kern_synch.c revision 1.296.4.4 1 1.296.4.4 mrg /* $NetBSD: kern_synch.c,v 1.296.4.4 2012/03/06 09:56:27 mrg Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.260 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 1.260 ad * The NetBSD Foundation, Inc.
6 1.63 thorpej * All rights reserved.
7 1.63 thorpej *
8 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
9 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 1.188 yamt * Daniel Sieger.
12 1.63 thorpej *
13 1.63 thorpej * Redistribution and use in source and binary forms, with or without
14 1.63 thorpej * modification, are permitted provided that the following conditions
15 1.63 thorpej * are met:
16 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer.
18 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
19 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
20 1.63 thorpej * documentation and/or other materials provided with the distribution.
21 1.63 thorpej *
22 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
33 1.63 thorpej */
34 1.26 cgd
35 1.26 cgd /*-
36 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 1.26 cgd * The Regents of the University of California. All rights reserved.
38 1.26 cgd * (c) UNIX System Laboratories, Inc.
39 1.26 cgd * All or some portions of this file are derived from material licensed
40 1.26 cgd * to the University of California by American Telephone and Telegraph
41 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 1.26 cgd * the permission of UNIX System Laboratories, Inc.
43 1.26 cgd *
44 1.26 cgd * Redistribution and use in source and binary forms, with or without
45 1.26 cgd * modification, are permitted provided that the following conditions
46 1.26 cgd * are met:
47 1.26 cgd * 1. Redistributions of source code must retain the above copyright
48 1.26 cgd * notice, this list of conditions and the following disclaimer.
49 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.26 cgd * notice, this list of conditions and the following disclaimer in the
51 1.26 cgd * documentation and/or other materials provided with the distribution.
52 1.136 agc * 3. Neither the name of the University nor the names of its contributors
53 1.26 cgd * may be used to endorse or promote products derived from this software
54 1.26 cgd * without specific prior written permission.
55 1.26 cgd *
56 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.26 cgd * SUCH DAMAGE.
67 1.26 cgd *
68 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 1.26 cgd */
70 1.106 lukem
71 1.106 lukem #include <sys/cdefs.h>
72 1.296.4.4 mrg __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.296.4.4 2012/03/06 09:56:27 mrg Exp $");
73 1.48 mrg
74 1.109 yamt #include "opt_kstack.h"
75 1.110 briggs #include "opt_perfctrs.h"
76 1.277 darran #include "opt_dtrace.h"
77 1.26 cgd
78 1.174 ad #define __MUTEX_PRIVATE
79 1.174 ad
80 1.26 cgd #include <sys/param.h>
81 1.26 cgd #include <sys/systm.h>
82 1.26 cgd #include <sys/proc.h>
83 1.26 cgd #include <sys/kernel.h>
84 1.111 briggs #if defined(PERFCTRS)
85 1.110 briggs #include <sys/pmc.h>
86 1.111 briggs #endif
87 1.188 yamt #include <sys/cpu.h>
88 1.290 christos #include <sys/pserialize.h>
89 1.26 cgd #include <sys/resourcevar.h>
90 1.55 ross #include <sys/sched.h>
91 1.179 dsl #include <sys/syscall_stats.h>
92 1.174 ad #include <sys/sleepq.h>
93 1.174 ad #include <sys/lockdebug.h>
94 1.190 ad #include <sys/evcnt.h>
95 1.199 ad #include <sys/intr.h>
96 1.207 ad #include <sys/lwpctl.h>
97 1.209 ad #include <sys/atomic.h>
98 1.215 ad #include <sys/simplelock.h>
99 1.295 njoly #include <sys/syslog.h>
100 1.47 mrg
101 1.47 mrg #include <uvm/uvm_extern.h>
102 1.47 mrg
103 1.231 ad #include <dev/lockstat.h>
104 1.231 ad
105 1.276 darran #include <sys/dtrace_bsd.h>
106 1.279 darran int dtrace_vtime_active=0;
107 1.276 darran dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
108 1.276 darran
109 1.271 rmind static void sched_unsleep(struct lwp *, bool);
110 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
111 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
112 1.250 rmind static void resched_cpu(struct lwp *);
113 1.122 thorpej
114 1.174 ad syncobj_t sleep_syncobj = {
115 1.174 ad SOBJ_SLEEPQ_SORTED,
116 1.174 ad sleepq_unsleep,
117 1.184 yamt sleepq_changepri,
118 1.184 yamt sleepq_lendpri,
119 1.184 yamt syncobj_noowner,
120 1.174 ad };
121 1.174 ad
122 1.174 ad syncobj_t sched_syncobj = {
123 1.174 ad SOBJ_SLEEPQ_SORTED,
124 1.174 ad sched_unsleep,
125 1.184 yamt sched_changepri,
126 1.184 yamt sched_lendpri,
127 1.184 yamt syncobj_noowner,
128 1.174 ad };
129 1.122 thorpej
130 1.289 rmind /* "Lightning bolt": once a second sleep address. */
131 1.289 rmind kcondvar_t lbolt __cacheline_aligned;
132 1.223 ad
133 1.289 rmind u_int sched_pstats_ticks __cacheline_aligned;
134 1.289 rmind
135 1.289 rmind /* Preemption event counters. */
136 1.289 rmind static struct evcnt kpreempt_ev_crit __cacheline_aligned;
137 1.289 rmind static struct evcnt kpreempt_ev_klock __cacheline_aligned;
138 1.289 rmind static struct evcnt kpreempt_ev_immed __cacheline_aligned;
139 1.231 ad
140 1.231 ad /*
141 1.174 ad * During autoconfiguration or after a panic, a sleep will simply lower the
142 1.174 ad * priority briefly to allow interrupts, then return. The priority to be
143 1.174 ad * used (safepri) is machine-dependent, thus this value is initialized and
144 1.174 ad * maintained in the machine-dependent layers. This priority will typically
145 1.174 ad * be 0, or the lowest priority that is safe for use on the interrupt stack;
146 1.174 ad * it can be made higher to block network software interrupts after panics.
147 1.26 cgd */
148 1.174 ad int safepri;
149 1.26 cgd
150 1.237 rmind void
151 1.270 elad synch_init(void)
152 1.237 rmind {
153 1.237 rmind
154 1.237 rmind cv_init(&lbolt, "lbolt");
155 1.237 rmind
156 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
157 1.237 rmind "kpreempt", "defer: critical section");
158 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
159 1.237 rmind "kpreempt", "defer: kernel_lock");
160 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
161 1.237 rmind "kpreempt", "immediate");
162 1.237 rmind }
163 1.237 rmind
164 1.26 cgd /*
165 1.174 ad * OBSOLETE INTERFACE
166 1.174 ad *
167 1.255 skrll * General sleep call. Suspends the current LWP until a wakeup is
168 1.255 skrll * performed on the specified identifier. The LWP will then be made
169 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
170 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
171 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
172 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
173 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
174 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
175 1.26 cgd * call should be interrupted by the signal (return EINTR).
176 1.26 cgd */
177 1.26 cgd int
178 1.296.4.1 mrg tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
179 1.26 cgd {
180 1.122 thorpej struct lwp *l = curlwp;
181 1.174 ad sleepq_t *sq;
182 1.244 ad kmutex_t *mp;
183 1.26 cgd
184 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
185 1.272 pooka KASSERT(ident != &lbolt);
186 1.204 ad
187 1.174 ad if (sleepq_dontsleep(l)) {
188 1.174 ad (void)sleepq_abort(NULL, 0);
189 1.174 ad return 0;
190 1.26 cgd }
191 1.78 sommerfe
192 1.204 ad l->l_kpriority = true;
193 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
194 1.244 ad sleepq_enter(sq, l, mp);
195 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
196 1.296.4.1 mrg return sleepq_block(timo, priority & PCATCH);
197 1.26 cgd }
198 1.26 cgd
199 1.187 ad int
200 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
201 1.187 ad kmutex_t *mtx)
202 1.187 ad {
203 1.187 ad struct lwp *l = curlwp;
204 1.187 ad sleepq_t *sq;
205 1.244 ad kmutex_t *mp;
206 1.188 yamt int error;
207 1.187 ad
208 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
209 1.272 pooka KASSERT(ident != &lbolt);
210 1.204 ad
211 1.187 ad if (sleepq_dontsleep(l)) {
212 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
213 1.187 ad return 0;
214 1.187 ad }
215 1.187 ad
216 1.204 ad l->l_kpriority = true;
217 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
218 1.244 ad sleepq_enter(sq, l, mp);
219 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
220 1.187 ad mutex_exit(mtx);
221 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
222 1.187 ad
223 1.187 ad if ((priority & PNORELOCK) == 0)
224 1.187 ad mutex_enter(mtx);
225 1.296.4.1 mrg
226 1.187 ad return error;
227 1.187 ad }
228 1.187 ad
229 1.26 cgd /*
230 1.174 ad * General sleep call for situations where a wake-up is not expected.
231 1.26 cgd */
232 1.174 ad int
233 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
234 1.26 cgd {
235 1.174 ad struct lwp *l = curlwp;
236 1.244 ad kmutex_t *mp;
237 1.174 ad sleepq_t *sq;
238 1.174 ad int error;
239 1.26 cgd
240 1.284 pooka KASSERT(!(timo == 0 && intr == false));
241 1.284 pooka
242 1.174 ad if (sleepq_dontsleep(l))
243 1.174 ad return sleepq_abort(NULL, 0);
244 1.26 cgd
245 1.174 ad if (mtx != NULL)
246 1.174 ad mutex_exit(mtx);
247 1.204 ad l->l_kpriority = true;
248 1.244 ad sq = sleeptab_lookup(&sleeptab, l, &mp);
249 1.244 ad sleepq_enter(sq, l, mp);
250 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
251 1.188 yamt error = sleepq_block(timo, intr);
252 1.174 ad if (mtx != NULL)
253 1.174 ad mutex_enter(mtx);
254 1.83 thorpej
255 1.174 ad return error;
256 1.139 cl }
257 1.139 cl
258 1.26 cgd /*
259 1.174 ad * OBSOLETE INTERFACE
260 1.174 ad *
261 1.255 skrll * Make all LWPs sleeping on the specified identifier runnable.
262 1.26 cgd */
263 1.26 cgd void
264 1.174 ad wakeup(wchan_t ident)
265 1.26 cgd {
266 1.174 ad sleepq_t *sq;
267 1.244 ad kmutex_t *mp;
268 1.83 thorpej
269 1.261 rmind if (__predict_false(cold))
270 1.174 ad return;
271 1.83 thorpej
272 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
273 1.244 ad sleepq_wake(sq, ident, (u_int)-1, mp);
274 1.63 thorpej }
275 1.63 thorpej
276 1.63 thorpej /*
277 1.255 skrll * General yield call. Puts the current LWP back on its run queue and
278 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
279 1.255 skrll * current LWP explicitly requests it (eg sched_yield(2)).
280 1.117 gmcgarry */
281 1.117 gmcgarry void
282 1.117 gmcgarry yield(void)
283 1.117 gmcgarry {
284 1.122 thorpej struct lwp *l = curlwp;
285 1.117 gmcgarry
286 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
287 1.174 ad lwp_lock(l);
288 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
289 1.188 yamt KASSERT(l->l_stat == LSONPROC);
290 1.204 ad l->l_kpriority = false;
291 1.188 yamt (void)mi_switch(l);
292 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
293 1.69 thorpej }
294 1.69 thorpej
295 1.69 thorpej /*
296 1.255 skrll * General preemption call. Puts the current LWP back on its run queue
297 1.156 rpaulo * and performs an involuntary context switch.
298 1.69 thorpej */
299 1.69 thorpej void
300 1.174 ad preempt(void)
301 1.69 thorpej {
302 1.122 thorpej struct lwp *l = curlwp;
303 1.69 thorpej
304 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
305 1.174 ad lwp_lock(l);
306 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
307 1.188 yamt KASSERT(l->l_stat == LSONPROC);
308 1.204 ad l->l_kpriority = false;
309 1.174 ad l->l_nivcsw++;
310 1.188 yamt (void)mi_switch(l);
311 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
312 1.69 thorpej }
313 1.69 thorpej
314 1.234 ad /*
315 1.234 ad * Handle a request made by another agent to preempt the current LWP
316 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
317 1.234 ad *
318 1.234 ad * Character addresses for lockstat only.
319 1.234 ad */
320 1.231 ad static char in_critical_section;
321 1.231 ad static char kernel_lock_held;
322 1.231 ad static char is_softint;
323 1.262 yamt static char cpu_kpreempt_enter_fail;
324 1.231 ad
325 1.231 ad bool
326 1.231 ad kpreempt(uintptr_t where)
327 1.231 ad {
328 1.231 ad uintptr_t failed;
329 1.231 ad lwp_t *l;
330 1.264 ad int s, dop, lsflag;
331 1.231 ad
332 1.231 ad l = curlwp;
333 1.231 ad failed = 0;
334 1.231 ad while ((dop = l->l_dopreempt) != 0) {
335 1.231 ad if (l->l_stat != LSONPROC) {
336 1.231 ad /*
337 1.231 ad * About to block (or die), let it happen.
338 1.231 ad * Doesn't really count as "preemption has
339 1.231 ad * been blocked", since we're going to
340 1.231 ad * context switch.
341 1.231 ad */
342 1.231 ad l->l_dopreempt = 0;
343 1.231 ad return true;
344 1.231 ad }
345 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
346 1.231 ad /* Can't preempt idle loop, don't count as failure. */
347 1.261 rmind l->l_dopreempt = 0;
348 1.261 rmind return true;
349 1.231 ad }
350 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
351 1.231 ad /* LWP holds preemption disabled, explicitly. */
352 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
353 1.234 ad kpreempt_ev_crit.ev_count++;
354 1.231 ad }
355 1.231 ad failed = (uintptr_t)&in_critical_section;
356 1.231 ad break;
357 1.231 ad }
358 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
359 1.261 rmind /* Can't preempt soft interrupts yet. */
360 1.261 rmind l->l_dopreempt = 0;
361 1.261 rmind failed = (uintptr_t)&is_softint;
362 1.261 rmind break;
363 1.231 ad }
364 1.231 ad s = splsched();
365 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
366 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
367 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
368 1.231 ad splx(s);
369 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
370 1.234 ad kpreempt_ev_klock.ev_count++;
371 1.231 ad }
372 1.231 ad failed = (uintptr_t)&kernel_lock_held;
373 1.231 ad break;
374 1.231 ad }
375 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
376 1.231 ad /*
377 1.231 ad * It may be that the IPL is too high.
378 1.231 ad * kpreempt_enter() can schedule an
379 1.231 ad * interrupt to retry later.
380 1.231 ad */
381 1.231 ad splx(s);
382 1.262 yamt failed = (uintptr_t)&cpu_kpreempt_enter_fail;
383 1.231 ad break;
384 1.231 ad }
385 1.231 ad /* Do it! */
386 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
387 1.234 ad kpreempt_ev_immed.ev_count++;
388 1.231 ad }
389 1.231 ad lwp_lock(l);
390 1.231 ad mi_switch(l);
391 1.231 ad l->l_nopreempt++;
392 1.231 ad splx(s);
393 1.231 ad
394 1.231 ad /* Take care of any MD cleanup. */
395 1.231 ad cpu_kpreempt_exit(where);
396 1.231 ad l->l_nopreempt--;
397 1.231 ad }
398 1.231 ad
399 1.264 ad if (__predict_true(!failed)) {
400 1.264 ad return false;
401 1.264 ad }
402 1.264 ad
403 1.231 ad /* Record preemption failure for reporting via lockstat. */
404 1.264 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
405 1.264 ad lsflag = 0;
406 1.264 ad LOCKSTAT_ENTER(lsflag);
407 1.264 ad if (__predict_false(lsflag)) {
408 1.264 ad if (where == 0) {
409 1.264 ad where = (uintptr_t)__builtin_return_address(0);
410 1.264 ad }
411 1.264 ad /* Preemption is on, might recurse, so make it atomic. */
412 1.264 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
413 1.264 ad (void *)where) == NULL) {
414 1.264 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
415 1.264 ad l->l_pfaillock = failed;
416 1.231 ad }
417 1.231 ad }
418 1.264 ad LOCKSTAT_EXIT(lsflag);
419 1.264 ad return true;
420 1.231 ad }
421 1.231 ad
422 1.69 thorpej /*
423 1.231 ad * Return true if preemption is explicitly disabled.
424 1.230 ad */
425 1.231 ad bool
426 1.231 ad kpreempt_disabled(void)
427 1.231 ad {
428 1.261 rmind const lwp_t *l = curlwp;
429 1.231 ad
430 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
431 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
432 1.231 ad }
433 1.230 ad
434 1.230 ad /*
435 1.231 ad * Disable kernel preemption.
436 1.230 ad */
437 1.230 ad void
438 1.231 ad kpreempt_disable(void)
439 1.230 ad {
440 1.230 ad
441 1.231 ad KPREEMPT_DISABLE(curlwp);
442 1.230 ad }
443 1.230 ad
444 1.230 ad /*
445 1.231 ad * Reenable kernel preemption.
446 1.230 ad */
447 1.231 ad void
448 1.231 ad kpreempt_enable(void)
449 1.230 ad {
450 1.230 ad
451 1.231 ad KPREEMPT_ENABLE(curlwp);
452 1.230 ad }
453 1.230 ad
454 1.230 ad /*
455 1.188 yamt * Compute the amount of time during which the current lwp was running.
456 1.130 nathanw *
457 1.188 yamt * - update l_rtime unless it's an idle lwp.
458 1.188 yamt */
459 1.188 yamt
460 1.199 ad void
461 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
462 1.188 yamt {
463 1.188 yamt
464 1.261 rmind if (__predict_false(l->l_flag & LW_IDLE))
465 1.188 yamt return;
466 1.188 yamt
467 1.212 yamt /* rtime += now - stime */
468 1.212 yamt bintime_add(&l->l_rtime, now);
469 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
470 1.188 yamt }
471 1.188 yamt
472 1.188 yamt /*
473 1.245 ad * Select next LWP from the current CPU to run..
474 1.245 ad */
475 1.245 ad static inline lwp_t *
476 1.245 ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
477 1.245 ad {
478 1.245 ad lwp_t *newl;
479 1.245 ad
480 1.245 ad /*
481 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
482 1.245 ad * If no LWP is runnable, select the idle LWP.
483 1.245 ad *
484 1.245 ad * Note that spc_lwplock might not necessary be held, and
485 1.245 ad * new thread would be unlocked after setting the LWP-lock.
486 1.245 ad */
487 1.245 ad newl = sched_nextlwp();
488 1.245 ad if (newl != NULL) {
489 1.245 ad sched_dequeue(newl);
490 1.245 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
491 1.274 rmind KASSERT(newl->l_cpu == ci);
492 1.245 ad newl->l_stat = LSONPROC;
493 1.248 ad newl->l_pflag |= LP_RUNNING;
494 1.245 ad lwp_setlock(newl, spc->spc_lwplock);
495 1.245 ad } else {
496 1.245 ad newl = ci->ci_data.cpu_idlelwp;
497 1.245 ad newl->l_stat = LSONPROC;
498 1.248 ad newl->l_pflag |= LP_RUNNING;
499 1.245 ad }
500 1.261 rmind
501 1.245 ad /*
502 1.245 ad * Only clear want_resched if there are no pending (slow)
503 1.245 ad * software interrupts.
504 1.245 ad */
505 1.245 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
506 1.245 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
507 1.245 ad spc->spc_curpriority = lwp_eprio(newl);
508 1.245 ad
509 1.245 ad return newl;
510 1.245 ad }
511 1.245 ad
512 1.245 ad /*
513 1.188 yamt * The machine independent parts of context switch.
514 1.188 yamt *
515 1.188 yamt * Returns 1 if another LWP was actually run.
516 1.26 cgd */
517 1.122 thorpej int
518 1.199 ad mi_switch(lwp_t *l)
519 1.26 cgd {
520 1.246 rmind struct cpu_info *ci;
521 1.76 thorpej struct schedstate_percpu *spc;
522 1.188 yamt struct lwp *newl;
523 1.174 ad int retval, oldspl;
524 1.212 yamt struct bintime bt;
525 1.199 ad bool returning;
526 1.26 cgd
527 1.188 yamt KASSERT(lwp_locked(l, NULL));
528 1.231 ad KASSERT(kpreempt_disabled());
529 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
530 1.174 ad
531 1.174 ad kstack_check_magic(l);
532 1.83 thorpej
533 1.212 yamt binuptime(&bt);
534 1.199 ad
535 1.267 yamt KASSERT((l->l_pflag & LP_RUNNING) != 0);
536 1.231 ad KASSERT(l->l_cpu == curcpu());
537 1.196 ad ci = l->l_cpu;
538 1.196 ad spc = &ci->ci_schedstate;
539 1.199 ad returning = false;
540 1.190 ad newl = NULL;
541 1.190 ad
542 1.199 ad /*
543 1.199 ad * If we have been asked to switch to a specific LWP, then there
544 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
545 1.199 ad * blocking, then return to the interrupted thread without adjusting
546 1.199 ad * VM context or its start time: neither have been changed in order
547 1.199 ad * to take the interrupt.
548 1.199 ad */
549 1.190 ad if (l->l_switchto != NULL) {
550 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
551 1.199 ad returning = true;
552 1.199 ad softint_block(l);
553 1.248 ad if ((l->l_pflag & LP_TIMEINTR) != 0)
554 1.212 yamt updatertime(l, &bt);
555 1.199 ad }
556 1.190 ad newl = l->l_switchto;
557 1.190 ad l->l_switchto = NULL;
558 1.190 ad }
559 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
560 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
561 1.204 ad /* There are pending soft interrupts, so pick one. */
562 1.204 ad newl = softint_picklwp();
563 1.204 ad newl->l_stat = LSONPROC;
564 1.248 ad newl->l_pflag |= LP_RUNNING;
565 1.204 ad }
566 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
567 1.190 ad
568 1.180 dsl /* Count time spent in current system call */
569 1.199 ad if (!returning) {
570 1.199 ad SYSCALL_TIME_SLEEP(l);
571 1.180 dsl
572 1.199 ad /*
573 1.199 ad * XXXSMP If we are using h/w performance counters,
574 1.199 ad * save context.
575 1.199 ad */
576 1.174 ad #if PERFCTRS
577 1.199 ad if (PMC_ENABLED(l->l_proc)) {
578 1.199 ad pmc_save_context(l->l_proc);
579 1.199 ad }
580 1.199 ad #endif
581 1.212 yamt updatertime(l, &bt);
582 1.174 ad }
583 1.113 gmcgarry
584 1.246 rmind /* Lock the runqueue */
585 1.246 rmind KASSERT(l->l_stat != LSRUN);
586 1.246 rmind mutex_spin_enter(spc->spc_mutex);
587 1.246 rmind
588 1.113 gmcgarry /*
589 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
590 1.113 gmcgarry */
591 1.246 rmind if (l->l_stat == LSONPROC && l != newl) {
592 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
593 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
594 1.188 yamt l->l_stat = LSRUN;
595 1.246 rmind lwp_setlock(l, spc->spc_mutex);
596 1.246 rmind sched_enqueue(l, true);
597 1.285 rmind /*
598 1.285 rmind * Handle migration. Note that "migrating LWP" may
599 1.285 rmind * be reset here, if interrupt/preemption happens
600 1.285 rmind * early in idle LWP.
601 1.285 rmind */
602 1.285 rmind if (l->l_target_cpu != NULL) {
603 1.285 rmind KASSERT((l->l_pflag & LP_INTR) == 0);
604 1.246 rmind spc->spc_migrating = l;
605 1.216 rmind }
606 1.246 rmind } else
607 1.188 yamt l->l_stat = LSIDL;
608 1.174 ad }
609 1.174 ad
610 1.245 ad /* Pick new LWP to run. */
611 1.190 ad if (newl == NULL) {
612 1.245 ad newl = nextlwp(ci, spc);
613 1.199 ad }
614 1.199 ad
615 1.204 ad /* Items that must be updated with the CPU locked. */
616 1.199 ad if (!returning) {
617 1.204 ad /* Update the new LWP's start time. */
618 1.212 yamt newl->l_stime = bt;
619 1.204 ad
620 1.199 ad /*
621 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
622 1.204 ad * We use cpu_onproc to keep track of which kernel or
623 1.204 ad * user thread is running 'underneath' the software
624 1.204 ad * interrupt. This is important for time accounting,
625 1.204 ad * itimers and forcing user threads to preempt (aston).
626 1.199 ad */
627 1.204 ad ci->ci_data.cpu_onproc = newl;
628 1.188 yamt }
629 1.188 yamt
630 1.241 ad /*
631 1.241 ad * Preemption related tasks. Must be done with the current
632 1.241 ad * CPU locked.
633 1.241 ad */
634 1.241 ad cpu_did_resched(l);
635 1.231 ad l->l_dopreempt = 0;
636 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
637 1.231 ad LOCKSTAT_FLAG(lsflag);
638 1.231 ad LOCKSTAT_ENTER(lsflag);
639 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
640 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
641 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
642 1.231 ad LOCKSTAT_EXIT(lsflag);
643 1.231 ad l->l_pfailtime = 0;
644 1.231 ad l->l_pfaillock = 0;
645 1.231 ad l->l_pfailaddr = 0;
646 1.231 ad }
647 1.231 ad
648 1.188 yamt if (l != newl) {
649 1.188 yamt struct lwp *prevlwp;
650 1.174 ad
651 1.209 ad /* Release all locks, but leave the current LWP locked */
652 1.246 rmind if (l->l_mutex == spc->spc_mutex) {
653 1.209 ad /*
654 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
655 1.209 ad * to the run queue (it is now locked by spc_mutex).
656 1.209 ad */
657 1.217 ad mutex_spin_exit(spc->spc_lwplock);
658 1.188 yamt } else {
659 1.209 ad /*
660 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
661 1.209 ad * run queues.
662 1.209 ad */
663 1.188 yamt mutex_spin_exit(spc->spc_mutex);
664 1.188 yamt }
665 1.188 yamt
666 1.209 ad /*
667 1.253 skrll * Mark that context switch is going to be performed
668 1.209 ad * for this LWP, to protect it from being switched
669 1.209 ad * to on another CPU.
670 1.209 ad */
671 1.209 ad KASSERT(l->l_ctxswtch == 0);
672 1.209 ad l->l_ctxswtch = 1;
673 1.209 ad l->l_ncsw++;
674 1.267 yamt KASSERT((l->l_pflag & LP_RUNNING) != 0);
675 1.248 ad l->l_pflag &= ~LP_RUNNING;
676 1.209 ad
677 1.209 ad /*
678 1.209 ad * Increase the count of spin-mutexes before the release
679 1.209 ad * of the last lock - we must remain at IPL_SCHED during
680 1.209 ad * the context switch.
681 1.209 ad */
682 1.287 matt KASSERTMSG(ci->ci_mtx_count == -1,
683 1.291 jym "%s: cpu%u: ci_mtx_count (%d) != -1",
684 1.291 jym __func__, cpu_index(ci), ci->ci_mtx_count);
685 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
686 1.209 ad ci->ci_mtx_count--;
687 1.209 ad lwp_unlock(l);
688 1.209 ad
689 1.218 ad /* Count the context switch on this CPU. */
690 1.218 ad ci->ci_data.cpu_nswtch++;
691 1.188 yamt
692 1.209 ad /* Update status for lwpctl, if present. */
693 1.209 ad if (l->l_lwpctl != NULL)
694 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
695 1.209 ad
696 1.199 ad /*
697 1.199 ad * Save old VM context, unless a soft interrupt
698 1.199 ad * handler is blocking.
699 1.199 ad */
700 1.199 ad if (!returning)
701 1.199 ad pmap_deactivate(l);
702 1.188 yamt
703 1.209 ad /*
704 1.275 skrll * We may need to spin-wait if 'newl' is still
705 1.209 ad * context switching on another CPU.
706 1.209 ad */
707 1.261 rmind if (__predict_false(newl->l_ctxswtch != 0)) {
708 1.209 ad u_int count;
709 1.209 ad count = SPINLOCK_BACKOFF_MIN;
710 1.209 ad while (newl->l_ctxswtch)
711 1.209 ad SPINLOCK_BACKOFF(count);
712 1.209 ad }
713 1.207 ad
714 1.276 darran /*
715 1.276 darran * If DTrace has set the active vtime enum to anything
716 1.276 darran * other than INACTIVE (0), then it should have set the
717 1.276 darran * function to call.
718 1.276 darran */
719 1.278 darran if (__predict_false(dtrace_vtime_active)) {
720 1.276 darran (*dtrace_vtime_switch_func)(newl);
721 1.276 darran }
722 1.276 darran
723 1.188 yamt /* Switch to the new LWP.. */
724 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
725 1.207 ad ci = curcpu();
726 1.207 ad
727 1.188 yamt /*
728 1.209 ad * Switched away - we have new curlwp.
729 1.209 ad * Restore VM context and IPL.
730 1.188 yamt */
731 1.209 ad pmap_activate(l);
732 1.265 rmind uvm_emap_switch(l);
733 1.288 rmind pcu_switchpoint(l);
734 1.265 rmind
735 1.188 yamt if (prevlwp != NULL) {
736 1.209 ad /* Normalize the count of the spin-mutexes */
737 1.209 ad ci->ci_mtx_count++;
738 1.209 ad /* Unmark the state of context switch */
739 1.209 ad membar_exit();
740 1.209 ad prevlwp->l_ctxswtch = 0;
741 1.188 yamt }
742 1.209 ad
743 1.209 ad /* Update status for lwpctl, if present. */
744 1.219 ad if (l->l_lwpctl != NULL) {
745 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
746 1.219 ad l->l_lwpctl->lc_pctr++;
747 1.219 ad }
748 1.174 ad
749 1.290 christos /* Note trip through cpu_switchto(). */
750 1.290 christos pserialize_switchpoint();
751 1.290 christos
752 1.231 ad KASSERT(l->l_cpu == ci);
753 1.231 ad splx(oldspl);
754 1.188 yamt retval = 1;
755 1.188 yamt } else {
756 1.188 yamt /* Nothing to do - just unlock and return. */
757 1.246 rmind mutex_spin_exit(spc->spc_mutex);
758 1.188 yamt lwp_unlock(l);
759 1.122 thorpej retval = 0;
760 1.122 thorpej }
761 1.110 briggs
762 1.188 yamt KASSERT(l == curlwp);
763 1.188 yamt KASSERT(l->l_stat == LSONPROC);
764 1.188 yamt
765 1.110 briggs /*
766 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
767 1.231 ad * XXXSMP preemption problem.
768 1.26 cgd */
769 1.114 gmcgarry #if PERFCTRS
770 1.175 christos if (PMC_ENABLED(l->l_proc)) {
771 1.175 christos pmc_restore_context(l->l_proc);
772 1.166 christos }
773 1.114 gmcgarry #endif
774 1.180 dsl SYSCALL_TIME_WAKEUP(l);
775 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
776 1.169 yamt
777 1.122 thorpej return retval;
778 1.26 cgd }
779 1.26 cgd
780 1.26 cgd /*
781 1.245 ad * The machine independent parts of context switch to oblivion.
782 1.245 ad * Does not return. Call with the LWP unlocked.
783 1.245 ad */
784 1.245 ad void
785 1.245 ad lwp_exit_switchaway(lwp_t *l)
786 1.245 ad {
787 1.245 ad struct cpu_info *ci;
788 1.245 ad struct lwp *newl;
789 1.245 ad struct bintime bt;
790 1.245 ad
791 1.245 ad ci = l->l_cpu;
792 1.245 ad
793 1.245 ad KASSERT(kpreempt_disabled());
794 1.245 ad KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
795 1.245 ad KASSERT(ci == curcpu());
796 1.245 ad LOCKDEBUG_BARRIER(NULL, 0);
797 1.245 ad
798 1.245 ad kstack_check_magic(l);
799 1.245 ad
800 1.245 ad /* Count time spent in current system call */
801 1.245 ad SYSCALL_TIME_SLEEP(l);
802 1.245 ad binuptime(&bt);
803 1.245 ad updatertime(l, &bt);
804 1.245 ad
805 1.245 ad /* Must stay at IPL_SCHED even after releasing run queue lock. */
806 1.245 ad (void)splsched();
807 1.245 ad
808 1.245 ad /*
809 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
810 1.245 ad * If no LWP is runnable, select the idle LWP.
811 1.245 ad *
812 1.245 ad * Note that spc_lwplock might not necessary be held, and
813 1.245 ad * new thread would be unlocked after setting the LWP-lock.
814 1.245 ad */
815 1.245 ad spc_lock(ci);
816 1.245 ad #ifndef __HAVE_FAST_SOFTINTS
817 1.245 ad if (ci->ci_data.cpu_softints != 0) {
818 1.245 ad /* There are pending soft interrupts, so pick one. */
819 1.245 ad newl = softint_picklwp();
820 1.245 ad newl->l_stat = LSONPROC;
821 1.248 ad newl->l_pflag |= LP_RUNNING;
822 1.245 ad } else
823 1.245 ad #endif /* !__HAVE_FAST_SOFTINTS */
824 1.245 ad {
825 1.245 ad newl = nextlwp(ci, &ci->ci_schedstate);
826 1.245 ad }
827 1.245 ad
828 1.245 ad /* Update the new LWP's start time. */
829 1.245 ad newl->l_stime = bt;
830 1.248 ad l->l_pflag &= ~LP_RUNNING;
831 1.245 ad
832 1.245 ad /*
833 1.245 ad * ci_curlwp changes when a fast soft interrupt occurs.
834 1.245 ad * We use cpu_onproc to keep track of which kernel or
835 1.245 ad * user thread is running 'underneath' the software
836 1.245 ad * interrupt. This is important for time accounting,
837 1.245 ad * itimers and forcing user threads to preempt (aston).
838 1.245 ad */
839 1.245 ad ci->ci_data.cpu_onproc = newl;
840 1.245 ad
841 1.245 ad /*
842 1.245 ad * Preemption related tasks. Must be done with the current
843 1.245 ad * CPU locked.
844 1.245 ad */
845 1.245 ad cpu_did_resched(l);
846 1.245 ad
847 1.245 ad /* Unlock the run queue. */
848 1.245 ad spc_unlock(ci);
849 1.245 ad
850 1.245 ad /* Count the context switch on this CPU. */
851 1.245 ad ci->ci_data.cpu_nswtch++;
852 1.245 ad
853 1.245 ad /* Update status for lwpctl, if present. */
854 1.245 ad if (l->l_lwpctl != NULL)
855 1.247 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
856 1.245 ad
857 1.245 ad /*
858 1.275 skrll * We may need to spin-wait if 'newl' is still
859 1.245 ad * context switching on another CPU.
860 1.245 ad */
861 1.261 rmind if (__predict_false(newl->l_ctxswtch != 0)) {
862 1.245 ad u_int count;
863 1.245 ad count = SPINLOCK_BACKOFF_MIN;
864 1.245 ad while (newl->l_ctxswtch)
865 1.245 ad SPINLOCK_BACKOFF(count);
866 1.245 ad }
867 1.245 ad
868 1.279 darran /*
869 1.279 darran * If DTrace has set the active vtime enum to anything
870 1.279 darran * other than INACTIVE (0), then it should have set the
871 1.279 darran * function to call.
872 1.279 darran */
873 1.279 darran if (__predict_false(dtrace_vtime_active)) {
874 1.279 darran (*dtrace_vtime_switch_func)(newl);
875 1.279 darran }
876 1.276 darran
877 1.245 ad /* Switch to the new LWP.. */
878 1.245 ad (void)cpu_switchto(NULL, newl, false);
879 1.245 ad
880 1.251 uwe for (;;) continue; /* XXX: convince gcc about "noreturn" */
881 1.245 ad /* NOTREACHED */
882 1.245 ad }
883 1.245 ad
884 1.245 ad /*
885 1.271 rmind * setrunnable: change LWP state to be runnable, placing it on the run queue.
886 1.174 ad *
887 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
888 1.26 cgd */
889 1.26 cgd void
890 1.122 thorpej setrunnable(struct lwp *l)
891 1.26 cgd {
892 1.122 thorpej struct proc *p = l->l_proc;
893 1.205 ad struct cpu_info *ci;
894 1.26 cgd
895 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
896 1.229 ad KASSERT(mutex_owned(p->p_lock));
897 1.183 ad KASSERT(lwp_locked(l, NULL));
898 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
899 1.83 thorpej
900 1.122 thorpej switch (l->l_stat) {
901 1.122 thorpej case LSSTOP:
902 1.33 mycroft /*
903 1.33 mycroft * If we're being traced (possibly because someone attached us
904 1.33 mycroft * while we were stopped), check for a signal from the debugger.
905 1.33 mycroft */
906 1.256 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
907 1.174 ad signotify(l);
908 1.174 ad p->p_nrlwps++;
909 1.26 cgd break;
910 1.174 ad case LSSUSPENDED:
911 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
912 1.174 ad p->p_nrlwps++;
913 1.192 rmind cv_broadcast(&p->p_lwpcv);
914 1.122 thorpej break;
915 1.174 ad case LSSLEEP:
916 1.174 ad KASSERT(l->l_wchan != NULL);
917 1.26 cgd break;
918 1.174 ad default:
919 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
920 1.26 cgd }
921 1.139 cl
922 1.174 ad /*
923 1.286 pooka * If the LWP was sleeping, start it again.
924 1.174 ad */
925 1.174 ad if (l->l_wchan != NULL) {
926 1.174 ad l->l_stat = LSSLEEP;
927 1.183 ad /* lwp_unsleep() will release the lock. */
928 1.221 ad lwp_unsleep(l, true);
929 1.174 ad return;
930 1.174 ad }
931 1.139 cl
932 1.174 ad /*
933 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
934 1.174 ad * about to call mi_switch(), in which case it will yield.
935 1.174 ad */
936 1.248 ad if ((l->l_pflag & LP_RUNNING) != 0) {
937 1.174 ad l->l_stat = LSONPROC;
938 1.174 ad l->l_slptime = 0;
939 1.174 ad lwp_unlock(l);
940 1.174 ad return;
941 1.174 ad }
942 1.122 thorpej
943 1.174 ad /*
944 1.205 ad * Look for a CPU to run.
945 1.205 ad * Set the LWP runnable.
946 1.174 ad */
947 1.205 ad ci = sched_takecpu(l);
948 1.205 ad l->l_cpu = ci;
949 1.236 ad spc_lock(ci);
950 1.236 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
951 1.188 yamt sched_setrunnable(l);
952 1.174 ad l->l_stat = LSRUN;
953 1.122 thorpej l->l_slptime = 0;
954 1.174 ad
955 1.271 rmind sched_enqueue(l, false);
956 1.271 rmind resched_cpu(l);
957 1.271 rmind lwp_unlock(l);
958 1.26 cgd }
959 1.26 cgd
960 1.26 cgd /*
961 1.174 ad * suspendsched:
962 1.174 ad *
963 1.266 yamt * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
964 1.174 ad */
965 1.94 bouyer void
966 1.174 ad suspendsched(void)
967 1.94 bouyer {
968 1.174 ad CPU_INFO_ITERATOR cii;
969 1.174 ad struct cpu_info *ci;
970 1.122 thorpej struct lwp *l;
971 1.174 ad struct proc *p;
972 1.94 bouyer
973 1.94 bouyer /*
974 1.174 ad * We do this by process in order not to violate the locking rules.
975 1.94 bouyer */
976 1.228 ad mutex_enter(proc_lock);
977 1.174 ad PROCLIST_FOREACH(p, &allproc) {
978 1.229 ad mutex_enter(p->p_lock);
979 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
980 1.229 ad mutex_exit(p->p_lock);
981 1.94 bouyer continue;
982 1.174 ad }
983 1.174 ad
984 1.174 ad p->p_stat = SSTOP;
985 1.174 ad
986 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
987 1.174 ad if (l == curlwp)
988 1.174 ad continue;
989 1.174 ad
990 1.174 ad lwp_lock(l);
991 1.122 thorpej
992 1.97 enami /*
993 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
994 1.174 ad * when it tries to return to user mode. We want to
995 1.174 ad * try and get to get as many LWPs as possible to
996 1.174 ad * the user / kernel boundary, so that they will
997 1.174 ad * release any locks that they hold.
998 1.97 enami */
999 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1000 1.174 ad
1001 1.174 ad if (l->l_stat == LSSLEEP &&
1002 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1003 1.174 ad /* setrunnable() will release the lock. */
1004 1.174 ad setrunnable(l);
1005 1.174 ad continue;
1006 1.174 ad }
1007 1.174 ad
1008 1.174 ad lwp_unlock(l);
1009 1.94 bouyer }
1010 1.174 ad
1011 1.229 ad mutex_exit(p->p_lock);
1012 1.94 bouyer }
1013 1.228 ad mutex_exit(proc_lock);
1014 1.174 ad
1015 1.174 ad /*
1016 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1017 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
1018 1.174 ad */
1019 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1020 1.204 ad spc_lock(ci);
1021 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
1022 1.204 ad spc_unlock(ci);
1023 1.204 ad }
1024 1.174 ad }
1025 1.174 ad
1026 1.174 ad /*
1027 1.174 ad * sched_unsleep:
1028 1.174 ad *
1029 1.174 ad * The is called when the LWP has not been awoken normally but instead
1030 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1031 1.174 ad * it's not a valid action for running or idle LWPs.
1032 1.174 ad */
1033 1.271 rmind static void
1034 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1035 1.174 ad {
1036 1.174 ad
1037 1.174 ad lwp_unlock(l);
1038 1.174 ad panic("sched_unsleep");
1039 1.174 ad }
1040 1.174 ad
1041 1.250 rmind static void
1042 1.188 yamt resched_cpu(struct lwp *l)
1043 1.188 yamt {
1044 1.274 rmind struct cpu_info *ci = l->l_cpu;
1045 1.188 yamt
1046 1.250 rmind KASSERT(lwp_locked(l, NULL));
1047 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1048 1.188 yamt cpu_need_resched(ci, 0);
1049 1.188 yamt }
1050 1.188 yamt
1051 1.188 yamt static void
1052 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1053 1.174 ad {
1054 1.174 ad
1055 1.188 yamt KASSERT(lwp_locked(l, NULL));
1056 1.174 ad
1057 1.271 rmind if (l->l_stat == LSRUN) {
1058 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1059 1.204 ad sched_dequeue(l);
1060 1.204 ad l->l_priority = pri;
1061 1.204 ad sched_enqueue(l, false);
1062 1.204 ad } else {
1063 1.174 ad l->l_priority = pri;
1064 1.157 yamt }
1065 1.188 yamt resched_cpu(l);
1066 1.184 yamt }
1067 1.184 yamt
1068 1.188 yamt static void
1069 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1070 1.184 yamt {
1071 1.184 yamt
1072 1.188 yamt KASSERT(lwp_locked(l, NULL));
1073 1.184 yamt
1074 1.271 rmind if (l->l_stat == LSRUN) {
1075 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1076 1.204 ad sched_dequeue(l);
1077 1.204 ad l->l_inheritedprio = pri;
1078 1.204 ad sched_enqueue(l, false);
1079 1.204 ad } else {
1080 1.184 yamt l->l_inheritedprio = pri;
1081 1.184 yamt }
1082 1.188 yamt resched_cpu(l);
1083 1.184 yamt }
1084 1.184 yamt
1085 1.184 yamt struct lwp *
1086 1.184 yamt syncobj_noowner(wchan_t wchan)
1087 1.184 yamt {
1088 1.184 yamt
1089 1.184 yamt return NULL;
1090 1.151 yamt }
1091 1.151 yamt
1092 1.250 rmind /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1093 1.281 rmind const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1094 1.281 rmind
1095 1.281 rmind /*
1096 1.281 rmind * Constants for averages over 1, 5 and 15 minutes when sampling at
1097 1.281 rmind * 5 second intervals.
1098 1.281 rmind */
1099 1.281 rmind static const fixpt_t cexp[ ] = {
1100 1.281 rmind 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1101 1.281 rmind 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1102 1.281 rmind 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1103 1.281 rmind };
1104 1.134 matt
1105 1.134 matt /*
1106 1.188 yamt * sched_pstats:
1107 1.188 yamt *
1108 1.281 rmind * => Update process statistics and check CPU resource allocation.
1109 1.281 rmind * => Call scheduler-specific hook to eventually adjust LWP priorities.
1110 1.281 rmind * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1111 1.130 nathanw */
1112 1.113 gmcgarry void
1113 1.281 rmind sched_pstats(void)
1114 1.113 gmcgarry {
1115 1.281 rmind extern struct loadavg averunnable;
1116 1.281 rmind struct loadavg *avg = &averunnable;
1117 1.249 rmind const int clkhz = (stathz != 0 ? stathz : hz);
1118 1.281 rmind static bool backwards = false;
1119 1.281 rmind static u_int lavg_count = 0;
1120 1.188 yamt struct proc *p;
1121 1.281 rmind int nrun;
1122 1.113 gmcgarry
1123 1.188 yamt sched_pstats_ticks++;
1124 1.281 rmind if (++lavg_count >= 5) {
1125 1.281 rmind lavg_count = 0;
1126 1.281 rmind nrun = 0;
1127 1.281 rmind }
1128 1.228 ad mutex_enter(proc_lock);
1129 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1130 1.281 rmind struct lwp *l;
1131 1.281 rmind struct rlimit *rlim;
1132 1.296 dholland time_t runtm;
1133 1.281 rmind int sig;
1134 1.281 rmind
1135 1.271 rmind /* Increment sleep time (if sleeping), ignore overflow. */
1136 1.229 ad mutex_enter(p->p_lock);
1137 1.212 yamt runtm = p->p_rtime.sec;
1138 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1139 1.281 rmind fixpt_t lpctcpu;
1140 1.281 rmind u_int lcpticks;
1141 1.281 rmind
1142 1.249 rmind if (__predict_false((l->l_flag & LW_IDLE) != 0))
1143 1.188 yamt continue;
1144 1.188 yamt lwp_lock(l);
1145 1.212 yamt runtm += l->l_rtime.sec;
1146 1.188 yamt l->l_swtime++;
1147 1.242 rmind sched_lwp_stats(l);
1148 1.281 rmind
1149 1.281 rmind /* For load average calculation. */
1150 1.282 rmind if (__predict_false(lavg_count == 0) &&
1151 1.282 rmind (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1152 1.281 rmind switch (l->l_stat) {
1153 1.281 rmind case LSSLEEP:
1154 1.281 rmind if (l->l_slptime > 1) {
1155 1.281 rmind break;
1156 1.281 rmind }
1157 1.281 rmind case LSRUN:
1158 1.281 rmind case LSONPROC:
1159 1.281 rmind case LSIDL:
1160 1.281 rmind nrun++;
1161 1.281 rmind }
1162 1.281 rmind }
1163 1.282 rmind lwp_unlock(l);
1164 1.282 rmind
1165 1.282 rmind l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1166 1.282 rmind if (l->l_slptime != 0)
1167 1.282 rmind continue;
1168 1.282 rmind
1169 1.282 rmind lpctcpu = l->l_pctcpu;
1170 1.282 rmind lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1171 1.282 rmind lpctcpu += ((FSCALE - ccpu) *
1172 1.282 rmind (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1173 1.282 rmind l->l_pctcpu = lpctcpu;
1174 1.188 yamt }
1175 1.249 rmind /* Calculating p_pctcpu only for ps(1) */
1176 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1177 1.174 ad
1178 1.188 yamt /*
1179 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1180 1.293 apb * If over the hard limit, kill it with SIGKILL.
1181 1.293 apb * If over the soft limit, send SIGXCPU and raise
1182 1.293 apb * the soft limit a little.
1183 1.188 yamt */
1184 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1185 1.188 yamt sig = 0;
1186 1.249 rmind if (__predict_false(runtm >= rlim->rlim_cur)) {
1187 1.293 apb if (runtm >= rlim->rlim_max) {
1188 1.188 yamt sig = SIGKILL;
1189 1.293 apb log(LOG_NOTICE, "pid %d is killed: %s\n",
1190 1.293 apb p->p_pid, "exceeded RLIMIT_CPU");
1191 1.293 apb uprintf("pid %d, command %s, is killed: %s\n",
1192 1.293 apb p->p_pid, p->p_comm,
1193 1.293 apb "exceeded RLIMIT_CPU");
1194 1.293 apb } else {
1195 1.188 yamt sig = SIGXCPU;
1196 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1197 1.188 yamt rlim->rlim_cur += 5;
1198 1.188 yamt }
1199 1.188 yamt }
1200 1.229 ad mutex_exit(p->p_lock);
1201 1.259 rmind if (__predict_false(runtm < 0)) {
1202 1.260 ad if (!backwards) {
1203 1.260 ad backwards = true;
1204 1.294 apb printf("WARNING: negative runtime; "
1205 1.260 ad "monotonic clock has gone backwards\n");
1206 1.260 ad }
1207 1.259 rmind } else if (__predict_false(sig)) {
1208 1.259 rmind KASSERT((p->p_flag & PK_SYSTEM) == 0);
1209 1.188 yamt psignal(p, sig);
1210 1.259 rmind }
1211 1.174 ad }
1212 1.228 ad mutex_exit(proc_lock);
1213 1.281 rmind
1214 1.281 rmind /* Load average calculation. */
1215 1.281 rmind if (__predict_false(lavg_count == 0)) {
1216 1.281 rmind int i;
1217 1.283 martin CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1218 1.281 rmind for (i = 0; i < __arraycount(cexp); i++) {
1219 1.281 rmind avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1220 1.281 rmind nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1221 1.281 rmind }
1222 1.281 rmind }
1223 1.281 rmind
1224 1.281 rmind /* Lightning bolt. */
1225 1.273 pooka cv_broadcast(&lbolt);
1226 1.113 gmcgarry }
1227