kern_synch.c revision 1.289 1 1.289 rmind /* $NetBSD: kern_synch.c,v 1.289 2011/05/13 22:16:43 rmind Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.260 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 1.260 ad * The NetBSD Foundation, Inc.
6 1.63 thorpej * All rights reserved.
7 1.63 thorpej *
8 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
9 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 1.188 yamt * Daniel Sieger.
12 1.63 thorpej *
13 1.63 thorpej * Redistribution and use in source and binary forms, with or without
14 1.63 thorpej * modification, are permitted provided that the following conditions
15 1.63 thorpej * are met:
16 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer.
18 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
19 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
20 1.63 thorpej * documentation and/or other materials provided with the distribution.
21 1.63 thorpej *
22 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
33 1.63 thorpej */
34 1.26 cgd
35 1.26 cgd /*-
36 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 1.26 cgd * The Regents of the University of California. All rights reserved.
38 1.26 cgd * (c) UNIX System Laboratories, Inc.
39 1.26 cgd * All or some portions of this file are derived from material licensed
40 1.26 cgd * to the University of California by American Telephone and Telegraph
41 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 1.26 cgd * the permission of UNIX System Laboratories, Inc.
43 1.26 cgd *
44 1.26 cgd * Redistribution and use in source and binary forms, with or without
45 1.26 cgd * modification, are permitted provided that the following conditions
46 1.26 cgd * are met:
47 1.26 cgd * 1. Redistributions of source code must retain the above copyright
48 1.26 cgd * notice, this list of conditions and the following disclaimer.
49 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.26 cgd * notice, this list of conditions and the following disclaimer in the
51 1.26 cgd * documentation and/or other materials provided with the distribution.
52 1.136 agc * 3. Neither the name of the University nor the names of its contributors
53 1.26 cgd * may be used to endorse or promote products derived from this software
54 1.26 cgd * without specific prior written permission.
55 1.26 cgd *
56 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.26 cgd * SUCH DAMAGE.
67 1.26 cgd *
68 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 1.26 cgd */
70 1.106 lukem
71 1.106 lukem #include <sys/cdefs.h>
72 1.289 rmind __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.289 2011/05/13 22:16:43 rmind Exp $");
73 1.48 mrg
74 1.109 yamt #include "opt_kstack.h"
75 1.110 briggs #include "opt_perfctrs.h"
76 1.252 wrstuden #include "opt_sa.h"
77 1.277 darran #include "opt_dtrace.h"
78 1.26 cgd
79 1.174 ad #define __MUTEX_PRIVATE
80 1.174 ad
81 1.26 cgd #include <sys/param.h>
82 1.26 cgd #include <sys/systm.h>
83 1.26 cgd #include <sys/proc.h>
84 1.26 cgd #include <sys/kernel.h>
85 1.111 briggs #if defined(PERFCTRS)
86 1.110 briggs #include <sys/pmc.h>
87 1.111 briggs #endif
88 1.188 yamt #include <sys/cpu.h>
89 1.26 cgd #include <sys/resourcevar.h>
90 1.55 ross #include <sys/sched.h>
91 1.252 wrstuden #include <sys/sa.h>
92 1.252 wrstuden #include <sys/savar.h>
93 1.179 dsl #include <sys/syscall_stats.h>
94 1.174 ad #include <sys/sleepq.h>
95 1.174 ad #include <sys/lockdebug.h>
96 1.190 ad #include <sys/evcnt.h>
97 1.199 ad #include <sys/intr.h>
98 1.207 ad #include <sys/lwpctl.h>
99 1.209 ad #include <sys/atomic.h>
100 1.215 ad #include <sys/simplelock.h>
101 1.47 mrg
102 1.47 mrg #include <uvm/uvm_extern.h>
103 1.47 mrg
104 1.231 ad #include <dev/lockstat.h>
105 1.231 ad
106 1.276 darran #include <sys/dtrace_bsd.h>
107 1.279 darran int dtrace_vtime_active=0;
108 1.276 darran dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
109 1.276 darran
110 1.271 rmind static void sched_unsleep(struct lwp *, bool);
111 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
112 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
113 1.250 rmind static void resched_cpu(struct lwp *);
114 1.122 thorpej
115 1.174 ad syncobj_t sleep_syncobj = {
116 1.174 ad SOBJ_SLEEPQ_SORTED,
117 1.174 ad sleepq_unsleep,
118 1.184 yamt sleepq_changepri,
119 1.184 yamt sleepq_lendpri,
120 1.184 yamt syncobj_noowner,
121 1.174 ad };
122 1.174 ad
123 1.174 ad syncobj_t sched_syncobj = {
124 1.174 ad SOBJ_SLEEPQ_SORTED,
125 1.174 ad sched_unsleep,
126 1.184 yamt sched_changepri,
127 1.184 yamt sched_lendpri,
128 1.184 yamt syncobj_noowner,
129 1.174 ad };
130 1.122 thorpej
131 1.289 rmind /* "Lightning bolt": once a second sleep address. */
132 1.289 rmind kcondvar_t lbolt __cacheline_aligned;
133 1.223 ad
134 1.289 rmind u_int sched_pstats_ticks __cacheline_aligned;
135 1.289 rmind
136 1.289 rmind /* Preemption event counters. */
137 1.289 rmind static struct evcnt kpreempt_ev_crit __cacheline_aligned;
138 1.289 rmind static struct evcnt kpreempt_ev_klock __cacheline_aligned;
139 1.289 rmind static struct evcnt kpreempt_ev_immed __cacheline_aligned;
140 1.231 ad
141 1.231 ad /*
142 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
143 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
144 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
145 1.174 ad * maintained in the machine-dependent layers. This priority will typically
146 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
147 1.174 ad * it can be made higher to block network software interrupts after panics.
148 1.26 cgd */
149 1.174 ad int safepri;
150 1.26 cgd
151 1.237 rmind void
152 1.270 elad synch_init(void)
153 1.237 rmind {
154 1.237 rmind
155 1.237 rmind cv_init(&lbolt, "lbolt");
156 1.237 rmind
157 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
158 1.237 rmind "kpreempt", "defer: critical section");
159 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
160 1.237 rmind "kpreempt", "defer: kernel_lock");
161 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
162 1.237 rmind "kpreempt", "immediate");
163 1.237 rmind }
164 1.237 rmind
165 1.26 cgd /*
166 1.174 ad * OBSOLETE INTERFACE
167 1.174 ad *
168 1.255 skrll * General sleep call. Suspends the current LWP until a wakeup is
169 1.255 skrll * performed on the specified identifier. The LWP will then be made
170 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
171 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
172 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
173 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
174 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
175 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
176 1.26 cgd * call should be interrupted by the signal (return EINTR).
177 1.77 thorpej *
178 1.174 ad * The interlock is held until we are on a sleep queue. The interlock will
179 1.174 ad * be locked before returning back to the caller unless the PNORELOCK flag
180 1.174 ad * is specified, in which case the interlock will always be unlocked upon
181 1.174 ad * return.
182 1.26 cgd */
183 1.26 cgd int
184 1.185 yamt ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
185 1.174 ad volatile struct simplelock *interlock)
186 1.26 cgd {
187 1.122 thorpej struct lwp *l = curlwp;
188 1.174 ad sleepq_t *sq;
189 1.244 ad kmutex_t *mp;
190 1.188 yamt int error;
191 1.26 cgd
192 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
193 1.272 pooka KASSERT(ident != &lbolt);
194 1.204 ad
195 1.174 ad if (sleepq_dontsleep(l)) {
196 1.174 ad (void)sleepq_abort(NULL, 0);
197 1.174 ad if ((priority & PNORELOCK) != 0)
198 1.77 thorpej simple_unlock(interlock);
199 1.174 ad return 0;
200 1.26 cgd }
201 1.78 sommerfe
202 1.204 ad l->l_kpriority = true;
203 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
204 1.244 ad sleepq_enter(sq, l, mp);
205 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
206 1.42 cgd
207 1.174 ad if (interlock != NULL) {
208 1.204 ad KASSERT(simple_lock_held(interlock));
209 1.174 ad simple_unlock(interlock);
210 1.150 chs }
211 1.150 chs
212 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
213 1.126 pk
214 1.174 ad if (interlock != NULL && (priority & PNORELOCK) == 0)
215 1.126 pk simple_lock(interlock);
216 1.174 ad
217 1.174 ad return error;
218 1.26 cgd }
219 1.26 cgd
220 1.187 ad int
221 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
222 1.187 ad kmutex_t *mtx)
223 1.187 ad {
224 1.187 ad struct lwp *l = curlwp;
225 1.187 ad sleepq_t *sq;
226 1.244 ad kmutex_t *mp;
227 1.188 yamt int error;
228 1.187 ad
229 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
230 1.272 pooka KASSERT(ident != &lbolt);
231 1.204 ad
232 1.187 ad if (sleepq_dontsleep(l)) {
233 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
234 1.187 ad return 0;
235 1.187 ad }
236 1.187 ad
237 1.204 ad l->l_kpriority = true;
238 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
239 1.244 ad sleepq_enter(sq, l, mp);
240 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
241 1.187 ad mutex_exit(mtx);
242 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
243 1.187 ad
244 1.187 ad if ((priority & PNORELOCK) == 0)
245 1.187 ad mutex_enter(mtx);
246 1.187 ad
247 1.187 ad return error;
248 1.187 ad }
249 1.187 ad
250 1.26 cgd /*
251 1.174 ad * General sleep call for situations where a wake-up is not expected.
252 1.26 cgd */
253 1.174 ad int
254 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
255 1.26 cgd {
256 1.174 ad struct lwp *l = curlwp;
257 1.244 ad kmutex_t *mp;
258 1.174 ad sleepq_t *sq;
259 1.174 ad int error;
260 1.26 cgd
261 1.284 pooka KASSERT(!(timo == 0 && intr == false));
262 1.284 pooka
263 1.174 ad if (sleepq_dontsleep(l))
264 1.174 ad return sleepq_abort(NULL, 0);
265 1.26 cgd
266 1.174 ad if (mtx != NULL)
267 1.174 ad mutex_exit(mtx);
268 1.204 ad l->l_kpriority = true;
269 1.244 ad sq = sleeptab_lookup(&sleeptab, l, &mp);
270 1.244 ad sleepq_enter(sq, l, mp);
271 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
272 1.188 yamt error = sleepq_block(timo, intr);
273 1.174 ad if (mtx != NULL)
274 1.174 ad mutex_enter(mtx);
275 1.83 thorpej
276 1.174 ad return error;
277 1.139 cl }
278 1.139 cl
279 1.252 wrstuden #ifdef KERN_SA
280 1.252 wrstuden /*
281 1.252 wrstuden * sa_awaken:
282 1.252 wrstuden *
283 1.252 wrstuden * We believe this lwp is an SA lwp. If it's yielding,
284 1.252 wrstuden * let it know it needs to wake up.
285 1.252 wrstuden *
286 1.252 wrstuden * We are called and exit with the lwp locked. We are
287 1.252 wrstuden * called in the middle of wakeup operations, so we need
288 1.252 wrstuden * to not touch the locks at all.
289 1.252 wrstuden */
290 1.252 wrstuden void
291 1.252 wrstuden sa_awaken(struct lwp *l)
292 1.252 wrstuden {
293 1.252 wrstuden /* LOCK_ASSERT(lwp_locked(l, NULL)); */
294 1.252 wrstuden
295 1.252 wrstuden if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
296 1.252 wrstuden l->l_flag &= ~LW_SA_IDLE;
297 1.252 wrstuden }
298 1.252 wrstuden #endif /* KERN_SA */
299 1.252 wrstuden
300 1.26 cgd /*
301 1.174 ad * OBSOLETE INTERFACE
302 1.174 ad *
303 1.255 skrll * Make all LWPs sleeping on the specified identifier runnable.
304 1.26 cgd */
305 1.26 cgd void
306 1.174 ad wakeup(wchan_t ident)
307 1.26 cgd {
308 1.174 ad sleepq_t *sq;
309 1.244 ad kmutex_t *mp;
310 1.83 thorpej
311 1.261 rmind if (__predict_false(cold))
312 1.174 ad return;
313 1.83 thorpej
314 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
315 1.244 ad sleepq_wake(sq, ident, (u_int)-1, mp);
316 1.63 thorpej }
317 1.63 thorpej
318 1.63 thorpej /*
319 1.174 ad * OBSOLETE INTERFACE
320 1.174 ad *
321 1.255 skrll * Make the highest priority LWP first in line on the specified
322 1.63 thorpej * identifier runnable.
323 1.63 thorpej */
324 1.174 ad void
325 1.174 ad wakeup_one(wchan_t ident)
326 1.63 thorpej {
327 1.174 ad sleepq_t *sq;
328 1.244 ad kmutex_t *mp;
329 1.63 thorpej
330 1.261 rmind if (__predict_false(cold))
331 1.174 ad return;
332 1.188 yamt
333 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
334 1.244 ad sleepq_wake(sq, ident, 1, mp);
335 1.174 ad }
336 1.63 thorpej
337 1.117 gmcgarry
338 1.117 gmcgarry /*
339 1.255 skrll * General yield call. Puts the current LWP back on its run queue and
340 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
341 1.255 skrll * current LWP explicitly requests it (eg sched_yield(2)).
342 1.117 gmcgarry */
343 1.117 gmcgarry void
344 1.117 gmcgarry yield(void)
345 1.117 gmcgarry {
346 1.122 thorpej struct lwp *l = curlwp;
347 1.117 gmcgarry
348 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
349 1.174 ad lwp_lock(l);
350 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
351 1.188 yamt KASSERT(l->l_stat == LSONPROC);
352 1.204 ad l->l_kpriority = false;
353 1.188 yamt (void)mi_switch(l);
354 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
355 1.69 thorpej }
356 1.69 thorpej
357 1.69 thorpej /*
358 1.255 skrll * General preemption call. Puts the current LWP back on its run queue
359 1.156 rpaulo * and performs an involuntary context switch.
360 1.69 thorpej */
361 1.69 thorpej void
362 1.174 ad preempt(void)
363 1.69 thorpej {
364 1.122 thorpej struct lwp *l = curlwp;
365 1.69 thorpej
366 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
367 1.174 ad lwp_lock(l);
368 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
369 1.188 yamt KASSERT(l->l_stat == LSONPROC);
370 1.204 ad l->l_kpriority = false;
371 1.174 ad l->l_nivcsw++;
372 1.188 yamt (void)mi_switch(l);
373 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
374 1.69 thorpej }
375 1.69 thorpej
376 1.234 ad /*
377 1.234 ad * Handle a request made by another agent to preempt the current LWP
378 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
379 1.234 ad *
380 1.234 ad * Character addresses for lockstat only.
381 1.234 ad */
382 1.231 ad static char in_critical_section;
383 1.231 ad static char kernel_lock_held;
384 1.231 ad static char is_softint;
385 1.262 yamt static char cpu_kpreempt_enter_fail;
386 1.231 ad
387 1.231 ad bool
388 1.231 ad kpreempt(uintptr_t where)
389 1.231 ad {
390 1.231 ad uintptr_t failed;
391 1.231 ad lwp_t *l;
392 1.264 ad int s, dop, lsflag;
393 1.231 ad
394 1.231 ad l = curlwp;
395 1.231 ad failed = 0;
396 1.231 ad while ((dop = l->l_dopreempt) != 0) {
397 1.231 ad if (l->l_stat != LSONPROC) {
398 1.231 ad /*
399 1.231 ad * About to block (or die), let it happen.
400 1.231 ad * Doesn't really count as "preemption has
401 1.231 ad * been blocked", since we're going to
402 1.231 ad * context switch.
403 1.231 ad */
404 1.231 ad l->l_dopreempt = 0;
405 1.231 ad return true;
406 1.231 ad }
407 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
408 1.231 ad /* Can't preempt idle loop, don't count as failure. */
409 1.261 rmind l->l_dopreempt = 0;
410 1.261 rmind return true;
411 1.231 ad }
412 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
413 1.231 ad /* LWP holds preemption disabled, explicitly. */
414 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
415 1.234 ad kpreempt_ev_crit.ev_count++;
416 1.231 ad }
417 1.231 ad failed = (uintptr_t)&in_critical_section;
418 1.231 ad break;
419 1.231 ad }
420 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
421 1.261 rmind /* Can't preempt soft interrupts yet. */
422 1.261 rmind l->l_dopreempt = 0;
423 1.261 rmind failed = (uintptr_t)&is_softint;
424 1.261 rmind break;
425 1.231 ad }
426 1.231 ad s = splsched();
427 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
428 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
429 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
430 1.231 ad splx(s);
431 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
432 1.234 ad kpreempt_ev_klock.ev_count++;
433 1.231 ad }
434 1.231 ad failed = (uintptr_t)&kernel_lock_held;
435 1.231 ad break;
436 1.231 ad }
437 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
438 1.231 ad /*
439 1.231 ad * It may be that the IPL is too high.
440 1.231 ad * kpreempt_enter() can schedule an
441 1.231 ad * interrupt to retry later.
442 1.231 ad */
443 1.231 ad splx(s);
444 1.262 yamt failed = (uintptr_t)&cpu_kpreempt_enter_fail;
445 1.231 ad break;
446 1.231 ad }
447 1.231 ad /* Do it! */
448 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
449 1.234 ad kpreempt_ev_immed.ev_count++;
450 1.231 ad }
451 1.231 ad lwp_lock(l);
452 1.231 ad mi_switch(l);
453 1.231 ad l->l_nopreempt++;
454 1.231 ad splx(s);
455 1.231 ad
456 1.231 ad /* Take care of any MD cleanup. */
457 1.231 ad cpu_kpreempt_exit(where);
458 1.231 ad l->l_nopreempt--;
459 1.231 ad }
460 1.231 ad
461 1.264 ad if (__predict_true(!failed)) {
462 1.264 ad return false;
463 1.264 ad }
464 1.264 ad
465 1.231 ad /* Record preemption failure for reporting via lockstat. */
466 1.264 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
467 1.264 ad lsflag = 0;
468 1.264 ad LOCKSTAT_ENTER(lsflag);
469 1.264 ad if (__predict_false(lsflag)) {
470 1.264 ad if (where == 0) {
471 1.264 ad where = (uintptr_t)__builtin_return_address(0);
472 1.264 ad }
473 1.264 ad /* Preemption is on, might recurse, so make it atomic. */
474 1.264 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
475 1.264 ad (void *)where) == NULL) {
476 1.264 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
477 1.264 ad l->l_pfaillock = failed;
478 1.231 ad }
479 1.231 ad }
480 1.264 ad LOCKSTAT_EXIT(lsflag);
481 1.264 ad return true;
482 1.231 ad }
483 1.231 ad
484 1.69 thorpej /*
485 1.231 ad * Return true if preemption is explicitly disabled.
486 1.230 ad */
487 1.231 ad bool
488 1.231 ad kpreempt_disabled(void)
489 1.231 ad {
490 1.261 rmind const lwp_t *l = curlwp;
491 1.231 ad
492 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
493 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
494 1.231 ad }
495 1.230 ad
496 1.230 ad /*
497 1.231 ad * Disable kernel preemption.
498 1.230 ad */
499 1.230 ad void
500 1.231 ad kpreempt_disable(void)
501 1.230 ad {
502 1.230 ad
503 1.231 ad KPREEMPT_DISABLE(curlwp);
504 1.230 ad }
505 1.230 ad
506 1.230 ad /*
507 1.231 ad * Reenable kernel preemption.
508 1.230 ad */
509 1.231 ad void
510 1.231 ad kpreempt_enable(void)
511 1.230 ad {
512 1.230 ad
513 1.231 ad KPREEMPT_ENABLE(curlwp);
514 1.230 ad }
515 1.230 ad
516 1.230 ad /*
517 1.188 yamt * Compute the amount of time during which the current lwp was running.
518 1.130 nathanw *
519 1.188 yamt * - update l_rtime unless it's an idle lwp.
520 1.188 yamt */
521 1.188 yamt
522 1.199 ad void
523 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
524 1.188 yamt {
525 1.188 yamt
526 1.261 rmind if (__predict_false(l->l_flag & LW_IDLE))
527 1.188 yamt return;
528 1.188 yamt
529 1.212 yamt /* rtime += now - stime */
530 1.212 yamt bintime_add(&l->l_rtime, now);
531 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
532 1.188 yamt }
533 1.188 yamt
534 1.188 yamt /*
535 1.245 ad * Select next LWP from the current CPU to run..
536 1.245 ad */
537 1.245 ad static inline lwp_t *
538 1.245 ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
539 1.245 ad {
540 1.245 ad lwp_t *newl;
541 1.245 ad
542 1.245 ad /*
543 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
544 1.245 ad * If no LWP is runnable, select the idle LWP.
545 1.245 ad *
546 1.245 ad * Note that spc_lwplock might not necessary be held, and
547 1.245 ad * new thread would be unlocked after setting the LWP-lock.
548 1.245 ad */
549 1.245 ad newl = sched_nextlwp();
550 1.245 ad if (newl != NULL) {
551 1.245 ad sched_dequeue(newl);
552 1.245 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
553 1.274 rmind KASSERT(newl->l_cpu == ci);
554 1.245 ad newl->l_stat = LSONPROC;
555 1.248 ad newl->l_pflag |= LP_RUNNING;
556 1.245 ad lwp_setlock(newl, spc->spc_lwplock);
557 1.245 ad } else {
558 1.245 ad newl = ci->ci_data.cpu_idlelwp;
559 1.245 ad newl->l_stat = LSONPROC;
560 1.248 ad newl->l_pflag |= LP_RUNNING;
561 1.245 ad }
562 1.261 rmind
563 1.245 ad /*
564 1.245 ad * Only clear want_resched if there are no pending (slow)
565 1.245 ad * software interrupts.
566 1.245 ad */
567 1.245 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
568 1.245 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
569 1.245 ad spc->spc_curpriority = lwp_eprio(newl);
570 1.245 ad
571 1.245 ad return newl;
572 1.245 ad }
573 1.245 ad
574 1.245 ad /*
575 1.188 yamt * The machine independent parts of context switch.
576 1.188 yamt *
577 1.188 yamt * Returns 1 if another LWP was actually run.
578 1.26 cgd */
579 1.122 thorpej int
580 1.199 ad mi_switch(lwp_t *l)
581 1.26 cgd {
582 1.246 rmind struct cpu_info *ci;
583 1.76 thorpej struct schedstate_percpu *spc;
584 1.188 yamt struct lwp *newl;
585 1.174 ad int retval, oldspl;
586 1.212 yamt struct bintime bt;
587 1.199 ad bool returning;
588 1.26 cgd
589 1.188 yamt KASSERT(lwp_locked(l, NULL));
590 1.231 ad KASSERT(kpreempt_disabled());
591 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
592 1.174 ad
593 1.174 ad kstack_check_magic(l);
594 1.83 thorpej
595 1.212 yamt binuptime(&bt);
596 1.199 ad
597 1.267 yamt KASSERT((l->l_pflag & LP_RUNNING) != 0);
598 1.231 ad KASSERT(l->l_cpu == curcpu());
599 1.196 ad ci = l->l_cpu;
600 1.196 ad spc = &ci->ci_schedstate;
601 1.199 ad returning = false;
602 1.190 ad newl = NULL;
603 1.190 ad
604 1.199 ad /*
605 1.199 ad * If we have been asked to switch to a specific LWP, then there
606 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
607 1.199 ad * blocking, then return to the interrupted thread without adjusting
608 1.199 ad * VM context or its start time: neither have been changed in order
609 1.199 ad * to take the interrupt.
610 1.199 ad */
611 1.190 ad if (l->l_switchto != NULL) {
612 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
613 1.199 ad returning = true;
614 1.199 ad softint_block(l);
615 1.248 ad if ((l->l_pflag & LP_TIMEINTR) != 0)
616 1.212 yamt updatertime(l, &bt);
617 1.199 ad }
618 1.190 ad newl = l->l_switchto;
619 1.190 ad l->l_switchto = NULL;
620 1.190 ad }
621 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
622 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
623 1.204 ad /* There are pending soft interrupts, so pick one. */
624 1.204 ad newl = softint_picklwp();
625 1.204 ad newl->l_stat = LSONPROC;
626 1.248 ad newl->l_pflag |= LP_RUNNING;
627 1.204 ad }
628 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
629 1.190 ad
630 1.180 dsl /* Count time spent in current system call */
631 1.199 ad if (!returning) {
632 1.199 ad SYSCALL_TIME_SLEEP(l);
633 1.180 dsl
634 1.199 ad /*
635 1.199 ad * XXXSMP If we are using h/w performance counters,
636 1.199 ad * save context.
637 1.199 ad */
638 1.174 ad #if PERFCTRS
639 1.199 ad if (PMC_ENABLED(l->l_proc)) {
640 1.199 ad pmc_save_context(l->l_proc);
641 1.199 ad }
642 1.199 ad #endif
643 1.212 yamt updatertime(l, &bt);
644 1.174 ad }
645 1.113 gmcgarry
646 1.246 rmind /* Lock the runqueue */
647 1.246 rmind KASSERT(l->l_stat != LSRUN);
648 1.246 rmind mutex_spin_enter(spc->spc_mutex);
649 1.246 rmind
650 1.113 gmcgarry /*
651 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
652 1.113 gmcgarry */
653 1.246 rmind if (l->l_stat == LSONPROC && l != newl) {
654 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
655 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
656 1.188 yamt l->l_stat = LSRUN;
657 1.246 rmind lwp_setlock(l, spc->spc_mutex);
658 1.246 rmind sched_enqueue(l, true);
659 1.285 rmind /*
660 1.285 rmind * Handle migration. Note that "migrating LWP" may
661 1.285 rmind * be reset here, if interrupt/preemption happens
662 1.285 rmind * early in idle LWP.
663 1.285 rmind */
664 1.285 rmind if (l->l_target_cpu != NULL) {
665 1.285 rmind KASSERT((l->l_pflag & LP_INTR) == 0);
666 1.246 rmind spc->spc_migrating = l;
667 1.216 rmind }
668 1.246 rmind } else
669 1.188 yamt l->l_stat = LSIDL;
670 1.174 ad }
671 1.174 ad
672 1.245 ad /* Pick new LWP to run. */
673 1.190 ad if (newl == NULL) {
674 1.245 ad newl = nextlwp(ci, spc);
675 1.199 ad }
676 1.199 ad
677 1.204 ad /* Items that must be updated with the CPU locked. */
678 1.199 ad if (!returning) {
679 1.204 ad /* Update the new LWP's start time. */
680 1.212 yamt newl->l_stime = bt;
681 1.204 ad
682 1.199 ad /*
683 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
684 1.204 ad * We use cpu_onproc to keep track of which kernel or
685 1.204 ad * user thread is running 'underneath' the software
686 1.204 ad * interrupt. This is important for time accounting,
687 1.204 ad * itimers and forcing user threads to preempt (aston).
688 1.199 ad */
689 1.204 ad ci->ci_data.cpu_onproc = newl;
690 1.188 yamt }
691 1.188 yamt
692 1.241 ad /*
693 1.241 ad * Preemption related tasks. Must be done with the current
694 1.241 ad * CPU locked.
695 1.241 ad */
696 1.241 ad cpu_did_resched(l);
697 1.231 ad l->l_dopreempt = 0;
698 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
699 1.231 ad LOCKSTAT_FLAG(lsflag);
700 1.231 ad LOCKSTAT_ENTER(lsflag);
701 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
702 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
703 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
704 1.231 ad LOCKSTAT_EXIT(lsflag);
705 1.231 ad l->l_pfailtime = 0;
706 1.231 ad l->l_pfaillock = 0;
707 1.231 ad l->l_pfailaddr = 0;
708 1.231 ad }
709 1.231 ad
710 1.188 yamt if (l != newl) {
711 1.188 yamt struct lwp *prevlwp;
712 1.174 ad
713 1.209 ad /* Release all locks, but leave the current LWP locked */
714 1.246 rmind if (l->l_mutex == spc->spc_mutex) {
715 1.209 ad /*
716 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
717 1.209 ad * to the run queue (it is now locked by spc_mutex).
718 1.209 ad */
719 1.217 ad mutex_spin_exit(spc->spc_lwplock);
720 1.188 yamt } else {
721 1.209 ad /*
722 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
723 1.209 ad * run queues.
724 1.209 ad */
725 1.188 yamt mutex_spin_exit(spc->spc_mutex);
726 1.188 yamt }
727 1.188 yamt
728 1.209 ad /*
729 1.253 skrll * Mark that context switch is going to be performed
730 1.209 ad * for this LWP, to protect it from being switched
731 1.209 ad * to on another CPU.
732 1.209 ad */
733 1.209 ad KASSERT(l->l_ctxswtch == 0);
734 1.209 ad l->l_ctxswtch = 1;
735 1.209 ad l->l_ncsw++;
736 1.267 yamt KASSERT((l->l_pflag & LP_RUNNING) != 0);
737 1.248 ad l->l_pflag &= ~LP_RUNNING;
738 1.209 ad
739 1.209 ad /*
740 1.209 ad * Increase the count of spin-mutexes before the release
741 1.209 ad * of the last lock - we must remain at IPL_SCHED during
742 1.209 ad * the context switch.
743 1.209 ad */
744 1.287 matt KASSERTMSG(ci->ci_mtx_count == -1,
745 1.287 matt ("%s: cpu%u: ci_mtx_count (%d) != -1",
746 1.287 matt __func__, cpu_index(ci), ci->ci_mtx_count));
747 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
748 1.209 ad ci->ci_mtx_count--;
749 1.209 ad lwp_unlock(l);
750 1.209 ad
751 1.218 ad /* Count the context switch on this CPU. */
752 1.218 ad ci->ci_data.cpu_nswtch++;
753 1.188 yamt
754 1.209 ad /* Update status for lwpctl, if present. */
755 1.209 ad if (l->l_lwpctl != NULL)
756 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
757 1.209 ad
758 1.199 ad /*
759 1.199 ad * Save old VM context, unless a soft interrupt
760 1.199 ad * handler is blocking.
761 1.199 ad */
762 1.199 ad if (!returning)
763 1.199 ad pmap_deactivate(l);
764 1.188 yamt
765 1.209 ad /*
766 1.275 skrll * We may need to spin-wait if 'newl' is still
767 1.209 ad * context switching on another CPU.
768 1.209 ad */
769 1.261 rmind if (__predict_false(newl->l_ctxswtch != 0)) {
770 1.209 ad u_int count;
771 1.209 ad count = SPINLOCK_BACKOFF_MIN;
772 1.209 ad while (newl->l_ctxswtch)
773 1.209 ad SPINLOCK_BACKOFF(count);
774 1.209 ad }
775 1.207 ad
776 1.276 darran /*
777 1.276 darran * If DTrace has set the active vtime enum to anything
778 1.276 darran * other than INACTIVE (0), then it should have set the
779 1.276 darran * function to call.
780 1.276 darran */
781 1.278 darran if (__predict_false(dtrace_vtime_active)) {
782 1.276 darran (*dtrace_vtime_switch_func)(newl);
783 1.276 darran }
784 1.276 darran
785 1.188 yamt /* Switch to the new LWP.. */
786 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
787 1.207 ad ci = curcpu();
788 1.207 ad
789 1.188 yamt /*
790 1.209 ad * Switched away - we have new curlwp.
791 1.209 ad * Restore VM context and IPL.
792 1.188 yamt */
793 1.209 ad pmap_activate(l);
794 1.265 rmind uvm_emap_switch(l);
795 1.288 rmind pcu_switchpoint(l);
796 1.265 rmind
797 1.188 yamt if (prevlwp != NULL) {
798 1.209 ad /* Normalize the count of the spin-mutexes */
799 1.209 ad ci->ci_mtx_count++;
800 1.209 ad /* Unmark the state of context switch */
801 1.209 ad membar_exit();
802 1.209 ad prevlwp->l_ctxswtch = 0;
803 1.188 yamt }
804 1.209 ad
805 1.209 ad /* Update status for lwpctl, if present. */
806 1.219 ad if (l->l_lwpctl != NULL) {
807 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
808 1.219 ad l->l_lwpctl->lc_pctr++;
809 1.219 ad }
810 1.174 ad
811 1.231 ad KASSERT(l->l_cpu == ci);
812 1.231 ad splx(oldspl);
813 1.188 yamt retval = 1;
814 1.188 yamt } else {
815 1.188 yamt /* Nothing to do - just unlock and return. */
816 1.246 rmind mutex_spin_exit(spc->spc_mutex);
817 1.188 yamt lwp_unlock(l);
818 1.122 thorpej retval = 0;
819 1.122 thorpej }
820 1.110 briggs
821 1.188 yamt KASSERT(l == curlwp);
822 1.188 yamt KASSERT(l->l_stat == LSONPROC);
823 1.188 yamt
824 1.110 briggs /*
825 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
826 1.231 ad * XXXSMP preemption problem.
827 1.26 cgd */
828 1.114 gmcgarry #if PERFCTRS
829 1.175 christos if (PMC_ENABLED(l->l_proc)) {
830 1.175 christos pmc_restore_context(l->l_proc);
831 1.166 christos }
832 1.114 gmcgarry #endif
833 1.180 dsl SYSCALL_TIME_WAKEUP(l);
834 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
835 1.169 yamt
836 1.122 thorpej return retval;
837 1.26 cgd }
838 1.26 cgd
839 1.26 cgd /*
840 1.245 ad * The machine independent parts of context switch to oblivion.
841 1.245 ad * Does not return. Call with the LWP unlocked.
842 1.245 ad */
843 1.245 ad void
844 1.245 ad lwp_exit_switchaway(lwp_t *l)
845 1.245 ad {
846 1.245 ad struct cpu_info *ci;
847 1.245 ad struct lwp *newl;
848 1.245 ad struct bintime bt;
849 1.245 ad
850 1.245 ad ci = l->l_cpu;
851 1.245 ad
852 1.245 ad KASSERT(kpreempt_disabled());
853 1.245 ad KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
854 1.245 ad KASSERT(ci == curcpu());
855 1.245 ad LOCKDEBUG_BARRIER(NULL, 0);
856 1.245 ad
857 1.245 ad kstack_check_magic(l);
858 1.245 ad
859 1.245 ad /* Count time spent in current system call */
860 1.245 ad SYSCALL_TIME_SLEEP(l);
861 1.245 ad binuptime(&bt);
862 1.245 ad updatertime(l, &bt);
863 1.245 ad
864 1.245 ad /* Must stay at IPL_SCHED even after releasing run queue lock. */
865 1.245 ad (void)splsched();
866 1.245 ad
867 1.245 ad /*
868 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
869 1.245 ad * If no LWP is runnable, select the idle LWP.
870 1.245 ad *
871 1.245 ad * Note that spc_lwplock might not necessary be held, and
872 1.245 ad * new thread would be unlocked after setting the LWP-lock.
873 1.245 ad */
874 1.245 ad spc_lock(ci);
875 1.245 ad #ifndef __HAVE_FAST_SOFTINTS
876 1.245 ad if (ci->ci_data.cpu_softints != 0) {
877 1.245 ad /* There are pending soft interrupts, so pick one. */
878 1.245 ad newl = softint_picklwp();
879 1.245 ad newl->l_stat = LSONPROC;
880 1.248 ad newl->l_pflag |= LP_RUNNING;
881 1.245 ad } else
882 1.245 ad #endif /* !__HAVE_FAST_SOFTINTS */
883 1.245 ad {
884 1.245 ad newl = nextlwp(ci, &ci->ci_schedstate);
885 1.245 ad }
886 1.245 ad
887 1.245 ad /* Update the new LWP's start time. */
888 1.245 ad newl->l_stime = bt;
889 1.248 ad l->l_pflag &= ~LP_RUNNING;
890 1.245 ad
891 1.245 ad /*
892 1.245 ad * ci_curlwp changes when a fast soft interrupt occurs.
893 1.245 ad * We use cpu_onproc to keep track of which kernel or
894 1.245 ad * user thread is running 'underneath' the software
895 1.245 ad * interrupt. This is important for time accounting,
896 1.245 ad * itimers and forcing user threads to preempt (aston).
897 1.245 ad */
898 1.245 ad ci->ci_data.cpu_onproc = newl;
899 1.245 ad
900 1.245 ad /*
901 1.245 ad * Preemption related tasks. Must be done with the current
902 1.245 ad * CPU locked.
903 1.245 ad */
904 1.245 ad cpu_did_resched(l);
905 1.245 ad
906 1.245 ad /* Unlock the run queue. */
907 1.245 ad spc_unlock(ci);
908 1.245 ad
909 1.245 ad /* Count the context switch on this CPU. */
910 1.245 ad ci->ci_data.cpu_nswtch++;
911 1.245 ad
912 1.245 ad /* Update status for lwpctl, if present. */
913 1.245 ad if (l->l_lwpctl != NULL)
914 1.247 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
915 1.245 ad
916 1.245 ad /*
917 1.275 skrll * We may need to spin-wait if 'newl' is still
918 1.245 ad * context switching on another CPU.
919 1.245 ad */
920 1.261 rmind if (__predict_false(newl->l_ctxswtch != 0)) {
921 1.245 ad u_int count;
922 1.245 ad count = SPINLOCK_BACKOFF_MIN;
923 1.245 ad while (newl->l_ctxswtch)
924 1.245 ad SPINLOCK_BACKOFF(count);
925 1.245 ad }
926 1.245 ad
927 1.279 darran /*
928 1.279 darran * If DTrace has set the active vtime enum to anything
929 1.279 darran * other than INACTIVE (0), then it should have set the
930 1.279 darran * function to call.
931 1.279 darran */
932 1.279 darran if (__predict_false(dtrace_vtime_active)) {
933 1.279 darran (*dtrace_vtime_switch_func)(newl);
934 1.279 darran }
935 1.276 darran
936 1.245 ad /* Switch to the new LWP.. */
937 1.245 ad (void)cpu_switchto(NULL, newl, false);
938 1.245 ad
939 1.251 uwe for (;;) continue; /* XXX: convince gcc about "noreturn" */
940 1.245 ad /* NOTREACHED */
941 1.245 ad }
942 1.245 ad
943 1.245 ad /*
944 1.271 rmind * setrunnable: change LWP state to be runnable, placing it on the run queue.
945 1.174 ad *
946 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
947 1.26 cgd */
948 1.26 cgd void
949 1.122 thorpej setrunnable(struct lwp *l)
950 1.26 cgd {
951 1.122 thorpej struct proc *p = l->l_proc;
952 1.205 ad struct cpu_info *ci;
953 1.26 cgd
954 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
955 1.229 ad KASSERT(mutex_owned(p->p_lock));
956 1.183 ad KASSERT(lwp_locked(l, NULL));
957 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
958 1.83 thorpej
959 1.122 thorpej switch (l->l_stat) {
960 1.122 thorpej case LSSTOP:
961 1.33 mycroft /*
962 1.33 mycroft * If we're being traced (possibly because someone attached us
963 1.33 mycroft * while we were stopped), check for a signal from the debugger.
964 1.33 mycroft */
965 1.256 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
966 1.174 ad signotify(l);
967 1.174 ad p->p_nrlwps++;
968 1.26 cgd break;
969 1.174 ad case LSSUSPENDED:
970 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
971 1.174 ad p->p_nrlwps++;
972 1.192 rmind cv_broadcast(&p->p_lwpcv);
973 1.122 thorpej break;
974 1.174 ad case LSSLEEP:
975 1.174 ad KASSERT(l->l_wchan != NULL);
976 1.26 cgd break;
977 1.174 ad default:
978 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
979 1.26 cgd }
980 1.139 cl
981 1.252 wrstuden #ifdef KERN_SA
982 1.252 wrstuden if (l->l_proc->p_sa)
983 1.252 wrstuden sa_awaken(l);
984 1.252 wrstuden #endif /* KERN_SA */
985 1.252 wrstuden
986 1.174 ad /*
987 1.286 pooka * If the LWP was sleeping, start it again.
988 1.174 ad */
989 1.174 ad if (l->l_wchan != NULL) {
990 1.174 ad l->l_stat = LSSLEEP;
991 1.183 ad /* lwp_unsleep() will release the lock. */
992 1.221 ad lwp_unsleep(l, true);
993 1.174 ad return;
994 1.174 ad }
995 1.139 cl
996 1.174 ad /*
997 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
998 1.174 ad * about to call mi_switch(), in which case it will yield.
999 1.174 ad */
1000 1.248 ad if ((l->l_pflag & LP_RUNNING) != 0) {
1001 1.174 ad l->l_stat = LSONPROC;
1002 1.174 ad l->l_slptime = 0;
1003 1.174 ad lwp_unlock(l);
1004 1.174 ad return;
1005 1.174 ad }
1006 1.122 thorpej
1007 1.174 ad /*
1008 1.205 ad * Look for a CPU to run.
1009 1.205 ad * Set the LWP runnable.
1010 1.174 ad */
1011 1.205 ad ci = sched_takecpu(l);
1012 1.205 ad l->l_cpu = ci;
1013 1.236 ad spc_lock(ci);
1014 1.236 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
1015 1.188 yamt sched_setrunnable(l);
1016 1.174 ad l->l_stat = LSRUN;
1017 1.122 thorpej l->l_slptime = 0;
1018 1.174 ad
1019 1.271 rmind sched_enqueue(l, false);
1020 1.271 rmind resched_cpu(l);
1021 1.271 rmind lwp_unlock(l);
1022 1.26 cgd }
1023 1.26 cgd
1024 1.26 cgd /*
1025 1.174 ad * suspendsched:
1026 1.174 ad *
1027 1.266 yamt * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1028 1.174 ad */
1029 1.94 bouyer void
1030 1.174 ad suspendsched(void)
1031 1.94 bouyer {
1032 1.174 ad CPU_INFO_ITERATOR cii;
1033 1.174 ad struct cpu_info *ci;
1034 1.122 thorpej struct lwp *l;
1035 1.174 ad struct proc *p;
1036 1.94 bouyer
1037 1.94 bouyer /*
1038 1.174 ad * We do this by process in order not to violate the locking rules.
1039 1.94 bouyer */
1040 1.228 ad mutex_enter(proc_lock);
1041 1.174 ad PROCLIST_FOREACH(p, &allproc) {
1042 1.229 ad mutex_enter(p->p_lock);
1043 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
1044 1.229 ad mutex_exit(p->p_lock);
1045 1.94 bouyer continue;
1046 1.174 ad }
1047 1.174 ad
1048 1.174 ad p->p_stat = SSTOP;
1049 1.174 ad
1050 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1051 1.174 ad if (l == curlwp)
1052 1.174 ad continue;
1053 1.174 ad
1054 1.174 ad lwp_lock(l);
1055 1.122 thorpej
1056 1.97 enami /*
1057 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
1058 1.174 ad * when it tries to return to user mode. We want to
1059 1.174 ad * try and get to get as many LWPs as possible to
1060 1.174 ad * the user / kernel boundary, so that they will
1061 1.174 ad * release any locks that they hold.
1062 1.97 enami */
1063 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1064 1.174 ad
1065 1.174 ad if (l->l_stat == LSSLEEP &&
1066 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1067 1.174 ad /* setrunnable() will release the lock. */
1068 1.174 ad setrunnable(l);
1069 1.174 ad continue;
1070 1.174 ad }
1071 1.174 ad
1072 1.174 ad lwp_unlock(l);
1073 1.94 bouyer }
1074 1.174 ad
1075 1.229 ad mutex_exit(p->p_lock);
1076 1.94 bouyer }
1077 1.228 ad mutex_exit(proc_lock);
1078 1.174 ad
1079 1.174 ad /*
1080 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1081 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
1082 1.174 ad */
1083 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1084 1.204 ad spc_lock(ci);
1085 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
1086 1.204 ad spc_unlock(ci);
1087 1.204 ad }
1088 1.174 ad }
1089 1.174 ad
1090 1.174 ad /*
1091 1.174 ad * sched_unsleep:
1092 1.174 ad *
1093 1.174 ad * The is called when the LWP has not been awoken normally but instead
1094 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1095 1.174 ad * it's not a valid action for running or idle LWPs.
1096 1.174 ad */
1097 1.271 rmind static void
1098 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1099 1.174 ad {
1100 1.174 ad
1101 1.174 ad lwp_unlock(l);
1102 1.174 ad panic("sched_unsleep");
1103 1.174 ad }
1104 1.174 ad
1105 1.250 rmind static void
1106 1.188 yamt resched_cpu(struct lwp *l)
1107 1.188 yamt {
1108 1.274 rmind struct cpu_info *ci = l->l_cpu;
1109 1.188 yamt
1110 1.250 rmind KASSERT(lwp_locked(l, NULL));
1111 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1112 1.188 yamt cpu_need_resched(ci, 0);
1113 1.188 yamt }
1114 1.188 yamt
1115 1.188 yamt static void
1116 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1117 1.174 ad {
1118 1.174 ad
1119 1.188 yamt KASSERT(lwp_locked(l, NULL));
1120 1.174 ad
1121 1.271 rmind if (l->l_stat == LSRUN) {
1122 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1123 1.204 ad sched_dequeue(l);
1124 1.204 ad l->l_priority = pri;
1125 1.204 ad sched_enqueue(l, false);
1126 1.204 ad } else {
1127 1.174 ad l->l_priority = pri;
1128 1.157 yamt }
1129 1.188 yamt resched_cpu(l);
1130 1.184 yamt }
1131 1.184 yamt
1132 1.188 yamt static void
1133 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1134 1.184 yamt {
1135 1.184 yamt
1136 1.188 yamt KASSERT(lwp_locked(l, NULL));
1137 1.184 yamt
1138 1.271 rmind if (l->l_stat == LSRUN) {
1139 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1140 1.204 ad sched_dequeue(l);
1141 1.204 ad l->l_inheritedprio = pri;
1142 1.204 ad sched_enqueue(l, false);
1143 1.204 ad } else {
1144 1.184 yamt l->l_inheritedprio = pri;
1145 1.184 yamt }
1146 1.188 yamt resched_cpu(l);
1147 1.184 yamt }
1148 1.184 yamt
1149 1.184 yamt struct lwp *
1150 1.184 yamt syncobj_noowner(wchan_t wchan)
1151 1.184 yamt {
1152 1.184 yamt
1153 1.184 yamt return NULL;
1154 1.151 yamt }
1155 1.151 yamt
1156 1.250 rmind /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1157 1.281 rmind const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1158 1.281 rmind
1159 1.281 rmind /*
1160 1.281 rmind * Constants for averages over 1, 5 and 15 minutes when sampling at
1161 1.281 rmind * 5 second intervals.
1162 1.281 rmind */
1163 1.281 rmind static const fixpt_t cexp[ ] = {
1164 1.281 rmind 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1165 1.281 rmind 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1166 1.281 rmind 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1167 1.281 rmind };
1168 1.134 matt
1169 1.134 matt /*
1170 1.188 yamt * sched_pstats:
1171 1.188 yamt *
1172 1.281 rmind * => Update process statistics and check CPU resource allocation.
1173 1.281 rmind * => Call scheduler-specific hook to eventually adjust LWP priorities.
1174 1.281 rmind * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1175 1.130 nathanw */
1176 1.113 gmcgarry void
1177 1.281 rmind sched_pstats(void)
1178 1.113 gmcgarry {
1179 1.281 rmind extern struct loadavg averunnable;
1180 1.281 rmind struct loadavg *avg = &averunnable;
1181 1.249 rmind const int clkhz = (stathz != 0 ? stathz : hz);
1182 1.281 rmind static bool backwards = false;
1183 1.281 rmind static u_int lavg_count = 0;
1184 1.188 yamt struct proc *p;
1185 1.281 rmind int nrun;
1186 1.113 gmcgarry
1187 1.188 yamt sched_pstats_ticks++;
1188 1.281 rmind if (++lavg_count >= 5) {
1189 1.281 rmind lavg_count = 0;
1190 1.281 rmind nrun = 0;
1191 1.281 rmind }
1192 1.228 ad mutex_enter(proc_lock);
1193 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1194 1.281 rmind struct lwp *l;
1195 1.281 rmind struct rlimit *rlim;
1196 1.281 rmind long runtm;
1197 1.281 rmind int sig;
1198 1.281 rmind
1199 1.271 rmind /* Increment sleep time (if sleeping), ignore overflow. */
1200 1.229 ad mutex_enter(p->p_lock);
1201 1.212 yamt runtm = p->p_rtime.sec;
1202 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1203 1.281 rmind fixpt_t lpctcpu;
1204 1.281 rmind u_int lcpticks;
1205 1.281 rmind
1206 1.249 rmind if (__predict_false((l->l_flag & LW_IDLE) != 0))
1207 1.188 yamt continue;
1208 1.188 yamt lwp_lock(l);
1209 1.212 yamt runtm += l->l_rtime.sec;
1210 1.188 yamt l->l_swtime++;
1211 1.242 rmind sched_lwp_stats(l);
1212 1.281 rmind
1213 1.281 rmind /* For load average calculation. */
1214 1.282 rmind if (__predict_false(lavg_count == 0) &&
1215 1.282 rmind (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1216 1.281 rmind switch (l->l_stat) {
1217 1.281 rmind case LSSLEEP:
1218 1.281 rmind if (l->l_slptime > 1) {
1219 1.281 rmind break;
1220 1.281 rmind }
1221 1.281 rmind case LSRUN:
1222 1.281 rmind case LSONPROC:
1223 1.281 rmind case LSIDL:
1224 1.281 rmind nrun++;
1225 1.281 rmind }
1226 1.281 rmind }
1227 1.282 rmind lwp_unlock(l);
1228 1.282 rmind
1229 1.282 rmind l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1230 1.282 rmind if (l->l_slptime != 0)
1231 1.282 rmind continue;
1232 1.282 rmind
1233 1.282 rmind lpctcpu = l->l_pctcpu;
1234 1.282 rmind lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1235 1.282 rmind lpctcpu += ((FSCALE - ccpu) *
1236 1.282 rmind (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1237 1.282 rmind l->l_pctcpu = lpctcpu;
1238 1.188 yamt }
1239 1.249 rmind /* Calculating p_pctcpu only for ps(1) */
1240 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1241 1.174 ad
1242 1.188 yamt /*
1243 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1244 1.188 yamt * If over max, kill it.
1245 1.188 yamt */
1246 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1247 1.188 yamt sig = 0;
1248 1.249 rmind if (__predict_false(runtm >= rlim->rlim_cur)) {
1249 1.188 yamt if (runtm >= rlim->rlim_max)
1250 1.188 yamt sig = SIGKILL;
1251 1.188 yamt else {
1252 1.188 yamt sig = SIGXCPU;
1253 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1254 1.188 yamt rlim->rlim_cur += 5;
1255 1.188 yamt }
1256 1.188 yamt }
1257 1.229 ad mutex_exit(p->p_lock);
1258 1.259 rmind if (__predict_false(runtm < 0)) {
1259 1.260 ad if (!backwards) {
1260 1.260 ad backwards = true;
1261 1.260 ad printf("WARNING: negative runtime; "
1262 1.260 ad "monotonic clock has gone backwards\n");
1263 1.260 ad }
1264 1.259 rmind } else if (__predict_false(sig)) {
1265 1.259 rmind KASSERT((p->p_flag & PK_SYSTEM) == 0);
1266 1.188 yamt psignal(p, sig);
1267 1.259 rmind }
1268 1.174 ad }
1269 1.228 ad mutex_exit(proc_lock);
1270 1.281 rmind
1271 1.281 rmind /* Load average calculation. */
1272 1.281 rmind if (__predict_false(lavg_count == 0)) {
1273 1.281 rmind int i;
1274 1.283 martin CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1275 1.281 rmind for (i = 0; i < __arraycount(cexp); i++) {
1276 1.281 rmind avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1277 1.281 rmind nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1278 1.281 rmind }
1279 1.281 rmind }
1280 1.281 rmind
1281 1.281 rmind /* Lightning bolt. */
1282 1.273 pooka cv_broadcast(&lbolt);
1283 1.113 gmcgarry }
1284