kern_synch.c revision 1.256 1 1.256 ad /* $NetBSD: kern_synch.c,v 1.256 2008/12/13 20:43:38 ad Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.218 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.63 thorpej * All rights reserved.
6 1.63 thorpej *
7 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 1.188 yamt * Daniel Sieger.
11 1.63 thorpej *
12 1.63 thorpej * Redistribution and use in source and binary forms, with or without
13 1.63 thorpej * modification, are permitted provided that the following conditions
14 1.63 thorpej * are met:
15 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
16 1.63 thorpej * notice, this list of conditions and the following disclaimer.
17 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
18 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
19 1.63 thorpej * documentation and/or other materials provided with the distribution.
20 1.63 thorpej *
21 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
32 1.63 thorpej */
33 1.26 cgd
34 1.26 cgd /*-
35 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 1.26 cgd * The Regents of the University of California. All rights reserved.
37 1.26 cgd * (c) UNIX System Laboratories, Inc.
38 1.26 cgd * All or some portions of this file are derived from material licensed
39 1.26 cgd * to the University of California by American Telephone and Telegraph
40 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 1.26 cgd * the permission of UNIX System Laboratories, Inc.
42 1.26 cgd *
43 1.26 cgd * Redistribution and use in source and binary forms, with or without
44 1.26 cgd * modification, are permitted provided that the following conditions
45 1.26 cgd * are met:
46 1.26 cgd * 1. Redistributions of source code must retain the above copyright
47 1.26 cgd * notice, this list of conditions and the following disclaimer.
48 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.26 cgd * notice, this list of conditions and the following disclaimer in the
50 1.26 cgd * documentation and/or other materials provided with the distribution.
51 1.136 agc * 3. Neither the name of the University nor the names of its contributors
52 1.26 cgd * may be used to endorse or promote products derived from this software
53 1.26 cgd * without specific prior written permission.
54 1.26 cgd *
55 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.26 cgd * SUCH DAMAGE.
66 1.26 cgd *
67 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 1.26 cgd */
69 1.106 lukem
70 1.106 lukem #include <sys/cdefs.h>
71 1.256 ad __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.256 2008/12/13 20:43:38 ad Exp $");
72 1.48 mrg
73 1.109 yamt #include "opt_kstack.h"
74 1.110 briggs #include "opt_perfctrs.h"
75 1.252 wrstuden #include "opt_sa.h"
76 1.26 cgd
77 1.174 ad #define __MUTEX_PRIVATE
78 1.174 ad
79 1.26 cgd #include <sys/param.h>
80 1.26 cgd #include <sys/systm.h>
81 1.26 cgd #include <sys/proc.h>
82 1.26 cgd #include <sys/kernel.h>
83 1.111 briggs #if defined(PERFCTRS)
84 1.110 briggs #include <sys/pmc.h>
85 1.111 briggs #endif
86 1.188 yamt #include <sys/cpu.h>
87 1.26 cgd #include <sys/resourcevar.h>
88 1.55 ross #include <sys/sched.h>
89 1.252 wrstuden #include <sys/sa.h>
90 1.252 wrstuden #include <sys/savar.h>
91 1.179 dsl #include <sys/syscall_stats.h>
92 1.174 ad #include <sys/sleepq.h>
93 1.174 ad #include <sys/lockdebug.h>
94 1.190 ad #include <sys/evcnt.h>
95 1.199 ad #include <sys/intr.h>
96 1.207 ad #include <sys/lwpctl.h>
97 1.209 ad #include <sys/atomic.h>
98 1.215 ad #include <sys/simplelock.h>
99 1.47 mrg
100 1.47 mrg #include <uvm/uvm_extern.h>
101 1.47 mrg
102 1.231 ad #include <dev/lockstat.h>
103 1.231 ad
104 1.221 ad static u_int sched_unsleep(struct lwp *, bool);
105 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
106 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
107 1.250 rmind static void resched_cpu(struct lwp *);
108 1.122 thorpej
109 1.174 ad syncobj_t sleep_syncobj = {
110 1.174 ad SOBJ_SLEEPQ_SORTED,
111 1.174 ad sleepq_unsleep,
112 1.184 yamt sleepq_changepri,
113 1.184 yamt sleepq_lendpri,
114 1.184 yamt syncobj_noowner,
115 1.174 ad };
116 1.174 ad
117 1.174 ad syncobj_t sched_syncobj = {
118 1.174 ad SOBJ_SLEEPQ_SORTED,
119 1.174 ad sched_unsleep,
120 1.184 yamt sched_changepri,
121 1.184 yamt sched_lendpri,
122 1.184 yamt syncobj_noowner,
123 1.174 ad };
124 1.122 thorpej
125 1.223 ad callout_t sched_pstats_ch;
126 1.223 ad unsigned sched_pstats_ticks;
127 1.223 ad kcondvar_t lbolt; /* once a second sleep address */
128 1.223 ad
129 1.237 rmind /* Preemption event counters */
130 1.231 ad static struct evcnt kpreempt_ev_crit;
131 1.231 ad static struct evcnt kpreempt_ev_klock;
132 1.231 ad static struct evcnt kpreempt_ev_ipl;
133 1.231 ad static struct evcnt kpreempt_ev_immed;
134 1.231 ad
135 1.231 ad /*
136 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
137 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
138 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
139 1.174 ad * maintained in the machine-dependent layers. This priority will typically
140 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
141 1.174 ad * it can be made higher to block network software interrupts after panics.
142 1.26 cgd */
143 1.174 ad int safepri;
144 1.26 cgd
145 1.237 rmind void
146 1.237 rmind sched_init(void)
147 1.237 rmind {
148 1.237 rmind
149 1.237 rmind cv_init(&lbolt, "lbolt");
150 1.237 rmind callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
151 1.237 rmind callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
152 1.237 rmind
153 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
154 1.237 rmind "kpreempt", "defer: critical section");
155 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
156 1.237 rmind "kpreempt", "defer: kernel_lock");
157 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
158 1.237 rmind "kpreempt", "defer: IPL");
159 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
160 1.237 rmind "kpreempt", "immediate");
161 1.237 rmind
162 1.237 rmind sched_pstats(NULL);
163 1.237 rmind }
164 1.237 rmind
165 1.26 cgd /*
166 1.174 ad * OBSOLETE INTERFACE
167 1.174 ad *
168 1.255 skrll * General sleep call. Suspends the current LWP until a wakeup is
169 1.255 skrll * performed on the specified identifier. The LWP will then be made
170 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
171 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
172 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
173 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
174 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
175 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
176 1.26 cgd * call should be interrupted by the signal (return EINTR).
177 1.77 thorpej *
178 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
179 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
180 1.174 ad * is specified, in which case the interlock will always be unlocked upon
181 1.174 ad * return.
182 1.26 cgd */
183 1.26 cgd int
184 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
185 1.174 ad volatile struct simplelock *interlock)
186 1.26 cgd {
187 1.122 thorpej struct lwp *l = curlwp;
188 1.174 ad sleepq_t *sq;
189 1.244 ad kmutex_t *mp;
190 1.188 yamt int error;
191 1.26 cgd
192 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
193 1.204 ad
194 1.174 ad if (sleepq_dontsleep(l)) {
195 1.174 ad (void)sleepq_abort(NULL, 0);
196 1.174 ad if ((priority & PNORELOCK) != 0)
197 1.77 thorpej simple_unlock(interlock);
198 1.174 ad return 0;
199 1.26 cgd }
200 1.78 sommerfe
201 1.204 ad l->l_kpriority = true;
202 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
203 1.244 ad sleepq_enter(sq, l, mp);
204 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
205 1.42 cgd
206 1.174 ad if (interlock != NULL) {
207 1.204 ad KASSERT(simple_lock_held(interlock));
208 1.174 ad simple_unlock(interlock);
209 1.150 chs }
210 1.150 chs
211 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
212 1.126 pk
213 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
214 1.126 pk simple_lock(interlock);
215 1.174 ad
216 1.174 ad return error;
217 1.26 cgd }
218 1.26 cgd
219 1.187 ad int
220 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
221 1.187 ad kmutex_t *mtx)
222 1.187 ad {
223 1.187 ad struct lwp *l = curlwp;
224 1.187 ad sleepq_t *sq;
225 1.244 ad kmutex_t *mp;
226 1.188 yamt int error;
227 1.187 ad
228 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
229 1.204 ad
230 1.187 ad if (sleepq_dontsleep(l)) {
231 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
232 1.187 ad return 0;
233 1.187 ad }
234 1.187 ad
235 1.204 ad l->l_kpriority = true;
236 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
237 1.244 ad sleepq_enter(sq, l, mp);
238 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
239 1.187 ad mutex_exit(mtx);
240 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
241 1.187 ad
242 1.187 ad if ((priority & PNORELOCK) == 0)
243 1.187 ad mutex_enter(mtx);
244 1.187 ad
245 1.187 ad return error;
246 1.187 ad }
247 1.187 ad
248 1.26 cgd /*
249 1.174 ad * General sleep call for situations where a wake-up is not expected.
250 1.26 cgd */
251 1.174 ad int
252 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
253 1.26 cgd {
254 1.174 ad struct lwp *l = curlwp;
255 1.244 ad kmutex_t *mp;
256 1.174 ad sleepq_t *sq;
257 1.174 ad int error;
258 1.26 cgd
259 1.174 ad if (sleepq_dontsleep(l))
260 1.174 ad return sleepq_abort(NULL, 0);
261 1.26 cgd
262 1.174 ad if (mtx != NULL)
263 1.174 ad mutex_exit(mtx);
264 1.204 ad l->l_kpriority = true;
265 1.244 ad sq = sleeptab_lookup(&sleeptab, l, &mp);
266 1.244 ad sleepq_enter(sq, l, mp);
267 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
268 1.188 yamt error = sleepq_block(timo, intr);
269 1.174 ad if (mtx != NULL)
270 1.174 ad mutex_enter(mtx);
271 1.83 thorpej
272 1.174 ad return error;
273 1.139 cl }
274 1.139 cl
275 1.252 wrstuden #ifdef KERN_SA
276 1.252 wrstuden /*
277 1.252 wrstuden * sa_awaken:
278 1.252 wrstuden *
279 1.252 wrstuden * We believe this lwp is an SA lwp. If it's yielding,
280 1.252 wrstuden * let it know it needs to wake up.
281 1.252 wrstuden *
282 1.252 wrstuden * We are called and exit with the lwp locked. We are
283 1.252 wrstuden * called in the middle of wakeup operations, so we need
284 1.252 wrstuden * to not touch the locks at all.
285 1.252 wrstuden */
286 1.252 wrstuden void
287 1.252 wrstuden sa_awaken(struct lwp *l)
288 1.252 wrstuden {
289 1.252 wrstuden /* LOCK_ASSERT(lwp_locked(l, NULL)); */
290 1.252 wrstuden
291 1.252 wrstuden if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
292 1.252 wrstuden l->l_flag &= ~LW_SA_IDLE;
293 1.252 wrstuden }
294 1.252 wrstuden #endif /* KERN_SA */
295 1.252 wrstuden
296 1.26 cgd /*
297 1.174 ad * OBSOLETE INTERFACE
298 1.174 ad *
299 1.255 skrll * Make all LWPs sleeping on the specified identifier runnable.
300 1.26 cgd */
301 1.26 cgd void
302 1.174 ad wakeup(wchan_t ident)
303 1.26 cgd {
304 1.174 ad sleepq_t *sq;
305 1.244 ad kmutex_t *mp;
306 1.83 thorpej
307 1.174 ad if (cold)
308 1.174 ad return;
309 1.83 thorpej
310 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
311 1.244 ad sleepq_wake(sq, ident, (u_int)-1, mp);
312 1.63 thorpej }
313 1.63 thorpej
314 1.63 thorpej /*
315 1.174 ad * OBSOLETE INTERFACE
316 1.174 ad *
317 1.255 skrll * Make the highest priority LWP first in line on the specified
318 1.63 thorpej * identifier runnable.
319 1.63 thorpej */
320 1.174 ad void
321 1.174 ad wakeup_one(wchan_t ident)
322 1.63 thorpej {
323 1.174 ad sleepq_t *sq;
324 1.244 ad kmutex_t *mp;
325 1.63 thorpej
326 1.174 ad if (cold)
327 1.174 ad return;
328 1.188 yamt
329 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
330 1.244 ad sleepq_wake(sq, ident, 1, mp);
331 1.174 ad }
332 1.63 thorpej
333 1.117 gmcgarry
334 1.117 gmcgarry /*
335 1.255 skrll * General yield call. Puts the current LWP back on its run queue and
336 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
337 1.255 skrll * current LWP explicitly requests it (eg sched_yield(2)).
338 1.117 gmcgarry */
339 1.117 gmcgarry void
340 1.117 gmcgarry yield(void)
341 1.117 gmcgarry {
342 1.122 thorpej struct lwp *l = curlwp;
343 1.117 gmcgarry
344 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
345 1.174 ad lwp_lock(l);
346 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
347 1.188 yamt KASSERT(l->l_stat == LSONPROC);
348 1.204 ad l->l_kpriority = false;
349 1.188 yamt (void)mi_switch(l);
350 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
351 1.69 thorpej }
352 1.69 thorpej
353 1.69 thorpej /*
354 1.255 skrll * General preemption call. Puts the current LWP back on its run queue
355 1.156 rpaulo * and performs an involuntary context switch.
356 1.69 thorpej */
357 1.69 thorpej void
358 1.174 ad preempt(void)
359 1.69 thorpej {
360 1.122 thorpej struct lwp *l = curlwp;
361 1.69 thorpej
362 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
363 1.174 ad lwp_lock(l);
364 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
365 1.188 yamt KASSERT(l->l_stat == LSONPROC);
366 1.204 ad l->l_kpriority = false;
367 1.174 ad l->l_nivcsw++;
368 1.188 yamt (void)mi_switch(l);
369 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
370 1.69 thorpej }
371 1.69 thorpej
372 1.234 ad /*
373 1.234 ad * Handle a request made by another agent to preempt the current LWP
374 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
375 1.234 ad *
376 1.234 ad * Character addresses for lockstat only.
377 1.234 ad */
378 1.231 ad static char in_critical_section;
379 1.231 ad static char kernel_lock_held;
380 1.231 ad static char spl_raised;
381 1.231 ad static char is_softint;
382 1.231 ad
383 1.231 ad bool
384 1.231 ad kpreempt(uintptr_t where)
385 1.231 ad {
386 1.231 ad uintptr_t failed;
387 1.231 ad lwp_t *l;
388 1.231 ad int s, dop;
389 1.231 ad
390 1.231 ad l = curlwp;
391 1.231 ad failed = 0;
392 1.231 ad while ((dop = l->l_dopreempt) != 0) {
393 1.231 ad if (l->l_stat != LSONPROC) {
394 1.231 ad /*
395 1.231 ad * About to block (or die), let it happen.
396 1.231 ad * Doesn't really count as "preemption has
397 1.231 ad * been blocked", since we're going to
398 1.231 ad * context switch.
399 1.231 ad */
400 1.231 ad l->l_dopreempt = 0;
401 1.231 ad return true;
402 1.231 ad }
403 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
404 1.231 ad /* Can't preempt idle loop, don't count as failure. */
405 1.231 ad l->l_dopreempt = 0;
406 1.231 ad return true;
407 1.231 ad }
408 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
409 1.231 ad /* LWP holds preemption disabled, explicitly. */
410 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
411 1.234 ad kpreempt_ev_crit.ev_count++;
412 1.231 ad }
413 1.231 ad failed = (uintptr_t)&in_critical_section;
414 1.231 ad break;
415 1.231 ad }
416 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
417 1.231 ad /* Can't preempt soft interrupts yet. */
418 1.231 ad l->l_dopreempt = 0;
419 1.231 ad failed = (uintptr_t)&is_softint;
420 1.231 ad break;
421 1.231 ad }
422 1.231 ad s = splsched();
423 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
424 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
425 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
426 1.231 ad splx(s);
427 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
428 1.234 ad kpreempt_ev_klock.ev_count++;
429 1.231 ad }
430 1.231 ad failed = (uintptr_t)&kernel_lock_held;
431 1.231 ad break;
432 1.231 ad }
433 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
434 1.231 ad /*
435 1.231 ad * It may be that the IPL is too high.
436 1.231 ad * kpreempt_enter() can schedule an
437 1.231 ad * interrupt to retry later.
438 1.231 ad */
439 1.231 ad splx(s);
440 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
441 1.234 ad kpreempt_ev_ipl.ev_count++;
442 1.231 ad }
443 1.231 ad failed = (uintptr_t)&spl_raised;
444 1.231 ad break;
445 1.231 ad }
446 1.231 ad /* Do it! */
447 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
448 1.234 ad kpreempt_ev_immed.ev_count++;
449 1.231 ad }
450 1.231 ad lwp_lock(l);
451 1.231 ad mi_switch(l);
452 1.231 ad l->l_nopreempt++;
453 1.231 ad splx(s);
454 1.231 ad
455 1.231 ad /* Take care of any MD cleanup. */
456 1.231 ad cpu_kpreempt_exit(where);
457 1.231 ad l->l_nopreempt--;
458 1.231 ad }
459 1.231 ad
460 1.231 ad /* Record preemption failure for reporting via lockstat. */
461 1.231 ad if (__predict_false(failed)) {
462 1.240 ad int lsflag = 0;
463 1.231 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
464 1.231 ad LOCKSTAT_ENTER(lsflag);
465 1.231 ad /* Might recurse, make it atomic. */
466 1.231 ad if (__predict_false(lsflag)) {
467 1.231 ad if (where == 0) {
468 1.231 ad where = (uintptr_t)__builtin_return_address(0);
469 1.231 ad }
470 1.231 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
471 1.231 ad NULL, (void *)where) == NULL) {
472 1.231 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
473 1.231 ad l->l_pfaillock = failed;
474 1.231 ad }
475 1.231 ad }
476 1.231 ad LOCKSTAT_EXIT(lsflag);
477 1.231 ad }
478 1.231 ad
479 1.231 ad return failed;
480 1.231 ad }
481 1.231 ad
482 1.69 thorpej /*
483 1.231 ad * Return true if preemption is explicitly disabled.
484 1.230 ad */
485 1.231 ad bool
486 1.231 ad kpreempt_disabled(void)
487 1.231 ad {
488 1.231 ad lwp_t *l;
489 1.231 ad
490 1.231 ad l = curlwp;
491 1.231 ad
492 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
493 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
494 1.231 ad }
495 1.230 ad
496 1.230 ad /*
497 1.231 ad * Disable kernel preemption.
498 1.230 ad */
499 1.230 ad void
500 1.231 ad kpreempt_disable(void)
501 1.230 ad {
502 1.230 ad
503 1.231 ad KPREEMPT_DISABLE(curlwp);
504 1.230 ad }
505 1.230 ad
506 1.230 ad /*
507 1.231 ad * Reenable kernel preemption.
508 1.230 ad */
509 1.231 ad void
510 1.231 ad kpreempt_enable(void)
511 1.230 ad {
512 1.230 ad
513 1.231 ad KPREEMPT_ENABLE(curlwp);
514 1.230 ad }
515 1.230 ad
516 1.230 ad /*
517 1.188 yamt * Compute the amount of time during which the current lwp was running.
518 1.130 nathanw *
519 1.188 yamt * - update l_rtime unless it's an idle lwp.
520 1.188 yamt */
521 1.188 yamt
522 1.199 ad void
523 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
524 1.188 yamt {
525 1.188 yamt
526 1.199 ad if ((l->l_flag & LW_IDLE) != 0)
527 1.188 yamt return;
528 1.188 yamt
529 1.212 yamt /* rtime += now - stime */
530 1.212 yamt bintime_add(&l->l_rtime, now);
531 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
532 1.188 yamt }
533 1.188 yamt
534 1.188 yamt /*
535 1.245 ad * Select next LWP from the current CPU to run..
536 1.245 ad */
537 1.245 ad static inline lwp_t *
538 1.245 ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
539 1.245 ad {
540 1.245 ad lwp_t *newl;
541 1.245 ad
542 1.245 ad /*
543 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
544 1.245 ad * If no LWP is runnable, select the idle LWP.
545 1.245 ad *
546 1.245 ad * Note that spc_lwplock might not necessary be held, and
547 1.245 ad * new thread would be unlocked after setting the LWP-lock.
548 1.245 ad */
549 1.245 ad newl = sched_nextlwp();
550 1.245 ad if (newl != NULL) {
551 1.245 ad sched_dequeue(newl);
552 1.245 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
553 1.245 ad newl->l_stat = LSONPROC;
554 1.245 ad newl->l_cpu = ci;
555 1.248 ad newl->l_pflag |= LP_RUNNING;
556 1.245 ad lwp_setlock(newl, spc->spc_lwplock);
557 1.245 ad } else {
558 1.245 ad newl = ci->ci_data.cpu_idlelwp;
559 1.245 ad newl->l_stat = LSONPROC;
560 1.248 ad newl->l_pflag |= LP_RUNNING;
561 1.245 ad }
562 1.245 ad
563 1.245 ad /*
564 1.245 ad * Only clear want_resched if there are no pending (slow)
565 1.245 ad * software interrupts.
566 1.245 ad */
567 1.245 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
568 1.245 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
569 1.245 ad spc->spc_curpriority = lwp_eprio(newl);
570 1.245 ad
571 1.245 ad return newl;
572 1.245 ad }
573 1.245 ad
574 1.245 ad /*
575 1.188 yamt * The machine independent parts of context switch.
576 1.188 yamt *
577 1.188 yamt * Returns 1 if another LWP was actually run.
578 1.26 cgd */
579 1.122 thorpej int
580 1.199 ad mi_switch(lwp_t *l)
581 1.26 cgd {
582 1.246 rmind struct cpu_info *ci;
583 1.76 thorpej struct schedstate_percpu *spc;
584 1.188 yamt struct lwp *newl;
585 1.174 ad int retval, oldspl;
586 1.212 yamt struct bintime bt;
587 1.199 ad bool returning;
588 1.26 cgd
589 1.188 yamt KASSERT(lwp_locked(l, NULL));
590 1.231 ad KASSERT(kpreempt_disabled());
591 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
592 1.174 ad
593 1.174 ad #ifdef KSTACK_CHECK_MAGIC
594 1.174 ad kstack_check_magic(l);
595 1.174 ad #endif
596 1.83 thorpej
597 1.212 yamt binuptime(&bt);
598 1.199 ad
599 1.231 ad KASSERT(l->l_cpu == curcpu());
600 1.196 ad ci = l->l_cpu;
601 1.196 ad spc = &ci->ci_schedstate;
602 1.199 ad returning = false;
603 1.190 ad newl = NULL;
604 1.190 ad
605 1.199 ad /*
606 1.199 ad * If we have been asked to switch to a specific LWP, then there
607 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
608 1.199 ad * blocking, then return to the interrupted thread without adjusting
609 1.199 ad * VM context or its start time: neither have been changed in order
610 1.199 ad * to take the interrupt.
611 1.199 ad */
612 1.190 ad if (l->l_switchto != NULL) {
613 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
614 1.199 ad returning = true;
615 1.199 ad softint_block(l);
616 1.248 ad if ((l->l_pflag & LP_TIMEINTR) != 0)
617 1.212 yamt updatertime(l, &bt);
618 1.199 ad }
619 1.190 ad newl = l->l_switchto;
620 1.190 ad l->l_switchto = NULL;
621 1.190 ad }
622 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
623 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
624 1.204 ad /* There are pending soft interrupts, so pick one. */
625 1.204 ad newl = softint_picklwp();
626 1.204 ad newl->l_stat = LSONPROC;
627 1.248 ad newl->l_pflag |= LP_RUNNING;
628 1.204 ad }
629 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
630 1.190 ad
631 1.180 dsl /* Count time spent in current system call */
632 1.199 ad if (!returning) {
633 1.199 ad SYSCALL_TIME_SLEEP(l);
634 1.180 dsl
635 1.199 ad /*
636 1.199 ad * XXXSMP If we are using h/w performance counters,
637 1.199 ad * save context.
638 1.199 ad */
639 1.174 ad #if PERFCTRS
640 1.199 ad if (PMC_ENABLED(l->l_proc)) {
641 1.199 ad pmc_save_context(l->l_proc);
642 1.199 ad }
643 1.199 ad #endif
644 1.212 yamt updatertime(l, &bt);
645 1.174 ad }
646 1.113 gmcgarry
647 1.246 rmind /* Lock the runqueue */
648 1.246 rmind KASSERT(l->l_stat != LSRUN);
649 1.246 rmind mutex_spin_enter(spc->spc_mutex);
650 1.246 rmind
651 1.113 gmcgarry /*
652 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
653 1.113 gmcgarry */
654 1.246 rmind if (l->l_stat == LSONPROC && l != newl) {
655 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
656 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
657 1.188 yamt l->l_stat = LSRUN;
658 1.246 rmind lwp_setlock(l, spc->spc_mutex);
659 1.246 rmind sched_enqueue(l, true);
660 1.246 rmind /* Handle migration case */
661 1.246 rmind KASSERT(spc->spc_migrating == NULL);
662 1.246 rmind if (l->l_target_cpu != NULL) {
663 1.246 rmind spc->spc_migrating = l;
664 1.216 rmind }
665 1.246 rmind } else
666 1.188 yamt l->l_stat = LSIDL;
667 1.174 ad }
668 1.174 ad
669 1.245 ad /* Pick new LWP to run. */
670 1.190 ad if (newl == NULL) {
671 1.245 ad newl = nextlwp(ci, spc);
672 1.199 ad }
673 1.199 ad
674 1.204 ad /* Items that must be updated with the CPU locked. */
675 1.199 ad if (!returning) {
676 1.204 ad /* Update the new LWP's start time. */
677 1.212 yamt newl->l_stime = bt;
678 1.204 ad
679 1.199 ad /*
680 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
681 1.204 ad * We use cpu_onproc to keep track of which kernel or
682 1.204 ad * user thread is running 'underneath' the software
683 1.204 ad * interrupt. This is important for time accounting,
684 1.204 ad * itimers and forcing user threads to preempt (aston).
685 1.199 ad */
686 1.204 ad ci->ci_data.cpu_onproc = newl;
687 1.188 yamt }
688 1.188 yamt
689 1.241 ad /*
690 1.241 ad * Preemption related tasks. Must be done with the current
691 1.241 ad * CPU locked.
692 1.241 ad */
693 1.241 ad cpu_did_resched(l);
694 1.231 ad l->l_dopreempt = 0;
695 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
696 1.231 ad LOCKSTAT_FLAG(lsflag);
697 1.231 ad LOCKSTAT_ENTER(lsflag);
698 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
699 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
700 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
701 1.231 ad LOCKSTAT_EXIT(lsflag);
702 1.231 ad l->l_pfailtime = 0;
703 1.231 ad l->l_pfaillock = 0;
704 1.231 ad l->l_pfailaddr = 0;
705 1.231 ad }
706 1.231 ad
707 1.188 yamt if (l != newl) {
708 1.188 yamt struct lwp *prevlwp;
709 1.174 ad
710 1.209 ad /* Release all locks, but leave the current LWP locked */
711 1.246 rmind if (l->l_mutex == spc->spc_mutex) {
712 1.209 ad /*
713 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
714 1.209 ad * to the run queue (it is now locked by spc_mutex).
715 1.209 ad */
716 1.217 ad mutex_spin_exit(spc->spc_lwplock);
717 1.188 yamt } else {
718 1.209 ad /*
719 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
720 1.209 ad * run queues.
721 1.209 ad */
722 1.188 yamt mutex_spin_exit(spc->spc_mutex);
723 1.188 yamt }
724 1.188 yamt
725 1.209 ad /*
726 1.253 skrll * Mark that context switch is going to be performed
727 1.209 ad * for this LWP, to protect it from being switched
728 1.209 ad * to on another CPU.
729 1.209 ad */
730 1.209 ad KASSERT(l->l_ctxswtch == 0);
731 1.209 ad l->l_ctxswtch = 1;
732 1.209 ad l->l_ncsw++;
733 1.248 ad l->l_pflag &= ~LP_RUNNING;
734 1.209 ad
735 1.209 ad /*
736 1.209 ad * Increase the count of spin-mutexes before the release
737 1.209 ad * of the last lock - we must remain at IPL_SCHED during
738 1.209 ad * the context switch.
739 1.209 ad */
740 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
741 1.209 ad ci->ci_mtx_count--;
742 1.209 ad lwp_unlock(l);
743 1.209 ad
744 1.218 ad /* Count the context switch on this CPU. */
745 1.218 ad ci->ci_data.cpu_nswtch++;
746 1.188 yamt
747 1.209 ad /* Update status for lwpctl, if present. */
748 1.209 ad if (l->l_lwpctl != NULL)
749 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
750 1.209 ad
751 1.199 ad /*
752 1.199 ad * Save old VM context, unless a soft interrupt
753 1.199 ad * handler is blocking.
754 1.199 ad */
755 1.199 ad if (!returning)
756 1.199 ad pmap_deactivate(l);
757 1.188 yamt
758 1.209 ad /*
759 1.209 ad * We may need to spin-wait for if 'newl' is still
760 1.209 ad * context switching on another CPU.
761 1.209 ad */
762 1.209 ad if (newl->l_ctxswtch != 0) {
763 1.209 ad u_int count;
764 1.209 ad count = SPINLOCK_BACKOFF_MIN;
765 1.209 ad while (newl->l_ctxswtch)
766 1.209 ad SPINLOCK_BACKOFF(count);
767 1.209 ad }
768 1.207 ad
769 1.188 yamt /* Switch to the new LWP.. */
770 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
771 1.207 ad ci = curcpu();
772 1.207 ad
773 1.188 yamt /*
774 1.209 ad * Switched away - we have new curlwp.
775 1.209 ad * Restore VM context and IPL.
776 1.188 yamt */
777 1.209 ad pmap_activate(l);
778 1.188 yamt if (prevlwp != NULL) {
779 1.209 ad /* Normalize the count of the spin-mutexes */
780 1.209 ad ci->ci_mtx_count++;
781 1.209 ad /* Unmark the state of context switch */
782 1.209 ad membar_exit();
783 1.209 ad prevlwp->l_ctxswtch = 0;
784 1.188 yamt }
785 1.209 ad
786 1.209 ad /* Update status for lwpctl, if present. */
787 1.219 ad if (l->l_lwpctl != NULL) {
788 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
789 1.219 ad l->l_lwpctl->lc_pctr++;
790 1.219 ad }
791 1.174 ad
792 1.231 ad KASSERT(l->l_cpu == ci);
793 1.231 ad splx(oldspl);
794 1.188 yamt retval = 1;
795 1.188 yamt } else {
796 1.188 yamt /* Nothing to do - just unlock and return. */
797 1.246 rmind mutex_spin_exit(spc->spc_mutex);
798 1.188 yamt lwp_unlock(l);
799 1.122 thorpej retval = 0;
800 1.122 thorpej }
801 1.110 briggs
802 1.188 yamt KASSERT(l == curlwp);
803 1.188 yamt KASSERT(l->l_stat == LSONPROC);
804 1.188 yamt
805 1.110 briggs /*
806 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
807 1.231 ad * XXXSMP preemption problem.
808 1.26 cgd */
809 1.114 gmcgarry #if PERFCTRS
810 1.175 christos if (PMC_ENABLED(l->l_proc)) {
811 1.175 christos pmc_restore_context(l->l_proc);
812 1.166 christos }
813 1.114 gmcgarry #endif
814 1.180 dsl SYSCALL_TIME_WAKEUP(l);
815 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
816 1.169 yamt
817 1.122 thorpej return retval;
818 1.26 cgd }
819 1.26 cgd
820 1.26 cgd /*
821 1.245 ad * The machine independent parts of context switch to oblivion.
822 1.245 ad * Does not return. Call with the LWP unlocked.
823 1.245 ad */
824 1.245 ad void
825 1.245 ad lwp_exit_switchaway(lwp_t *l)
826 1.245 ad {
827 1.245 ad struct cpu_info *ci;
828 1.245 ad struct lwp *newl;
829 1.245 ad struct bintime bt;
830 1.245 ad
831 1.245 ad ci = l->l_cpu;
832 1.245 ad
833 1.245 ad KASSERT(kpreempt_disabled());
834 1.245 ad KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
835 1.245 ad KASSERT(ci == curcpu());
836 1.245 ad LOCKDEBUG_BARRIER(NULL, 0);
837 1.245 ad
838 1.245 ad #ifdef KSTACK_CHECK_MAGIC
839 1.245 ad kstack_check_magic(l);
840 1.245 ad #endif
841 1.245 ad
842 1.245 ad /* Count time spent in current system call */
843 1.245 ad SYSCALL_TIME_SLEEP(l);
844 1.245 ad binuptime(&bt);
845 1.245 ad updatertime(l, &bt);
846 1.245 ad
847 1.245 ad /* Must stay at IPL_SCHED even after releasing run queue lock. */
848 1.245 ad (void)splsched();
849 1.245 ad
850 1.245 ad /*
851 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
852 1.245 ad * If no LWP is runnable, select the idle LWP.
853 1.245 ad *
854 1.245 ad * Note that spc_lwplock might not necessary be held, and
855 1.245 ad * new thread would be unlocked after setting the LWP-lock.
856 1.245 ad */
857 1.245 ad spc_lock(ci);
858 1.245 ad #ifndef __HAVE_FAST_SOFTINTS
859 1.245 ad if (ci->ci_data.cpu_softints != 0) {
860 1.245 ad /* There are pending soft interrupts, so pick one. */
861 1.245 ad newl = softint_picklwp();
862 1.245 ad newl->l_stat = LSONPROC;
863 1.248 ad newl->l_pflag |= LP_RUNNING;
864 1.245 ad } else
865 1.245 ad #endif /* !__HAVE_FAST_SOFTINTS */
866 1.245 ad {
867 1.245 ad newl = nextlwp(ci, &ci->ci_schedstate);
868 1.245 ad }
869 1.245 ad
870 1.245 ad /* Update the new LWP's start time. */
871 1.245 ad newl->l_stime = bt;
872 1.248 ad l->l_pflag &= ~LP_RUNNING;
873 1.245 ad
874 1.245 ad /*
875 1.245 ad * ci_curlwp changes when a fast soft interrupt occurs.
876 1.245 ad * We use cpu_onproc to keep track of which kernel or
877 1.245 ad * user thread is running 'underneath' the software
878 1.245 ad * interrupt. This is important for time accounting,
879 1.245 ad * itimers and forcing user threads to preempt (aston).
880 1.245 ad */
881 1.245 ad ci->ci_data.cpu_onproc = newl;
882 1.245 ad
883 1.245 ad /*
884 1.245 ad * Preemption related tasks. Must be done with the current
885 1.245 ad * CPU locked.
886 1.245 ad */
887 1.245 ad cpu_did_resched(l);
888 1.245 ad
889 1.245 ad /* Unlock the run queue. */
890 1.245 ad spc_unlock(ci);
891 1.245 ad
892 1.245 ad /* Count the context switch on this CPU. */
893 1.245 ad ci->ci_data.cpu_nswtch++;
894 1.245 ad
895 1.245 ad /* Update status for lwpctl, if present. */
896 1.245 ad if (l->l_lwpctl != NULL)
897 1.247 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
898 1.245 ad
899 1.245 ad /*
900 1.245 ad * We may need to spin-wait for if 'newl' is still
901 1.245 ad * context switching on another CPU.
902 1.245 ad */
903 1.245 ad if (newl->l_ctxswtch != 0) {
904 1.245 ad u_int count;
905 1.245 ad count = SPINLOCK_BACKOFF_MIN;
906 1.245 ad while (newl->l_ctxswtch)
907 1.245 ad SPINLOCK_BACKOFF(count);
908 1.245 ad }
909 1.245 ad
910 1.245 ad /* Switch to the new LWP.. */
911 1.245 ad (void)cpu_switchto(NULL, newl, false);
912 1.245 ad
913 1.251 uwe for (;;) continue; /* XXX: convince gcc about "noreturn" */
914 1.245 ad /* NOTREACHED */
915 1.245 ad }
916 1.245 ad
917 1.245 ad /*
918 1.255 skrll * Change LWP state to be runnable, placing it on the run queue if it is
919 1.174 ad * in memory, and awakening the swapper if it isn't in memory.
920 1.174 ad *
921 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
922 1.26 cgd */
923 1.26 cgd void
924 1.122 thorpej setrunnable(struct lwp *l)
925 1.26 cgd {
926 1.122 thorpej struct proc *p = l->l_proc;
927 1.205 ad struct cpu_info *ci;
928 1.26 cgd
929 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
930 1.229 ad KASSERT(mutex_owned(p->p_lock));
931 1.183 ad KASSERT(lwp_locked(l, NULL));
932 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
933 1.83 thorpej
934 1.122 thorpej switch (l->l_stat) {
935 1.122 thorpej case LSSTOP:
936 1.33 mycroft /*
937 1.33 mycroft * If we're being traced (possibly because someone attached us
938 1.33 mycroft * while we were stopped), check for a signal from the debugger.
939 1.33 mycroft */
940 1.256 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
941 1.174 ad signotify(l);
942 1.174 ad p->p_nrlwps++;
943 1.26 cgd break;
944 1.174 ad case LSSUSPENDED:
945 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
946 1.174 ad p->p_nrlwps++;
947 1.192 rmind cv_broadcast(&p->p_lwpcv);
948 1.122 thorpej break;
949 1.174 ad case LSSLEEP:
950 1.174 ad KASSERT(l->l_wchan != NULL);
951 1.26 cgd break;
952 1.174 ad default:
953 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
954 1.26 cgd }
955 1.139 cl
956 1.252 wrstuden #ifdef KERN_SA
957 1.252 wrstuden if (l->l_proc->p_sa)
958 1.252 wrstuden sa_awaken(l);
959 1.252 wrstuden #endif /* KERN_SA */
960 1.252 wrstuden
961 1.174 ad /*
962 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
963 1.174 ad * again. If not, mark it as still sleeping.
964 1.174 ad */
965 1.174 ad if (l->l_wchan != NULL) {
966 1.174 ad l->l_stat = LSSLEEP;
967 1.183 ad /* lwp_unsleep() will release the lock. */
968 1.221 ad lwp_unsleep(l, true);
969 1.174 ad return;
970 1.174 ad }
971 1.139 cl
972 1.174 ad /*
973 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
974 1.174 ad * about to call mi_switch(), in which case it will yield.
975 1.174 ad */
976 1.248 ad if ((l->l_pflag & LP_RUNNING) != 0) {
977 1.174 ad l->l_stat = LSONPROC;
978 1.174 ad l->l_slptime = 0;
979 1.174 ad lwp_unlock(l);
980 1.174 ad return;
981 1.174 ad }
982 1.122 thorpej
983 1.174 ad /*
984 1.205 ad * Look for a CPU to run.
985 1.205 ad * Set the LWP runnable.
986 1.174 ad */
987 1.205 ad ci = sched_takecpu(l);
988 1.205 ad l->l_cpu = ci;
989 1.236 ad spc_lock(ci);
990 1.236 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
991 1.188 yamt sched_setrunnable(l);
992 1.174 ad l->l_stat = LSRUN;
993 1.122 thorpej l->l_slptime = 0;
994 1.174 ad
995 1.205 ad /*
996 1.205 ad * If thread is swapped out - wake the swapper to bring it back in.
997 1.205 ad * Otherwise, enter it into a run queue.
998 1.205 ad */
999 1.178 pavel if (l->l_flag & LW_INMEM) {
1000 1.188 yamt sched_enqueue(l, false);
1001 1.188 yamt resched_cpu(l);
1002 1.174 ad lwp_unlock(l);
1003 1.174 ad } else {
1004 1.174 ad lwp_unlock(l);
1005 1.177 ad uvm_kick_scheduler();
1006 1.174 ad }
1007 1.26 cgd }
1008 1.26 cgd
1009 1.26 cgd /*
1010 1.174 ad * suspendsched:
1011 1.174 ad *
1012 1.174 ad * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1013 1.174 ad */
1014 1.94 bouyer void
1015 1.174 ad suspendsched(void)
1016 1.94 bouyer {
1017 1.174 ad CPU_INFO_ITERATOR cii;
1018 1.174 ad struct cpu_info *ci;
1019 1.122 thorpej struct lwp *l;
1020 1.174 ad struct proc *p;
1021 1.94 bouyer
1022 1.94 bouyer /*
1023 1.174 ad * We do this by process in order not to violate the locking rules.
1024 1.94 bouyer */
1025 1.228 ad mutex_enter(proc_lock);
1026 1.174 ad PROCLIST_FOREACH(p, &allproc) {
1027 1.238 ad if ((p->p_flag & PK_MARKER) != 0)
1028 1.238 ad continue;
1029 1.238 ad
1030 1.229 ad mutex_enter(p->p_lock);
1031 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
1032 1.229 ad mutex_exit(p->p_lock);
1033 1.94 bouyer continue;
1034 1.174 ad }
1035 1.174 ad
1036 1.174 ad p->p_stat = SSTOP;
1037 1.174 ad
1038 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1039 1.174 ad if (l == curlwp)
1040 1.174 ad continue;
1041 1.174 ad
1042 1.174 ad lwp_lock(l);
1043 1.122 thorpej
1044 1.97 enami /*
1045 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
1046 1.174 ad * when it tries to return to user mode. We want to
1047 1.174 ad * try and get to get as many LWPs as possible to
1048 1.174 ad * the user / kernel boundary, so that they will
1049 1.174 ad * release any locks that they hold.
1050 1.97 enami */
1051 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1052 1.174 ad
1053 1.174 ad if (l->l_stat == LSSLEEP &&
1054 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1055 1.174 ad /* setrunnable() will release the lock. */
1056 1.174 ad setrunnable(l);
1057 1.174 ad continue;
1058 1.174 ad }
1059 1.174 ad
1060 1.174 ad lwp_unlock(l);
1061 1.94 bouyer }
1062 1.174 ad
1063 1.229 ad mutex_exit(p->p_lock);
1064 1.94 bouyer }
1065 1.228 ad mutex_exit(proc_lock);
1066 1.174 ad
1067 1.174 ad /*
1068 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1069 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
1070 1.174 ad */
1071 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1072 1.204 ad spc_lock(ci);
1073 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
1074 1.204 ad spc_unlock(ci);
1075 1.204 ad }
1076 1.174 ad }
1077 1.174 ad
1078 1.174 ad /*
1079 1.174 ad * sched_unsleep:
1080 1.174 ad *
1081 1.174 ad * The is called when the LWP has not been awoken normally but instead
1082 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1083 1.174 ad * it's not a valid action for running or idle LWPs.
1084 1.174 ad */
1085 1.221 ad static u_int
1086 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1087 1.174 ad {
1088 1.174 ad
1089 1.174 ad lwp_unlock(l);
1090 1.174 ad panic("sched_unsleep");
1091 1.174 ad }
1092 1.174 ad
1093 1.250 rmind static void
1094 1.188 yamt resched_cpu(struct lwp *l)
1095 1.188 yamt {
1096 1.250 rmind struct cpu_info *ci = ci = l->l_cpu;
1097 1.188 yamt
1098 1.250 rmind KASSERT(lwp_locked(l, NULL));
1099 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1100 1.188 yamt cpu_need_resched(ci, 0);
1101 1.188 yamt }
1102 1.188 yamt
1103 1.188 yamt static void
1104 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1105 1.174 ad {
1106 1.174 ad
1107 1.188 yamt KASSERT(lwp_locked(l, NULL));
1108 1.174 ad
1109 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1110 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1111 1.204 ad sched_dequeue(l);
1112 1.204 ad l->l_priority = pri;
1113 1.204 ad sched_enqueue(l, false);
1114 1.204 ad } else {
1115 1.174 ad l->l_priority = pri;
1116 1.157 yamt }
1117 1.188 yamt resched_cpu(l);
1118 1.184 yamt }
1119 1.184 yamt
1120 1.188 yamt static void
1121 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1122 1.184 yamt {
1123 1.184 yamt
1124 1.188 yamt KASSERT(lwp_locked(l, NULL));
1125 1.184 yamt
1126 1.204 ad if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1127 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1128 1.204 ad sched_dequeue(l);
1129 1.204 ad l->l_inheritedprio = pri;
1130 1.204 ad sched_enqueue(l, false);
1131 1.204 ad } else {
1132 1.184 yamt l->l_inheritedprio = pri;
1133 1.184 yamt }
1134 1.188 yamt resched_cpu(l);
1135 1.184 yamt }
1136 1.184 yamt
1137 1.184 yamt struct lwp *
1138 1.184 yamt syncobj_noowner(wchan_t wchan)
1139 1.184 yamt {
1140 1.184 yamt
1141 1.184 yamt return NULL;
1142 1.151 yamt }
1143 1.151 yamt
1144 1.250 rmind /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1145 1.250 rmind const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1146 1.134 matt
1147 1.134 matt /*
1148 1.188 yamt * sched_pstats:
1149 1.188 yamt *
1150 1.188 yamt * Update process statistics and check CPU resource allocation.
1151 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
1152 1.188 yamt * priorities.
1153 1.130 nathanw */
1154 1.188 yamt /* ARGSUSED */
1155 1.113 gmcgarry void
1156 1.188 yamt sched_pstats(void *arg)
1157 1.113 gmcgarry {
1158 1.249 rmind const int clkhz = (stathz != 0 ? stathz : hz);
1159 1.188 yamt struct rlimit *rlim;
1160 1.188 yamt struct lwp *l;
1161 1.188 yamt struct proc *p;
1162 1.188 yamt long runtm;
1163 1.249 rmind fixpt_t lpctcpu;
1164 1.249 rmind u_int lcpticks;
1165 1.249 rmind int sig;
1166 1.113 gmcgarry
1167 1.188 yamt sched_pstats_ticks++;
1168 1.174 ad
1169 1.228 ad mutex_enter(proc_lock);
1170 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1171 1.249 rmind if (__predict_false((p->p_flag & PK_MARKER) != 0))
1172 1.238 ad continue;
1173 1.238 ad
1174 1.188 yamt /*
1175 1.250 rmind * Increment time in/out of memory and sleep
1176 1.250 rmind * time (if sleeping), ignore overflow.
1177 1.188 yamt */
1178 1.229 ad mutex_enter(p->p_lock);
1179 1.212 yamt runtm = p->p_rtime.sec;
1180 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1181 1.249 rmind if (__predict_false((l->l_flag & LW_IDLE) != 0))
1182 1.188 yamt continue;
1183 1.188 yamt lwp_lock(l);
1184 1.212 yamt runtm += l->l_rtime.sec;
1185 1.188 yamt l->l_swtime++;
1186 1.242 rmind sched_lwp_stats(l);
1187 1.188 yamt lwp_unlock(l);
1188 1.113 gmcgarry
1189 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1190 1.249 rmind if (l->l_slptime != 0)
1191 1.249 rmind continue;
1192 1.249 rmind
1193 1.249 rmind lpctcpu = l->l_pctcpu;
1194 1.249 rmind lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1195 1.249 rmind lpctcpu += ((FSCALE - ccpu) *
1196 1.249 rmind (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1197 1.249 rmind l->l_pctcpu = lpctcpu;
1198 1.188 yamt }
1199 1.249 rmind /* Calculating p_pctcpu only for ps(1) */
1200 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1201 1.174 ad
1202 1.188 yamt /*
1203 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1204 1.188 yamt * If over max, kill it.
1205 1.188 yamt */
1206 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1207 1.188 yamt sig = 0;
1208 1.249 rmind if (__predict_false(runtm >= rlim->rlim_cur)) {
1209 1.188 yamt if (runtm >= rlim->rlim_max)
1210 1.188 yamt sig = SIGKILL;
1211 1.188 yamt else {
1212 1.188 yamt sig = SIGXCPU;
1213 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1214 1.188 yamt rlim->rlim_cur += 5;
1215 1.188 yamt }
1216 1.188 yamt }
1217 1.229 ad mutex_exit(p->p_lock);
1218 1.249 rmind if (__predict_false(sig))
1219 1.188 yamt psignal(p, sig);
1220 1.174 ad }
1221 1.228 ad mutex_exit(proc_lock);
1222 1.188 yamt uvm_meter();
1223 1.191 ad cv_wakeup(&lbolt);
1224 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
1225 1.113 gmcgarry }
1226