kern_synch.c revision 1.304 1 1.304 matt /* $NetBSD: kern_synch.c,v 1.304 2012/08/30 02:26:38 matt Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.260 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 1.260 ad * The NetBSD Foundation, Inc.
6 1.63 thorpej * All rights reserved.
7 1.63 thorpej *
8 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
9 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 1.188 yamt * Daniel Sieger.
12 1.63 thorpej *
13 1.63 thorpej * Redistribution and use in source and binary forms, with or without
14 1.63 thorpej * modification, are permitted provided that the following conditions
15 1.63 thorpej * are met:
16 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer.
18 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
19 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
20 1.63 thorpej * documentation and/or other materials provided with the distribution.
21 1.63 thorpej *
22 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
33 1.63 thorpej */
34 1.26 cgd
35 1.26 cgd /*-
36 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 1.26 cgd * The Regents of the University of California. All rights reserved.
38 1.26 cgd * (c) UNIX System Laboratories, Inc.
39 1.26 cgd * All or some portions of this file are derived from material licensed
40 1.26 cgd * to the University of California by American Telephone and Telegraph
41 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 1.26 cgd * the permission of UNIX System Laboratories, Inc.
43 1.26 cgd *
44 1.26 cgd * Redistribution and use in source and binary forms, with or without
45 1.26 cgd * modification, are permitted provided that the following conditions
46 1.26 cgd * are met:
47 1.26 cgd * 1. Redistributions of source code must retain the above copyright
48 1.26 cgd * notice, this list of conditions and the following disclaimer.
49 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.26 cgd * notice, this list of conditions and the following disclaimer in the
51 1.26 cgd * documentation and/or other materials provided with the distribution.
52 1.136 agc * 3. Neither the name of the University nor the names of its contributors
53 1.26 cgd * may be used to endorse or promote products derived from this software
54 1.26 cgd * without specific prior written permission.
55 1.26 cgd *
56 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.26 cgd * SUCH DAMAGE.
67 1.26 cgd *
68 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 1.26 cgd */
70 1.106 lukem
71 1.106 lukem #include <sys/cdefs.h>
72 1.304 matt __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.304 2012/08/30 02:26:38 matt Exp $");
73 1.48 mrg
74 1.109 yamt #include "opt_kstack.h"
75 1.110 briggs #include "opt_perfctrs.h"
76 1.277 darran #include "opt_dtrace.h"
77 1.26 cgd
78 1.174 ad #define __MUTEX_PRIVATE
79 1.174 ad
80 1.26 cgd #include <sys/param.h>
81 1.26 cgd #include <sys/systm.h>
82 1.26 cgd #include <sys/proc.h>
83 1.26 cgd #include <sys/kernel.h>
84 1.111 briggs #if defined(PERFCTRS)
85 1.110 briggs #include <sys/pmc.h>
86 1.111 briggs #endif
87 1.188 yamt #include <sys/cpu.h>
88 1.290 christos #include <sys/pserialize.h>
89 1.26 cgd #include <sys/resourcevar.h>
90 1.55 ross #include <sys/sched.h>
91 1.179 dsl #include <sys/syscall_stats.h>
92 1.174 ad #include <sys/sleepq.h>
93 1.174 ad #include <sys/lockdebug.h>
94 1.190 ad #include <sys/evcnt.h>
95 1.199 ad #include <sys/intr.h>
96 1.207 ad #include <sys/lwpctl.h>
97 1.209 ad #include <sys/atomic.h>
98 1.215 ad #include <sys/simplelock.h>
99 1.295 njoly #include <sys/syslog.h>
100 1.47 mrg
101 1.47 mrg #include <uvm/uvm_extern.h>
102 1.47 mrg
103 1.231 ad #include <dev/lockstat.h>
104 1.231 ad
105 1.276 darran #include <sys/dtrace_bsd.h>
106 1.279 darran int dtrace_vtime_active=0;
107 1.276 darran dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
108 1.276 darran
109 1.271 rmind static void sched_unsleep(struct lwp *, bool);
110 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
111 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
112 1.250 rmind static void resched_cpu(struct lwp *);
113 1.122 thorpej
114 1.174 ad syncobj_t sleep_syncobj = {
115 1.174 ad SOBJ_SLEEPQ_SORTED,
116 1.174 ad sleepq_unsleep,
117 1.184 yamt sleepq_changepri,
118 1.184 yamt sleepq_lendpri,
119 1.184 yamt syncobj_noowner,
120 1.174 ad };
121 1.174 ad
122 1.174 ad syncobj_t sched_syncobj = {
123 1.174 ad SOBJ_SLEEPQ_SORTED,
124 1.174 ad sched_unsleep,
125 1.184 yamt sched_changepri,
126 1.184 yamt sched_lendpri,
127 1.184 yamt syncobj_noowner,
128 1.174 ad };
129 1.122 thorpej
130 1.289 rmind /* "Lightning bolt": once a second sleep address. */
131 1.289 rmind kcondvar_t lbolt __cacheline_aligned;
132 1.223 ad
133 1.289 rmind u_int sched_pstats_ticks __cacheline_aligned;
134 1.289 rmind
135 1.289 rmind /* Preemption event counters. */
136 1.289 rmind static struct evcnt kpreempt_ev_crit __cacheline_aligned;
137 1.289 rmind static struct evcnt kpreempt_ev_klock __cacheline_aligned;
138 1.289 rmind static struct evcnt kpreempt_ev_immed __cacheline_aligned;
139 1.231 ad
140 1.237 rmind void
141 1.270 elad synch_init(void)
142 1.237 rmind {
143 1.237 rmind
144 1.237 rmind cv_init(&lbolt, "lbolt");
145 1.237 rmind
146 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
147 1.237 rmind "kpreempt", "defer: critical section");
148 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
149 1.237 rmind "kpreempt", "defer: kernel_lock");
150 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
151 1.237 rmind "kpreempt", "immediate");
152 1.237 rmind }
153 1.237 rmind
154 1.26 cgd /*
155 1.174 ad * OBSOLETE INTERFACE
156 1.174 ad *
157 1.255 skrll * General sleep call. Suspends the current LWP until a wakeup is
158 1.255 skrll * performed on the specified identifier. The LWP will then be made
159 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
160 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
161 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
162 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
163 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
164 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
165 1.26 cgd * call should be interrupted by the signal (return EINTR).
166 1.26 cgd */
167 1.26 cgd int
168 1.297 rmind tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
169 1.26 cgd {
170 1.122 thorpej struct lwp *l = curlwp;
171 1.174 ad sleepq_t *sq;
172 1.244 ad kmutex_t *mp;
173 1.26 cgd
174 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
175 1.272 pooka KASSERT(ident != &lbolt);
176 1.204 ad
177 1.174 ad if (sleepq_dontsleep(l)) {
178 1.174 ad (void)sleepq_abort(NULL, 0);
179 1.174 ad return 0;
180 1.26 cgd }
181 1.78 sommerfe
182 1.204 ad l->l_kpriority = true;
183 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
184 1.244 ad sleepq_enter(sq, l, mp);
185 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
186 1.297 rmind return sleepq_block(timo, priority & PCATCH);
187 1.26 cgd }
188 1.26 cgd
189 1.187 ad int
190 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
191 1.187 ad kmutex_t *mtx)
192 1.187 ad {
193 1.187 ad struct lwp *l = curlwp;
194 1.187 ad sleepq_t *sq;
195 1.244 ad kmutex_t *mp;
196 1.188 yamt int error;
197 1.187 ad
198 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
199 1.272 pooka KASSERT(ident != &lbolt);
200 1.204 ad
201 1.187 ad if (sleepq_dontsleep(l)) {
202 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
203 1.187 ad return 0;
204 1.187 ad }
205 1.187 ad
206 1.204 ad l->l_kpriority = true;
207 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
208 1.244 ad sleepq_enter(sq, l, mp);
209 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
210 1.187 ad mutex_exit(mtx);
211 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
212 1.187 ad
213 1.187 ad if ((priority & PNORELOCK) == 0)
214 1.187 ad mutex_enter(mtx);
215 1.297 rmind
216 1.187 ad return error;
217 1.187 ad }
218 1.187 ad
219 1.26 cgd /*
220 1.174 ad * General sleep call for situations where a wake-up is not expected.
221 1.26 cgd */
222 1.174 ad int
223 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
224 1.26 cgd {
225 1.174 ad struct lwp *l = curlwp;
226 1.244 ad kmutex_t *mp;
227 1.174 ad sleepq_t *sq;
228 1.174 ad int error;
229 1.26 cgd
230 1.284 pooka KASSERT(!(timo == 0 && intr == false));
231 1.284 pooka
232 1.174 ad if (sleepq_dontsleep(l))
233 1.174 ad return sleepq_abort(NULL, 0);
234 1.26 cgd
235 1.174 ad if (mtx != NULL)
236 1.174 ad mutex_exit(mtx);
237 1.204 ad l->l_kpriority = true;
238 1.244 ad sq = sleeptab_lookup(&sleeptab, l, &mp);
239 1.244 ad sleepq_enter(sq, l, mp);
240 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
241 1.188 yamt error = sleepq_block(timo, intr);
242 1.174 ad if (mtx != NULL)
243 1.174 ad mutex_enter(mtx);
244 1.83 thorpej
245 1.174 ad return error;
246 1.139 cl }
247 1.139 cl
248 1.26 cgd /*
249 1.174 ad * OBSOLETE INTERFACE
250 1.174 ad *
251 1.255 skrll * Make all LWPs sleeping on the specified identifier runnable.
252 1.26 cgd */
253 1.26 cgd void
254 1.174 ad wakeup(wchan_t ident)
255 1.26 cgd {
256 1.174 ad sleepq_t *sq;
257 1.244 ad kmutex_t *mp;
258 1.83 thorpej
259 1.261 rmind if (__predict_false(cold))
260 1.174 ad return;
261 1.83 thorpej
262 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
263 1.244 ad sleepq_wake(sq, ident, (u_int)-1, mp);
264 1.63 thorpej }
265 1.63 thorpej
266 1.63 thorpej /*
267 1.255 skrll * General yield call. Puts the current LWP back on its run queue and
268 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
269 1.255 skrll * current LWP explicitly requests it (eg sched_yield(2)).
270 1.117 gmcgarry */
271 1.117 gmcgarry void
272 1.117 gmcgarry yield(void)
273 1.117 gmcgarry {
274 1.122 thorpej struct lwp *l = curlwp;
275 1.117 gmcgarry
276 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
277 1.174 ad lwp_lock(l);
278 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
279 1.188 yamt KASSERT(l->l_stat == LSONPROC);
280 1.204 ad l->l_kpriority = false;
281 1.188 yamt (void)mi_switch(l);
282 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
283 1.69 thorpej }
284 1.69 thorpej
285 1.69 thorpej /*
286 1.255 skrll * General preemption call. Puts the current LWP back on its run queue
287 1.156 rpaulo * and performs an involuntary context switch.
288 1.69 thorpej */
289 1.69 thorpej void
290 1.174 ad preempt(void)
291 1.69 thorpej {
292 1.122 thorpej struct lwp *l = curlwp;
293 1.69 thorpej
294 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
295 1.174 ad lwp_lock(l);
296 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
297 1.188 yamt KASSERT(l->l_stat == LSONPROC);
298 1.204 ad l->l_kpriority = false;
299 1.174 ad l->l_nivcsw++;
300 1.188 yamt (void)mi_switch(l);
301 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
302 1.69 thorpej }
303 1.69 thorpej
304 1.234 ad /*
305 1.234 ad * Handle a request made by another agent to preempt the current LWP
306 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
307 1.234 ad *
308 1.234 ad * Character addresses for lockstat only.
309 1.234 ad */
310 1.231 ad static char in_critical_section;
311 1.231 ad static char kernel_lock_held;
312 1.231 ad static char is_softint;
313 1.262 yamt static char cpu_kpreempt_enter_fail;
314 1.231 ad
315 1.231 ad bool
316 1.231 ad kpreempt(uintptr_t where)
317 1.231 ad {
318 1.231 ad uintptr_t failed;
319 1.231 ad lwp_t *l;
320 1.264 ad int s, dop, lsflag;
321 1.231 ad
322 1.231 ad l = curlwp;
323 1.231 ad failed = 0;
324 1.231 ad while ((dop = l->l_dopreempt) != 0) {
325 1.231 ad if (l->l_stat != LSONPROC) {
326 1.231 ad /*
327 1.231 ad * About to block (or die), let it happen.
328 1.231 ad * Doesn't really count as "preemption has
329 1.231 ad * been blocked", since we're going to
330 1.231 ad * context switch.
331 1.231 ad */
332 1.231 ad l->l_dopreempt = 0;
333 1.231 ad return true;
334 1.231 ad }
335 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
336 1.231 ad /* Can't preempt idle loop, don't count as failure. */
337 1.261 rmind l->l_dopreempt = 0;
338 1.261 rmind return true;
339 1.231 ad }
340 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
341 1.231 ad /* LWP holds preemption disabled, explicitly. */
342 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
343 1.234 ad kpreempt_ev_crit.ev_count++;
344 1.231 ad }
345 1.231 ad failed = (uintptr_t)&in_critical_section;
346 1.231 ad break;
347 1.231 ad }
348 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
349 1.261 rmind /* Can't preempt soft interrupts yet. */
350 1.261 rmind l->l_dopreempt = 0;
351 1.261 rmind failed = (uintptr_t)&is_softint;
352 1.261 rmind break;
353 1.231 ad }
354 1.231 ad s = splsched();
355 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
356 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
357 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
358 1.231 ad splx(s);
359 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
360 1.234 ad kpreempt_ev_klock.ev_count++;
361 1.231 ad }
362 1.231 ad failed = (uintptr_t)&kernel_lock_held;
363 1.231 ad break;
364 1.231 ad }
365 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
366 1.231 ad /*
367 1.231 ad * It may be that the IPL is too high.
368 1.231 ad * kpreempt_enter() can schedule an
369 1.231 ad * interrupt to retry later.
370 1.231 ad */
371 1.231 ad splx(s);
372 1.262 yamt failed = (uintptr_t)&cpu_kpreempt_enter_fail;
373 1.231 ad break;
374 1.231 ad }
375 1.231 ad /* Do it! */
376 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
377 1.234 ad kpreempt_ev_immed.ev_count++;
378 1.231 ad }
379 1.231 ad lwp_lock(l);
380 1.231 ad mi_switch(l);
381 1.231 ad l->l_nopreempt++;
382 1.231 ad splx(s);
383 1.231 ad
384 1.231 ad /* Take care of any MD cleanup. */
385 1.231 ad cpu_kpreempt_exit(where);
386 1.231 ad l->l_nopreempt--;
387 1.231 ad }
388 1.231 ad
389 1.264 ad if (__predict_true(!failed)) {
390 1.264 ad return false;
391 1.264 ad }
392 1.264 ad
393 1.231 ad /* Record preemption failure for reporting via lockstat. */
394 1.264 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
395 1.264 ad lsflag = 0;
396 1.264 ad LOCKSTAT_ENTER(lsflag);
397 1.264 ad if (__predict_false(lsflag)) {
398 1.264 ad if (where == 0) {
399 1.264 ad where = (uintptr_t)__builtin_return_address(0);
400 1.264 ad }
401 1.264 ad /* Preemption is on, might recurse, so make it atomic. */
402 1.264 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
403 1.264 ad (void *)where) == NULL) {
404 1.264 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
405 1.264 ad l->l_pfaillock = failed;
406 1.231 ad }
407 1.231 ad }
408 1.264 ad LOCKSTAT_EXIT(lsflag);
409 1.264 ad return true;
410 1.231 ad }
411 1.231 ad
412 1.69 thorpej /*
413 1.231 ad * Return true if preemption is explicitly disabled.
414 1.230 ad */
415 1.231 ad bool
416 1.231 ad kpreempt_disabled(void)
417 1.231 ad {
418 1.261 rmind const lwp_t *l = curlwp;
419 1.231 ad
420 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
421 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
422 1.231 ad }
423 1.230 ad
424 1.230 ad /*
425 1.231 ad * Disable kernel preemption.
426 1.230 ad */
427 1.230 ad void
428 1.231 ad kpreempt_disable(void)
429 1.230 ad {
430 1.230 ad
431 1.231 ad KPREEMPT_DISABLE(curlwp);
432 1.230 ad }
433 1.230 ad
434 1.230 ad /*
435 1.231 ad * Reenable kernel preemption.
436 1.230 ad */
437 1.231 ad void
438 1.231 ad kpreempt_enable(void)
439 1.230 ad {
440 1.230 ad
441 1.231 ad KPREEMPT_ENABLE(curlwp);
442 1.230 ad }
443 1.230 ad
444 1.230 ad /*
445 1.188 yamt * Compute the amount of time during which the current lwp was running.
446 1.130 nathanw *
447 1.188 yamt * - update l_rtime unless it's an idle lwp.
448 1.188 yamt */
449 1.188 yamt
450 1.199 ad void
451 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
452 1.188 yamt {
453 1.188 yamt
454 1.261 rmind if (__predict_false(l->l_flag & LW_IDLE))
455 1.188 yamt return;
456 1.188 yamt
457 1.212 yamt /* rtime += now - stime */
458 1.212 yamt bintime_add(&l->l_rtime, now);
459 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
460 1.188 yamt }
461 1.188 yamt
462 1.188 yamt /*
463 1.245 ad * Select next LWP from the current CPU to run..
464 1.245 ad */
465 1.245 ad static inline lwp_t *
466 1.245 ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
467 1.245 ad {
468 1.245 ad lwp_t *newl;
469 1.245 ad
470 1.245 ad /*
471 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
472 1.245 ad * If no LWP is runnable, select the idle LWP.
473 1.245 ad *
474 1.245 ad * Note that spc_lwplock might not necessary be held, and
475 1.245 ad * new thread would be unlocked after setting the LWP-lock.
476 1.245 ad */
477 1.245 ad newl = sched_nextlwp();
478 1.245 ad if (newl != NULL) {
479 1.245 ad sched_dequeue(newl);
480 1.245 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
481 1.274 rmind KASSERT(newl->l_cpu == ci);
482 1.245 ad newl->l_stat = LSONPROC;
483 1.248 ad newl->l_pflag |= LP_RUNNING;
484 1.245 ad lwp_setlock(newl, spc->spc_lwplock);
485 1.245 ad } else {
486 1.245 ad newl = ci->ci_data.cpu_idlelwp;
487 1.245 ad newl->l_stat = LSONPROC;
488 1.248 ad newl->l_pflag |= LP_RUNNING;
489 1.245 ad }
490 1.261 rmind
491 1.245 ad /*
492 1.245 ad * Only clear want_resched if there are no pending (slow)
493 1.245 ad * software interrupts.
494 1.245 ad */
495 1.245 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
496 1.245 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
497 1.245 ad spc->spc_curpriority = lwp_eprio(newl);
498 1.245 ad
499 1.245 ad return newl;
500 1.245 ad }
501 1.245 ad
502 1.245 ad /*
503 1.188 yamt * The machine independent parts of context switch.
504 1.188 yamt *
505 1.188 yamt * Returns 1 if another LWP was actually run.
506 1.26 cgd */
507 1.122 thorpej int
508 1.199 ad mi_switch(lwp_t *l)
509 1.26 cgd {
510 1.246 rmind struct cpu_info *ci;
511 1.76 thorpej struct schedstate_percpu *spc;
512 1.188 yamt struct lwp *newl;
513 1.174 ad int retval, oldspl;
514 1.212 yamt struct bintime bt;
515 1.199 ad bool returning;
516 1.26 cgd
517 1.188 yamt KASSERT(lwp_locked(l, NULL));
518 1.231 ad KASSERT(kpreempt_disabled());
519 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
520 1.174 ad
521 1.174 ad kstack_check_magic(l);
522 1.83 thorpej
523 1.212 yamt binuptime(&bt);
524 1.199 ad
525 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
526 1.267 yamt KASSERT((l->l_pflag & LP_RUNNING) != 0);
527 1.231 ad KASSERT(l->l_cpu == curcpu());
528 1.196 ad ci = l->l_cpu;
529 1.196 ad spc = &ci->ci_schedstate;
530 1.199 ad returning = false;
531 1.190 ad newl = NULL;
532 1.190 ad
533 1.199 ad /*
534 1.199 ad * If we have been asked to switch to a specific LWP, then there
535 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
536 1.199 ad * blocking, then return to the interrupted thread without adjusting
537 1.199 ad * VM context or its start time: neither have been changed in order
538 1.199 ad * to take the interrupt.
539 1.199 ad */
540 1.190 ad if (l->l_switchto != NULL) {
541 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
542 1.199 ad returning = true;
543 1.199 ad softint_block(l);
544 1.248 ad if ((l->l_pflag & LP_TIMEINTR) != 0)
545 1.212 yamt updatertime(l, &bt);
546 1.199 ad }
547 1.190 ad newl = l->l_switchto;
548 1.190 ad l->l_switchto = NULL;
549 1.190 ad }
550 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
551 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
552 1.204 ad /* There are pending soft interrupts, so pick one. */
553 1.204 ad newl = softint_picklwp();
554 1.204 ad newl->l_stat = LSONPROC;
555 1.248 ad newl->l_pflag |= LP_RUNNING;
556 1.204 ad }
557 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
558 1.190 ad
559 1.180 dsl /* Count time spent in current system call */
560 1.199 ad if (!returning) {
561 1.199 ad SYSCALL_TIME_SLEEP(l);
562 1.180 dsl
563 1.199 ad /*
564 1.199 ad * XXXSMP If we are using h/w performance counters,
565 1.199 ad * save context.
566 1.199 ad */
567 1.174 ad #if PERFCTRS
568 1.199 ad if (PMC_ENABLED(l->l_proc)) {
569 1.199 ad pmc_save_context(l->l_proc);
570 1.199 ad }
571 1.199 ad #endif
572 1.212 yamt updatertime(l, &bt);
573 1.174 ad }
574 1.113 gmcgarry
575 1.246 rmind /* Lock the runqueue */
576 1.246 rmind KASSERT(l->l_stat != LSRUN);
577 1.246 rmind mutex_spin_enter(spc->spc_mutex);
578 1.246 rmind
579 1.113 gmcgarry /*
580 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
581 1.113 gmcgarry */
582 1.246 rmind if (l->l_stat == LSONPROC && l != newl) {
583 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
584 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
585 1.188 yamt l->l_stat = LSRUN;
586 1.246 rmind lwp_setlock(l, spc->spc_mutex);
587 1.246 rmind sched_enqueue(l, true);
588 1.285 rmind /*
589 1.285 rmind * Handle migration. Note that "migrating LWP" may
590 1.285 rmind * be reset here, if interrupt/preemption happens
591 1.285 rmind * early in idle LWP.
592 1.285 rmind */
593 1.285 rmind if (l->l_target_cpu != NULL) {
594 1.285 rmind KASSERT((l->l_pflag & LP_INTR) == 0);
595 1.246 rmind spc->spc_migrating = l;
596 1.216 rmind }
597 1.246 rmind } else
598 1.188 yamt l->l_stat = LSIDL;
599 1.174 ad }
600 1.174 ad
601 1.245 ad /* Pick new LWP to run. */
602 1.190 ad if (newl == NULL) {
603 1.245 ad newl = nextlwp(ci, spc);
604 1.199 ad }
605 1.199 ad
606 1.204 ad /* Items that must be updated with the CPU locked. */
607 1.199 ad if (!returning) {
608 1.204 ad /* Update the new LWP's start time. */
609 1.212 yamt newl->l_stime = bt;
610 1.204 ad
611 1.199 ad /*
612 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
613 1.204 ad * We use cpu_onproc to keep track of which kernel or
614 1.204 ad * user thread is running 'underneath' the software
615 1.204 ad * interrupt. This is important for time accounting,
616 1.204 ad * itimers and forcing user threads to preempt (aston).
617 1.199 ad */
618 1.204 ad ci->ci_data.cpu_onproc = newl;
619 1.188 yamt }
620 1.188 yamt
621 1.241 ad /*
622 1.241 ad * Preemption related tasks. Must be done with the current
623 1.241 ad * CPU locked.
624 1.241 ad */
625 1.241 ad cpu_did_resched(l);
626 1.231 ad l->l_dopreempt = 0;
627 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
628 1.231 ad LOCKSTAT_FLAG(lsflag);
629 1.231 ad LOCKSTAT_ENTER(lsflag);
630 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
631 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
632 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
633 1.231 ad LOCKSTAT_EXIT(lsflag);
634 1.231 ad l->l_pfailtime = 0;
635 1.231 ad l->l_pfaillock = 0;
636 1.231 ad l->l_pfailaddr = 0;
637 1.231 ad }
638 1.231 ad
639 1.188 yamt if (l != newl) {
640 1.188 yamt struct lwp *prevlwp;
641 1.174 ad
642 1.209 ad /* Release all locks, but leave the current LWP locked */
643 1.246 rmind if (l->l_mutex == spc->spc_mutex) {
644 1.209 ad /*
645 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
646 1.209 ad * to the run queue (it is now locked by spc_mutex).
647 1.209 ad */
648 1.217 ad mutex_spin_exit(spc->spc_lwplock);
649 1.188 yamt } else {
650 1.209 ad /*
651 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
652 1.209 ad * run queues.
653 1.209 ad */
654 1.188 yamt mutex_spin_exit(spc->spc_mutex);
655 1.188 yamt }
656 1.188 yamt
657 1.209 ad /*
658 1.253 skrll * Mark that context switch is going to be performed
659 1.209 ad * for this LWP, to protect it from being switched
660 1.209 ad * to on another CPU.
661 1.209 ad */
662 1.209 ad KASSERT(l->l_ctxswtch == 0);
663 1.209 ad l->l_ctxswtch = 1;
664 1.209 ad l->l_ncsw++;
665 1.267 yamt KASSERT((l->l_pflag & LP_RUNNING) != 0);
666 1.248 ad l->l_pflag &= ~LP_RUNNING;
667 1.209 ad
668 1.209 ad /*
669 1.209 ad * Increase the count of spin-mutexes before the release
670 1.209 ad * of the last lock - we must remain at IPL_SCHED during
671 1.209 ad * the context switch.
672 1.209 ad */
673 1.287 matt KASSERTMSG(ci->ci_mtx_count == -1,
674 1.301 rmind "%s: cpu%u: ci_mtx_count (%d) != -1 "
675 1.301 rmind "(block with spin-mutex held)",
676 1.291 jym __func__, cpu_index(ci), ci->ci_mtx_count);
677 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
678 1.209 ad ci->ci_mtx_count--;
679 1.209 ad lwp_unlock(l);
680 1.209 ad
681 1.218 ad /* Count the context switch on this CPU. */
682 1.218 ad ci->ci_data.cpu_nswtch++;
683 1.188 yamt
684 1.209 ad /* Update status for lwpctl, if present. */
685 1.209 ad if (l->l_lwpctl != NULL)
686 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
687 1.209 ad
688 1.199 ad /*
689 1.199 ad * Save old VM context, unless a soft interrupt
690 1.199 ad * handler is blocking.
691 1.199 ad */
692 1.199 ad if (!returning)
693 1.199 ad pmap_deactivate(l);
694 1.188 yamt
695 1.209 ad /*
696 1.275 skrll * We may need to spin-wait if 'newl' is still
697 1.209 ad * context switching on another CPU.
698 1.209 ad */
699 1.261 rmind if (__predict_false(newl->l_ctxswtch != 0)) {
700 1.209 ad u_int count;
701 1.209 ad count = SPINLOCK_BACKOFF_MIN;
702 1.209 ad while (newl->l_ctxswtch)
703 1.209 ad SPINLOCK_BACKOFF(count);
704 1.209 ad }
705 1.207 ad
706 1.276 darran /*
707 1.276 darran * If DTrace has set the active vtime enum to anything
708 1.276 darran * other than INACTIVE (0), then it should have set the
709 1.276 darran * function to call.
710 1.276 darran */
711 1.278 darran if (__predict_false(dtrace_vtime_active)) {
712 1.276 darran (*dtrace_vtime_switch_func)(newl);
713 1.276 darran }
714 1.276 darran
715 1.188 yamt /* Switch to the new LWP.. */
716 1.304 matt KASSERT(curlwp == ci->ci_curlwp);
717 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
718 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
719 1.207 ad ci = curcpu();
720 1.304 matt KASSERT(curlwp == ci->ci_curlwp);
721 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
722 1.304 matt l, curlwp, prevlwp);
723 1.207 ad
724 1.188 yamt /*
725 1.209 ad * Switched away - we have new curlwp.
726 1.209 ad * Restore VM context and IPL.
727 1.188 yamt */
728 1.209 ad pmap_activate(l);
729 1.265 rmind uvm_emap_switch(l);
730 1.288 rmind pcu_switchpoint(l);
731 1.265 rmind
732 1.188 yamt if (prevlwp != NULL) {
733 1.209 ad /* Normalize the count of the spin-mutexes */
734 1.209 ad ci->ci_mtx_count++;
735 1.209 ad /* Unmark the state of context switch */
736 1.209 ad membar_exit();
737 1.209 ad prevlwp->l_ctxswtch = 0;
738 1.188 yamt }
739 1.209 ad
740 1.209 ad /* Update status for lwpctl, if present. */
741 1.219 ad if (l->l_lwpctl != NULL) {
742 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
743 1.219 ad l->l_lwpctl->lc_pctr++;
744 1.219 ad }
745 1.174 ad
746 1.290 christos /* Note trip through cpu_switchto(). */
747 1.290 christos pserialize_switchpoint();
748 1.290 christos
749 1.231 ad KASSERT(l->l_cpu == ci);
750 1.231 ad splx(oldspl);
751 1.300 yamt /*
752 1.300 yamt * note that, unless the caller disabled preemption,
753 1.300 yamt * we can be preempted at any time after the above splx() call.
754 1.300 yamt */
755 1.188 yamt retval = 1;
756 1.188 yamt } else {
757 1.188 yamt /* Nothing to do - just unlock and return. */
758 1.246 rmind mutex_spin_exit(spc->spc_mutex);
759 1.188 yamt lwp_unlock(l);
760 1.122 thorpej retval = 0;
761 1.122 thorpej }
762 1.110 briggs
763 1.188 yamt KASSERT(l == curlwp);
764 1.188 yamt KASSERT(l->l_stat == LSONPROC);
765 1.188 yamt
766 1.110 briggs /*
767 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
768 1.231 ad * XXXSMP preemption problem.
769 1.26 cgd */
770 1.114 gmcgarry #if PERFCTRS
771 1.175 christos if (PMC_ENABLED(l->l_proc)) {
772 1.175 christos pmc_restore_context(l->l_proc);
773 1.166 christos }
774 1.114 gmcgarry #endif
775 1.180 dsl SYSCALL_TIME_WAKEUP(l);
776 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
777 1.169 yamt
778 1.122 thorpej return retval;
779 1.26 cgd }
780 1.26 cgd
781 1.26 cgd /*
782 1.245 ad * The machine independent parts of context switch to oblivion.
783 1.245 ad * Does not return. Call with the LWP unlocked.
784 1.245 ad */
785 1.245 ad void
786 1.245 ad lwp_exit_switchaway(lwp_t *l)
787 1.245 ad {
788 1.245 ad struct cpu_info *ci;
789 1.245 ad struct lwp *newl;
790 1.245 ad struct bintime bt;
791 1.245 ad
792 1.245 ad ci = l->l_cpu;
793 1.245 ad
794 1.245 ad KASSERT(kpreempt_disabled());
795 1.245 ad KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
796 1.245 ad KASSERT(ci == curcpu());
797 1.245 ad LOCKDEBUG_BARRIER(NULL, 0);
798 1.245 ad
799 1.245 ad kstack_check_magic(l);
800 1.245 ad
801 1.245 ad /* Count time spent in current system call */
802 1.245 ad SYSCALL_TIME_SLEEP(l);
803 1.245 ad binuptime(&bt);
804 1.245 ad updatertime(l, &bt);
805 1.245 ad
806 1.245 ad /* Must stay at IPL_SCHED even after releasing run queue lock. */
807 1.245 ad (void)splsched();
808 1.245 ad
809 1.245 ad /*
810 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
811 1.245 ad * If no LWP is runnable, select the idle LWP.
812 1.245 ad *
813 1.245 ad * Note that spc_lwplock might not necessary be held, and
814 1.245 ad * new thread would be unlocked after setting the LWP-lock.
815 1.245 ad */
816 1.245 ad spc_lock(ci);
817 1.245 ad #ifndef __HAVE_FAST_SOFTINTS
818 1.245 ad if (ci->ci_data.cpu_softints != 0) {
819 1.245 ad /* There are pending soft interrupts, so pick one. */
820 1.245 ad newl = softint_picklwp();
821 1.245 ad newl->l_stat = LSONPROC;
822 1.248 ad newl->l_pflag |= LP_RUNNING;
823 1.245 ad } else
824 1.245 ad #endif /* !__HAVE_FAST_SOFTINTS */
825 1.245 ad {
826 1.245 ad newl = nextlwp(ci, &ci->ci_schedstate);
827 1.245 ad }
828 1.245 ad
829 1.245 ad /* Update the new LWP's start time. */
830 1.245 ad newl->l_stime = bt;
831 1.248 ad l->l_pflag &= ~LP_RUNNING;
832 1.245 ad
833 1.245 ad /*
834 1.245 ad * ci_curlwp changes when a fast soft interrupt occurs.
835 1.245 ad * We use cpu_onproc to keep track of which kernel or
836 1.245 ad * user thread is running 'underneath' the software
837 1.245 ad * interrupt. This is important for time accounting,
838 1.245 ad * itimers and forcing user threads to preempt (aston).
839 1.245 ad */
840 1.245 ad ci->ci_data.cpu_onproc = newl;
841 1.245 ad
842 1.245 ad /*
843 1.245 ad * Preemption related tasks. Must be done with the current
844 1.245 ad * CPU locked.
845 1.245 ad */
846 1.245 ad cpu_did_resched(l);
847 1.245 ad
848 1.245 ad /* Unlock the run queue. */
849 1.245 ad spc_unlock(ci);
850 1.245 ad
851 1.245 ad /* Count the context switch on this CPU. */
852 1.245 ad ci->ci_data.cpu_nswtch++;
853 1.245 ad
854 1.245 ad /* Update status for lwpctl, if present. */
855 1.245 ad if (l->l_lwpctl != NULL)
856 1.247 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
857 1.245 ad
858 1.245 ad /*
859 1.275 skrll * We may need to spin-wait if 'newl' is still
860 1.245 ad * context switching on another CPU.
861 1.245 ad */
862 1.261 rmind if (__predict_false(newl->l_ctxswtch != 0)) {
863 1.245 ad u_int count;
864 1.245 ad count = SPINLOCK_BACKOFF_MIN;
865 1.245 ad while (newl->l_ctxswtch)
866 1.245 ad SPINLOCK_BACKOFF(count);
867 1.245 ad }
868 1.245 ad
869 1.279 darran /*
870 1.279 darran * If DTrace has set the active vtime enum to anything
871 1.279 darran * other than INACTIVE (0), then it should have set the
872 1.279 darran * function to call.
873 1.279 darran */
874 1.279 darran if (__predict_false(dtrace_vtime_active)) {
875 1.279 darran (*dtrace_vtime_switch_func)(newl);
876 1.279 darran }
877 1.276 darran
878 1.245 ad /* Switch to the new LWP.. */
879 1.245 ad (void)cpu_switchto(NULL, newl, false);
880 1.245 ad
881 1.251 uwe for (;;) continue; /* XXX: convince gcc about "noreturn" */
882 1.245 ad /* NOTREACHED */
883 1.245 ad }
884 1.245 ad
885 1.245 ad /*
886 1.271 rmind * setrunnable: change LWP state to be runnable, placing it on the run queue.
887 1.174 ad *
888 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
889 1.26 cgd */
890 1.26 cgd void
891 1.122 thorpej setrunnable(struct lwp *l)
892 1.26 cgd {
893 1.122 thorpej struct proc *p = l->l_proc;
894 1.205 ad struct cpu_info *ci;
895 1.26 cgd
896 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
897 1.229 ad KASSERT(mutex_owned(p->p_lock));
898 1.183 ad KASSERT(lwp_locked(l, NULL));
899 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
900 1.83 thorpej
901 1.122 thorpej switch (l->l_stat) {
902 1.122 thorpej case LSSTOP:
903 1.33 mycroft /*
904 1.33 mycroft * If we're being traced (possibly because someone attached us
905 1.33 mycroft * while we were stopped), check for a signal from the debugger.
906 1.33 mycroft */
907 1.256 ad if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
908 1.174 ad signotify(l);
909 1.174 ad p->p_nrlwps++;
910 1.26 cgd break;
911 1.174 ad case LSSUSPENDED:
912 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
913 1.174 ad p->p_nrlwps++;
914 1.192 rmind cv_broadcast(&p->p_lwpcv);
915 1.122 thorpej break;
916 1.174 ad case LSSLEEP:
917 1.174 ad KASSERT(l->l_wchan != NULL);
918 1.26 cgd break;
919 1.174 ad default:
920 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
921 1.26 cgd }
922 1.139 cl
923 1.174 ad /*
924 1.286 pooka * If the LWP was sleeping, start it again.
925 1.174 ad */
926 1.174 ad if (l->l_wchan != NULL) {
927 1.174 ad l->l_stat = LSSLEEP;
928 1.183 ad /* lwp_unsleep() will release the lock. */
929 1.221 ad lwp_unsleep(l, true);
930 1.174 ad return;
931 1.174 ad }
932 1.139 cl
933 1.174 ad /*
934 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
935 1.174 ad * about to call mi_switch(), in which case it will yield.
936 1.174 ad */
937 1.248 ad if ((l->l_pflag & LP_RUNNING) != 0) {
938 1.174 ad l->l_stat = LSONPROC;
939 1.174 ad l->l_slptime = 0;
940 1.174 ad lwp_unlock(l);
941 1.174 ad return;
942 1.174 ad }
943 1.122 thorpej
944 1.174 ad /*
945 1.205 ad * Look for a CPU to run.
946 1.205 ad * Set the LWP runnable.
947 1.174 ad */
948 1.205 ad ci = sched_takecpu(l);
949 1.205 ad l->l_cpu = ci;
950 1.236 ad spc_lock(ci);
951 1.236 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
952 1.188 yamt sched_setrunnable(l);
953 1.174 ad l->l_stat = LSRUN;
954 1.122 thorpej l->l_slptime = 0;
955 1.174 ad
956 1.271 rmind sched_enqueue(l, false);
957 1.271 rmind resched_cpu(l);
958 1.271 rmind lwp_unlock(l);
959 1.26 cgd }
960 1.26 cgd
961 1.26 cgd /*
962 1.174 ad * suspendsched:
963 1.174 ad *
964 1.266 yamt * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
965 1.174 ad */
966 1.94 bouyer void
967 1.174 ad suspendsched(void)
968 1.94 bouyer {
969 1.174 ad CPU_INFO_ITERATOR cii;
970 1.174 ad struct cpu_info *ci;
971 1.122 thorpej struct lwp *l;
972 1.174 ad struct proc *p;
973 1.94 bouyer
974 1.94 bouyer /*
975 1.174 ad * We do this by process in order not to violate the locking rules.
976 1.94 bouyer */
977 1.228 ad mutex_enter(proc_lock);
978 1.174 ad PROCLIST_FOREACH(p, &allproc) {
979 1.229 ad mutex_enter(p->p_lock);
980 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
981 1.229 ad mutex_exit(p->p_lock);
982 1.94 bouyer continue;
983 1.174 ad }
984 1.174 ad
985 1.174 ad p->p_stat = SSTOP;
986 1.174 ad
987 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
988 1.174 ad if (l == curlwp)
989 1.174 ad continue;
990 1.174 ad
991 1.174 ad lwp_lock(l);
992 1.122 thorpej
993 1.97 enami /*
994 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
995 1.174 ad * when it tries to return to user mode. We want to
996 1.174 ad * try and get to get as many LWPs as possible to
997 1.174 ad * the user / kernel boundary, so that they will
998 1.174 ad * release any locks that they hold.
999 1.97 enami */
1000 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1001 1.174 ad
1002 1.174 ad if (l->l_stat == LSSLEEP &&
1003 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1004 1.174 ad /* setrunnable() will release the lock. */
1005 1.174 ad setrunnable(l);
1006 1.174 ad continue;
1007 1.174 ad }
1008 1.174 ad
1009 1.174 ad lwp_unlock(l);
1010 1.94 bouyer }
1011 1.174 ad
1012 1.229 ad mutex_exit(p->p_lock);
1013 1.94 bouyer }
1014 1.228 ad mutex_exit(proc_lock);
1015 1.174 ad
1016 1.174 ad /*
1017 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1018 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
1019 1.174 ad */
1020 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1021 1.204 ad spc_lock(ci);
1022 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
1023 1.204 ad spc_unlock(ci);
1024 1.204 ad }
1025 1.174 ad }
1026 1.174 ad
1027 1.174 ad /*
1028 1.174 ad * sched_unsleep:
1029 1.174 ad *
1030 1.174 ad * The is called when the LWP has not been awoken normally but instead
1031 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1032 1.174 ad * it's not a valid action for running or idle LWPs.
1033 1.174 ad */
1034 1.271 rmind static void
1035 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1036 1.174 ad {
1037 1.174 ad
1038 1.174 ad lwp_unlock(l);
1039 1.174 ad panic("sched_unsleep");
1040 1.174 ad }
1041 1.174 ad
1042 1.250 rmind static void
1043 1.188 yamt resched_cpu(struct lwp *l)
1044 1.188 yamt {
1045 1.274 rmind struct cpu_info *ci = l->l_cpu;
1046 1.188 yamt
1047 1.250 rmind KASSERT(lwp_locked(l, NULL));
1048 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1049 1.188 yamt cpu_need_resched(ci, 0);
1050 1.188 yamt }
1051 1.188 yamt
1052 1.188 yamt static void
1053 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1054 1.174 ad {
1055 1.174 ad
1056 1.188 yamt KASSERT(lwp_locked(l, NULL));
1057 1.174 ad
1058 1.271 rmind if (l->l_stat == LSRUN) {
1059 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1060 1.204 ad sched_dequeue(l);
1061 1.204 ad l->l_priority = pri;
1062 1.204 ad sched_enqueue(l, false);
1063 1.204 ad } else {
1064 1.174 ad l->l_priority = pri;
1065 1.157 yamt }
1066 1.188 yamt resched_cpu(l);
1067 1.184 yamt }
1068 1.184 yamt
1069 1.188 yamt static void
1070 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1071 1.184 yamt {
1072 1.184 yamt
1073 1.188 yamt KASSERT(lwp_locked(l, NULL));
1074 1.184 yamt
1075 1.271 rmind if (l->l_stat == LSRUN) {
1076 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1077 1.204 ad sched_dequeue(l);
1078 1.204 ad l->l_inheritedprio = pri;
1079 1.204 ad sched_enqueue(l, false);
1080 1.204 ad } else {
1081 1.184 yamt l->l_inheritedprio = pri;
1082 1.184 yamt }
1083 1.188 yamt resched_cpu(l);
1084 1.184 yamt }
1085 1.184 yamt
1086 1.184 yamt struct lwp *
1087 1.184 yamt syncobj_noowner(wchan_t wchan)
1088 1.184 yamt {
1089 1.184 yamt
1090 1.184 yamt return NULL;
1091 1.151 yamt }
1092 1.151 yamt
1093 1.250 rmind /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1094 1.281 rmind const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1095 1.281 rmind
1096 1.281 rmind /*
1097 1.281 rmind * Constants for averages over 1, 5 and 15 minutes when sampling at
1098 1.281 rmind * 5 second intervals.
1099 1.281 rmind */
1100 1.281 rmind static const fixpt_t cexp[ ] = {
1101 1.281 rmind 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1102 1.281 rmind 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1103 1.281 rmind 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1104 1.281 rmind };
1105 1.134 matt
1106 1.134 matt /*
1107 1.188 yamt * sched_pstats:
1108 1.188 yamt *
1109 1.281 rmind * => Update process statistics and check CPU resource allocation.
1110 1.281 rmind * => Call scheduler-specific hook to eventually adjust LWP priorities.
1111 1.281 rmind * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1112 1.130 nathanw */
1113 1.113 gmcgarry void
1114 1.281 rmind sched_pstats(void)
1115 1.113 gmcgarry {
1116 1.281 rmind extern struct loadavg averunnable;
1117 1.281 rmind struct loadavg *avg = &averunnable;
1118 1.249 rmind const int clkhz = (stathz != 0 ? stathz : hz);
1119 1.281 rmind static bool backwards = false;
1120 1.281 rmind static u_int lavg_count = 0;
1121 1.188 yamt struct proc *p;
1122 1.281 rmind int nrun;
1123 1.113 gmcgarry
1124 1.188 yamt sched_pstats_ticks++;
1125 1.281 rmind if (++lavg_count >= 5) {
1126 1.281 rmind lavg_count = 0;
1127 1.281 rmind nrun = 0;
1128 1.281 rmind }
1129 1.228 ad mutex_enter(proc_lock);
1130 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1131 1.281 rmind struct lwp *l;
1132 1.281 rmind struct rlimit *rlim;
1133 1.296 dholland time_t runtm;
1134 1.281 rmind int sig;
1135 1.281 rmind
1136 1.271 rmind /* Increment sleep time (if sleeping), ignore overflow. */
1137 1.229 ad mutex_enter(p->p_lock);
1138 1.212 yamt runtm = p->p_rtime.sec;
1139 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1140 1.281 rmind fixpt_t lpctcpu;
1141 1.281 rmind u_int lcpticks;
1142 1.281 rmind
1143 1.249 rmind if (__predict_false((l->l_flag & LW_IDLE) != 0))
1144 1.188 yamt continue;
1145 1.188 yamt lwp_lock(l);
1146 1.212 yamt runtm += l->l_rtime.sec;
1147 1.188 yamt l->l_swtime++;
1148 1.242 rmind sched_lwp_stats(l);
1149 1.281 rmind
1150 1.281 rmind /* For load average calculation. */
1151 1.282 rmind if (__predict_false(lavg_count == 0) &&
1152 1.282 rmind (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1153 1.281 rmind switch (l->l_stat) {
1154 1.281 rmind case LSSLEEP:
1155 1.281 rmind if (l->l_slptime > 1) {
1156 1.281 rmind break;
1157 1.281 rmind }
1158 1.281 rmind case LSRUN:
1159 1.281 rmind case LSONPROC:
1160 1.281 rmind case LSIDL:
1161 1.281 rmind nrun++;
1162 1.281 rmind }
1163 1.281 rmind }
1164 1.282 rmind lwp_unlock(l);
1165 1.282 rmind
1166 1.282 rmind l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1167 1.282 rmind if (l->l_slptime != 0)
1168 1.282 rmind continue;
1169 1.282 rmind
1170 1.282 rmind lpctcpu = l->l_pctcpu;
1171 1.282 rmind lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1172 1.282 rmind lpctcpu += ((FSCALE - ccpu) *
1173 1.282 rmind (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1174 1.282 rmind l->l_pctcpu = lpctcpu;
1175 1.188 yamt }
1176 1.249 rmind /* Calculating p_pctcpu only for ps(1) */
1177 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1178 1.174 ad
1179 1.303 christos if (__predict_false(runtm < 0)) {
1180 1.303 christos if (!backwards) {
1181 1.303 christos backwards = true;
1182 1.303 christos printf("WARNING: negative runtime; "
1183 1.303 christos "monotonic clock has gone backwards\n");
1184 1.303 christos }
1185 1.303 christos mutex_exit(p->p_lock);
1186 1.303 christos continue;
1187 1.303 christos }
1188 1.303 christos
1189 1.188 yamt /*
1190 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1191 1.293 apb * If over the hard limit, kill it with SIGKILL.
1192 1.293 apb * If over the soft limit, send SIGXCPU and raise
1193 1.293 apb * the soft limit a little.
1194 1.188 yamt */
1195 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1196 1.188 yamt sig = 0;
1197 1.249 rmind if (__predict_false(runtm >= rlim->rlim_cur)) {
1198 1.293 apb if (runtm >= rlim->rlim_max) {
1199 1.188 yamt sig = SIGKILL;
1200 1.293 apb log(LOG_NOTICE, "pid %d is killed: %s\n",
1201 1.293 apb p->p_pid, "exceeded RLIMIT_CPU");
1202 1.293 apb uprintf("pid %d, command %s, is killed: %s\n",
1203 1.293 apb p->p_pid, p->p_comm,
1204 1.293 apb "exceeded RLIMIT_CPU");
1205 1.293 apb } else {
1206 1.188 yamt sig = SIGXCPU;
1207 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1208 1.188 yamt rlim->rlim_cur += 5;
1209 1.188 yamt }
1210 1.188 yamt }
1211 1.229 ad mutex_exit(p->p_lock);
1212 1.303 christos if (__predict_false(sig)) {
1213 1.259 rmind KASSERT((p->p_flag & PK_SYSTEM) == 0);
1214 1.188 yamt psignal(p, sig);
1215 1.259 rmind }
1216 1.174 ad }
1217 1.228 ad mutex_exit(proc_lock);
1218 1.281 rmind
1219 1.281 rmind /* Load average calculation. */
1220 1.281 rmind if (__predict_false(lavg_count == 0)) {
1221 1.281 rmind int i;
1222 1.283 martin CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1223 1.281 rmind for (i = 0; i < __arraycount(cexp); i++) {
1224 1.281 rmind avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1225 1.281 rmind nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1226 1.281 rmind }
1227 1.281 rmind }
1228 1.281 rmind
1229 1.281 rmind /* Lightning bolt. */
1230 1.273 pooka cv_broadcast(&lbolt);
1231 1.113 gmcgarry }
1232