Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.254.2.6
      1  1.254.2.6       snj /*	$NetBSD: kern_synch.c,v 1.254.2.6 2009/04/23 17:47:13 snj Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4  1.254.2.5       snj  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
      5  1.254.2.5       snj  *    The NetBSD Foundation, Inc.
      6       1.63   thorpej  * All rights reserved.
      7       1.63   thorpej  *
      8       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      9       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10      1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11      1.188      yamt  * Daniel Sieger.
     12       1.63   thorpej  *
     13       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     14       1.63   thorpej  * modification, are permitted provided that the following conditions
     15       1.63   thorpej  * are met:
     16       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     17       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     18       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     21       1.63   thorpej  *
     22       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     33       1.63   thorpej  */
     34       1.26       cgd 
     35       1.26       cgd /*-
     36       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     38       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     39       1.26       cgd  * All or some portions of this file are derived from material licensed
     40       1.26       cgd  * to the University of California by American Telephone and Telegraph
     41       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     43       1.26       cgd  *
     44       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     45       1.26       cgd  * modification, are permitted provided that the following conditions
     46       1.26       cgd  * are met:
     47       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     48       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     49       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     50       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     51       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     52      1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     53       1.26       cgd  *    may be used to endorse or promote products derived from this software
     54       1.26       cgd  *    without specific prior written permission.
     55       1.26       cgd  *
     56       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66       1.26       cgd  * SUCH DAMAGE.
     67       1.26       cgd  *
     68       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69       1.26       cgd  */
     70      1.106     lukem 
     71      1.106     lukem #include <sys/cdefs.h>
     72  1.254.2.6       snj __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.254.2.6 2009/04/23 17:47:13 snj Exp $");
     73       1.48       mrg 
     74      1.109      yamt #include "opt_kstack.h"
     75      1.110    briggs #include "opt_perfctrs.h"
     76      1.252  wrstuden #include "opt_sa.h"
     77       1.26       cgd 
     78      1.174        ad #define	__MUTEX_PRIVATE
     79      1.174        ad 
     80       1.26       cgd #include <sys/param.h>
     81       1.26       cgd #include <sys/systm.h>
     82       1.26       cgd #include <sys/proc.h>
     83       1.26       cgd #include <sys/kernel.h>
     84      1.111    briggs #if defined(PERFCTRS)
     85      1.110    briggs #include <sys/pmc.h>
     86      1.111    briggs #endif
     87      1.188      yamt #include <sys/cpu.h>
     88       1.26       cgd #include <sys/resourcevar.h>
     89       1.55      ross #include <sys/sched.h>
     90      1.252  wrstuden #include <sys/sa.h>
     91      1.252  wrstuden #include <sys/savar.h>
     92      1.179       dsl #include <sys/syscall_stats.h>
     93      1.174        ad #include <sys/sleepq.h>
     94      1.174        ad #include <sys/lockdebug.h>
     95      1.190        ad #include <sys/evcnt.h>
     96      1.199        ad #include <sys/intr.h>
     97      1.207        ad #include <sys/lwpctl.h>
     98      1.209        ad #include <sys/atomic.h>
     99      1.215        ad #include <sys/simplelock.h>
    100       1.47       mrg 
    101       1.47       mrg #include <uvm/uvm_extern.h>
    102       1.47       mrg 
    103      1.231        ad #include <dev/lockstat.h>
    104      1.231        ad 
    105      1.221        ad static u_int	sched_unsleep(struct lwp *, bool);
    106      1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    107      1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    108      1.250     rmind static void	resched_cpu(struct lwp *);
    109      1.122   thorpej 
    110      1.174        ad syncobj_t sleep_syncobj = {
    111      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    112      1.174        ad 	sleepq_unsleep,
    113      1.184      yamt 	sleepq_changepri,
    114      1.184      yamt 	sleepq_lendpri,
    115      1.184      yamt 	syncobj_noowner,
    116      1.174        ad };
    117      1.174        ad 
    118      1.174        ad syncobj_t sched_syncobj = {
    119      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    120      1.174        ad 	sched_unsleep,
    121      1.184      yamt 	sched_changepri,
    122      1.184      yamt 	sched_lendpri,
    123      1.184      yamt 	syncobj_noowner,
    124      1.174        ad };
    125      1.122   thorpej 
    126      1.223        ad callout_t 	sched_pstats_ch;
    127      1.223        ad unsigned	sched_pstats_ticks;
    128      1.223        ad kcondvar_t	lbolt;			/* once a second sleep address */
    129      1.223        ad 
    130      1.237     rmind /* Preemption event counters */
    131      1.231        ad static struct evcnt kpreempt_ev_crit;
    132      1.231        ad static struct evcnt kpreempt_ev_klock;
    133      1.231        ad static struct evcnt kpreempt_ev_immed;
    134      1.231        ad 
    135      1.231        ad /*
    136      1.174        ad  * During autoconfiguration or after a panic, a sleep will simply lower the
    137      1.174        ad  * priority briefly to allow interrupts, then return.  The priority to be
    138      1.174        ad  * used (safepri) is machine-dependent, thus this value is initialized and
    139      1.174        ad  * maintained in the machine-dependent layers.  This priority will typically
    140      1.174        ad  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    141      1.174        ad  * it can be made higher to block network software interrupts after panics.
    142       1.26       cgd  */
    143      1.174        ad int	safepri;
    144       1.26       cgd 
    145      1.237     rmind void
    146      1.237     rmind sched_init(void)
    147      1.237     rmind {
    148      1.237     rmind 
    149      1.237     rmind 	cv_init(&lbolt, "lbolt");
    150      1.237     rmind 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    151      1.237     rmind 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    152      1.237     rmind 
    153      1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    154      1.237     rmind 	   "kpreempt", "defer: critical section");
    155      1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    156      1.237     rmind 	   "kpreempt", "defer: kernel_lock");
    157      1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    158      1.237     rmind 	   "kpreempt", "immediate");
    159      1.237     rmind 
    160      1.237     rmind 	sched_pstats(NULL);
    161      1.237     rmind }
    162      1.237     rmind 
    163       1.26       cgd /*
    164      1.174        ad  * OBSOLETE INTERFACE
    165      1.174        ad  *
    166       1.26       cgd  * General sleep call.  Suspends the current process until a wakeup is
    167       1.26       cgd  * performed on the specified identifier.  The process will then be made
    168      1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    169      1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    170       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    171       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    172       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    173       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    174       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    175       1.77   thorpej  *
    176      1.174        ad  * The interlock is held until we are on a sleep queue. The interlock will
    177      1.174        ad  * be locked before returning back to the caller unless the PNORELOCK flag
    178      1.174        ad  * is specified, in which case the interlock will always be unlocked upon
    179      1.174        ad  * return.
    180       1.26       cgd  */
    181       1.26       cgd int
    182      1.185      yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    183      1.174        ad 	volatile struct simplelock *interlock)
    184       1.26       cgd {
    185      1.122   thorpej 	struct lwp *l = curlwp;
    186      1.174        ad 	sleepq_t *sq;
    187      1.244        ad 	kmutex_t *mp;
    188      1.188      yamt 	int error;
    189       1.26       cgd 
    190      1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    191      1.204        ad 
    192      1.174        ad 	if (sleepq_dontsleep(l)) {
    193      1.174        ad 		(void)sleepq_abort(NULL, 0);
    194      1.174        ad 		if ((priority & PNORELOCK) != 0)
    195       1.77   thorpej 			simple_unlock(interlock);
    196      1.174        ad 		return 0;
    197       1.26       cgd 	}
    198       1.78  sommerfe 
    199      1.204        ad 	l->l_kpriority = true;
    200      1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    201      1.244        ad 	sleepq_enter(sq, l, mp);
    202      1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    203       1.42       cgd 
    204      1.174        ad 	if (interlock != NULL) {
    205      1.204        ad 		KASSERT(simple_lock_held(interlock));
    206      1.174        ad 		simple_unlock(interlock);
    207      1.150       chs 	}
    208      1.150       chs 
    209      1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    210      1.126        pk 
    211      1.174        ad 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    212      1.126        pk 		simple_lock(interlock);
    213      1.174        ad 
    214      1.174        ad 	return error;
    215       1.26       cgd }
    216       1.26       cgd 
    217      1.187        ad int
    218      1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    219      1.187        ad 	kmutex_t *mtx)
    220      1.187        ad {
    221      1.187        ad 	struct lwp *l = curlwp;
    222      1.187        ad 	sleepq_t *sq;
    223      1.244        ad 	kmutex_t *mp;
    224      1.188      yamt 	int error;
    225      1.187        ad 
    226      1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    227      1.204        ad 
    228      1.187        ad 	if (sleepq_dontsleep(l)) {
    229      1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    230      1.187        ad 		return 0;
    231      1.187        ad 	}
    232      1.187        ad 
    233      1.204        ad 	l->l_kpriority = true;
    234      1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    235      1.244        ad 	sleepq_enter(sq, l, mp);
    236      1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    237      1.187        ad 	mutex_exit(mtx);
    238      1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    239      1.187        ad 
    240      1.187        ad 	if ((priority & PNORELOCK) == 0)
    241      1.187        ad 		mutex_enter(mtx);
    242      1.187        ad 
    243      1.187        ad 	return error;
    244      1.187        ad }
    245      1.187        ad 
    246       1.26       cgd /*
    247      1.174        ad  * General sleep call for situations where a wake-up is not expected.
    248       1.26       cgd  */
    249      1.174        ad int
    250      1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    251       1.26       cgd {
    252      1.174        ad 	struct lwp *l = curlwp;
    253      1.244        ad 	kmutex_t *mp;
    254      1.174        ad 	sleepq_t *sq;
    255      1.174        ad 	int error;
    256       1.26       cgd 
    257      1.174        ad 	if (sleepq_dontsleep(l))
    258      1.174        ad 		return sleepq_abort(NULL, 0);
    259       1.26       cgd 
    260      1.174        ad 	if (mtx != NULL)
    261      1.174        ad 		mutex_exit(mtx);
    262      1.204        ad 	l->l_kpriority = true;
    263      1.244        ad 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    264      1.244        ad 	sleepq_enter(sq, l, mp);
    265      1.204        ad 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    266      1.188      yamt 	error = sleepq_block(timo, intr);
    267      1.174        ad 	if (mtx != NULL)
    268      1.174        ad 		mutex_enter(mtx);
    269       1.83   thorpej 
    270      1.174        ad 	return error;
    271      1.139        cl }
    272      1.139        cl 
    273      1.252  wrstuden #ifdef KERN_SA
    274      1.252  wrstuden /*
    275      1.252  wrstuden  * sa_awaken:
    276      1.252  wrstuden  *
    277      1.252  wrstuden  *	We believe this lwp is an SA lwp. If it's yielding,
    278      1.252  wrstuden  * let it know it needs to wake up.
    279      1.252  wrstuden  *
    280      1.252  wrstuden  *	We are called and exit with the lwp locked. We are
    281      1.252  wrstuden  * called in the middle of wakeup operations, so we need
    282      1.252  wrstuden  * to not touch the locks at all.
    283      1.252  wrstuden  */
    284      1.252  wrstuden void
    285      1.252  wrstuden sa_awaken(struct lwp *l)
    286      1.252  wrstuden {
    287      1.252  wrstuden 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
    288      1.252  wrstuden 
    289      1.252  wrstuden 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
    290      1.252  wrstuden 		l->l_flag &= ~LW_SA_IDLE;
    291      1.252  wrstuden }
    292      1.252  wrstuden #endif /* KERN_SA */
    293      1.252  wrstuden 
    294       1.26       cgd /*
    295      1.174        ad  * OBSOLETE INTERFACE
    296      1.174        ad  *
    297       1.26       cgd  * Make all processes sleeping on the specified identifier runnable.
    298       1.26       cgd  */
    299       1.26       cgd void
    300      1.174        ad wakeup(wchan_t ident)
    301       1.26       cgd {
    302      1.174        ad 	sleepq_t *sq;
    303      1.244        ad 	kmutex_t *mp;
    304       1.83   thorpej 
    305      1.174        ad 	if (cold)
    306      1.174        ad 		return;
    307       1.83   thorpej 
    308      1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    309      1.244        ad 	sleepq_wake(sq, ident, (u_int)-1, mp);
    310       1.63   thorpej }
    311       1.63   thorpej 
    312       1.63   thorpej /*
    313      1.174        ad  * OBSOLETE INTERFACE
    314      1.174        ad  *
    315       1.63   thorpej  * Make the highest priority process first in line on the specified
    316       1.63   thorpej  * identifier runnable.
    317       1.63   thorpej  */
    318      1.174        ad void
    319      1.174        ad wakeup_one(wchan_t ident)
    320       1.63   thorpej {
    321      1.174        ad 	sleepq_t *sq;
    322      1.244        ad 	kmutex_t *mp;
    323       1.63   thorpej 
    324      1.174        ad 	if (cold)
    325      1.174        ad 		return;
    326      1.188      yamt 
    327      1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    328      1.244        ad 	sleepq_wake(sq, ident, 1, mp);
    329      1.174        ad }
    330       1.63   thorpej 
    331      1.117  gmcgarry 
    332      1.117  gmcgarry /*
    333      1.117  gmcgarry  * General yield call.  Puts the current process back on its run queue and
    334      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    335      1.198        ad  * current process explicitly requests it (eg sched_yield(2)).
    336      1.117  gmcgarry  */
    337      1.117  gmcgarry void
    338      1.117  gmcgarry yield(void)
    339      1.117  gmcgarry {
    340      1.122   thorpej 	struct lwp *l = curlwp;
    341      1.117  gmcgarry 
    342      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    343      1.174        ad 	lwp_lock(l);
    344      1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    345      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    346      1.204        ad 	l->l_kpriority = false;
    347      1.188      yamt 	(void)mi_switch(l);
    348      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    349       1.69   thorpej }
    350       1.69   thorpej 
    351       1.69   thorpej /*
    352       1.69   thorpej  * General preemption call.  Puts the current process back on its run queue
    353      1.156    rpaulo  * and performs an involuntary context switch.
    354       1.69   thorpej  */
    355       1.69   thorpej void
    356      1.174        ad preempt(void)
    357       1.69   thorpej {
    358      1.122   thorpej 	struct lwp *l = curlwp;
    359       1.69   thorpej 
    360      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    361      1.174        ad 	lwp_lock(l);
    362      1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    363      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    364      1.204        ad 	l->l_kpriority = false;
    365      1.174        ad 	l->l_nivcsw++;
    366      1.188      yamt 	(void)mi_switch(l);
    367      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    368       1.69   thorpej }
    369       1.69   thorpej 
    370      1.234        ad /*
    371      1.234        ad  * Handle a request made by another agent to preempt the current LWP
    372      1.234        ad  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    373      1.234        ad  *
    374      1.234        ad  * Character addresses for lockstat only.
    375      1.234        ad  */
    376      1.231        ad static char	in_critical_section;
    377      1.231        ad static char	kernel_lock_held;
    378      1.231        ad static char	is_softint;
    379  1.254.2.6       snj static char	cpu_kpreempt_enter_fail;
    380      1.231        ad 
    381      1.231        ad bool
    382      1.231        ad kpreempt(uintptr_t where)
    383      1.231        ad {
    384      1.231        ad 	uintptr_t failed;
    385      1.231        ad 	lwp_t *l;
    386      1.231        ad 	int s, dop;
    387      1.231        ad 
    388      1.231        ad 	l = curlwp;
    389      1.231        ad 	failed = 0;
    390      1.231        ad 	while ((dop = l->l_dopreempt) != 0) {
    391      1.231        ad 		if (l->l_stat != LSONPROC) {
    392      1.231        ad 			/*
    393      1.231        ad 			 * About to block (or die), let it happen.
    394      1.231        ad 			 * Doesn't really count as "preemption has
    395      1.231        ad 			 * been blocked", since we're going to
    396      1.231        ad 			 * context switch.
    397      1.231        ad 			 */
    398      1.231        ad 			l->l_dopreempt = 0;
    399      1.231        ad 			return true;
    400      1.231        ad 		}
    401      1.231        ad 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    402      1.231        ad 			/* Can't preempt idle loop, don't count as failure. */
    403      1.231        ad 		    	l->l_dopreempt = 0;
    404      1.231        ad 		    	return true;
    405      1.231        ad 		}
    406      1.231        ad 		if (__predict_false(l->l_nopreempt != 0)) {
    407      1.231        ad 			/* LWP holds preemption disabled, explicitly. */
    408      1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    409      1.234        ad 				kpreempt_ev_crit.ev_count++;
    410      1.231        ad 			}
    411      1.231        ad 			failed = (uintptr_t)&in_critical_section;
    412      1.231        ad 			break;
    413      1.231        ad 		}
    414      1.231        ad 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    415      1.231        ad 		    	/* Can't preempt soft interrupts yet. */
    416      1.231        ad 		    	l->l_dopreempt = 0;
    417      1.231        ad 		    	failed = (uintptr_t)&is_softint;
    418      1.231        ad 		    	break;
    419      1.231        ad 		}
    420      1.231        ad 		s = splsched();
    421      1.231        ad 		if (__predict_false(l->l_blcnt != 0 ||
    422      1.231        ad 		    curcpu()->ci_biglock_wanted != NULL)) {
    423      1.231        ad 			/* Hold or want kernel_lock, code is not MT safe. */
    424      1.231        ad 			splx(s);
    425      1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    426      1.234        ad 				kpreempt_ev_klock.ev_count++;
    427      1.231        ad 			}
    428      1.231        ad 			failed = (uintptr_t)&kernel_lock_held;
    429      1.231        ad 			break;
    430      1.231        ad 		}
    431      1.231        ad 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    432      1.231        ad 			/*
    433      1.231        ad 			 * It may be that the IPL is too high.
    434      1.231        ad 			 * kpreempt_enter() can schedule an
    435      1.231        ad 			 * interrupt to retry later.
    436      1.231        ad 			 */
    437      1.231        ad 			splx(s);
    438  1.254.2.6       snj 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
    439      1.231        ad 			break;
    440      1.231        ad 		}
    441      1.231        ad 		/* Do it! */
    442      1.231        ad 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    443      1.234        ad 			kpreempt_ev_immed.ev_count++;
    444      1.231        ad 		}
    445      1.231        ad 		lwp_lock(l);
    446      1.231        ad 		mi_switch(l);
    447      1.231        ad 		l->l_nopreempt++;
    448      1.231        ad 		splx(s);
    449      1.231        ad 
    450      1.231        ad 		/* Take care of any MD cleanup. */
    451      1.231        ad 		cpu_kpreempt_exit(where);
    452      1.231        ad 		l->l_nopreempt--;
    453      1.231        ad 	}
    454      1.231        ad 
    455      1.231        ad 	/* Record preemption failure for reporting via lockstat. */
    456      1.231        ad 	if (__predict_false(failed)) {
    457      1.240        ad 		int lsflag = 0;
    458      1.231        ad 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    459      1.231        ad 		LOCKSTAT_ENTER(lsflag);
    460      1.231        ad 		/* Might recurse, make it atomic. */
    461      1.231        ad 		if (__predict_false(lsflag)) {
    462      1.231        ad 			if (where == 0) {
    463      1.231        ad 				where = (uintptr_t)__builtin_return_address(0);
    464      1.231        ad 			}
    465      1.231        ad 			if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
    466      1.231        ad 			    NULL, (void *)where) == NULL) {
    467      1.231        ad 				LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    468      1.231        ad 				l->l_pfaillock = failed;
    469      1.231        ad 			}
    470      1.231        ad 		}
    471      1.231        ad 		LOCKSTAT_EXIT(lsflag);
    472      1.231        ad 	}
    473      1.231        ad 
    474      1.231        ad 	return failed;
    475      1.231        ad }
    476      1.231        ad 
    477       1.69   thorpej /*
    478      1.231        ad  * Return true if preemption is explicitly disabled.
    479      1.230        ad  */
    480      1.231        ad bool
    481      1.231        ad kpreempt_disabled(void)
    482      1.231        ad {
    483      1.231        ad 	lwp_t *l;
    484      1.231        ad 
    485      1.231        ad 	l = curlwp;
    486      1.231        ad 
    487      1.231        ad 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    488      1.231        ad 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    489      1.231        ad }
    490      1.230        ad 
    491      1.230        ad /*
    492      1.231        ad  * Disable kernel preemption.
    493      1.230        ad  */
    494      1.230        ad void
    495      1.231        ad kpreempt_disable(void)
    496      1.230        ad {
    497      1.230        ad 
    498      1.231        ad 	KPREEMPT_DISABLE(curlwp);
    499      1.230        ad }
    500      1.230        ad 
    501      1.230        ad /*
    502      1.231        ad  * Reenable kernel preemption.
    503      1.230        ad  */
    504      1.231        ad void
    505      1.231        ad kpreempt_enable(void)
    506      1.230        ad {
    507      1.230        ad 
    508      1.231        ad 	KPREEMPT_ENABLE(curlwp);
    509      1.230        ad }
    510      1.230        ad 
    511      1.230        ad /*
    512      1.188      yamt  * Compute the amount of time during which the current lwp was running.
    513      1.130   nathanw  *
    514      1.188      yamt  * - update l_rtime unless it's an idle lwp.
    515      1.188      yamt  */
    516      1.188      yamt 
    517      1.199        ad void
    518      1.212      yamt updatertime(lwp_t *l, const struct bintime *now)
    519      1.188      yamt {
    520      1.188      yamt 
    521      1.199        ad 	if ((l->l_flag & LW_IDLE) != 0)
    522      1.188      yamt 		return;
    523      1.188      yamt 
    524      1.212      yamt 	/* rtime += now - stime */
    525      1.212      yamt 	bintime_add(&l->l_rtime, now);
    526      1.212      yamt 	bintime_sub(&l->l_rtime, &l->l_stime);
    527      1.188      yamt }
    528      1.188      yamt 
    529      1.188      yamt /*
    530      1.245        ad  * Select next LWP from the current CPU to run..
    531      1.245        ad  */
    532      1.245        ad static inline lwp_t *
    533      1.245        ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    534      1.245        ad {
    535      1.245        ad 	lwp_t *newl;
    536      1.245        ad 
    537      1.245        ad 	/*
    538      1.245        ad 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    539      1.245        ad 	 * If no LWP is runnable, select the idle LWP.
    540      1.245        ad 	 *
    541      1.245        ad 	 * Note that spc_lwplock might not necessary be held, and
    542      1.245        ad 	 * new thread would be unlocked after setting the LWP-lock.
    543      1.245        ad 	 */
    544      1.245        ad 	newl = sched_nextlwp();
    545      1.245        ad 	if (newl != NULL) {
    546      1.245        ad 		sched_dequeue(newl);
    547      1.245        ad 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    548      1.245        ad 		newl->l_stat = LSONPROC;
    549      1.245        ad 		newl->l_cpu = ci;
    550      1.248        ad 		newl->l_pflag |= LP_RUNNING;
    551      1.245        ad 		lwp_setlock(newl, spc->spc_lwplock);
    552      1.245        ad 	} else {
    553      1.245        ad 		newl = ci->ci_data.cpu_idlelwp;
    554      1.245        ad 		newl->l_stat = LSONPROC;
    555      1.248        ad 		newl->l_pflag |= LP_RUNNING;
    556      1.245        ad 	}
    557      1.245        ad 
    558      1.245        ad 	/*
    559      1.245        ad 	 * Only clear want_resched if there are no pending (slow)
    560      1.245        ad 	 * software interrupts.
    561      1.245        ad 	 */
    562      1.245        ad 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    563      1.245        ad 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    564      1.245        ad 	spc->spc_curpriority = lwp_eprio(newl);
    565      1.245        ad 
    566      1.245        ad 	return newl;
    567      1.245        ad }
    568      1.245        ad 
    569      1.245        ad /*
    570      1.188      yamt  * The machine independent parts of context switch.
    571      1.188      yamt  *
    572      1.188      yamt  * Returns 1 if another LWP was actually run.
    573       1.26       cgd  */
    574      1.122   thorpej int
    575      1.199        ad mi_switch(lwp_t *l)
    576       1.26       cgd {
    577      1.246     rmind 	struct cpu_info *ci;
    578       1.76   thorpej 	struct schedstate_percpu *spc;
    579      1.188      yamt 	struct lwp *newl;
    580      1.174        ad 	int retval, oldspl;
    581      1.212      yamt 	struct bintime bt;
    582      1.199        ad 	bool returning;
    583       1.26       cgd 
    584      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    585      1.231        ad 	KASSERT(kpreempt_disabled());
    586      1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    587      1.174        ad 
    588      1.174        ad #ifdef KSTACK_CHECK_MAGIC
    589      1.174        ad 	kstack_check_magic(l);
    590      1.174        ad #endif
    591       1.83   thorpej 
    592      1.212      yamt 	binuptime(&bt);
    593      1.199        ad 
    594      1.231        ad 	KASSERT(l->l_cpu == curcpu());
    595      1.196        ad 	ci = l->l_cpu;
    596      1.196        ad 	spc = &ci->ci_schedstate;
    597      1.199        ad 	returning = false;
    598      1.190        ad 	newl = NULL;
    599      1.190        ad 
    600      1.199        ad 	/*
    601      1.199        ad 	 * If we have been asked to switch to a specific LWP, then there
    602      1.199        ad 	 * is no need to inspect the run queues.  If a soft interrupt is
    603      1.199        ad 	 * blocking, then return to the interrupted thread without adjusting
    604      1.199        ad 	 * VM context or its start time: neither have been changed in order
    605      1.199        ad 	 * to take the interrupt.
    606      1.199        ad 	 */
    607      1.190        ad 	if (l->l_switchto != NULL) {
    608      1.204        ad 		if ((l->l_pflag & LP_INTR) != 0) {
    609      1.199        ad 			returning = true;
    610      1.199        ad 			softint_block(l);
    611      1.248        ad 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    612      1.212      yamt 				updatertime(l, &bt);
    613      1.199        ad 		}
    614      1.190        ad 		newl = l->l_switchto;
    615      1.190        ad 		l->l_switchto = NULL;
    616      1.190        ad 	}
    617      1.204        ad #ifndef __HAVE_FAST_SOFTINTS
    618      1.204        ad 	else if (ci->ci_data.cpu_softints != 0) {
    619      1.204        ad 		/* There are pending soft interrupts, so pick one. */
    620      1.204        ad 		newl = softint_picklwp();
    621      1.204        ad 		newl->l_stat = LSONPROC;
    622      1.248        ad 		newl->l_pflag |= LP_RUNNING;
    623      1.204        ad 	}
    624      1.204        ad #endif	/* !__HAVE_FAST_SOFTINTS */
    625      1.190        ad 
    626      1.180       dsl 	/* Count time spent in current system call */
    627      1.199        ad 	if (!returning) {
    628      1.199        ad 		SYSCALL_TIME_SLEEP(l);
    629      1.180       dsl 
    630      1.199        ad 		/*
    631      1.199        ad 		 * XXXSMP If we are using h/w performance counters,
    632      1.199        ad 		 * save context.
    633      1.199        ad 		 */
    634      1.174        ad #if PERFCTRS
    635      1.199        ad 		if (PMC_ENABLED(l->l_proc)) {
    636      1.199        ad 			pmc_save_context(l->l_proc);
    637      1.199        ad 		}
    638      1.199        ad #endif
    639      1.212      yamt 		updatertime(l, &bt);
    640      1.174        ad 	}
    641      1.113  gmcgarry 
    642      1.246     rmind 	/* Lock the runqueue */
    643      1.246     rmind 	KASSERT(l->l_stat != LSRUN);
    644      1.246     rmind 	mutex_spin_enter(spc->spc_mutex);
    645      1.246     rmind 
    646      1.113  gmcgarry 	/*
    647      1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    648      1.113  gmcgarry 	 */
    649      1.246     rmind 	if (l->l_stat == LSONPROC && l != newl) {
    650      1.217        ad 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    651      1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    652      1.188      yamt 			l->l_stat = LSRUN;
    653      1.246     rmind 			lwp_setlock(l, spc->spc_mutex);
    654      1.246     rmind 			sched_enqueue(l, true);
    655      1.246     rmind 			/* Handle migration case */
    656      1.246     rmind 			KASSERT(spc->spc_migrating == NULL);
    657      1.246     rmind 			if (l->l_target_cpu !=  NULL) {
    658      1.246     rmind 				spc->spc_migrating = l;
    659      1.216     rmind 			}
    660      1.246     rmind 		} else
    661      1.188      yamt 			l->l_stat = LSIDL;
    662      1.174        ad 	}
    663      1.174        ad 
    664      1.245        ad 	/* Pick new LWP to run. */
    665      1.190        ad 	if (newl == NULL) {
    666      1.245        ad 		newl = nextlwp(ci, spc);
    667      1.199        ad 	}
    668      1.199        ad 
    669      1.204        ad 	/* Items that must be updated with the CPU locked. */
    670      1.199        ad 	if (!returning) {
    671      1.204        ad 		/* Update the new LWP's start time. */
    672      1.212      yamt 		newl->l_stime = bt;
    673      1.204        ad 
    674      1.199        ad 		/*
    675      1.204        ad 		 * ci_curlwp changes when a fast soft interrupt occurs.
    676      1.204        ad 		 * We use cpu_onproc to keep track of which kernel or
    677      1.204        ad 		 * user thread is running 'underneath' the software
    678      1.204        ad 		 * interrupt.  This is important for time accounting,
    679      1.204        ad 		 * itimers and forcing user threads to preempt (aston).
    680      1.199        ad 		 */
    681      1.204        ad 		ci->ci_data.cpu_onproc = newl;
    682      1.188      yamt 	}
    683      1.188      yamt 
    684      1.241        ad 	/*
    685      1.241        ad 	 * Preemption related tasks.  Must be done with the current
    686      1.241        ad 	 * CPU locked.
    687      1.241        ad 	 */
    688      1.241        ad 	cpu_did_resched(l);
    689      1.231        ad 	l->l_dopreempt = 0;
    690      1.231        ad 	if (__predict_false(l->l_pfailaddr != 0)) {
    691      1.231        ad 		LOCKSTAT_FLAG(lsflag);
    692      1.231        ad 		LOCKSTAT_ENTER(lsflag);
    693      1.231        ad 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    694      1.231        ad 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    695      1.231        ad 		    1, l->l_pfailtime, l->l_pfailaddr);
    696      1.231        ad 		LOCKSTAT_EXIT(lsflag);
    697      1.231        ad 		l->l_pfailtime = 0;
    698      1.231        ad 		l->l_pfaillock = 0;
    699      1.231        ad 		l->l_pfailaddr = 0;
    700      1.231        ad 	}
    701      1.231        ad 
    702      1.188      yamt 	if (l != newl) {
    703      1.188      yamt 		struct lwp *prevlwp;
    704      1.174        ad 
    705      1.209        ad 		/* Release all locks, but leave the current LWP locked */
    706      1.246     rmind 		if (l->l_mutex == spc->spc_mutex) {
    707      1.209        ad 			/*
    708      1.209        ad 			 * Drop spc_lwplock, if the current LWP has been moved
    709      1.209        ad 			 * to the run queue (it is now locked by spc_mutex).
    710      1.209        ad 			 */
    711      1.217        ad 			mutex_spin_exit(spc->spc_lwplock);
    712      1.188      yamt 		} else {
    713      1.209        ad 			/*
    714      1.209        ad 			 * Otherwise, drop the spc_mutex, we are done with the
    715      1.209        ad 			 * run queues.
    716      1.209        ad 			 */
    717      1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    718      1.188      yamt 		}
    719      1.188      yamt 
    720      1.209        ad 		/*
    721      1.253     skrll 		 * Mark that context switch is going to be performed
    722      1.209        ad 		 * for this LWP, to protect it from being switched
    723      1.209        ad 		 * to on another CPU.
    724      1.209        ad 		 */
    725      1.209        ad 		KASSERT(l->l_ctxswtch == 0);
    726      1.209        ad 		l->l_ctxswtch = 1;
    727      1.209        ad 		l->l_ncsw++;
    728      1.248        ad 		l->l_pflag &= ~LP_RUNNING;
    729      1.209        ad 
    730      1.209        ad 		/*
    731      1.209        ad 		 * Increase the count of spin-mutexes before the release
    732      1.209        ad 		 * of the last lock - we must remain at IPL_SCHED during
    733      1.209        ad 		 * the context switch.
    734      1.209        ad 		 */
    735      1.209        ad 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    736      1.209        ad 		ci->ci_mtx_count--;
    737      1.209        ad 		lwp_unlock(l);
    738      1.209        ad 
    739      1.218        ad 		/* Count the context switch on this CPU. */
    740      1.218        ad 		ci->ci_data.cpu_nswtch++;
    741      1.188      yamt 
    742      1.209        ad 		/* Update status for lwpctl, if present. */
    743      1.209        ad 		if (l->l_lwpctl != NULL)
    744      1.209        ad 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    745      1.209        ad 
    746      1.199        ad 		/*
    747      1.199        ad 		 * Save old VM context, unless a soft interrupt
    748      1.199        ad 		 * handler is blocking.
    749      1.199        ad 		 */
    750      1.199        ad 		if (!returning)
    751      1.199        ad 			pmap_deactivate(l);
    752      1.188      yamt 
    753      1.209        ad 		/*
    754      1.209        ad 		 * We may need to spin-wait for if 'newl' is still
    755      1.209        ad 		 * context switching on another CPU.
    756      1.209        ad 		 */
    757      1.209        ad 		if (newl->l_ctxswtch != 0) {
    758      1.209        ad 			u_int count;
    759      1.209        ad 			count = SPINLOCK_BACKOFF_MIN;
    760      1.209        ad 			while (newl->l_ctxswtch)
    761      1.209        ad 				SPINLOCK_BACKOFF(count);
    762      1.209        ad 		}
    763      1.207        ad 
    764      1.188      yamt 		/* Switch to the new LWP.. */
    765      1.204        ad 		prevlwp = cpu_switchto(l, newl, returning);
    766      1.207        ad 		ci = curcpu();
    767      1.207        ad 
    768      1.188      yamt 		/*
    769      1.209        ad 		 * Switched away - we have new curlwp.
    770      1.209        ad 		 * Restore VM context and IPL.
    771      1.188      yamt 		 */
    772      1.209        ad 		pmap_activate(l);
    773      1.188      yamt 		if (prevlwp != NULL) {
    774      1.209        ad 			/* Normalize the count of the spin-mutexes */
    775      1.209        ad 			ci->ci_mtx_count++;
    776      1.209        ad 			/* Unmark the state of context switch */
    777      1.209        ad 			membar_exit();
    778      1.209        ad 			prevlwp->l_ctxswtch = 0;
    779      1.188      yamt 		}
    780      1.209        ad 
    781      1.209        ad 		/* Update status for lwpctl, if present. */
    782      1.219        ad 		if (l->l_lwpctl != NULL) {
    783      1.209        ad 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    784      1.219        ad 			l->l_lwpctl->lc_pctr++;
    785      1.219        ad 		}
    786      1.174        ad 
    787      1.231        ad 		KASSERT(l->l_cpu == ci);
    788      1.231        ad 		splx(oldspl);
    789      1.188      yamt 		retval = 1;
    790      1.188      yamt 	} else {
    791      1.188      yamt 		/* Nothing to do - just unlock and return. */
    792      1.246     rmind 		mutex_spin_exit(spc->spc_mutex);
    793      1.188      yamt 		lwp_unlock(l);
    794      1.122   thorpej 		retval = 0;
    795      1.122   thorpej 	}
    796      1.110    briggs 
    797      1.188      yamt 	KASSERT(l == curlwp);
    798      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    799      1.188      yamt 
    800      1.110    briggs 	/*
    801      1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    802      1.231        ad 	 * XXXSMP preemption problem.
    803       1.26       cgd 	 */
    804      1.114  gmcgarry #if PERFCTRS
    805      1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    806      1.175  christos 		pmc_restore_context(l->l_proc);
    807      1.166  christos 	}
    808      1.114  gmcgarry #endif
    809      1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    810      1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    811      1.169      yamt 
    812      1.122   thorpej 	return retval;
    813       1.26       cgd }
    814       1.26       cgd 
    815       1.26       cgd /*
    816      1.245        ad  * The machine independent parts of context switch to oblivion.
    817      1.245        ad  * Does not return.  Call with the LWP unlocked.
    818      1.245        ad  */
    819      1.245        ad void
    820      1.245        ad lwp_exit_switchaway(lwp_t *l)
    821      1.245        ad {
    822      1.245        ad 	struct cpu_info *ci;
    823      1.245        ad 	struct lwp *newl;
    824      1.245        ad 	struct bintime bt;
    825      1.245        ad 
    826      1.245        ad 	ci = l->l_cpu;
    827      1.245        ad 
    828      1.245        ad 	KASSERT(kpreempt_disabled());
    829      1.245        ad 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    830      1.245        ad 	KASSERT(ci == curcpu());
    831      1.245        ad 	LOCKDEBUG_BARRIER(NULL, 0);
    832      1.245        ad 
    833      1.245        ad #ifdef KSTACK_CHECK_MAGIC
    834      1.245        ad 	kstack_check_magic(l);
    835      1.245        ad #endif
    836      1.245        ad 
    837      1.245        ad 	/* Count time spent in current system call */
    838      1.245        ad 	SYSCALL_TIME_SLEEP(l);
    839      1.245        ad 	binuptime(&bt);
    840      1.245        ad 	updatertime(l, &bt);
    841      1.245        ad 
    842      1.245        ad 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    843      1.245        ad 	(void)splsched();
    844      1.245        ad 
    845      1.245        ad 	/*
    846      1.245        ad 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    847      1.245        ad 	 * If no LWP is runnable, select the idle LWP.
    848      1.245        ad 	 *
    849      1.245        ad 	 * Note that spc_lwplock might not necessary be held, and
    850      1.245        ad 	 * new thread would be unlocked after setting the LWP-lock.
    851      1.245        ad 	 */
    852      1.245        ad 	spc_lock(ci);
    853      1.245        ad #ifndef __HAVE_FAST_SOFTINTS
    854      1.245        ad 	if (ci->ci_data.cpu_softints != 0) {
    855      1.245        ad 		/* There are pending soft interrupts, so pick one. */
    856      1.245        ad 		newl = softint_picklwp();
    857      1.245        ad 		newl->l_stat = LSONPROC;
    858      1.248        ad 		newl->l_pflag |= LP_RUNNING;
    859      1.245        ad 	} else
    860      1.245        ad #endif	/* !__HAVE_FAST_SOFTINTS */
    861      1.245        ad 	{
    862      1.245        ad 		newl = nextlwp(ci, &ci->ci_schedstate);
    863      1.245        ad 	}
    864      1.245        ad 
    865      1.245        ad 	/* Update the new LWP's start time. */
    866      1.245        ad 	newl->l_stime = bt;
    867      1.248        ad 	l->l_pflag &= ~LP_RUNNING;
    868      1.245        ad 
    869      1.245        ad 	/*
    870      1.245        ad 	 * ci_curlwp changes when a fast soft interrupt occurs.
    871      1.245        ad 	 * We use cpu_onproc to keep track of which kernel or
    872      1.245        ad 	 * user thread is running 'underneath' the software
    873      1.245        ad 	 * interrupt.  This is important for time accounting,
    874      1.245        ad 	 * itimers and forcing user threads to preempt (aston).
    875      1.245        ad 	 */
    876      1.245        ad 	ci->ci_data.cpu_onproc = newl;
    877      1.245        ad 
    878      1.245        ad 	/*
    879      1.245        ad 	 * Preemption related tasks.  Must be done with the current
    880      1.245        ad 	 * CPU locked.
    881      1.245        ad 	 */
    882      1.245        ad 	cpu_did_resched(l);
    883      1.245        ad 
    884      1.245        ad 	/* Unlock the run queue. */
    885      1.245        ad 	spc_unlock(ci);
    886      1.245        ad 
    887      1.245        ad 	/* Count the context switch on this CPU. */
    888      1.245        ad 	ci->ci_data.cpu_nswtch++;
    889      1.245        ad 
    890      1.245        ad 	/* Update status for lwpctl, if present. */
    891      1.245        ad 	if (l->l_lwpctl != NULL)
    892      1.247        ad 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    893      1.245        ad 
    894      1.245        ad 	/*
    895      1.245        ad 	 * We may need to spin-wait for if 'newl' is still
    896      1.245        ad 	 * context switching on another CPU.
    897      1.245        ad 	 */
    898      1.245        ad 	if (newl->l_ctxswtch != 0) {
    899      1.245        ad 		u_int count;
    900      1.245        ad 		count = SPINLOCK_BACKOFF_MIN;
    901      1.245        ad 		while (newl->l_ctxswtch)
    902      1.245        ad 			SPINLOCK_BACKOFF(count);
    903      1.245        ad 	}
    904      1.245        ad 
    905      1.245        ad 	/* Switch to the new LWP.. */
    906      1.245        ad 	(void)cpu_switchto(NULL, newl, false);
    907      1.245        ad 
    908      1.251       uwe 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    909      1.245        ad 	/* NOTREACHED */
    910      1.245        ad }
    911      1.245        ad 
    912      1.245        ad /*
    913      1.174        ad  * Change process state to be runnable, placing it on the run queue if it is
    914      1.174        ad  * in memory, and awakening the swapper if it isn't in memory.
    915      1.174        ad  *
    916      1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    917       1.26       cgd  */
    918       1.26       cgd void
    919      1.122   thorpej setrunnable(struct lwp *l)
    920       1.26       cgd {
    921      1.122   thorpej 	struct proc *p = l->l_proc;
    922      1.205        ad 	struct cpu_info *ci;
    923       1.26       cgd 
    924      1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    925      1.229        ad 	KASSERT(mutex_owned(p->p_lock));
    926      1.183        ad 	KASSERT(lwp_locked(l, NULL));
    927      1.205        ad 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    928       1.83   thorpej 
    929      1.122   thorpej 	switch (l->l_stat) {
    930      1.122   thorpej 	case LSSTOP:
    931       1.33   mycroft 		/*
    932       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    933       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    934       1.33   mycroft 		 */
    935  1.254.2.1       snj 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
    936      1.174        ad 			signotify(l);
    937      1.174        ad 		p->p_nrlwps++;
    938       1.26       cgd 		break;
    939      1.174        ad 	case LSSUSPENDED:
    940      1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    941      1.174        ad 		p->p_nrlwps++;
    942      1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    943      1.122   thorpej 		break;
    944      1.174        ad 	case LSSLEEP:
    945      1.174        ad 		KASSERT(l->l_wchan != NULL);
    946       1.26       cgd 		break;
    947      1.174        ad 	default:
    948      1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    949       1.26       cgd 	}
    950      1.139        cl 
    951      1.252  wrstuden #ifdef KERN_SA
    952      1.252  wrstuden 	if (l->l_proc->p_sa)
    953      1.252  wrstuden 		sa_awaken(l);
    954      1.252  wrstuden #endif /* KERN_SA */
    955      1.252  wrstuden 
    956      1.174        ad 	/*
    957      1.174        ad 	 * If the LWP was sleeping interruptably, then it's OK to start it
    958      1.174        ad 	 * again.  If not, mark it as still sleeping.
    959      1.174        ad 	 */
    960      1.174        ad 	if (l->l_wchan != NULL) {
    961      1.174        ad 		l->l_stat = LSSLEEP;
    962      1.183        ad 		/* lwp_unsleep() will release the lock. */
    963      1.221        ad 		lwp_unsleep(l, true);
    964      1.174        ad 		return;
    965      1.174        ad 	}
    966      1.139        cl 
    967      1.174        ad 	/*
    968      1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    969      1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    970      1.174        ad 	 */
    971      1.248        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
    972      1.174        ad 		l->l_stat = LSONPROC;
    973      1.174        ad 		l->l_slptime = 0;
    974      1.174        ad 		lwp_unlock(l);
    975      1.174        ad 		return;
    976      1.174        ad 	}
    977      1.122   thorpej 
    978      1.174        ad 	/*
    979      1.205        ad 	 * Look for a CPU to run.
    980      1.205        ad 	 * Set the LWP runnable.
    981      1.174        ad 	 */
    982      1.205        ad 	ci = sched_takecpu(l);
    983      1.205        ad 	l->l_cpu = ci;
    984      1.236        ad 	spc_lock(ci);
    985      1.236        ad 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    986      1.188      yamt 	sched_setrunnable(l);
    987      1.174        ad 	l->l_stat = LSRUN;
    988      1.122   thorpej 	l->l_slptime = 0;
    989      1.174        ad 
    990      1.205        ad 	/*
    991      1.205        ad 	 * If thread is swapped out - wake the swapper to bring it back in.
    992      1.205        ad 	 * Otherwise, enter it into a run queue.
    993      1.205        ad 	 */
    994      1.178     pavel 	if (l->l_flag & LW_INMEM) {
    995      1.188      yamt 		sched_enqueue(l, false);
    996      1.188      yamt 		resched_cpu(l);
    997      1.174        ad 		lwp_unlock(l);
    998      1.174        ad 	} else {
    999      1.174        ad 		lwp_unlock(l);
   1000      1.177        ad 		uvm_kick_scheduler();
   1001      1.174        ad 	}
   1002       1.26       cgd }
   1003       1.26       cgd 
   1004       1.26       cgd /*
   1005      1.174        ad  * suspendsched:
   1006      1.174        ad  *
   1007      1.174        ad  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
   1008      1.174        ad  */
   1009       1.94    bouyer void
   1010      1.174        ad suspendsched(void)
   1011       1.94    bouyer {
   1012      1.174        ad 	CPU_INFO_ITERATOR cii;
   1013      1.174        ad 	struct cpu_info *ci;
   1014      1.122   thorpej 	struct lwp *l;
   1015      1.174        ad 	struct proc *p;
   1016       1.94    bouyer 
   1017       1.94    bouyer 	/*
   1018      1.174        ad 	 * We do this by process in order not to violate the locking rules.
   1019       1.94    bouyer 	 */
   1020      1.228        ad 	mutex_enter(proc_lock);
   1021      1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
   1022      1.238        ad 		if ((p->p_flag & PK_MARKER) != 0)
   1023      1.238        ad 			continue;
   1024      1.238        ad 
   1025      1.229        ad 		mutex_enter(p->p_lock);
   1026      1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
   1027      1.229        ad 			mutex_exit(p->p_lock);
   1028       1.94    bouyer 			continue;
   1029      1.174        ad 		}
   1030      1.174        ad 
   1031      1.174        ad 		p->p_stat = SSTOP;
   1032      1.174        ad 
   1033      1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1034      1.174        ad 			if (l == curlwp)
   1035      1.174        ad 				continue;
   1036      1.174        ad 
   1037      1.174        ad 			lwp_lock(l);
   1038      1.122   thorpej 
   1039       1.97     enami 			/*
   1040      1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
   1041      1.174        ad 			 * when it tries to return to user mode.  We want to
   1042      1.174        ad 			 * try and get to get as many LWPs as possible to
   1043      1.174        ad 			 * the user / kernel boundary, so that they will
   1044      1.174        ad 			 * release any locks that they hold.
   1045       1.97     enami 			 */
   1046      1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1047      1.174        ad 
   1048      1.174        ad 			if (l->l_stat == LSSLEEP &&
   1049      1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
   1050      1.174        ad 				/* setrunnable() will release the lock. */
   1051      1.174        ad 				setrunnable(l);
   1052      1.174        ad 				continue;
   1053      1.174        ad 			}
   1054      1.174        ad 
   1055      1.174        ad 			lwp_unlock(l);
   1056       1.94    bouyer 		}
   1057      1.174        ad 
   1058      1.229        ad 		mutex_exit(p->p_lock);
   1059       1.94    bouyer 	}
   1060      1.228        ad 	mutex_exit(proc_lock);
   1061      1.174        ad 
   1062      1.174        ad 	/*
   1063      1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1064      1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
   1065      1.174        ad 	 */
   1066      1.204        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
   1067      1.204        ad 		spc_lock(ci);
   1068      1.204        ad 		cpu_need_resched(ci, RESCHED_IMMED);
   1069      1.204        ad 		spc_unlock(ci);
   1070      1.204        ad 	}
   1071      1.174        ad }
   1072      1.174        ad 
   1073      1.174        ad /*
   1074      1.174        ad  * sched_unsleep:
   1075      1.174        ad  *
   1076      1.174        ad  *	The is called when the LWP has not been awoken normally but instead
   1077      1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
   1078      1.174        ad  *	it's not a valid action for running or idle LWPs.
   1079      1.174        ad  */
   1080      1.221        ad static u_int
   1081      1.221        ad sched_unsleep(struct lwp *l, bool cleanup)
   1082      1.174        ad {
   1083      1.174        ad 
   1084      1.174        ad 	lwp_unlock(l);
   1085      1.174        ad 	panic("sched_unsleep");
   1086      1.174        ad }
   1087      1.174        ad 
   1088      1.250     rmind static void
   1089      1.188      yamt resched_cpu(struct lwp *l)
   1090      1.188      yamt {
   1091      1.250     rmind 	struct cpu_info *ci = ci = l->l_cpu;
   1092      1.188      yamt 
   1093      1.250     rmind 	KASSERT(lwp_locked(l, NULL));
   1094      1.204        ad 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1095      1.188      yamt 		cpu_need_resched(ci, 0);
   1096      1.188      yamt }
   1097      1.188      yamt 
   1098      1.188      yamt static void
   1099      1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
   1100      1.174        ad {
   1101      1.174        ad 
   1102      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
   1103      1.174        ad 
   1104      1.204        ad 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1105      1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1106      1.204        ad 		sched_dequeue(l);
   1107      1.204        ad 		l->l_priority = pri;
   1108      1.204        ad 		sched_enqueue(l, false);
   1109      1.204        ad 	} else {
   1110      1.174        ad 		l->l_priority = pri;
   1111      1.157      yamt 	}
   1112      1.188      yamt 	resched_cpu(l);
   1113      1.184      yamt }
   1114      1.184      yamt 
   1115      1.188      yamt static void
   1116      1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
   1117      1.184      yamt {
   1118      1.184      yamt 
   1119      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
   1120      1.184      yamt 
   1121      1.204        ad 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1122      1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1123      1.204        ad 		sched_dequeue(l);
   1124      1.204        ad 		l->l_inheritedprio = pri;
   1125      1.204        ad 		sched_enqueue(l, false);
   1126      1.204        ad 	} else {
   1127      1.184      yamt 		l->l_inheritedprio = pri;
   1128      1.184      yamt 	}
   1129      1.188      yamt 	resched_cpu(l);
   1130      1.184      yamt }
   1131      1.184      yamt 
   1132      1.184      yamt struct lwp *
   1133      1.184      yamt syncobj_noowner(wchan_t wchan)
   1134      1.184      yamt {
   1135      1.184      yamt 
   1136      1.184      yamt 	return NULL;
   1137      1.151      yamt }
   1138      1.151      yamt 
   1139      1.250     rmind /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1140      1.250     rmind const fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;
   1141      1.134      matt 
   1142      1.134      matt /*
   1143      1.188      yamt  * sched_pstats:
   1144      1.188      yamt  *
   1145      1.188      yamt  * Update process statistics and check CPU resource allocation.
   1146      1.188      yamt  * Call scheduler-specific hook to eventually adjust process/LWP
   1147      1.188      yamt  * priorities.
   1148      1.130   nathanw  */
   1149      1.188      yamt /* ARGSUSED */
   1150      1.113  gmcgarry void
   1151      1.188      yamt sched_pstats(void *arg)
   1152      1.113  gmcgarry {
   1153      1.249     rmind 	const int clkhz = (stathz != 0 ? stathz : hz);
   1154  1.254.2.5       snj 	static bool backwards;
   1155      1.188      yamt 	struct rlimit *rlim;
   1156      1.188      yamt 	struct lwp *l;
   1157      1.188      yamt 	struct proc *p;
   1158      1.188      yamt 	long runtm;
   1159      1.249     rmind 	fixpt_t lpctcpu;
   1160      1.249     rmind 	u_int lcpticks;
   1161      1.249     rmind 	int sig;
   1162      1.113  gmcgarry 
   1163      1.188      yamt 	sched_pstats_ticks++;
   1164      1.174        ad 
   1165      1.228        ad 	mutex_enter(proc_lock);
   1166      1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
   1167      1.249     rmind 		if (__predict_false((p->p_flag & PK_MARKER) != 0))
   1168      1.238        ad 			continue;
   1169      1.238        ad 
   1170      1.188      yamt 		/*
   1171      1.250     rmind 		 * Increment time in/out of memory and sleep
   1172      1.250     rmind 		 * time (if sleeping), ignore overflow.
   1173      1.188      yamt 		 */
   1174      1.229        ad 		mutex_enter(p->p_lock);
   1175      1.212      yamt 		runtm = p->p_rtime.sec;
   1176      1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1177      1.249     rmind 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1178      1.188      yamt 				continue;
   1179      1.188      yamt 			lwp_lock(l);
   1180      1.212      yamt 			runtm += l->l_rtime.sec;
   1181      1.188      yamt 			l->l_swtime++;
   1182      1.242     rmind 			sched_lwp_stats(l);
   1183      1.188      yamt 			lwp_unlock(l);
   1184      1.113  gmcgarry 
   1185      1.188      yamt 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1186      1.249     rmind 			if (l->l_slptime != 0)
   1187      1.249     rmind 				continue;
   1188      1.249     rmind 
   1189      1.249     rmind 			lpctcpu = l->l_pctcpu;
   1190      1.249     rmind 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1191      1.249     rmind 			lpctcpu += ((FSCALE - ccpu) *
   1192      1.249     rmind 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1193      1.249     rmind 			l->l_pctcpu = lpctcpu;
   1194      1.188      yamt 		}
   1195      1.249     rmind 		/* Calculating p_pctcpu only for ps(1) */
   1196      1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1197      1.174        ad 
   1198      1.188      yamt 		/*
   1199      1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
   1200      1.188      yamt 		 * If over max, kill it.
   1201      1.188      yamt 		 */
   1202      1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1203      1.188      yamt 		sig = 0;
   1204      1.249     rmind 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1205      1.188      yamt 			if (runtm >= rlim->rlim_max)
   1206      1.188      yamt 				sig = SIGKILL;
   1207      1.188      yamt 			else {
   1208      1.188      yamt 				sig = SIGXCPU;
   1209      1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
   1210      1.188      yamt 					rlim->rlim_cur += 5;
   1211      1.188      yamt 			}
   1212      1.188      yamt 		}
   1213      1.229        ad 		mutex_exit(p->p_lock);
   1214  1.254.2.4       snj 		if (__predict_false(runtm < 0)) {
   1215  1.254.2.5       snj 			if (!backwards) {
   1216  1.254.2.5       snj 				backwards = true;
   1217  1.254.2.5       snj 				printf("WARNING: negative runtime; "
   1218  1.254.2.5       snj 				    "monotonic clock has gone backwards\n");
   1219  1.254.2.5       snj 			}
   1220  1.254.2.4       snj 		} else if (__predict_false(sig)) {
   1221  1.254.2.4       snj 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1222      1.188      yamt 			psignal(p, sig);
   1223  1.254.2.4       snj 		}
   1224      1.174        ad 	}
   1225      1.228        ad 	mutex_exit(proc_lock);
   1226      1.188      yamt 	uvm_meter();
   1227      1.191        ad 	cv_wakeup(&lbolt);
   1228      1.188      yamt 	callout_schedule(&sched_pstats_ch, hz);
   1229      1.113  gmcgarry }
   1230