kern_synch.c revision 1.273 1 1.273 pooka /* $NetBSD: kern_synch.c,v 1.273 2009/12/05 22:38:19 pooka Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.260 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 1.260 ad * The NetBSD Foundation, Inc.
6 1.63 thorpej * All rights reserved.
7 1.63 thorpej *
8 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
9 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 1.188 yamt * Daniel Sieger.
12 1.63 thorpej *
13 1.63 thorpej * Redistribution and use in source and binary forms, with or without
14 1.63 thorpej * modification, are permitted provided that the following conditions
15 1.63 thorpej * are met:
16 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer.
18 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
19 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
20 1.63 thorpej * documentation and/or other materials provided with the distribution.
21 1.63 thorpej *
22 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
33 1.63 thorpej */
34 1.26 cgd
35 1.26 cgd /*-
36 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 1.26 cgd * The Regents of the University of California. All rights reserved.
38 1.26 cgd * (c) UNIX System Laboratories, Inc.
39 1.26 cgd * All or some portions of this file are derived from material licensed
40 1.26 cgd * to the University of California by American Telephone and Telegraph
41 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 1.26 cgd * the permission of UNIX System Laboratories, Inc.
43 1.26 cgd *
44 1.26 cgd * Redistribution and use in source and binary forms, with or without
45 1.26 cgd * modification, are permitted provided that the following conditions
46 1.26 cgd * are met:
47 1.26 cgd * 1. Redistributions of source code must retain the above copyright
48 1.26 cgd * notice, this list of conditions and the following disclaimer.
49 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.26 cgd * notice, this list of conditions and the following disclaimer in the
51 1.26 cgd * documentation and/or other materials provided with the distribution.
52 1.136 agc * 3. Neither the name of the University nor the names of its contributors
53 1.26 cgd * may be used to endorse or promote products derived from this software
54 1.26 cgd * without specific prior written permission.
55 1.26 cgd *
56 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.26 cgd * SUCH DAMAGE.
67 1.26 cgd *
68 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 1.26 cgd */
70 1.106 lukem
71 1.106 lukem #include <sys/cdefs.h>
72 1.273 pooka __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.273 2009/12/05 22:38:19 pooka Exp $");
73 1.48 mrg
74 1.109 yamt #include "opt_kstack.h"
75 1.110 briggs #include "opt_perfctrs.h"
76 1.252 wrstuden #include "opt_sa.h"
77 1.26 cgd
78 1.174 ad #define __MUTEX_PRIVATE
79 1.174 ad
80 1.26 cgd #include <sys/param.h>
81 1.26 cgd #include <sys/systm.h>
82 1.26 cgd #include <sys/proc.h>
83 1.26 cgd #include <sys/kernel.h>
84 1.111 briggs #if defined(PERFCTRS)
85 1.110 briggs #include <sys/pmc.h>
86 1.111 briggs #endif
87 1.188 yamt #include <sys/cpu.h>
88 1.26 cgd #include <sys/resourcevar.h>
89 1.55 ross #include <sys/sched.h>
90 1.252 wrstuden #include <sys/sa.h>
91 1.252 wrstuden #include <sys/savar.h>
92 1.179 dsl #include <sys/syscall_stats.h>
93 1.174 ad #include <sys/sleepq.h>
94 1.174 ad #include <sys/lockdebug.h>
95 1.190 ad #include <sys/evcnt.h>
96 1.199 ad #include <sys/intr.h>
97 1.207 ad #include <sys/lwpctl.h>
98 1.209 ad #include <sys/atomic.h>
99 1.215 ad #include <sys/simplelock.h>
100 1.47 mrg
101 1.47 mrg #include <uvm/uvm_extern.h>
102 1.47 mrg
103 1.231 ad #include <dev/lockstat.h>
104 1.231 ad
105 1.271 rmind static void sched_unsleep(struct lwp *, bool);
106 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
107 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
108 1.250 rmind static void resched_cpu(struct lwp *);
109 1.122 thorpej
110 1.174 ad syncobj_t sleep_syncobj = {
111 1.174 ad SOBJ_SLEEPQ_SORTED,
112 1.174 ad sleepq_unsleep,
113 1.184 yamt sleepq_changepri,
114 1.184 yamt sleepq_lendpri,
115 1.184 yamt syncobj_noowner,
116 1.174 ad };
117 1.174 ad
118 1.174 ad syncobj_t sched_syncobj = {
119 1.174 ad SOBJ_SLEEPQ_SORTED,
120 1.174 ad sched_unsleep,
121 1.184 yamt sched_changepri,
122 1.184 yamt sched_lendpri,
123 1.184 yamt syncobj_noowner,
124 1.174 ad };
125 1.122 thorpej
126 1.223 ad callout_t sched_pstats_ch;
127 1.223 ad unsigned sched_pstats_ticks;
128 1.223 ad kcondvar_t lbolt; /* once a second sleep address */
129 1.223 ad
130 1.237 rmind /* Preemption event counters */
131 1.231 ad static struct evcnt kpreempt_ev_crit;
132 1.231 ad static struct evcnt kpreempt_ev_klock;
133 1.231 ad static struct evcnt kpreempt_ev_immed;
134 1.231 ad
135 1.231 ad /*
136 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
137 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
138 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
139 1.174 ad * maintained in the machine-dependent layers. This priority will typically
140 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
141 1.174 ad * it can be made higher to block network software interrupts after panics.
142 1.26 cgd */
143 1.174 ad int safepri;
144 1.26 cgd
145 1.237 rmind void
146 1.270 elad synch_init(void)
147 1.237 rmind {
148 1.237 rmind
149 1.237 rmind cv_init(&lbolt, "lbolt");
150 1.237 rmind callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
151 1.237 rmind callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
152 1.237 rmind
153 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
154 1.237 rmind "kpreempt", "defer: critical section");
155 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
156 1.237 rmind "kpreempt", "defer: kernel_lock");
157 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
158 1.237 rmind "kpreempt", "immediate");
159 1.237 rmind
160 1.237 rmind sched_pstats(NULL);
161 1.237 rmind }
162 1.237 rmind
163 1.26 cgd /*
164 1.174 ad * OBSOLETE INTERFACE
165 1.174 ad *
166 1.255 skrll * General sleep call. Suspends the current LWP until a wakeup is
167 1.255 skrll * performed on the specified identifier. The LWP will then be made
168 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
169 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
170 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
171 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
172 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
173 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
174 1.26 cgd * call should be interrupted by the signal (return EINTR).
175 1.77 thorpej *
176 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
177 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
178 1.174 ad * is specified, in which case the interlock will always be unlocked upon
179 1.174 ad * return.
180 1.26 cgd */
181 1.26 cgd int
182 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
183 1.174 ad volatile struct simplelock *interlock)
184 1.26 cgd {
185 1.122 thorpej struct lwp *l = curlwp;
186 1.174 ad sleepq_t *sq;
187 1.244 ad kmutex_t *mp;
188 1.188 yamt int error;
189 1.26 cgd
190 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
191 1.272 pooka KASSERT(ident != &lbolt);
192 1.204 ad
193 1.174 ad if (sleepq_dontsleep(l)) {
194 1.174 ad (void)sleepq_abort(NULL, 0);
195 1.174 ad if ((priority & PNORELOCK) != 0)
196 1.77 thorpej simple_unlock(interlock);
197 1.174 ad return 0;
198 1.26 cgd }
199 1.78 sommerfe
200 1.204 ad l->l_kpriority = true;
201 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
202 1.244 ad sleepq_enter(sq, l, mp);
203 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
204 1.42 cgd
205 1.174 ad if (interlock != NULL) {
206 1.204 ad KASSERT(simple_lock_held(interlock));
207 1.174 ad simple_unlock(interlock);
208 1.150 chs }
209 1.150 chs
210 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
211 1.126 pk
212 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
213 1.126 pk simple_lock(interlock);
214 1.174 ad
215 1.174 ad return error;
216 1.26 cgd }
217 1.26 cgd
218 1.187 ad int
219 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
220 1.187 ad kmutex_t *mtx)
221 1.187 ad {
222 1.187 ad struct lwp *l = curlwp;
223 1.187 ad sleepq_t *sq;
224 1.244 ad kmutex_t *mp;
225 1.188 yamt int error;
226 1.187 ad
227 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
228 1.272 pooka KASSERT(ident != &lbolt);
229 1.204 ad
230 1.187 ad if (sleepq_dontsleep(l)) {
231 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
232 1.187 ad return 0;
233 1.187 ad }
234 1.187 ad
235 1.204 ad l->l_kpriority = true;
236 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
237 1.244 ad sleepq_enter(sq, l, mp);
238 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
239 1.187 ad mutex_exit(mtx);
240 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
241 1.187 ad
242 1.187 ad if ((priority & PNORELOCK) == 0)
243 1.187 ad mutex_enter(mtx);
244 1.187 ad
245 1.187 ad return error;
246 1.187 ad }
247 1.187 ad
248 1.26 cgd /*
249 1.174 ad * General sleep call for situations where a wake-up is not expected.
250 1.26 cgd */
251 1.174 ad int
252 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
253 1.26 cgd {
254 1.174 ad struct lwp *l = curlwp;
255 1.244 ad kmutex_t *mp;
256 1.174 ad sleepq_t *sq;
257 1.174 ad int error;
258 1.26 cgd
259 1.174 ad if (sleepq_dontsleep(l))
260 1.174 ad return sleepq_abort(NULL, 0);
261 1.26 cgd
262 1.174 ad if (mtx != NULL)
263 1.174 ad mutex_exit(mtx);
264 1.204 ad l->l_kpriority = true;
265 1.244 ad sq = sleeptab_lookup(&sleeptab, l, &mp);
266 1.244 ad sleepq_enter(sq, l, mp);
267 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
268 1.188 yamt error = sleepq_block(timo, intr);
269 1.174 ad if (mtx != NULL)
270 1.174 ad mutex_enter(mtx);
271 1.83 thorpej
272 1.174 ad return error;
273 1.139 cl }
274 1.139 cl
275 1.252 wrstuden #ifdef KERN_SA
276 1.252 wrstuden /*
277 1.252 wrstuden * sa_awaken:
278 1.252 wrstuden *
279 1.252 wrstuden * We believe this lwp is an SA lwp. If it's yielding,
280 1.252 wrstuden * let it know it needs to wake up.
281 1.252 wrstuden *
282 1.252 wrstuden * We are called and exit with the lwp locked. We are
283 1.252 wrstuden * called in the middle of wakeup operations, so we need
284 1.252 wrstuden * to not touch the locks at all.
285 1.252 wrstuden */
286 1.252 wrstuden void
287 1.252 wrstuden sa_awaken(struct lwp *l)
288 1.252 wrstuden {
289 1.252 wrstuden /* LOCK_ASSERT(lwp_locked(l, NULL)); */
290 1.252 wrstuden
291 1.252 wrstuden if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
292 1.252 wrstuden l->l_flag &= ~LW_SA_IDLE;
293 1.252 wrstuden }
294 1.252 wrstuden #endif /* KERN_SA */
295 1.252 wrstuden
296 1.26 cgd /*
297 1.174 ad * OBSOLETE INTERFACE
298 1.174 ad *
299 1.255 skrll * Make all LWPs sleeping on the specified identifier runnable.
300 1.26 cgd */
301 1.26 cgd void
302 1.174 ad wakeup(wchan_t ident)
303 1.26 cgd {
304 1.174 ad sleepq_t *sq;
305 1.244 ad kmutex_t *mp;
306 1.83 thorpej
307 1.261 rmind if (__predict_false(cold))
308 1.174 ad return;
309 1.83 thorpej
310 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
311 1.244 ad sleepq_wake(sq, ident, (u_int)-1, mp);
312 1.63 thorpej }
313 1.63 thorpej
314 1.63 thorpej /*
315 1.174 ad * OBSOLETE INTERFACE
316 1.174 ad *
317 1.255 skrll * Make the highest priority LWP first in line on the specified
318 1.63 thorpej * identifier runnable.
319 1.63 thorpej */
320 1.174 ad void
321 1.174 ad wakeup_one(wchan_t ident)
322 1.63 thorpej {
323 1.174 ad sleepq_t *sq;
324 1.244 ad kmutex_t *mp;
325 1.63 thorpej
326 1.261 rmind if (__predict_false(cold))
327 1.174 ad return;
328 1.188 yamt
329 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
330 1.244 ad sleepq_wake(sq, ident, 1, mp);
331 1.174 ad }
332 1.63 thorpej
333 1.117 gmcgarry
334 1.117 gmcgarry /*
335 1.255 skrll * General yield call. Puts the current LWP back on its run queue and
336 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
337 1.255 skrll * current LWP explicitly requests it (eg sched_yield(2)).
338 1.117 gmcgarry */
339 1.117 gmcgarry void
340 1.117 gmcgarry yield(void)
341 1.117 gmcgarry {
342 1.122 thorpej struct lwp *l = curlwp;
343 1.117 gmcgarry
344 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
345 1.174 ad lwp_lock(l);
346 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
347 1.188 yamt KASSERT(l->l_stat == LSONPROC);
348 1.204 ad l->l_kpriority = false;
349 1.188 yamt (void)mi_switch(l);
350 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
351 1.69 thorpej }
352 1.69 thorpej
353 1.69 thorpej /*
354 1.255 skrll * General preemption call. Puts the current LWP back on its run queue
355 1.156 rpaulo * and performs an involuntary context switch.
356 1.69 thorpej */
357 1.69 thorpej void
358 1.174 ad preempt(void)
359 1.69 thorpej {
360 1.122 thorpej struct lwp *l = curlwp;
361 1.69 thorpej
362 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
363 1.174 ad lwp_lock(l);
364 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
365 1.188 yamt KASSERT(l->l_stat == LSONPROC);
366 1.204 ad l->l_kpriority = false;
367 1.174 ad l->l_nivcsw++;
368 1.188 yamt (void)mi_switch(l);
369 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
370 1.69 thorpej }
371 1.69 thorpej
372 1.234 ad /*
373 1.234 ad * Handle a request made by another agent to preempt the current LWP
374 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
375 1.234 ad *
376 1.234 ad * Character addresses for lockstat only.
377 1.234 ad */
378 1.231 ad static char in_critical_section;
379 1.231 ad static char kernel_lock_held;
380 1.231 ad static char is_softint;
381 1.262 yamt static char cpu_kpreempt_enter_fail;
382 1.231 ad
383 1.231 ad bool
384 1.231 ad kpreempt(uintptr_t where)
385 1.231 ad {
386 1.231 ad uintptr_t failed;
387 1.231 ad lwp_t *l;
388 1.264 ad int s, dop, lsflag;
389 1.231 ad
390 1.231 ad l = curlwp;
391 1.231 ad failed = 0;
392 1.231 ad while ((dop = l->l_dopreempt) != 0) {
393 1.231 ad if (l->l_stat != LSONPROC) {
394 1.231 ad /*
395 1.231 ad * About to block (or die), let it happen.
396 1.231 ad * Doesn't really count as "preemption has
397 1.231 ad * been blocked", since we're going to
398 1.231 ad * context switch.
399 1.231 ad */
400 1.231 ad l->l_dopreempt = 0;
401 1.231 ad return true;
402 1.231 ad }
403 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
404 1.231 ad /* Can't preempt idle loop, don't count as failure. */
405 1.261 rmind l->l_dopreempt = 0;
406 1.261 rmind return true;
407 1.231 ad }
408 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
409 1.231 ad /* LWP holds preemption disabled, explicitly. */
410 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
411 1.234 ad kpreempt_ev_crit.ev_count++;
412 1.231 ad }
413 1.231 ad failed = (uintptr_t)&in_critical_section;
414 1.231 ad break;
415 1.231 ad }
416 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
417 1.261 rmind /* Can't preempt soft interrupts yet. */
418 1.261 rmind l->l_dopreempt = 0;
419 1.261 rmind failed = (uintptr_t)&is_softint;
420 1.261 rmind break;
421 1.231 ad }
422 1.231 ad s = splsched();
423 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
424 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
425 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
426 1.231 ad splx(s);
427 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
428 1.234 ad kpreempt_ev_klock.ev_count++;
429 1.231 ad }
430 1.231 ad failed = (uintptr_t)&kernel_lock_held;
431 1.231 ad break;
432 1.231 ad }
433 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
434 1.231 ad /*
435 1.231 ad * It may be that the IPL is too high.
436 1.231 ad * kpreempt_enter() can schedule an
437 1.231 ad * interrupt to retry later.
438 1.231 ad */
439 1.231 ad splx(s);
440 1.262 yamt failed = (uintptr_t)&cpu_kpreempt_enter_fail;
441 1.231 ad break;
442 1.231 ad }
443 1.231 ad /* Do it! */
444 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
445 1.234 ad kpreempt_ev_immed.ev_count++;
446 1.231 ad }
447 1.231 ad lwp_lock(l);
448 1.231 ad mi_switch(l);
449 1.231 ad l->l_nopreempt++;
450 1.231 ad splx(s);
451 1.231 ad
452 1.231 ad /* Take care of any MD cleanup. */
453 1.231 ad cpu_kpreempt_exit(where);
454 1.231 ad l->l_nopreempt--;
455 1.231 ad }
456 1.231 ad
457 1.264 ad if (__predict_true(!failed)) {
458 1.264 ad return false;
459 1.264 ad }
460 1.264 ad
461 1.231 ad /* Record preemption failure for reporting via lockstat. */
462 1.264 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
463 1.264 ad lsflag = 0;
464 1.264 ad LOCKSTAT_ENTER(lsflag);
465 1.264 ad if (__predict_false(lsflag)) {
466 1.264 ad if (where == 0) {
467 1.264 ad where = (uintptr_t)__builtin_return_address(0);
468 1.264 ad }
469 1.264 ad /* Preemption is on, might recurse, so make it atomic. */
470 1.264 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
471 1.264 ad (void *)where) == NULL) {
472 1.264 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
473 1.264 ad l->l_pfaillock = failed;
474 1.231 ad }
475 1.231 ad }
476 1.264 ad LOCKSTAT_EXIT(lsflag);
477 1.264 ad return true;
478 1.231 ad }
479 1.231 ad
480 1.69 thorpej /*
481 1.231 ad * Return true if preemption is explicitly disabled.
482 1.230 ad */
483 1.231 ad bool
484 1.231 ad kpreempt_disabled(void)
485 1.231 ad {
486 1.261 rmind const lwp_t *l = curlwp;
487 1.231 ad
488 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
489 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
490 1.231 ad }
491 1.230 ad
492 1.230 ad /*
493 1.231 ad * Disable kernel preemption.
494 1.230 ad */
495 1.230 ad void
496 1.231 ad kpreempt_disable(void)
497 1.230 ad {
498 1.230 ad
499 1.231 ad KPREEMPT_DISABLE(curlwp);
500 1.230 ad }
501 1.230 ad
502 1.230 ad /*
503 1.231 ad * Reenable kernel preemption.
504 1.230 ad */
505 1.231 ad void
506 1.231 ad kpreempt_enable(void)
507 1.230 ad {
508 1.230 ad
509 1.231 ad KPREEMPT_ENABLE(curlwp);
510 1.230 ad }
511 1.230 ad
512 1.230 ad /*
513 1.188 yamt * Compute the amount of time during which the current lwp was running.
514 1.130 nathanw *
515 1.188 yamt * - update l_rtime unless it's an idle lwp.
516 1.188 yamt */
517 1.188 yamt
518 1.199 ad void
519 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
520 1.188 yamt {
521 1.188 yamt
522 1.261 rmind if (__predict_false(l->l_flag & LW_IDLE))
523 1.188 yamt return;
524 1.188 yamt
525 1.212 yamt /* rtime += now - stime */
526 1.212 yamt bintime_add(&l->l_rtime, now);
527 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
528 1.188 yamt }
529 1.188 yamt
530 1.188 yamt /*
531 1.245 ad * Select next LWP from the current CPU to run..
532 1.245 ad */
533 1.245 ad static inline lwp_t *
534 1.245 ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
535 1.245 ad {
536 1.245 ad lwp_t *newl;
537 1.245 ad
538 1.245 ad /*
539 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
540 1.245 ad * If no LWP is runnable, select the idle LWP.
541 1.245 ad *
542 1.245 ad * Note that spc_lwplock might not necessary be held, and
543 1.245 ad * new thread would be unlocked after setting the LWP-lock.
544 1.245 ad */
545 1.245 ad newl = sched_nextlwp();
546 1.245 ad if (newl != NULL) {
547 1.245 ad sched_dequeue(newl);
548 1.245 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
549 1.245 ad newl->l_stat = LSONPROC;
550 1.245 ad newl->l_cpu = ci;
551 1.248 ad newl->l_pflag |= LP_RUNNING;
552 1.245 ad lwp_setlock(newl, spc->spc_lwplock);
553 1.245 ad } else {
554 1.245 ad newl = ci->ci_data.cpu_idlelwp;
555 1.245 ad newl->l_stat = LSONPROC;
556 1.248 ad newl->l_pflag |= LP_RUNNING;
557 1.245 ad }
558 1.261 rmind
559 1.245 ad /*
560 1.245 ad * Only clear want_resched if there are no pending (slow)
561 1.245 ad * software interrupts.
562 1.245 ad */
563 1.245 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
564 1.245 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
565 1.245 ad spc->spc_curpriority = lwp_eprio(newl);
566 1.245 ad
567 1.245 ad return newl;
568 1.245 ad }
569 1.245 ad
570 1.245 ad /*
571 1.188 yamt * The machine independent parts of context switch.
572 1.188 yamt *
573 1.188 yamt * Returns 1 if another LWP was actually run.
574 1.26 cgd */
575 1.122 thorpej int
576 1.199 ad mi_switch(lwp_t *l)
577 1.26 cgd {
578 1.246 rmind struct cpu_info *ci;
579 1.76 thorpej struct schedstate_percpu *spc;
580 1.188 yamt struct lwp *newl;
581 1.174 ad int retval, oldspl;
582 1.212 yamt struct bintime bt;
583 1.199 ad bool returning;
584 1.26 cgd
585 1.188 yamt KASSERT(lwp_locked(l, NULL));
586 1.231 ad KASSERT(kpreempt_disabled());
587 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
588 1.174 ad
589 1.174 ad kstack_check_magic(l);
590 1.83 thorpej
591 1.212 yamt binuptime(&bt);
592 1.199 ad
593 1.267 yamt KASSERT((l->l_pflag & LP_RUNNING) != 0);
594 1.231 ad KASSERT(l->l_cpu == curcpu());
595 1.196 ad ci = l->l_cpu;
596 1.196 ad spc = &ci->ci_schedstate;
597 1.199 ad returning = false;
598 1.190 ad newl = NULL;
599 1.190 ad
600 1.199 ad /*
601 1.199 ad * If we have been asked to switch to a specific LWP, then there
602 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
603 1.199 ad * blocking, then return to the interrupted thread without adjusting
604 1.199 ad * VM context or its start time: neither have been changed in order
605 1.199 ad * to take the interrupt.
606 1.199 ad */
607 1.190 ad if (l->l_switchto != NULL) {
608 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
609 1.199 ad returning = true;
610 1.199 ad softint_block(l);
611 1.248 ad if ((l->l_pflag & LP_TIMEINTR) != 0)
612 1.212 yamt updatertime(l, &bt);
613 1.199 ad }
614 1.190 ad newl = l->l_switchto;
615 1.190 ad l->l_switchto = NULL;
616 1.190 ad }
617 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
618 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
619 1.204 ad /* There are pending soft interrupts, so pick one. */
620 1.204 ad newl = softint_picklwp();
621 1.204 ad newl->l_stat = LSONPROC;
622 1.248 ad newl->l_pflag |= LP_RUNNING;
623 1.204 ad }
624 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
625 1.190 ad
626 1.180 dsl /* Count time spent in current system call */
627 1.199 ad if (!returning) {
628 1.199 ad SYSCALL_TIME_SLEEP(l);
629 1.180 dsl
630 1.199 ad /*
631 1.199 ad * XXXSMP If we are using h/w performance counters,
632 1.199 ad * save context.
633 1.199 ad */
634 1.174 ad #if PERFCTRS
635 1.199 ad if (PMC_ENABLED(l->l_proc)) {
636 1.199 ad pmc_save_context(l->l_proc);
637 1.199 ad }
638 1.199 ad #endif
639 1.212 yamt updatertime(l, &bt);
640 1.174 ad }
641 1.113 gmcgarry
642 1.246 rmind /* Lock the runqueue */
643 1.246 rmind KASSERT(l->l_stat != LSRUN);
644 1.246 rmind mutex_spin_enter(spc->spc_mutex);
645 1.246 rmind
646 1.113 gmcgarry /*
647 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
648 1.113 gmcgarry */
649 1.246 rmind if (l->l_stat == LSONPROC && l != newl) {
650 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
651 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
652 1.188 yamt l->l_stat = LSRUN;
653 1.246 rmind lwp_setlock(l, spc->spc_mutex);
654 1.246 rmind sched_enqueue(l, true);
655 1.246 rmind /* Handle migration case */
656 1.246 rmind KASSERT(spc->spc_migrating == NULL);
657 1.246 rmind if (l->l_target_cpu != NULL) {
658 1.246 rmind spc->spc_migrating = l;
659 1.216 rmind }
660 1.246 rmind } else
661 1.188 yamt l->l_stat = LSIDL;
662 1.174 ad }
663 1.174 ad
664 1.245 ad /* Pick new LWP to run. */
665 1.190 ad if (newl == NULL) {
666 1.245 ad newl = nextlwp(ci, spc);
667 1.199 ad }
668 1.199 ad
669 1.204 ad /* Items that must be updated with the CPU locked. */
670 1.199 ad if (!returning) {
671 1.204 ad /* Update the new LWP's start time. */
672 1.212 yamt newl->l_stime = bt;
673 1.204 ad
674 1.199 ad /*
675 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
676 1.204 ad * We use cpu_onproc to keep track of which kernel or
677 1.204 ad * user thread is running 'underneath' the software
678 1.204 ad * interrupt. This is important for time accounting,
679 1.204 ad * itimers and forcing user threads to preempt (aston).
680 1.199 ad */
681 1.204 ad ci->ci_data.cpu_onproc = newl;
682 1.188 yamt }
683 1.188 yamt
684 1.241 ad /*
685 1.241 ad * Preemption related tasks. Must be done with the current
686 1.241 ad * CPU locked.
687 1.241 ad */
688 1.241 ad cpu_did_resched(l);
689 1.231 ad l->l_dopreempt = 0;
690 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
691 1.231 ad LOCKSTAT_FLAG(lsflag);
692 1.231 ad LOCKSTAT_ENTER(lsflag);
693 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
694 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
695 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
696 1.231 ad LOCKSTAT_EXIT(lsflag);
697 1.231 ad l->l_pfailtime = 0;
698 1.231 ad l->l_pfaillock = 0;
699 1.231 ad l->l_pfailaddr = 0;
700 1.231 ad }
701 1.231 ad
702 1.188 yamt if (l != newl) {
703 1.188 yamt struct lwp *prevlwp;
704 1.174 ad
705 1.209 ad /* Release all locks, but leave the current LWP locked */
706 1.246 rmind if (l->l_mutex == spc->spc_mutex) {
707 1.209 ad /*
708 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
709 1.209 ad * to the run queue (it is now locked by spc_mutex).
710 1.209 ad */
711 1.217 ad mutex_spin_exit(spc->spc_lwplock);
712 1.188 yamt } else {
713 1.209 ad /*
714 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
715 1.209 ad * run queues.
716 1.209 ad */
717 1.188 yamt mutex_spin_exit(spc->spc_mutex);
718 1.188 yamt }
719 1.188 yamt
720 1.209 ad /*
721 1.253 skrll * Mark that context switch is going to be performed
722 1.209 ad * for this LWP, to protect it from being switched
723 1.209 ad * to on another CPU.
724 1.209 ad */
725 1.209 ad KASSERT(l->l_ctxswtch == 0);
726 1.209 ad l->l_ctxswtch = 1;
727 1.209 ad l->l_ncsw++;
728 1.267 yamt KASSERT((l->l_pflag & LP_RUNNING) != 0);
729 1.248 ad l->l_pflag &= ~LP_RUNNING;
730 1.209 ad
731 1.209 ad /*
732 1.209 ad * Increase the count of spin-mutexes before the release
733 1.209 ad * of the last lock - we must remain at IPL_SCHED during
734 1.209 ad * the context switch.
735 1.209 ad */
736 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
737 1.209 ad ci->ci_mtx_count--;
738 1.209 ad lwp_unlock(l);
739 1.209 ad
740 1.218 ad /* Count the context switch on this CPU. */
741 1.218 ad ci->ci_data.cpu_nswtch++;
742 1.188 yamt
743 1.209 ad /* Update status for lwpctl, if present. */
744 1.209 ad if (l->l_lwpctl != NULL)
745 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
746 1.209 ad
747 1.199 ad /*
748 1.199 ad * Save old VM context, unless a soft interrupt
749 1.199 ad * handler is blocking.
750 1.199 ad */
751 1.199 ad if (!returning)
752 1.199 ad pmap_deactivate(l);
753 1.188 yamt
754 1.209 ad /*
755 1.209 ad * We may need to spin-wait for if 'newl' is still
756 1.209 ad * context switching on another CPU.
757 1.209 ad */
758 1.261 rmind if (__predict_false(newl->l_ctxswtch != 0)) {
759 1.209 ad u_int count;
760 1.209 ad count = SPINLOCK_BACKOFF_MIN;
761 1.209 ad while (newl->l_ctxswtch)
762 1.209 ad SPINLOCK_BACKOFF(count);
763 1.209 ad }
764 1.207 ad
765 1.188 yamt /* Switch to the new LWP.. */
766 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
767 1.207 ad ci = curcpu();
768 1.207 ad
769 1.188 yamt /*
770 1.209 ad * Switched away - we have new curlwp.
771 1.209 ad * Restore VM context and IPL.
772 1.188 yamt */
773 1.209 ad pmap_activate(l);
774 1.265 rmind uvm_emap_switch(l);
775 1.265 rmind
776 1.188 yamt if (prevlwp != NULL) {
777 1.209 ad /* Normalize the count of the spin-mutexes */
778 1.209 ad ci->ci_mtx_count++;
779 1.209 ad /* Unmark the state of context switch */
780 1.209 ad membar_exit();
781 1.209 ad prevlwp->l_ctxswtch = 0;
782 1.188 yamt }
783 1.209 ad
784 1.209 ad /* Update status for lwpctl, if present. */
785 1.219 ad if (l->l_lwpctl != NULL) {
786 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
787 1.219 ad l->l_lwpctl->lc_pctr++;
788 1.219 ad }
789 1.174 ad
790 1.231 ad KASSERT(l->l_cpu == ci);
791 1.231 ad splx(oldspl);
792 1.188 yamt retval = 1;
793 1.188 yamt } else {
794 1.188 yamt /* Nothing to do - just unlock and return. */
795 1.246 rmind mutex_spin_exit(spc->spc_mutex);
796 1.188 yamt lwp_unlock(l);
797 1.122 thorpej retval = 0;
798 1.122 thorpej }
799 1.110 briggs
800 1.188 yamt KASSERT(l == curlwp);
801 1.188 yamt KASSERT(l->l_stat == LSONPROC);
802 1.188 yamt
803 1.110 briggs /*
804 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
805 1.231 ad * XXXSMP preemption problem.
806 1.26 cgd */
807 1.114 gmcgarry #if PERFCTRS
808 1.175 christos if (PMC_ENABLED(l->l_proc)) {
809 1.175 christos pmc_restore_context(l->l_proc);
810 1.166 christos }
811 1.114 gmcgarry #endif
812 1.180 dsl SYSCALL_TIME_WAKEUP(l);
813 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
814 1.169 yamt
815 1.122 thorpej return retval;
816 1.26 cgd }
817 1.26 cgd
818 1.26 cgd /*
819 1.245 ad * The machine independent parts of context switch to oblivion.
820 1.245 ad * Does not return. Call with the LWP unlocked.
821 1.245 ad */
822 1.245 ad void
823 1.245 ad lwp_exit_switchaway(lwp_t *l)
824 1.245 ad {
825 1.245 ad struct cpu_info *ci;
826 1.245 ad struct lwp *newl;
827 1.245 ad struct bintime bt;
828 1.245 ad
829 1.245 ad ci = l->l_cpu;
830 1.245 ad
831 1.245 ad KASSERT(kpreempt_disabled());
832 1.245 ad KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
833 1.245 ad KASSERT(ci == curcpu());
834 1.245 ad LOCKDEBUG_BARRIER(NULL, 0);
835 1.245 ad
836 1.245 ad kstack_check_magic(l);
837 1.245 ad
838 1.245 ad /* Count time spent in current system call */
839 1.245 ad SYSCALL_TIME_SLEEP(l);
840 1.245 ad binuptime(&bt);
841 1.245 ad updatertime(l, &bt);
842 1.245 ad
843 1.245 ad /* Must stay at IPL_SCHED even after releasing run queue lock. */
844 1.245 ad (void)splsched();
845 1.245 ad
846 1.245 ad /*
847 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
848 1.245 ad * If no LWP is runnable, select the idle LWP.
849 1.245 ad *
850 1.245 ad * Note that spc_lwplock might not necessary be held, and
851 1.245 ad * new thread would be unlocked after setting the LWP-lock.
852 1.245 ad */
853 1.245 ad spc_lock(ci);
854 1.245 ad #ifndef __HAVE_FAST_SOFTINTS
855 1.245 ad if (ci->ci_data.cpu_softints != 0) {
856 1.245 ad /* There are pending soft interrupts, so pick one. */
857 1.245 ad newl = softint_picklwp();
858 1.245 ad newl->l_stat = LSONPROC;
859 1.248 ad newl->l_pflag |= LP_RUNNING;
860 1.245 ad } else
861 1.245 ad #endif /* !__HAVE_FAST_SOFTINTS */
862 1.245 ad {
863 1.245 ad newl = nextlwp(ci, &ci->ci_schedstate);
864 1.245 ad }
865 1.245 ad
866 1.245 ad /* Update the new LWP's start time. */
867 1.245 ad newl->l_stime = bt;
868 1.248 ad l->l_pflag &= ~LP_RUNNING;
869 1.245 ad
870 1.245 ad /*
871 1.245 ad * ci_curlwp changes when a fast soft interrupt occurs.
872 1.245 ad * We use cpu_onproc to keep track of which kernel or
873 1.245 ad * user thread is running 'underneath' the software
874 1.245 ad * interrupt. This is important for time accounting,
875 1.245 ad * itimers and forcing user threads to preempt (aston).
876 1.245 ad */
877 1.245 ad ci->ci_data.cpu_onproc = newl;
878 1.245 ad
879 1.245 ad /*
880 1.245 ad * Preemption related tasks. Must be done with the current
881 1.245 ad * CPU locked.
882 1.245 ad */
883 1.245 ad cpu_did_resched(l);
884 1.245 ad
885 1.245 ad /* Unlock the run queue. */
886 1.245 ad spc_unlock(ci);
887 1.245 ad
888 1.245 ad /* Count the context switch on this CPU. */
889 1.245 ad ci->ci_data.cpu_nswtch++;
890 1.245 ad
891 1.245 ad /* Update status for lwpctl, if present. */
892 1.245 ad if (l->l_lwpctl != NULL)
893 1.247 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
894 1.245 ad
895 1.245 ad /*
896 1.245 ad * We may need to spin-wait for if 'newl' is still
897 1.245 ad * context switching on another CPU.
898 1.245 ad */
899 1.261 rmind if (__predict_false(newl->l_ctxswtch != 0)) {
900 1.245 ad u_int count;
901 1.245 ad count = SPINLOCK_BACKOFF_MIN;
902 1.245 ad while (newl->l_ctxswtch)
903 1.245 ad SPINLOCK_BACKOFF(count);
904 1.245 ad }
905 1.245 ad
906 1.245 ad /* Switch to the new LWP.. */
907 1.245 ad (void)cpu_switchto(NULL, newl, false);
908 1.245 ad
909 1.251 uwe for (;;) continue; /* XXX: convince gcc about "noreturn" */
910 1.245 ad /* NOTREACHED */
911 1.245 ad }
912 1.245 ad
913 1.245 ad /*
914 1.271 rmind * setrunnable: change LWP state to be runnable, placing it on the run queue.
915 1.174 ad *
916 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
917 1.26 cgd */
918 1.26 cgd void
919 1.122 thorpej setrunnable(struct lwp *l)
920 1.26 cgd {
921 1.122 thorpej struct proc *p = l->l_proc;
922 1.205 ad struct cpu_info *ci;
923 1.26 cgd
924 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
925 1.229 ad KASSERT(mutex_owned(p->p_lock));
926 1.183 ad KASSERT(lwp_locked(l, NULL));
927 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
928 1.83 thorpej
929 1.122 thorpej switch (l->l_stat) {
930 1.122 thorpej case LSSTOP:
931 1.33 mycroft /*
932 1.33 mycroft * If we're being traced (possibly because someone attached us
933 1.33 mycroft * while we were stopped), check for a signal from the debugger.
934 1.33 mycroft */
935 1.256 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
936 1.174 ad signotify(l);
937 1.174 ad p->p_nrlwps++;
938 1.26 cgd break;
939 1.174 ad case LSSUSPENDED:
940 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
941 1.174 ad p->p_nrlwps++;
942 1.192 rmind cv_broadcast(&p->p_lwpcv);
943 1.122 thorpej break;
944 1.174 ad case LSSLEEP:
945 1.174 ad KASSERT(l->l_wchan != NULL);
946 1.26 cgd break;
947 1.174 ad default:
948 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
949 1.26 cgd }
950 1.139 cl
951 1.252 wrstuden #ifdef KERN_SA
952 1.252 wrstuden if (l->l_proc->p_sa)
953 1.252 wrstuden sa_awaken(l);
954 1.252 wrstuden #endif /* KERN_SA */
955 1.252 wrstuden
956 1.174 ad /*
957 1.174 ad * If the LWP was sleeping interruptably, then it's OK to start it
958 1.174 ad * again. If not, mark it as still sleeping.
959 1.174 ad */
960 1.174 ad if (l->l_wchan != NULL) {
961 1.174 ad l->l_stat = LSSLEEP;
962 1.183 ad /* lwp_unsleep() will release the lock. */
963 1.221 ad lwp_unsleep(l, true);
964 1.174 ad return;
965 1.174 ad }
966 1.139 cl
967 1.174 ad /*
968 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
969 1.174 ad * about to call mi_switch(), in which case it will yield.
970 1.174 ad */
971 1.248 ad if ((l->l_pflag & LP_RUNNING) != 0) {
972 1.174 ad l->l_stat = LSONPROC;
973 1.174 ad l->l_slptime = 0;
974 1.174 ad lwp_unlock(l);
975 1.174 ad return;
976 1.174 ad }
977 1.122 thorpej
978 1.174 ad /*
979 1.205 ad * Look for a CPU to run.
980 1.205 ad * Set the LWP runnable.
981 1.174 ad */
982 1.205 ad ci = sched_takecpu(l);
983 1.205 ad l->l_cpu = ci;
984 1.236 ad spc_lock(ci);
985 1.236 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
986 1.188 yamt sched_setrunnable(l);
987 1.174 ad l->l_stat = LSRUN;
988 1.122 thorpej l->l_slptime = 0;
989 1.174 ad
990 1.271 rmind sched_enqueue(l, false);
991 1.271 rmind resched_cpu(l);
992 1.271 rmind lwp_unlock(l);
993 1.26 cgd }
994 1.26 cgd
995 1.26 cgd /*
996 1.174 ad * suspendsched:
997 1.174 ad *
998 1.266 yamt * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
999 1.174 ad */
1000 1.94 bouyer void
1001 1.174 ad suspendsched(void)
1002 1.94 bouyer {
1003 1.174 ad CPU_INFO_ITERATOR cii;
1004 1.174 ad struct cpu_info *ci;
1005 1.122 thorpej struct lwp *l;
1006 1.174 ad struct proc *p;
1007 1.94 bouyer
1008 1.94 bouyer /*
1009 1.174 ad * We do this by process in order not to violate the locking rules.
1010 1.94 bouyer */
1011 1.228 ad mutex_enter(proc_lock);
1012 1.174 ad PROCLIST_FOREACH(p, &allproc) {
1013 1.238 ad if ((p->p_flag & PK_MARKER) != 0)
1014 1.238 ad continue;
1015 1.238 ad
1016 1.229 ad mutex_enter(p->p_lock);
1017 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
1018 1.229 ad mutex_exit(p->p_lock);
1019 1.94 bouyer continue;
1020 1.174 ad }
1021 1.174 ad
1022 1.174 ad p->p_stat = SSTOP;
1023 1.174 ad
1024 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1025 1.174 ad if (l == curlwp)
1026 1.174 ad continue;
1027 1.174 ad
1028 1.174 ad lwp_lock(l);
1029 1.122 thorpej
1030 1.97 enami /*
1031 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
1032 1.174 ad * when it tries to return to user mode. We want to
1033 1.174 ad * try and get to get as many LWPs as possible to
1034 1.174 ad * the user / kernel boundary, so that they will
1035 1.174 ad * release any locks that they hold.
1036 1.97 enami */
1037 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1038 1.174 ad
1039 1.174 ad if (l->l_stat == LSSLEEP &&
1040 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1041 1.174 ad /* setrunnable() will release the lock. */
1042 1.174 ad setrunnable(l);
1043 1.174 ad continue;
1044 1.174 ad }
1045 1.174 ad
1046 1.174 ad lwp_unlock(l);
1047 1.94 bouyer }
1048 1.174 ad
1049 1.229 ad mutex_exit(p->p_lock);
1050 1.94 bouyer }
1051 1.228 ad mutex_exit(proc_lock);
1052 1.174 ad
1053 1.174 ad /*
1054 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1055 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
1056 1.174 ad */
1057 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1058 1.204 ad spc_lock(ci);
1059 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
1060 1.204 ad spc_unlock(ci);
1061 1.204 ad }
1062 1.174 ad }
1063 1.174 ad
1064 1.174 ad /*
1065 1.174 ad * sched_unsleep:
1066 1.174 ad *
1067 1.174 ad * The is called when the LWP has not been awoken normally but instead
1068 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1069 1.174 ad * it's not a valid action for running or idle LWPs.
1070 1.174 ad */
1071 1.271 rmind static void
1072 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1073 1.174 ad {
1074 1.174 ad
1075 1.174 ad lwp_unlock(l);
1076 1.174 ad panic("sched_unsleep");
1077 1.174 ad }
1078 1.174 ad
1079 1.250 rmind static void
1080 1.188 yamt resched_cpu(struct lwp *l)
1081 1.188 yamt {
1082 1.250 rmind struct cpu_info *ci = ci = l->l_cpu;
1083 1.188 yamt
1084 1.250 rmind KASSERT(lwp_locked(l, NULL));
1085 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1086 1.188 yamt cpu_need_resched(ci, 0);
1087 1.188 yamt }
1088 1.188 yamt
1089 1.188 yamt static void
1090 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1091 1.174 ad {
1092 1.174 ad
1093 1.188 yamt KASSERT(lwp_locked(l, NULL));
1094 1.174 ad
1095 1.271 rmind if (l->l_stat == LSRUN) {
1096 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1097 1.204 ad sched_dequeue(l);
1098 1.204 ad l->l_priority = pri;
1099 1.204 ad sched_enqueue(l, false);
1100 1.204 ad } else {
1101 1.174 ad l->l_priority = pri;
1102 1.157 yamt }
1103 1.188 yamt resched_cpu(l);
1104 1.184 yamt }
1105 1.184 yamt
1106 1.188 yamt static void
1107 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1108 1.184 yamt {
1109 1.184 yamt
1110 1.188 yamt KASSERT(lwp_locked(l, NULL));
1111 1.184 yamt
1112 1.271 rmind if (l->l_stat == LSRUN) {
1113 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1114 1.204 ad sched_dequeue(l);
1115 1.204 ad l->l_inheritedprio = pri;
1116 1.204 ad sched_enqueue(l, false);
1117 1.204 ad } else {
1118 1.184 yamt l->l_inheritedprio = pri;
1119 1.184 yamt }
1120 1.188 yamt resched_cpu(l);
1121 1.184 yamt }
1122 1.184 yamt
1123 1.184 yamt struct lwp *
1124 1.184 yamt syncobj_noowner(wchan_t wchan)
1125 1.184 yamt {
1126 1.184 yamt
1127 1.184 yamt return NULL;
1128 1.151 yamt }
1129 1.151 yamt
1130 1.250 rmind /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1131 1.250 rmind const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1132 1.134 matt
1133 1.134 matt /*
1134 1.188 yamt * sched_pstats:
1135 1.188 yamt *
1136 1.188 yamt * Update process statistics and check CPU resource allocation.
1137 1.188 yamt * Call scheduler-specific hook to eventually adjust process/LWP
1138 1.188 yamt * priorities.
1139 1.130 nathanw */
1140 1.113 gmcgarry void
1141 1.188 yamt sched_pstats(void *arg)
1142 1.113 gmcgarry {
1143 1.249 rmind const int clkhz = (stathz != 0 ? stathz : hz);
1144 1.260 ad static bool backwards;
1145 1.188 yamt struct rlimit *rlim;
1146 1.188 yamt struct lwp *l;
1147 1.188 yamt struct proc *p;
1148 1.188 yamt long runtm;
1149 1.249 rmind fixpt_t lpctcpu;
1150 1.249 rmind u_int lcpticks;
1151 1.249 rmind int sig;
1152 1.113 gmcgarry
1153 1.188 yamt sched_pstats_ticks++;
1154 1.174 ad
1155 1.228 ad mutex_enter(proc_lock);
1156 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1157 1.249 rmind if (__predict_false((p->p_flag & PK_MARKER) != 0))
1158 1.238 ad continue;
1159 1.238 ad
1160 1.271 rmind /* Increment sleep time (if sleeping), ignore overflow. */
1161 1.229 ad mutex_enter(p->p_lock);
1162 1.212 yamt runtm = p->p_rtime.sec;
1163 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1164 1.249 rmind if (__predict_false((l->l_flag & LW_IDLE) != 0))
1165 1.188 yamt continue;
1166 1.188 yamt lwp_lock(l);
1167 1.212 yamt runtm += l->l_rtime.sec;
1168 1.188 yamt l->l_swtime++;
1169 1.242 rmind sched_lwp_stats(l);
1170 1.188 yamt lwp_unlock(l);
1171 1.113 gmcgarry
1172 1.188 yamt l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1173 1.249 rmind if (l->l_slptime != 0)
1174 1.249 rmind continue;
1175 1.249 rmind
1176 1.249 rmind lpctcpu = l->l_pctcpu;
1177 1.249 rmind lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1178 1.249 rmind lpctcpu += ((FSCALE - ccpu) *
1179 1.249 rmind (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1180 1.249 rmind l->l_pctcpu = lpctcpu;
1181 1.188 yamt }
1182 1.249 rmind /* Calculating p_pctcpu only for ps(1) */
1183 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1184 1.174 ad
1185 1.188 yamt /*
1186 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1187 1.188 yamt * If over max, kill it.
1188 1.188 yamt */
1189 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1190 1.188 yamt sig = 0;
1191 1.249 rmind if (__predict_false(runtm >= rlim->rlim_cur)) {
1192 1.188 yamt if (runtm >= rlim->rlim_max)
1193 1.188 yamt sig = SIGKILL;
1194 1.188 yamt else {
1195 1.188 yamt sig = SIGXCPU;
1196 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1197 1.188 yamt rlim->rlim_cur += 5;
1198 1.188 yamt }
1199 1.188 yamt }
1200 1.229 ad mutex_exit(p->p_lock);
1201 1.259 rmind if (__predict_false(runtm < 0)) {
1202 1.260 ad if (!backwards) {
1203 1.260 ad backwards = true;
1204 1.260 ad printf("WARNING: negative runtime; "
1205 1.260 ad "monotonic clock has gone backwards\n");
1206 1.260 ad }
1207 1.259 rmind } else if (__predict_false(sig)) {
1208 1.259 rmind KASSERT((p->p_flag & PK_SYSTEM) == 0);
1209 1.188 yamt psignal(p, sig);
1210 1.259 rmind }
1211 1.174 ad }
1212 1.228 ad mutex_exit(proc_lock);
1213 1.188 yamt uvm_meter();
1214 1.273 pooka cv_broadcast(&lbolt);
1215 1.188 yamt callout_schedule(&sched_pstats_ch, hz);
1216 1.113 gmcgarry }
1217