * the permission of UNIX System Laboratories, Inc.
42 1.26 cgd *
43 1.26 cgd * Redistribution and use in source and binary forms, with or without
44 1.26 cgd * modification, are permitted provided that the following conditions
45 1.26 cgd * are met:
46 1.26 cgd * 1. Redistributions of source code must retain the above copyright
47 1.26 cgd * notice, this list of conditions and the following disclaimer.
48 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.26 cgd * notice, this list of conditions and the following disclaimer in the
50 1.26 cgd * documentation and/or other materials provided with the distribution.
51 1.136 agc * 3. Neither the name of the University nor the names of its contributors
52 1.26 cgd * may be used to endorse or promote products derived from this software
53 1.26 cgd * without specific prior written permission.
54 1.26 cgd *
55 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.26 cgd * SUCH DAMAGE.
66 1.26 cgd *
67 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 1.26 cgd */
69 1.106 lukem
70 1.106 lukem #include <sys/cdefs.h>
71 1.251 uwe __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.251 2008/07/25 00:48:59 uwe Exp $");
72 1.48 mrg
73 1.109 yamt #include "opt_kstack.h"
74 1.110 briggs #include "opt_perfctrs.h"
75 1.26 cgd
76 1.174 ad #define __MUTEX_PRIVATE
77 1.174 ad
78 1.26 cgd #include <sys/param.h>
79 1.26 cgd #include <sys/systm.h>
80 1.26 cgd #include <sys/proc.h>
81 1.26 cgd #include <sys/kernel.h>
82 1.111 briggs #if defined(PERFCTRS)
83 1.110 briggs #include <sys/pmc.h>
84 1.111 briggs #endif
85 1.188 yamt #include <sys/cpu.h>
86 1.26 cgd #include <sys/resourcevar.h>
87 1.55 ross #include <sys/sched.h>
88 1.179 dsl #include <sys/syscall_stats.h>
89 1.174 ad #include <sys/sleepq.h>
90 1.174 ad #include <sys/lockdebug.h>
91 1.190 ad #include <sys/evcnt.h>
92 1.199 ad #include <sys/intr.h>
93 1.207 ad #include <sys/lwpctl.h>
94 1.209 ad #include <sys/atomic.h>
95 1.215 ad #include <sys/simplelock.h>
96 1.47 mrg
97 1.47 mrg #include <uvm/uvm_extern.h>
98 1.47 mrg
99 1.231 ad #include <dev/lockstat.h>
100 1.231 ad
101 1.221 ad static u_int sched_unsleep(struct lwp *, bool);
102 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
103 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
104 1.250 rmind static void resched_cpu(struct lwp *);
105 1.122 thorpej
106 1.174 ad syncobj_t sleep_syncobj = {
107 1.174 ad SOBJ_SLEEPQ_SORTED,
108 1.174 ad sleepq_unsleep,
109 1.184 yamt sleepq_changepri,
110 1.184 yamt sleepq_lendpri,
111 1.184 yamt syncobj_noowner,
112 1.174 ad };
113 1.174 ad
114 1.174 ad syncobj_t sched_syncobj = {
115 1.174 ad SOBJ_SLEEPQ_SORTED,
116 1.174 ad sched_unsleep,
117 1.184 yamt sched_changepri,
118 1.184 yamt sched_lendpri,
119 1.184 yamt syncobj_noowner,
120 1.174 ad };
121 1.122 thorpej
122 1.223 ad callout_t sched_pstats_ch;
123 1.223 ad unsigned sched_pstats_ticks;
124 1.223 ad kcondvar_t lbolt; /* once a second sleep address */
125 1.223 ad
126 1.237 rmind /* Preemption event counters */
127 1.231 ad static struct evcnt kpreempt_ev_crit;
128 1.231 ad static struct evcnt kpreempt_ev_klock;
129 1.231 ad static struct evcnt kpreempt_ev_ipl;
130 1.231 ad static struct evcnt kpreempt_ev_immed;
131 1.231 ad
132 1.231 ad /*
133 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
134 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
135 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
136 1.174 ad * maintained in the machine-dependent layers. This priority will typically
137 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
138 1.174 ad * it can be made higher to block network software interrupts after panics.
139 1.26 cgd */
140 1.174 ad int safepri;
141 1.26 cgd
142 1.237 rmind void
143 1.237 rmind sched_init(void)
144 1.237 rmind {
145 1.237 rmind
146 1.237 rmind cv_init(&lbolt, "lbolt");
147 1.237 rmind callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
148 1.237 rmind callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
149 1.237 rmind
150 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
151 1.237 rmind "kpreempt", "defer: critical section");
152 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
153 1.237 rmind "kpreempt", "defer: kernel_lock");
154 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
155 1.237 rmind "kpreempt", "defer: IPL");
156 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
157 1.237 rmind "kpreempt", "immediate");
158 1.237 rmind
159 1.237 rmind sched_pstats(NULL);
160 1.237 rmind }
161 1.237 rmind
162 1.26 cgd /*
163 1.174 ad * OBSOLETE INTERFACE
164 1.174 ad *
165 1.26 cgd * General sleep call. Suspends the current process until a wakeup is
166 1.26 cgd * performed on the specified identifier. The process will then be made
167 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
168 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
169 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
170 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
171 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
172 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
173 1.26 cgd * call should be interrupted by the signal (return EINTR).
174 1.77 thorpej *
175 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
176 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
177 1.174 ad * is specified, in which case the interlock will always be unlocked upon
178 1.174 ad * return.
179 1.26 cgd */
180 1.26 cgd int
181 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
182 1.174 ad volatile struct simplelock *interlock)
183 1.26 cgd {
184 1.122 thorpej struct lwp *l = curlwp;
185 1.174 ad sleepq_t *sq;
186 1.244 ad kmutex_t *mp;
187 1.188 yamt int error;
188 1.26 cgd
189 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
190 1.204 ad
191 1.174 ad if (sleepq_dontsleep(l)) {
192 1.174 ad (void)sleepq_abort(NULL, 0);
193 1.174 ad if ((priority & PNORELOCK) != 0)
194 1.77 thorpej simple_unlock(interlock);
195 1.174 ad return 0;
196 1.26 cgd }
197 1.78 sommerfe
198 1.204 ad l->l_kpriority = true;
199 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
200 1.244 ad sleepq_enter(sq, l, mp);
201 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
202 1.42 cgd
203 1.174 ad if (interlock != NULL) {
204 1.204 ad KASSERT(simple_lock_held(interlock));
205 1.174 ad simple_unlock(interlock);
206 1.150 chs }
207 1.150 chs
208 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
209 1.126 pk
210 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
211 1.126 pk simple_lock(interlock);
212 1.174 ad
213 1.174 ad return error;
214 1.26 cgd }
215 1.26 cgd
216 1.187 ad int
217 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
218 1.187 ad kmutex_t *mtx)
219 1.187 ad {
220 1.187 ad struct lwp *l = curlwp;
221 1.187 ad sleepq_t *sq;
222 1.244 ad kmutex_t *mp;
223 1.188 yamt int error;
224 1.187 ad
225 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
226 1.204 ad
227 1.187 ad if (sleepq_dontsleep(l)) {
228 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
229 1.187 ad return 0;
230 1.187 ad }
231 1.187 ad
232 1.204 ad l->l_kpriority = true;
233 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
234 1.244 ad sleepq_enter(sq, l, mp);
235 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
236 1.187 ad mutex_exit(mtx);
237 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
238 1.187 ad
239 1.187 ad if ((priority & PNORELOCK) == 0)
240 1.187 ad mutex_enter(mtx);
241 1.187 ad
242 1.187 ad return error;
243 1.187 ad }
244 1.187 ad
245 1.26 cgd /*
246 1.174 ad * General sleep call for situations where a wake-up is not expected.
247 1.26 cgd */
248 1.174 ad int
249 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
250 1.26 cgd {
251 1.174 ad struct lwp *l = curlwp;
252 1.244 ad kmutex_t *mp;
253 1.174 ad sleepq_t *sq;
254 1.174 ad int error;
255 1.26 cgd
256 1.174 ad if (sleepq_dontsleep(l))
257 1.174 ad return sleepq_abort(NULL, 0);
258 1.26 cgd
259 1.174 ad if (mtx != NULL)
260 1.174 ad mutex_exit(mtx);
261 1.204 ad l->l_kpriority = true;
262 1.244 ad sq = sleeptab_lookup(&sleeptab, l, &mp);
263 1.244 ad sleepq_enter(sq, l, mp);
264 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
265 1.188 yamt error = sleepq_block(timo, intr);
266 1.174 ad if (mtx != NULL)
267 1.174 ad mutex_enter(mtx);
268 1.83 thorpej
269 1.174 ad return error;
270 1.139 cl }
271 1.139 cl
272 1.26 cgd /*
273 1.174 ad * OBSOLETE INTERFACE
274 1.174 ad *
275 1.26 cgd * Make all processes sleeping on the specified identifier runnable.
276 1.26 cgd */
277 1.26 cgd void
278 1.174 ad wakeup(wchan_t ident)
279 1.26 cgd {
280 1.174 ad sleepq_t *sq;
281 1.244 ad kmutex_t *mp;
282 1.83 thorpej
283 1.174 ad if (cold)
284 1.174 ad return;
285 1.83 thorpej
286 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
287 1.244 ad sleepq_wake(sq, ident, (u_int)-1, mp);
288 1.63 thorpej }
289 1.63 thorpej
290 1.63 thorpej /*
291 1.174 ad * OBSOLETE INTERFACE
292 1.174 ad *
293 1.63 thorpej * Make the highest priority process first in line on the specified
294 1.63 thorpej * identifier runnable.
295 1.63 thorpej */
296 1.174 ad void
297 1.174 ad wakeup_one(wchan_t ident)
298 1.63 thorpej {
299 1.174 ad sleepq_t *sq;
300 1.244 ad kmutex_t *mp;
301 1.63 thorpej
302 1.174 ad if (cold)
303 1.174 ad return;
304 1.188 yamt
305 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
306 1.244 ad sleepq_wake(sq, ident, 1, mp);
307 1.174 ad }
308 1.63 thorpej
309 1.117 gmcgarry
310 1.117 gmcgarry /*
311 1.117 gmcgarry * General yield call. Puts the current process back on its run queue and
312 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
313 1.198 ad * current process explicitly requests it (eg sched_yield(2)).
314 1.117 gmcgarry */
315 1.117 gmcgarry void
316 1.117 gmcgarry yield(void)
317 1.117 gmcgarry {
318 1.122 thorpej struct lwp *l = curlwp;
319 1.117 gmcgarry
320 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
321 1.174 ad lwp_lock(l);
322 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
323 1.188 yamt KASSERT(l->l_stat == LSONPROC);
324 1.204 ad l->l_kpriority = false;
325 1.188 yamt (void)mi_switch(l);
326 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
327 1.69 thorpej }
328 1.69 thorpej
329 1.69 thorpej /*
330 1.69 thorpej * General preemption call. Puts the current process back on its run queue
331 1.156 rpaulo * and performs an involuntary context switch.
332 1.69 thorpej */
333 1.69 thorpej void
334 1.174 ad preempt(void)
335 1.69 thorpej {
336 1.122 thorpej struct lwp *l = curlwp;
337 1.69 thorpej
338 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
339 1.174 ad lwp_lock(l);
340 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
341 1.188 yamt KASSERT(l->l_stat == LSONPROC);
342 1.204 ad l->l_kpriority = false;
343 1.174 ad l->l_nivcsw++;
344 1.188 yamt (void)mi_switch(l);
345 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
346 1.69 thorpej }
347 1.69 thorpej
348 1.234 ad /*
349 1.234 ad * Handle a request made by another agent to preempt the current LWP
350 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
351 1.234 ad *
352 1.234 ad * Character addresses for lockstat only.
353 1.234 ad */
354 1.231 ad static char in_critical_section;
355 1.231 ad static char kernel_lock_held;
356 1.231 ad static char spl_raised;
357 1.231 ad static char is_softint;
358 1.231 ad
359 1.231 ad bool
360 1.231 ad kpreempt(uintptr_t where)
361 1.231 ad {
362 1.231 ad uintptr_t failed;
363 1.231 ad lwp_t *l;
364 1.231 ad int s, dop;
365 1.231 ad
366 1.231 ad l = curlwp;
367 1.231 ad failed = 0;
368 1.231 ad while ((dop = l->l_dopreempt) != 0) {
369 1.231 ad if (l->l_stat != LSONPROC) {
370 1.231 ad /*
371 1.231 ad * About to block (or die), let it happen.
372 1.231 ad * Doesn't really count as "preemption has
373 1.231 ad * been blocked", since we're going to
374 1.231 ad * context switch.
375 1.231 ad */
376 1.231 ad l->l_dopreempt = 0;
377 1.231 ad return true;
378 1.231 ad }
379 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
380 1.231 ad /* Can't preempt idle loop, don't count as failure. */
381 1.231 ad l->l_dopreempt = 0;
382 1.231 ad return true;
383 1.231 ad }
384 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
385 1.231 ad /* LWP holds preemption disabled, explicitly. */
386 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
387 1.234 ad kpreempt_ev_crit.ev_count++;
388 1.231 ad }
389 1.231 ad failed = (uintptr_t)&in_critical_section;
390 1.231 ad break;
391 1.231 ad }
392 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
393 1.231 ad /* Can't preempt soft interrupts yet. */
394 1.231 ad l->l_dopreempt = 0;
395 1.231 ad failed = (uintptr_t)&is_softint;
396 1.231 ad break;
397 1.231 ad }
398 1.231 ad s = splsched();
399 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
400 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
401 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
402 1.231 ad splx(s);
403 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
404 1.234 ad kpreempt_ev_klock.ev_count++;
405 1.231 ad }
406 1.231 ad failed = (uintptr_t)&kernel_lock_held;
407 1.231 ad break;
408 1.231 ad }
409 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
410 1.231 ad /*
411 1.231 ad * It may be that the IPL is too high.
412 1.231 ad * kpreempt_enter() can schedule an
413 1.231 ad * interrupt to retry later.
414 1.231 ad */
415 1.231 ad splx(s);
416 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
417 1.234 ad kpreempt_ev_ipl.ev_count++;
418 1.231 ad }
419 1.231 ad failed = (uintptr_t)&spl_raised;
420 1.231 ad break;
421 1.231 ad }
422 1.231 ad /* Do it! */
423 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
424 1.234 ad kpreempt_ev_immed.ev_count++;
425 1.231 ad }
426 1.231 ad lwp_lock(l);
427 1.231 ad mi_switch(l);
428 1.231 ad l->l_nopreempt++;
429 1.231 ad splx(s);
430 1.231 ad
431 1.231 ad /* Take care of any MD cleanup. */
432 1.231 ad cpu_kpreempt_exit(where);
433 1.231 ad l->l_nopreempt--;
434 1.231 ad }
435 1.231 ad
436 1.231 ad /* Record preemption failure for reporting via lockstat. */
437 1.231 ad if (__predict_false(failed)) {
438 1.240 ad int lsflag = 0;
439 1.231 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
440 1.231 ad LOCKSTAT_ENTER(lsflag);
441 1.231 ad /* Might recurse, make it atomic. */
442 1.231 ad if (__predict_false(lsflag)) {
443 1.231 ad if (where == 0) {
444 1.231 ad where = (uintptr_t)__builtin_return_address(0);
445 1.231 ad }
446 1.231 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
447 1.231 ad NULL, (void *)where) == NULL) {
448 1.231 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
449 1.231 ad l->l_pfaillock = failed;
450 1.231 ad }
451 1.231 ad }
452 1.231 ad LOCKSTAT_EXIT(lsflag);
453 1.231 ad }
454 1.231 ad
455 1.231 ad return failed;
456 1.231 ad }
457 1.231 ad
458 1.69 thorpej /*
459 1.231 ad * Return true if preemption is explicitly disabled.
460 1.230 ad */
461 1.231 ad bool
462 1.231 ad kpreempt_disabled(void)
463 1.231 ad {
464 1.231 ad lwp_t *l;
465 1.231 ad
466 1.231 ad l = curlwp;
467 1.231 ad
468 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
469 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
470 1.231 ad }
471 1.230 ad
472 1.230 ad /*
473 1.231 ad * Disable kernel preemption.
474 1.230 ad */
475 1.230 ad void
476 1.231 ad kpreempt_disable(void)
477 1.230 ad {
478 1.230 ad
479 1.231 ad KPREEMPT_DISABLE(curlwp);
480 1.230 ad }
481 1.230 ad
482 1.230 ad /*
483 1.231 ad * Reenable kernel preemption.
484 1.230 ad */
485 1.231 ad void
486 1.231 ad kpreempt_enable(void)
487 1.230 ad {
488 1.230 ad
489 1.231 ad KPREEMPT_ENABLE(curlwp);
490 1.230 ad }
491 1.230 ad
492 1.230 ad /*
493 1.188 yamt * Compute the amount of time during which the current lwp was running.
494 1.130 nathanw *
495 1.188 yamt * - update l_rtime unless it's an idle lwp.
496 1.188 yamt */
497 1.188 yamt
498 1.199 ad void
499 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
500 1.188 yamt {
501 1.188 yamt
502 1.199 ad if ((l->l_flag & LW_IDLE) != 0)
503 1.188 yamt return;
504 1.188 yamt
505 1.212 yamt /* rtime += now - stime */
506 1.212 yamt bintime_add(&l->l_rtime, now);
507 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
508 1.188 yamt }
509 1.188 yamt
510 1.188 yamt /*
511 1.245 ad * Select next LWP from the current CPU to run..
512 1.245 ad */
513 1.245 ad static inline lwp_t *
514 1.245 ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
515 1.245 ad {
516 1.245 ad lwp_t *newl;
517 1.245 ad
518 1.245 ad /*
519 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
520 1.245 ad * If no LWP is runnable, select the idle LWP.
521 1.245 ad *
522 1.245 ad * Note that spc_lwplock might not necessary be held, and
523 1.245 ad * new thread would be unlocked after setting the LWP-lock.
524 1.245 ad */
525 1.245 ad newl = sched_nextlwp();
526 1.245 ad if (newl != NULL) {
527 1.245 ad sched_dequeue(newl);
528 1.245 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
529 1.245 ad newl->l_stat = LSONPROC;
530 1.245 ad newl->l_cpu = ci;
531 1.248 ad newl->l_pflag |= LP_RUNNING;
532 1.245 ad lwp_setlock(newl, spc->spc_lwplock);
533 1.245 ad } else {
534 1.245 ad newl = ci->ci_data.cpu_idlelwp;
535 1.245 ad newl->l_stat = LSONPROC;
536 1.248 ad newl->l_pflag |= LP_RUNNING;
537 1.245 ad }
538 1.245 ad
539 1.245 ad /*
540 1.245 ad * Only clear want_resched if there are no pending (slow)
541 1.245 ad * software interrupts.
542 1.245 ad */
543 1.245 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
544 1.245 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
545 1.245 ad spc->spc_curpriority = lwp_eprio(newl);
546 1.245 ad
547 1.245 ad return newl;
548 1.245 ad }
549 1.245 ad
550 1.245 ad /*
551 1.188 yamt * The machine independent parts of context switch.
552 1.188 yamt *
553 1.188 yamt * Returns 1 if another LWP was actually run.
554 1.26 cgd */
555 1.122 thorpej int
556 1.199 ad mi_switch(lwp_t *l)
557 1.26 cgd {
558 1.246 rmind struct cpu_info *ci;
559 1.76 thorpej struct schedstate_percpu *spc;
560 1.188 yamt struct lwp *newl;
561 1.174 ad int retval, oldspl;
562 1.212 yamt struct bintime bt;
563 1.199 ad bool returning;
564 1.26 cgd
565 1.188 yamt KASSERT(lwp_locked(l, NULL));
566 1.231 ad KASSERT(kpreempt_disabled());
567 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
568 1.174 ad
569 1.174 ad #ifdef KSTACK_CHECK_MAGIC
570 1.174 ad kstack_check_magic(l);
571 1.174 ad #endif
572 1.83 thorpej
573 1.212 yamt binuptime(&bt);
574 1.199 ad
575 1.231 ad KASSERT(l->l_cpu == curcpu());
576 1.196 ad ci = l->l_cpu;
577 1.196 ad spc = &ci->ci_schedstate;
578 1.199 ad returning = false;
579 1.190 ad newl = NULL;
580 1.190 ad
581 1.199 ad /*
582 1.199 ad * If we have been asked to switch to a specific LWP, then there
583 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
584 1.199 ad * blocking, then return to the interrupted thread without adjusting
585 1.199 ad * VM context or its start time: neither have been changed in order
586 1.199 ad * to take the interrupt.
587 1.199 ad */
588 1.190 ad if (l->l_switchto != NULL) {
589 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
590 1.199 ad returning = true;
591 1.199 ad softint_block(l);
592 1.248 ad if ((l->l_pflag & LP_TIMEINTR) != 0)
593 1.212 yamt updatertime(l, &bt);
594 1.199 ad }
595 1.190 ad newl = l->l_switchto;
596 1.190 ad l->l_switchto = NULL;
597 1.190 ad }
598 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
599 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
600 1.204 ad /* There are pending soft interrupts, so pick one. */
601 1.204 ad newl = softint_picklwp();
602 1.204 ad newl->l_stat = LSONPROC;
603 1.248 ad newl->l_pflag |= LP_RUNNING;
604 1.204 ad }
605 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
606 1.190 ad
607 1.180 dsl /* Count time spent in current system call */
608 1.199 ad if (!returning) {
609 1.199 ad SYSCALL_TIME_SLEEP(l);
610 1.180 dsl
611 1.199 ad /*
612 1.199 ad * XXXSMP If we are using h/w performance counters,
613 1.199 ad * save context.
614 1.199 ad */
615 1.174 ad #if PERFCTRS
616 1.199 ad if (PMC_ENABLED(l->l_proc)) {
617 1.199 ad pmc_save_context(l->l_proc);
618 1.199 ad }
619 1.199 ad #endif
620 1.212 yamt updatertime(l, &bt);
621 1.174 ad }
622 1.113 gmcgarry
623 1.246 rmind /* Lock the runqueue */
624 1.246 rmind KASSERT(l->l_stat != LSRUN);
625 1.246 rmind mutex_spin_enter(spc->spc_mutex);
626 1.246 rmind
627 1.113 gmcgarry /*
628 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
629 1.113 gmcgarry */
630 1.246 rmind if (l->l_stat == LSONPROC && l != newl) {
631 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
632 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
633 1.188 yamt l->l_stat = LSRUN;
634 1.246 rmind lwp_setlock(l, spc->spc_mutex);
635 1.246 rmind sched_enqueue(l, true);
636 1.246 rmind /* Handle migration case */
637 1.246 rmind KASSERT(spc->spc_migrating == NULL);
638 1.246 rmind if (l->l_target_cpu != NULL) {
639 1.246 rmind spc->spc_migrating = l;
640 1.216 rmind }
641 1.246 rmind } else
642 1.188 yamt l->l_stat = LSIDL;
643 1.174 ad }
644 1.174 ad
645 1.245 ad /* Pick new LWP to run. */
646 1.190 ad if (newl == NULL) {
647 1.245 ad newl = nextlwp(ci, spc);
648 1.199 ad }
649 1.199 ad
650 1.204 ad /* Items that must be updated with the CPU locked. */
651 1.199 ad if (!returning) {
652 1.204 ad /* Update the new LWP's start time. */
653 1.212 yamt newl->l_stime = bt;
654 1.204 ad
655 1.199 ad /*
656 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
657 1.204 ad * We use cpu_onproc to keep track of which kernel or
658 1.204 ad * user thread is running 'underneath' the software
659 1.204 ad * interrupt. This is important for time accounting,
660 1.204 ad * itimers and forcing user threads to preempt (aston).
661 1.199 ad */
662 1.204 ad ci->ci_data.cpu_onproc = newl;
663 1.188 yamt }
664 1.188 yamt
665 1.241 ad /*
666 1.241 ad * Preemption related tasks. Must be done with the current
667 1.241 ad * CPU locked.
668 1.241 ad */
669 1.241 ad cpu_did_resched(l);
670 1.231 ad l->l_dopreempt = 0;
671 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
672 1.231 ad LOCKSTAT_FLAG(lsflag);
673 1.231 ad LOCKSTAT_ENTER(lsflag);
674 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
675 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
676 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
677 1.231 ad LOCKSTAT_EXIT(lsflag);
678 1.231 ad l->l_pfailtime = 0;
679 1.231 ad l->l_pfaillock = 0;
680 1.231 ad l->l_pfailaddr = 0;
681 1.231 ad }
682 1.231 ad
683 1.188 yamt if (l != newl) {
684 1.188 yamt struct lwp *prevlwp;
685 1.174 ad
686 1.209 ad /* Release all locks, but leave the current LWP locked */
687 1.246 rmind if (l->l_mutex == spc->spc_mutex) {
688 1.209 ad /*
689 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
690 1.209 ad * to the run queue (it is now locked by spc_mutex).
691 1.209 ad */
692 1.217 ad mutex_spin_exit(spc->spc_lwplock);
693 1.188 yamt } else {
694 1.209 ad /*
695 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
696 1.209 ad * run queues.
697 1.209 ad */
698 1.188 yamt mutex_spin_exit(spc->spc_mutex);
699 1.188 yamt }
700 1.188 yamt
701 1.209 ad /*
702 1.209 ad * Mark that context switch is going to be perfomed
703 1.209 ad * for this LWP, to protect it from being switched
704 1.209 ad * to on another CPU.
705 1.209 ad */
706 1.209 ad KASSERT(l->l_ctxswtch == 0);
707 1.209 ad l->l_ctxswtch = 1;
708 1.209 ad l->l_ncsw++;
709 1.248 ad l->l_pflag &= ~LP_RUNNING;
710 1.209 ad
711 1.209 ad /*
712 1.209 ad * Increase the count of spin-mutexes before the release
713 1.209 ad * of the last lock - we must remain at IPL_SCHED during
714 1.209 ad * the context switch.
715 1.209 ad */
716 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
717 1.209 ad ci->ci_mtx_count--;
718 1.209 ad lwp_unlock(l);
719 1.209 ad
720 1.218 ad /* Count the context switch on this CPU. */
721 1.218 ad ci->ci_data.cpu_nswtch++;
722 1.188 yamt
723 1.209 ad /* Update status for lwpctl, if present. */
724 1.209 ad if (l->l_lwpctl != NULL)
725 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
726 1.209 ad
727 1.199 ad /*
728 1.199 ad * Save old VM context, unless a soft interrupt
729 1.199 ad * handler is blocking.
730 1.199 ad */
731 1.199 ad if (!returning)
732 1.199 ad pmap_deactivate(l);
733 1.188 yamt
734 1.209 ad /*
735 1.209 ad * We may need to spin-wait for if 'newl' is still
736 1.209 ad * context switching on another CPU.
737 1.209 ad */
738 1.209 ad if (newl->l_ctxswtch != 0) {
739 1.209 ad u_int count;
740 1.209 ad count = SPINLOCK_BACKOFF_MIN;
741 1.209 ad while (newl->l_ctxswtch)
742 1.209 ad SPINLOCK_BACKOFF(count);
743 1.209 ad }
744 1.207 ad
745 1.188 yamt /* Switch to the new LWP.. */
746 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
747 1.207 ad ci = curcpu();
748 1.207 ad
749 1.188 yamt /*
750 1.209 ad * Switched away - we have new curlwp.
751 1.209 ad * Restore VM context and IPL.
752 1.188 yamt */
753 1.209 ad pmap_activate(l);
754 1.188 yamt if (prevlwp != NULL) {
755 1.209 ad /* Normalize the count of the spin-mutexes */
756 1.209 ad ci->ci_mtx_count++;
757 1.209 ad /* Unmark the state of context switch */
758 1.209 ad membar_exit();
759 1.209 ad prevlwp->l_ctxswtch = 0;
760 1.188 yamt }
761 1.209 ad
762 1.209 ad /* Update status for lwpctl, if present. */
763 1.219 ad if (l->l_lwpctl != NULL) {
764 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
765 1.219 ad l->l_lwpctl->lc_pctr++;
766 1.219 ad }
767 1.174 ad
768 1.231 ad KASSERT(l->l_cpu == ci);
769 1.231 ad splx(oldspl);
770 1.188 yamt retval = 1;
771 1.188 yamt } else {
772 1.188 yamt /* Nothing to do - just unlock and return. */
773 1.246 rmind mutex_spin_exit(spc->spc_mutex);
774 1.188 yamt lwp_unlock(l);
775 1.122 thorpej retval = 0;
776 1.122 thorpej }
777 1.110 briggs
778 1.188 yamt KASSERT(l == curlwp);
779 1.188 yamt KASSERT(l->l_stat == LSONPROC);
780 1.188 yamt
781 1.110 briggs /*
782 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
783 1.231 ad * XXXSMP preemption problem.
784 1.26 cgd */
785 1.114 gmcgarry #if PERFCTRS
786 1.175 christos if (PMC_ENABLED(l->l_proc)) {
787 1.175 christos pmc_restore_context(l->l_proc);
788 1.166 christos }
789 1.114 gmcgarry #endif
790 1.180 dsl SYSCALL_TIME_WAKEUP(l);
791 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
792 1.169 yamt
793 1.122 thorpej return retval;
794 1.26 cgd }
795 1.26 cgd
796 1.26 cgd /*
797 1.245 ad * The machine independent parts of context switch to oblivion.
798 1.245 ad * Does not return. Call with the LWP unlocked.
799 1.245 ad */
800 1.245 ad void
801 1.245 ad lwp_exit_switchaway(lwp_t *l)
802 1.245 ad {
803 1.245 ad struct cpu_info *ci;
804 1.245 ad struct lwp *newl;
805 1.245 ad struct bintime bt;
806 1.245 ad
807 1.245 ad ci = l->l_cpu;
808 1.245 ad
809 1.245 ad KASSERT(kpreempt_disabled());
810 1.245 ad KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
811 1.245 ad KASSERT(ci == curcpu());
812 1.245 ad LOCKDEBUG_BARRIER(NULL, 0);
813 1.245 ad
814 1.245 ad #ifdef KSTACK_CHECK_MAGIC
815 1.245 ad kstack_check_magic(l);
816 1.245 ad #endif
817 1.245 ad
818 1.245 ad /* Count time spent in current system call */
819 1.245 ad SYSCALL_TIME_SLEEP(l);
820 1.245 ad binuptime(&bt);
821 1.245 ad updatertime(l, &bt);
822 1.245 ad
823 1.245 ad /* Must stay at IPL_SCHED even after releasing run queue lock. */
824 1.245 ad (void)splsched();
825 1.245 ad
826 1.245 ad /*
827 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
828 1.245 ad * If no LWP is runnable, select the idle LWP.
829 1.245 ad *
830 1.245 ad * Note that spc_lwplock might not necessary be held, and
831 1.245 ad * new thread would be unlocked after setting the LWP-lock.
832 1.245 ad */
833 1.245 ad spc_lock(ci);
834 1.245 ad #ifndef __HAVE_FAST_SOFTINTS
835 1.245 ad if (ci->ci_data.cpu_softints != 0) {
836 1.245 ad /* There are pending soft interrupts, so pick one. */
837 1.245 ad newl = softint_picklwp();
838 1.245 ad newl->l_stat = LSONPROC;
839 1.248 ad newl->l_pflag |= LP_RUNNING;
840 1.245 ad } else
841 1.245 ad #endif /* !__HAVE_FAST_SOFTINTS */
842 1.245 ad {
843 1.245 ad newl = nextlwp(ci, &ci->ci_schedstate);
844 1.245 ad }
845 1.245 ad
846 1.245 ad /* Update the new LWP's start time. */
847 1.245 ad newl->l_stime = bt;
848 1.248 ad l->l_pflag &= ~LP_RUNNING;
849 1.245 ad
850 1.245 ad /*
851 1.245 ad * ci_curlwp changes when a fast soft interrupt occurs.
852 1.245 ad * We use cpu_onproc to keep track of which kernel or
853 1.245 ad * user thread is running 'underneath' the software
854 1.245 ad * interrupt. This is important for time accounting,
855 1.245 ad * itimers and forcing user threads to preempt (aston).
856 1.245 ad */
857 1.245 ad ci->ci_data.cpu_onproc = newl;
858 1.245 ad
859 1.245 ad /*
860 1.245 ad * Preemption related tasks. Must be done with the current
861 1.245 ad * CPU locked.
862 1.245 ad */
863 1.245 ad cpu_did_resched(l);
864 1.245 ad
865 1.245 ad /* Unlock the run queue. */
866 1.245 ad spc_unlock(ci);
867 1.245 ad
868 1.245 ad /* Count the context switch on this CPU. */
869 1.245 ad ci->ci_data.cpu_nswtch++;
870 1.245 ad
871 1.245 ad /* Update status for lwpctl, if present. */
872 1.245 ad if (l->l_lwpctl != NULL)
873 1.247 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
874 1.245 ad
875 1.245 ad /*
876 1.245 ad * We may need to spin-wait for if 'newl' is still
877 1.245 ad * context switching on another CPU.
878 1.245 ad */
879 1.245 ad if (newl->l_ctxswtch != 0) {
880 1.245 ad u_int count;
881 1.245 ad count = SPINLOCK_BACKOFF_MIN;
882 1.245 ad while (newl->l_ctxswtch)
883 1.245 ad SPINLOCK_BACKOFF(count);
884 1.245 ad }
885 1.245 ad
886 1.245 ad /* Switch to the new LWP.. */
887 1.245 ad (void)cpu_switchto(NULL, newl, false);
888 1.245 ad
889 1.251 uwe for (;;) continue; /* XXX: convince gcc about "noreturn" */
890 1.245 ad /* NOTREACHED */
891 1.245 ad }
892 1.245 ad
893 1.245 ad /*
894 1.174 ad * Change process state to be runnable, placing it on the run queue if it is
895 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
896 1.174 ad *
897 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
898 1.26 cgd */
899 1.26 cgd void
900 1.122 thorpej setrunnable(struct lwp *l)
901 1.26 cgd {
902 1.122 thorpej struct proc *p = l->l_proc;
903 1.205 ad struct cpu_info *ci;
904 1.174 ad sigset_t *ss;
905 1.26 cgd
906 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
907 1.229 ad KASSERT(mutex_owned(p->p_lock));
908 1.183 ad KASSERT(lwp_locked(l, NULL));
909 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
910 1.83 thorpej
911 1.122 thorpej switch (l->l_stat) {
912 1.122 thorpej case LSSTOP:
913 1.33 mycroft /*
914 1.33 mycroft * If we're being traced (possibly because someone attached us
915 1.33 mycroft * while we were stopped), check for a signal from the debugger.
916 1.33 mycroft */
917 1.174 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
918 1.174 ad if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
919 1.174 ad ss = &l->l_sigpend.sp_set;
920 1.174 ad else
921 1.174 ad ss = &p->p_sigpend.sp_set;
922 1.174 ad sigaddset(ss, p->p_xstat);
923 1.174 ad signotify(l);
924 1.53 mycroft }
925 1.174 ad p->p_nrlwps++;
926 1.26 cgd break;
927 1.174 ad case LSSUSPENDED:
928 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
929 1.174 ad p->p_nrlwps++;
930 1.192 rmind cv_broadcast(&p->p_lwpcv);
931 1.122 thorpej break;
932 1.174 ad case LSSLEEP:
933 1.174 ad KASSERT(l->l_wchan != NULL);
934 1.26 cgd break;
935 1.174 ad default:
936 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
937 1.26 cgd }
938 1.139 cl
939 1.174 ad /*
940 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
941 1.174 ad * again. If not, mark it as still sleeping.
942 1.174 ad */
943 1.174 ad if (l->l_wchan != NULL) {
944 1.174 ad l->l_stat = LSSLEEP;
945 1.183 ad /* lwp_unsleep() will release the lock. */
946 1.221 ad lwp_unsleep(l, true);
947 1.174 ad return;
948 1.174 ad }
949 1.139 cl
950 1.174 ad /*
951 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
952 1.174 ad * about to call mi_switch(), in which case it will yield.
953 1.174 ad */
954 1.248 ad if ((l->l_pflag & LP_RUNNING) != 0) {
955 1.174 ad l->l_stat = LSONPROC;
956 1.174 ad l->l_slptime = 0;
957 1.174 ad lwp_unlock(l);
958 1.174 ad return;
959 1.174 ad }
960 1.122 thorpej
961 1.174 ad /*
962 1.205 ad * Look for a CPU to run.
963 1.205 ad * Set the LWP runnable.
964 1.174 ad */
965 1.205 ad ci = sched_takecpu(l);
966 1.205 ad l->l_cpu = ci;
967 1.236 ad spc_lock(ci);
968 1.236 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
969 1.188 yamt sched_setrunnable(l);
970 1.174 ad l->l_stat = LSRUN;
971 1.122 thorpej l->l_slptime = 0;
972 1.174 ad
973 1.205 ad /*
974 1.205 ad * If thread is swapped out - wake the swapper to bring it back in.
975 1.205 ad * Otherwise, enter it into a run queue.
976 1.205 ad */
977 1.178 pavel if (l->l_flag & LW_INMEM) {
978 1.188 yamt sched_enqueue(l, false);
979 1.188 yamt resched_cpu(l);
980 1.174 ad lwp_unlock(l);
981 1.174 ad } else {
982 1.174 ad lwp_unlock(l);
983 1.177 ad uvm_kick_scheduler();
984 1.174 ad }
985 1.26 cgd }
986 1.26 cgd
987 1.26 cgd /*
988 1.174 ad * suspendsched:
989 1.174 ad *
990 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
991 1.174 ad */
992 1.94 bouyer void
993 1.174 ad suspendsched(void)
994 1.94 bouyer {
995 1.174 ad CPU_INFO_ITERATOR cii;
996 1.174 ad struct cpu_info *ci;
997 1.122 thorpej struct lwp *l;
998 1.174 ad struct proc *p;
999 1.94 bouyer
1000 1.94 bouyer /*
1001 1.174 ad * We do this by process in order not to violate the locking rules.
1002 1.94 bouyer */
1003 1.228 ad mutex_enter(proc_lock);
1004 1.174 ad PROCLIST_FOREACH(p, &allproc) {
1005 1.238 ad if ((p->p_flag & PK_MARKER) != 0)
1006 1.238 ad continue;
1007 1.238 ad
1008 1.229 ad mutex_enter(p->p_lock);
1009 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
1010 1.229 ad mutex_exit(p->p_lock);
1011 1.94 bouyer continue;
1012 1.174 ad }
1013 1.174 ad
1014 1.174 ad p->p_stat = SSTOP;
1015 1.174 ad
1016 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1017 1.174 ad if (l == curlwp)
1018 1.174 ad continue;
1019 1.174 ad
1020 1.174 ad lwp_lock(l);
1021 1.122 thorpej
1022 1.97 enami /*
1023 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
1024 1.174 ad * when it tries to return to user mode. We want to
1025 1.174 ad * try and get to get as many LWPs as possible to
1026 1.174 ad * the user / kernel boundary, so that they will
1027 1.174 ad * release any locks that they hold.
1028 1.97 enami */
1029 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1030 1.174 ad
1031 1.174 ad if (l->l_stat == LSSLEEP &&
1032 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1033 1.174 ad /* setrunnable() will release the lock. */
1034 1.174 ad setrunnable(l);
1035 1.174 ad continue;
1036 1.174 ad }
1037 1.174 ad
1038 1.174 ad lwp_unlock(l);
1039 1.94 bouyer }
1040 1.174 ad
1041 1.229 ad mutex_exit(p->p_lock);
1042 1.94 bouyer }
1043 1.228 ad mutex_exit(proc_lock);
1044 1.174 ad
1045 1.174 ad /*
1046 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1047 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
1048 1.174 ad */
1049 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1050 1.204 ad spc_lock(ci);
1051 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
1052 1.204 ad spc_unlock(ci);
1053 1.204 ad }
1054 1.174 ad }
1055 1.174 ad
1056 1.174 ad /*
1057 1.174 ad * sched_unsleep:
1058 1.174 ad *
1059 1.174 ad * The is called when the LWP has not been awoken normally but instead
1060 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1061 1.174 ad * it's not a valid action for running or idle LWPs.
1062 1.174 ad */
1063 1.221 ad static u_int
1064 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1065 1.174 ad {
1066 1.174 ad
1067 1.174 ad lwp_unlock(l);
1068 1.174 ad panic("sched_unsleep");
1069 1.174 ad }
1070 1.174 ad
1071 1.250 rmind static void
1072 1.188 yamt resched_cpu(struct lwp *l)
1073 1.188 yamt {
1074 1.250 rmind struct cpu_info *ci = ci = l->l_cpu;
1075 1.188 yamt
1076 1.250 rmind KASSERT(lwp_locked(l, NULL));
1077 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1078 1.188 yamt cpu_need_resched(ci, 0);
1079 1.188 yamt }
1080 1.188 yamt
1081 1.188 yamt static void
1082 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1083 1.174 ad {
1084 1.174 ad
1085 1.188 yamt KASSERT(lwp_locked(l, NULL));
1086 1.174 ad
1087 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1088 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1089 1.204 ad sched_dequeue(l);
1090 1.204 ad l->l_priority = pri;
1091 1.204 ad sched_enqueue(l, false);
1092 1.204 ad } else {
1093 1.174 ad l->l_priority = pri;
1094 1.157 yamt }
1095 1.188 yamt resched_cpu(l);
1096 1.184 yamt }
1097 1.184 yamt
1098 1.188 yamt static void
1099 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1100 1.184 yamt {
1101 1.184 yamt
1102 1.188 yamt KASSERT(lwp_locked(l, NULL));
1103 1.184 yamt
1104 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1105 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1106 1.204 ad sched_dequeue(l);
1107 1.204 ad l->l_inheritedprio = pri;
1108 1.204 ad sched_enqueue(l, false);
1109 1.204 ad } else {
1110 1.184 yamt l->l_inheritedprio = pri;
1111 1.184 yamt }
1112 1.188 yamt resched_cpu(l);
1113 1.184 yamt }
1114 1.184 yamt
1115 1.184 yamt struct lwp *
1116 1.184 yamt syncobj_noowner(wchan_t wchan)
1117 1.184 yamt {
1118 1.184 yamt
1119 1.184 yamt return NULL;
1120 1.151 yamt }
1121 1.151 yamt
1122 1.250 rmind /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1123 1.250 rmind const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1124 1.134 matt
1125 1.134 matt /*
1126 1.188 yamt * sched_pstats:
1127 1.188 yamt *
1128 1.188 yamt * Update process statistics and check CPU resource allocation.
1129 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
1130 1.188 yamt * priorities.
1131 1.130 nathanw */
1132 1.188 yamt /* ARGSUSED */
1133 1.113 gmcgarry void
1134 1.188 yamt sched_pstats(void *arg)
1135 1.113 gmcgarry {
1136 1.249 rmind const int clkhz = (stathz != 0 ? stathz : hz);
1137 1.188 yamt struct rlimit *rlim;
1138 1.188 yamt struct lwp *l;
1139 1.188 yamt struct proc *p;
1140 1.188 yamt long runtm;
1141 1.249 rmind fixpt_t lpctcpu;
1142 1.249 rmind u_int lcpticks;
1143 1.249 rmind int sig;
1144 1.113 gmcgarry
1145 1.188 yamt sched_pstats_ticks++;
1146 1.174 ad
1147 1.228 ad mutex_enter(proc_lock);
1148 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1149 1.249 rmind if (__predict_false((p->p_flag & PK_MARKER) != 0))
1150 1.238 ad continue;
1151 1.238 ad
1152 1.188 yamt /*
1153 1.250 rmind * Increment time in/out of memory and sleep
1154 1.250 rmind * time (if sleeping), ignore overflow.
1155 1.188 yamt */
1156 1.229 ad mutex_enter(p->p_lock);
1157 1.212 yamt runtm = p->p_rtime.sec;
1158 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1159 1.249 rmind if (__predict_false((l->l_flag & LW_IDLE) != 0))
1160 1.188 yamt continue;
1161 1.188 yamt lwp_lock(l);
1162 1.212 yamt runtm += l->l_rtime.sec;
1163 1.188 yamt l->l_swtime++;
1164 1.242 rmind sched_lwp_stats(l);
1165 1.188 yamt lwp_unlock(l);
1166 1.113 gmcgarry
1167 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1168 1.249 rmind if (l->l_slptime != 0)
1169 1.249 rmind continue;
1170 1.249 rmind
1171 1.249 rmind lpctcpu = l->l_pctcpu;
1172 1.249 rmind lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1173 1.249 rmind lpctcpu += ((FSCALE - ccpu) *
1174 1.249 rmind (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1175 1.249 rmind l->l_pctcpu = lpctcpu;
1176 1.188 yamt }
1177 1.249 rmind /* Calculating p_pctcpu only for ps(1) */
1178 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1179 1.174 ad
1180 1.188 yamt /*
1181 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1182 1.188 yamt * If over max, kill it.
1183 1.188 yamt */
1184 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1185 1.188 yamt sig = 0;
1186 1.249 rmind if (__predict_false(runtm >= rlim->rlim_cur)) {
1187 1.188 yamt if (runtm >= rlim->rlim_max)
1188 1.188 yamt sig = SIGKILL;
1189 1.188 yamt else {
1190 1.188 yamt sig = SIGXCPU;
1191 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1192 1.188 yamt rlim->rlim_cur += 5;
1193 1.188 yamt }
1194 1.188 yamt }
1195 1.229 ad mutex_exit(p->p_lock);
1196 1.249 rmind if (__predict_false(sig))
1197 1.188 yamt psignal(p, sig);
1198 1.174 ad }
1199 1.228 ad mutex_exit(proc_lock);
1200 1.188 yamt uvm_meter();
1201 1.191 ad cv_wakeup(&lbolt);
1202 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
1203 1.113 gmcgarry }
1204