Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.308.6.3
      1  1.308.6.3     skrll /*	$NetBSD: kern_synch.c,v 1.308.6.3 2016/07/09 20:25:20 skrll Exp $	*/
      2       1.63   thorpej 
      3       1.63   thorpej /*-
      4      1.260        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
      5      1.260        ad  *    The NetBSD Foundation, Inc.
      6       1.63   thorpej  * All rights reserved.
      7       1.63   thorpej  *
      8       1.63   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      9       1.63   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10      1.188      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11      1.188      yamt  * Daniel Sieger.
     12       1.63   thorpej  *
     13       1.63   thorpej  * Redistribution and use in source and binary forms, with or without
     14       1.63   thorpej  * modification, are permitted provided that the following conditions
     15       1.63   thorpej  * are met:
     16       1.63   thorpej  * 1. Redistributions of source code must retain the above copyright
     17       1.63   thorpej  *    notice, this list of conditions and the following disclaimer.
     18       1.63   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19       1.63   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20       1.63   thorpej  *    documentation and/or other materials provided with the distribution.
     21       1.63   thorpej  *
     22       1.63   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23       1.63   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24       1.63   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25       1.63   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26       1.63   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27       1.63   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28       1.63   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29       1.63   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30       1.63   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31       1.63   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32       1.63   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     33       1.63   thorpej  */
     34       1.26       cgd 
     35       1.26       cgd /*-
     36       1.26       cgd  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37       1.26       cgd  *	The Regents of the University of California.  All rights reserved.
     38       1.26       cgd  * (c) UNIX System Laboratories, Inc.
     39       1.26       cgd  * All or some portions of this file are derived from material licensed
     40       1.26       cgd  * to the University of California by American Telephone and Telegraph
     41       1.26       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42       1.26       cgd  * the permission of UNIX System Laboratories, Inc.
     43       1.26       cgd  *
     44       1.26       cgd  * Redistribution and use in source and binary forms, with or without
     45       1.26       cgd  * modification, are permitted provided that the following conditions
     46       1.26       cgd  * are met:
     47       1.26       cgd  * 1. Redistributions of source code must retain the above copyright
     48       1.26       cgd  *    notice, this list of conditions and the following disclaimer.
     49       1.26       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     50       1.26       cgd  *    notice, this list of conditions and the following disclaimer in the
     51       1.26       cgd  *    documentation and/or other materials provided with the distribution.
     52      1.136       agc  * 3. Neither the name of the University nor the names of its contributors
     53       1.26       cgd  *    may be used to endorse or promote products derived from this software
     54       1.26       cgd  *    without specific prior written permission.
     55       1.26       cgd  *
     56       1.26       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57       1.26       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58       1.26       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59       1.26       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60       1.26       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61       1.26       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62       1.26       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63       1.26       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64       1.26       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65       1.26       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66       1.26       cgd  * SUCH DAMAGE.
     67       1.26       cgd  *
     68       1.50      fvdl  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69       1.26       cgd  */
     70      1.106     lukem 
     71      1.106     lukem #include <sys/cdefs.h>
     72  1.308.6.3     skrll __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.308.6.3 2016/07/09 20:25:20 skrll Exp $");
     73       1.48       mrg 
     74      1.109      yamt #include "opt_kstack.h"
     75      1.110    briggs #include "opt_perfctrs.h"
     76      1.277    darran #include "opt_dtrace.h"
     77       1.26       cgd 
     78      1.174        ad #define	__MUTEX_PRIVATE
     79      1.174        ad 
     80       1.26       cgd #include <sys/param.h>
     81       1.26       cgd #include <sys/systm.h>
     82       1.26       cgd #include <sys/proc.h>
     83       1.26       cgd #include <sys/kernel.h>
     84      1.111    briggs #if defined(PERFCTRS)
     85      1.110    briggs #include <sys/pmc.h>
     86      1.111    briggs #endif
     87      1.188      yamt #include <sys/cpu.h>
     88      1.290  christos #include <sys/pserialize.h>
     89       1.26       cgd #include <sys/resourcevar.h>
     90       1.55      ross #include <sys/sched.h>
     91      1.179       dsl #include <sys/syscall_stats.h>
     92      1.174        ad #include <sys/sleepq.h>
     93      1.174        ad #include <sys/lockdebug.h>
     94      1.190        ad #include <sys/evcnt.h>
     95      1.199        ad #include <sys/intr.h>
     96      1.207        ad #include <sys/lwpctl.h>
     97      1.209        ad #include <sys/atomic.h>
     98      1.295     njoly #include <sys/syslog.h>
     99       1.47       mrg 
    100       1.47       mrg #include <uvm/uvm_extern.h>
    101       1.47       mrg 
    102      1.231        ad #include <dev/lockstat.h>
    103      1.231        ad 
    104      1.276    darran #include <sys/dtrace_bsd.h>
    105      1.279    darran int                             dtrace_vtime_active=0;
    106      1.276    darran dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    107      1.276    darran 
    108      1.271     rmind static void	sched_unsleep(struct lwp *, bool);
    109      1.188      yamt static void	sched_changepri(struct lwp *, pri_t);
    110      1.188      yamt static void	sched_lendpri(struct lwp *, pri_t);
    111      1.250     rmind static void	resched_cpu(struct lwp *);
    112      1.122   thorpej 
    113      1.174        ad syncobj_t sleep_syncobj = {
    114      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    115      1.174        ad 	sleepq_unsleep,
    116      1.184      yamt 	sleepq_changepri,
    117      1.184      yamt 	sleepq_lendpri,
    118      1.184      yamt 	syncobj_noowner,
    119      1.174        ad };
    120      1.174        ad 
    121      1.174        ad syncobj_t sched_syncobj = {
    122      1.174        ad 	SOBJ_SLEEPQ_SORTED,
    123      1.174        ad 	sched_unsleep,
    124      1.184      yamt 	sched_changepri,
    125      1.184      yamt 	sched_lendpri,
    126      1.184      yamt 	syncobj_noowner,
    127      1.174        ad };
    128      1.122   thorpej 
    129      1.289     rmind /* "Lightning bolt": once a second sleep address. */
    130      1.289     rmind kcondvar_t		lbolt			__cacheline_aligned;
    131      1.223        ad 
    132      1.289     rmind u_int			sched_pstats_ticks	__cacheline_aligned;
    133      1.289     rmind 
    134      1.289     rmind /* Preemption event counters. */
    135      1.289     rmind static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
    136      1.289     rmind static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
    137      1.289     rmind static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
    138      1.231        ad 
    139      1.237     rmind void
    140      1.270      elad synch_init(void)
    141      1.237     rmind {
    142      1.237     rmind 
    143      1.237     rmind 	cv_init(&lbolt, "lbolt");
    144      1.237     rmind 
    145      1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    146      1.237     rmind 	   "kpreempt", "defer: critical section");
    147      1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    148      1.237     rmind 	   "kpreempt", "defer: kernel_lock");
    149      1.239        ad 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    150      1.237     rmind 	   "kpreempt", "immediate");
    151      1.237     rmind }
    152      1.237     rmind 
    153       1.26       cgd /*
    154      1.174        ad  * OBSOLETE INTERFACE
    155      1.174        ad  *
    156      1.255     skrll  * General sleep call.  Suspends the current LWP until a wakeup is
    157      1.255     skrll  * performed on the specified identifier.  The LWP will then be made
    158      1.174        ad  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    159      1.174        ad  * means no timeout).  If pri includes PCATCH flag, signals are checked
    160       1.26       cgd  * before and after sleeping, else signals are not checked.  Returns 0 if
    161       1.26       cgd  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    162       1.26       cgd  * signal needs to be delivered, ERESTART is returned if the current system
    163       1.26       cgd  * call should be restarted if possible, and EINTR is returned if the system
    164       1.26       cgd  * call should be interrupted by the signal (return EINTR).
    165       1.26       cgd  */
    166       1.26       cgd int
    167      1.297     rmind tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
    168       1.26       cgd {
    169      1.122   thorpej 	struct lwp *l = curlwp;
    170      1.174        ad 	sleepq_t *sq;
    171      1.244        ad 	kmutex_t *mp;
    172       1.26       cgd 
    173      1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    174      1.272     pooka 	KASSERT(ident != &lbolt);
    175      1.204        ad 
    176      1.174        ad 	if (sleepq_dontsleep(l)) {
    177      1.174        ad 		(void)sleepq_abort(NULL, 0);
    178      1.174        ad 		return 0;
    179       1.26       cgd 	}
    180       1.78  sommerfe 
    181      1.204        ad 	l->l_kpriority = true;
    182      1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    183      1.244        ad 	sleepq_enter(sq, l, mp);
    184      1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    185      1.297     rmind 	return sleepq_block(timo, priority & PCATCH);
    186       1.26       cgd }
    187       1.26       cgd 
    188      1.187        ad int
    189      1.187        ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    190      1.187        ad 	kmutex_t *mtx)
    191      1.187        ad {
    192      1.187        ad 	struct lwp *l = curlwp;
    193      1.187        ad 	sleepq_t *sq;
    194      1.244        ad 	kmutex_t *mp;
    195      1.188      yamt 	int error;
    196      1.187        ad 
    197      1.204        ad 	KASSERT((l->l_pflag & LP_INTR) == 0);
    198      1.272     pooka 	KASSERT(ident != &lbolt);
    199      1.204        ad 
    200      1.187        ad 	if (sleepq_dontsleep(l)) {
    201      1.187        ad 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    202      1.187        ad 		return 0;
    203      1.187        ad 	}
    204      1.187        ad 
    205      1.204        ad 	l->l_kpriority = true;
    206      1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    207      1.244        ad 	sleepq_enter(sq, l, mp);
    208      1.204        ad 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    209      1.187        ad 	mutex_exit(mtx);
    210      1.188      yamt 	error = sleepq_block(timo, priority & PCATCH);
    211      1.187        ad 
    212      1.187        ad 	if ((priority & PNORELOCK) == 0)
    213      1.187        ad 		mutex_enter(mtx);
    214      1.297     rmind 
    215      1.187        ad 	return error;
    216      1.187        ad }
    217      1.187        ad 
    218       1.26       cgd /*
    219      1.174        ad  * General sleep call for situations where a wake-up is not expected.
    220       1.26       cgd  */
    221      1.174        ad int
    222      1.182   thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    223       1.26       cgd {
    224      1.174        ad 	struct lwp *l = curlwp;
    225      1.244        ad 	kmutex_t *mp;
    226      1.174        ad 	sleepq_t *sq;
    227      1.174        ad 	int error;
    228       1.26       cgd 
    229      1.284     pooka 	KASSERT(!(timo == 0 && intr == false));
    230      1.284     pooka 
    231      1.174        ad 	if (sleepq_dontsleep(l))
    232      1.174        ad 		return sleepq_abort(NULL, 0);
    233       1.26       cgd 
    234      1.174        ad 	if (mtx != NULL)
    235      1.174        ad 		mutex_exit(mtx);
    236      1.204        ad 	l->l_kpriority = true;
    237      1.244        ad 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    238      1.244        ad 	sleepq_enter(sq, l, mp);
    239      1.204        ad 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    240      1.188      yamt 	error = sleepq_block(timo, intr);
    241      1.174        ad 	if (mtx != NULL)
    242      1.174        ad 		mutex_enter(mtx);
    243       1.83   thorpej 
    244      1.174        ad 	return error;
    245      1.139        cl }
    246      1.139        cl 
    247       1.26       cgd /*
    248      1.174        ad  * OBSOLETE INTERFACE
    249      1.174        ad  *
    250      1.255     skrll  * Make all LWPs sleeping on the specified identifier runnable.
    251       1.26       cgd  */
    252       1.26       cgd void
    253      1.174        ad wakeup(wchan_t ident)
    254       1.26       cgd {
    255      1.174        ad 	sleepq_t *sq;
    256      1.244        ad 	kmutex_t *mp;
    257       1.83   thorpej 
    258      1.261     rmind 	if (__predict_false(cold))
    259      1.174        ad 		return;
    260       1.83   thorpej 
    261      1.244        ad 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    262      1.244        ad 	sleepq_wake(sq, ident, (u_int)-1, mp);
    263       1.63   thorpej }
    264       1.63   thorpej 
    265       1.63   thorpej /*
    266      1.255     skrll  * General yield call.  Puts the current LWP back on its run queue and
    267      1.117  gmcgarry  * performs a voluntary context switch.  Should only be called when the
    268      1.255     skrll  * current LWP explicitly requests it (eg sched_yield(2)).
    269      1.117  gmcgarry  */
    270      1.117  gmcgarry void
    271      1.117  gmcgarry yield(void)
    272      1.117  gmcgarry {
    273      1.122   thorpej 	struct lwp *l = curlwp;
    274      1.117  gmcgarry 
    275      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    276      1.174        ad 	lwp_lock(l);
    277      1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    278      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    279      1.204        ad 	l->l_kpriority = false;
    280      1.188      yamt 	(void)mi_switch(l);
    281      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    282       1.69   thorpej }
    283       1.69   thorpej 
    284       1.69   thorpej /*
    285      1.255     skrll  * General preemption call.  Puts the current LWP back on its run queue
    286      1.156    rpaulo  * and performs an involuntary context switch.
    287       1.69   thorpej  */
    288       1.69   thorpej void
    289      1.174        ad preempt(void)
    290       1.69   thorpej {
    291      1.122   thorpej 	struct lwp *l = curlwp;
    292       1.69   thorpej 
    293      1.174        ad 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    294      1.174        ad 	lwp_lock(l);
    295      1.217        ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    296      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    297      1.204        ad 	l->l_kpriority = false;
    298      1.174        ad 	l->l_nivcsw++;
    299      1.188      yamt 	(void)mi_switch(l);
    300      1.174        ad 	KERNEL_LOCK(l->l_biglocks, l);
    301       1.69   thorpej }
    302       1.69   thorpej 
    303      1.234        ad /*
    304      1.234        ad  * Handle a request made by another agent to preempt the current LWP
    305      1.234        ad  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    306      1.234        ad  *
    307      1.234        ad  * Character addresses for lockstat only.
    308      1.234        ad  */
    309      1.231        ad static char	in_critical_section;
    310      1.231        ad static char	kernel_lock_held;
    311      1.231        ad static char	is_softint;
    312      1.262      yamt static char	cpu_kpreempt_enter_fail;
    313      1.231        ad 
    314      1.231        ad bool
    315      1.231        ad kpreempt(uintptr_t where)
    316      1.231        ad {
    317      1.231        ad 	uintptr_t failed;
    318      1.231        ad 	lwp_t *l;
    319      1.264        ad 	int s, dop, lsflag;
    320      1.231        ad 
    321      1.231        ad 	l = curlwp;
    322      1.231        ad 	failed = 0;
    323      1.231        ad 	while ((dop = l->l_dopreempt) != 0) {
    324      1.231        ad 		if (l->l_stat != LSONPROC) {
    325      1.231        ad 			/*
    326      1.231        ad 			 * About to block (or die), let it happen.
    327      1.231        ad 			 * Doesn't really count as "preemption has
    328      1.231        ad 			 * been blocked", since we're going to
    329      1.231        ad 			 * context switch.
    330      1.231        ad 			 */
    331      1.231        ad 			l->l_dopreempt = 0;
    332      1.231        ad 			return true;
    333      1.231        ad 		}
    334      1.231        ad 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    335      1.231        ad 			/* Can't preempt idle loop, don't count as failure. */
    336      1.261     rmind 			l->l_dopreempt = 0;
    337      1.261     rmind 			return true;
    338      1.231        ad 		}
    339      1.231        ad 		if (__predict_false(l->l_nopreempt != 0)) {
    340      1.231        ad 			/* LWP holds preemption disabled, explicitly. */
    341      1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    342      1.234        ad 				kpreempt_ev_crit.ev_count++;
    343      1.231        ad 			}
    344      1.231        ad 			failed = (uintptr_t)&in_critical_section;
    345      1.231        ad 			break;
    346      1.231        ad 		}
    347      1.231        ad 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    348      1.261     rmind 			/* Can't preempt soft interrupts yet. */
    349      1.261     rmind 			l->l_dopreempt = 0;
    350      1.261     rmind 			failed = (uintptr_t)&is_softint;
    351      1.261     rmind 			break;
    352      1.231        ad 		}
    353      1.231        ad 		s = splsched();
    354      1.231        ad 		if (__predict_false(l->l_blcnt != 0 ||
    355      1.231        ad 		    curcpu()->ci_biglock_wanted != NULL)) {
    356      1.231        ad 			/* Hold or want kernel_lock, code is not MT safe. */
    357      1.231        ad 			splx(s);
    358      1.231        ad 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    359      1.234        ad 				kpreempt_ev_klock.ev_count++;
    360      1.231        ad 			}
    361      1.231        ad 			failed = (uintptr_t)&kernel_lock_held;
    362      1.231        ad 			break;
    363      1.231        ad 		}
    364      1.231        ad 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    365      1.231        ad 			/*
    366      1.231        ad 			 * It may be that the IPL is too high.
    367      1.231        ad 			 * kpreempt_enter() can schedule an
    368      1.231        ad 			 * interrupt to retry later.
    369      1.231        ad 			 */
    370      1.231        ad 			splx(s);
    371      1.262      yamt 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
    372      1.231        ad 			break;
    373      1.231        ad 		}
    374      1.231        ad 		/* Do it! */
    375      1.231        ad 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    376      1.234        ad 			kpreempt_ev_immed.ev_count++;
    377      1.231        ad 		}
    378      1.231        ad 		lwp_lock(l);
    379      1.231        ad 		mi_switch(l);
    380      1.231        ad 		l->l_nopreempt++;
    381      1.231        ad 		splx(s);
    382      1.231        ad 
    383      1.231        ad 		/* Take care of any MD cleanup. */
    384      1.231        ad 		cpu_kpreempt_exit(where);
    385      1.231        ad 		l->l_nopreempt--;
    386      1.231        ad 	}
    387      1.231        ad 
    388      1.264        ad 	if (__predict_true(!failed)) {
    389      1.264        ad 		return false;
    390      1.264        ad 	}
    391      1.264        ad 
    392      1.231        ad 	/* Record preemption failure for reporting via lockstat. */
    393      1.264        ad 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    394      1.264        ad 	lsflag = 0;
    395      1.264        ad 	LOCKSTAT_ENTER(lsflag);
    396      1.264        ad 	if (__predict_false(lsflag)) {
    397      1.264        ad 		if (where == 0) {
    398      1.264        ad 			where = (uintptr_t)__builtin_return_address(0);
    399      1.264        ad 		}
    400      1.264        ad 		/* Preemption is on, might recurse, so make it atomic. */
    401      1.264        ad 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    402      1.264        ad 		    (void *)where) == NULL) {
    403      1.264        ad 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    404      1.264        ad 			l->l_pfaillock = failed;
    405      1.231        ad 		}
    406      1.231        ad 	}
    407      1.264        ad 	LOCKSTAT_EXIT(lsflag);
    408      1.264        ad 	return true;
    409      1.231        ad }
    410      1.231        ad 
    411       1.69   thorpej /*
    412      1.231        ad  * Return true if preemption is explicitly disabled.
    413      1.230        ad  */
    414      1.231        ad bool
    415      1.231        ad kpreempt_disabled(void)
    416      1.231        ad {
    417      1.261     rmind 	const lwp_t *l = curlwp;
    418      1.231        ad 
    419      1.231        ad 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    420      1.231        ad 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    421      1.231        ad }
    422      1.230        ad 
    423      1.230        ad /*
    424      1.231        ad  * Disable kernel preemption.
    425      1.230        ad  */
    426      1.230        ad void
    427      1.231        ad kpreempt_disable(void)
    428      1.230        ad {
    429      1.230        ad 
    430      1.231        ad 	KPREEMPT_DISABLE(curlwp);
    431      1.230        ad }
    432      1.230        ad 
    433      1.230        ad /*
    434      1.231        ad  * Reenable kernel preemption.
    435      1.230        ad  */
    436      1.231        ad void
    437      1.231        ad kpreempt_enable(void)
    438      1.230        ad {
    439      1.230        ad 
    440      1.231        ad 	KPREEMPT_ENABLE(curlwp);
    441      1.230        ad }
    442      1.230        ad 
    443      1.230        ad /*
    444      1.188      yamt  * Compute the amount of time during which the current lwp was running.
    445      1.130   nathanw  *
    446      1.188      yamt  * - update l_rtime unless it's an idle lwp.
    447      1.188      yamt  */
    448      1.188      yamt 
    449      1.199        ad void
    450      1.212      yamt updatertime(lwp_t *l, const struct bintime *now)
    451      1.188      yamt {
    452      1.188      yamt 
    453      1.261     rmind 	if (__predict_false(l->l_flag & LW_IDLE))
    454      1.188      yamt 		return;
    455      1.188      yamt 
    456      1.212      yamt 	/* rtime += now - stime */
    457      1.212      yamt 	bintime_add(&l->l_rtime, now);
    458      1.212      yamt 	bintime_sub(&l->l_rtime, &l->l_stime);
    459      1.188      yamt }
    460      1.188      yamt 
    461      1.188      yamt /*
    462      1.245        ad  * Select next LWP from the current CPU to run..
    463      1.245        ad  */
    464      1.245        ad static inline lwp_t *
    465      1.245        ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    466      1.245        ad {
    467      1.245        ad 	lwp_t *newl;
    468      1.245        ad 
    469      1.245        ad 	/*
    470      1.245        ad 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    471      1.245        ad 	 * If no LWP is runnable, select the idle LWP.
    472      1.245        ad 	 *
    473      1.245        ad 	 * Note that spc_lwplock might not necessary be held, and
    474      1.245        ad 	 * new thread would be unlocked after setting the LWP-lock.
    475      1.245        ad 	 */
    476      1.245        ad 	newl = sched_nextlwp();
    477      1.245        ad 	if (newl != NULL) {
    478      1.245        ad 		sched_dequeue(newl);
    479      1.245        ad 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    480      1.274     rmind 		KASSERT(newl->l_cpu == ci);
    481      1.245        ad 		newl->l_stat = LSONPROC;
    482      1.248        ad 		newl->l_pflag |= LP_RUNNING;
    483      1.245        ad 		lwp_setlock(newl, spc->spc_lwplock);
    484      1.245        ad 	} else {
    485      1.245        ad 		newl = ci->ci_data.cpu_idlelwp;
    486      1.245        ad 		newl->l_stat = LSONPROC;
    487      1.248        ad 		newl->l_pflag |= LP_RUNNING;
    488      1.245        ad 	}
    489      1.261     rmind 
    490      1.245        ad 	/*
    491      1.245        ad 	 * Only clear want_resched if there are no pending (slow)
    492      1.245        ad 	 * software interrupts.
    493      1.245        ad 	 */
    494      1.245        ad 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    495      1.245        ad 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    496      1.245        ad 	spc->spc_curpriority = lwp_eprio(newl);
    497      1.245        ad 
    498      1.245        ad 	return newl;
    499      1.245        ad }
    500      1.245        ad 
    501      1.245        ad /*
    502      1.188      yamt  * The machine independent parts of context switch.
    503      1.188      yamt  *
    504      1.188      yamt  * Returns 1 if another LWP was actually run.
    505       1.26       cgd  */
    506      1.122   thorpej int
    507      1.199        ad mi_switch(lwp_t *l)
    508       1.26       cgd {
    509      1.246     rmind 	struct cpu_info *ci;
    510       1.76   thorpej 	struct schedstate_percpu *spc;
    511      1.188      yamt 	struct lwp *newl;
    512      1.174        ad 	int retval, oldspl;
    513      1.212      yamt 	struct bintime bt;
    514      1.199        ad 	bool returning;
    515       1.26       cgd 
    516      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
    517      1.231        ad 	KASSERT(kpreempt_disabled());
    518      1.188      yamt 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    519      1.174        ad 
    520      1.174        ad 	kstack_check_magic(l);
    521       1.83   thorpej 
    522      1.212      yamt 	binuptime(&bt);
    523      1.199        ad 
    524      1.304      matt 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    525      1.267      yamt 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    526      1.231        ad 	KASSERT(l->l_cpu == curcpu());
    527      1.196        ad 	ci = l->l_cpu;
    528      1.196        ad 	spc = &ci->ci_schedstate;
    529      1.199        ad 	returning = false;
    530      1.190        ad 	newl = NULL;
    531      1.190        ad 
    532      1.199        ad 	/*
    533      1.199        ad 	 * If we have been asked to switch to a specific LWP, then there
    534      1.199        ad 	 * is no need to inspect the run queues.  If a soft interrupt is
    535      1.199        ad 	 * blocking, then return to the interrupted thread without adjusting
    536      1.199        ad 	 * VM context or its start time: neither have been changed in order
    537      1.199        ad 	 * to take the interrupt.
    538      1.199        ad 	 */
    539      1.190        ad 	if (l->l_switchto != NULL) {
    540      1.204        ad 		if ((l->l_pflag & LP_INTR) != 0) {
    541      1.199        ad 			returning = true;
    542      1.199        ad 			softint_block(l);
    543      1.248        ad 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    544      1.212      yamt 				updatertime(l, &bt);
    545      1.199        ad 		}
    546      1.190        ad 		newl = l->l_switchto;
    547      1.190        ad 		l->l_switchto = NULL;
    548      1.190        ad 	}
    549      1.204        ad #ifndef __HAVE_FAST_SOFTINTS
    550      1.204        ad 	else if (ci->ci_data.cpu_softints != 0) {
    551      1.204        ad 		/* There are pending soft interrupts, so pick one. */
    552      1.204        ad 		newl = softint_picklwp();
    553      1.204        ad 		newl->l_stat = LSONPROC;
    554      1.248        ad 		newl->l_pflag |= LP_RUNNING;
    555      1.204        ad 	}
    556      1.204        ad #endif	/* !__HAVE_FAST_SOFTINTS */
    557      1.190        ad 
    558      1.180       dsl 	/* Count time spent in current system call */
    559      1.199        ad 	if (!returning) {
    560      1.199        ad 		SYSCALL_TIME_SLEEP(l);
    561      1.180       dsl 
    562      1.199        ad 		/*
    563      1.199        ad 		 * XXXSMP If we are using h/w performance counters,
    564      1.199        ad 		 * save context.
    565      1.199        ad 		 */
    566      1.174        ad #if PERFCTRS
    567      1.199        ad 		if (PMC_ENABLED(l->l_proc)) {
    568      1.199        ad 			pmc_save_context(l->l_proc);
    569      1.199        ad 		}
    570      1.199        ad #endif
    571      1.212      yamt 		updatertime(l, &bt);
    572      1.174        ad 	}
    573      1.113  gmcgarry 
    574      1.246     rmind 	/* Lock the runqueue */
    575      1.246     rmind 	KASSERT(l->l_stat != LSRUN);
    576      1.246     rmind 	mutex_spin_enter(spc->spc_mutex);
    577      1.246     rmind 
    578      1.113  gmcgarry 	/*
    579      1.174        ad 	 * If on the CPU and we have gotten this far, then we must yield.
    580      1.113  gmcgarry 	 */
    581      1.246     rmind 	if (l->l_stat == LSONPROC && l != newl) {
    582      1.217        ad 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    583      1.188      yamt 		if ((l->l_flag & LW_IDLE) == 0) {
    584      1.188      yamt 			l->l_stat = LSRUN;
    585      1.246     rmind 			lwp_setlock(l, spc->spc_mutex);
    586      1.246     rmind 			sched_enqueue(l, true);
    587      1.285     rmind 			/*
    588      1.285     rmind 			 * Handle migration.  Note that "migrating LWP" may
    589      1.285     rmind 			 * be reset here, if interrupt/preemption happens
    590      1.285     rmind 			 * early in idle LWP.
    591      1.285     rmind 			 */
    592      1.285     rmind 			if (l->l_target_cpu != NULL) {
    593      1.285     rmind 				KASSERT((l->l_pflag & LP_INTR) == 0);
    594      1.246     rmind 				spc->spc_migrating = l;
    595      1.216     rmind 			}
    596      1.246     rmind 		} else
    597      1.188      yamt 			l->l_stat = LSIDL;
    598      1.174        ad 	}
    599      1.174        ad 
    600      1.245        ad 	/* Pick new LWP to run. */
    601      1.190        ad 	if (newl == NULL) {
    602      1.245        ad 		newl = nextlwp(ci, spc);
    603      1.199        ad 	}
    604      1.199        ad 
    605      1.204        ad 	/* Items that must be updated with the CPU locked. */
    606      1.199        ad 	if (!returning) {
    607      1.204        ad 		/* Update the new LWP's start time. */
    608      1.212      yamt 		newl->l_stime = bt;
    609      1.204        ad 
    610      1.199        ad 		/*
    611      1.204        ad 		 * ci_curlwp changes when a fast soft interrupt occurs.
    612      1.204        ad 		 * We use cpu_onproc to keep track of which kernel or
    613      1.204        ad 		 * user thread is running 'underneath' the software
    614      1.204        ad 		 * interrupt.  This is important for time accounting,
    615      1.204        ad 		 * itimers and forcing user threads to preempt (aston).
    616      1.199        ad 		 */
    617      1.204        ad 		ci->ci_data.cpu_onproc = newl;
    618      1.188      yamt 	}
    619      1.188      yamt 
    620      1.241        ad 	/*
    621      1.241        ad 	 * Preemption related tasks.  Must be done with the current
    622      1.241        ad 	 * CPU locked.
    623      1.241        ad 	 */
    624      1.241        ad 	cpu_did_resched(l);
    625      1.231        ad 	l->l_dopreempt = 0;
    626      1.231        ad 	if (__predict_false(l->l_pfailaddr != 0)) {
    627      1.231        ad 		LOCKSTAT_FLAG(lsflag);
    628      1.231        ad 		LOCKSTAT_ENTER(lsflag);
    629      1.231        ad 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    630      1.231        ad 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    631      1.231        ad 		    1, l->l_pfailtime, l->l_pfailaddr);
    632      1.231        ad 		LOCKSTAT_EXIT(lsflag);
    633      1.231        ad 		l->l_pfailtime = 0;
    634      1.231        ad 		l->l_pfaillock = 0;
    635      1.231        ad 		l->l_pfailaddr = 0;
    636      1.231        ad 	}
    637      1.231        ad 
    638      1.188      yamt 	if (l != newl) {
    639      1.188      yamt 		struct lwp *prevlwp;
    640      1.174        ad 
    641      1.209        ad 		/* Release all locks, but leave the current LWP locked */
    642      1.246     rmind 		if (l->l_mutex == spc->spc_mutex) {
    643      1.209        ad 			/*
    644      1.209        ad 			 * Drop spc_lwplock, if the current LWP has been moved
    645      1.209        ad 			 * to the run queue (it is now locked by spc_mutex).
    646      1.209        ad 			 */
    647      1.217        ad 			mutex_spin_exit(spc->spc_lwplock);
    648      1.188      yamt 		} else {
    649      1.209        ad 			/*
    650      1.209        ad 			 * Otherwise, drop the spc_mutex, we are done with the
    651      1.209        ad 			 * run queues.
    652      1.209        ad 			 */
    653      1.188      yamt 			mutex_spin_exit(spc->spc_mutex);
    654      1.188      yamt 		}
    655      1.188      yamt 
    656      1.209        ad 		/*
    657      1.253     skrll 		 * Mark that context switch is going to be performed
    658      1.209        ad 		 * for this LWP, to protect it from being switched
    659      1.209        ad 		 * to on another CPU.
    660      1.209        ad 		 */
    661      1.209        ad 		KASSERT(l->l_ctxswtch == 0);
    662      1.209        ad 		l->l_ctxswtch = 1;
    663      1.209        ad 		l->l_ncsw++;
    664      1.267      yamt 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
    665      1.248        ad 		l->l_pflag &= ~LP_RUNNING;
    666      1.209        ad 
    667      1.209        ad 		/*
    668      1.209        ad 		 * Increase the count of spin-mutexes before the release
    669      1.209        ad 		 * of the last lock - we must remain at IPL_SCHED during
    670      1.209        ad 		 * the context switch.
    671      1.209        ad 		 */
    672      1.287      matt 		KASSERTMSG(ci->ci_mtx_count == -1,
    673      1.301     rmind 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
    674      1.301     rmind 		    "(block with spin-mutex held)",
    675      1.291       jym 		     __func__, cpu_index(ci), ci->ci_mtx_count);
    676      1.209        ad 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    677      1.209        ad 		ci->ci_mtx_count--;
    678      1.209        ad 		lwp_unlock(l);
    679      1.209        ad 
    680      1.218        ad 		/* Count the context switch on this CPU. */
    681      1.218        ad 		ci->ci_data.cpu_nswtch++;
    682      1.188      yamt 
    683      1.209        ad 		/* Update status for lwpctl, if present. */
    684      1.209        ad 		if (l->l_lwpctl != NULL)
    685      1.209        ad 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    686      1.209        ad 
    687      1.199        ad 		/*
    688      1.199        ad 		 * Save old VM context, unless a soft interrupt
    689      1.199        ad 		 * handler is blocking.
    690      1.199        ad 		 */
    691      1.199        ad 		if (!returning)
    692      1.199        ad 			pmap_deactivate(l);
    693      1.188      yamt 
    694      1.209        ad 		/*
    695      1.275     skrll 		 * We may need to spin-wait if 'newl' is still
    696      1.209        ad 		 * context switching on another CPU.
    697      1.209        ad 		 */
    698      1.261     rmind 		if (__predict_false(newl->l_ctxswtch != 0)) {
    699      1.209        ad 			u_int count;
    700      1.209        ad 			count = SPINLOCK_BACKOFF_MIN;
    701      1.209        ad 			while (newl->l_ctxswtch)
    702      1.209        ad 				SPINLOCK_BACKOFF(count);
    703      1.209        ad 		}
    704      1.207        ad 
    705      1.276    darran 		/*
    706      1.276    darran 		 * If DTrace has set the active vtime enum to anything
    707      1.276    darran 		 * other than INACTIVE (0), then it should have set the
    708      1.276    darran 		 * function to call.
    709      1.276    darran 		 */
    710      1.278    darran 		if (__predict_false(dtrace_vtime_active)) {
    711      1.276    darran 			(*dtrace_vtime_switch_func)(newl);
    712      1.276    darran 		}
    713      1.276    darran 
    714      1.188      yamt 		/* Switch to the new LWP.. */
    715      1.305   mlelstv #ifdef MULTIPROCESSOR
    716      1.304      matt 		KASSERT(curlwp == ci->ci_curlwp);
    717      1.305   mlelstv #endif
    718      1.304      matt 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
    719      1.204        ad 		prevlwp = cpu_switchto(l, newl, returning);
    720      1.207        ad 		ci = curcpu();
    721      1.305   mlelstv #ifdef MULTIPROCESSOR
    722      1.304      matt 		KASSERT(curlwp == ci->ci_curlwp);
    723      1.305   mlelstv #endif
    724      1.304      matt 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
    725      1.304      matt 		    l, curlwp, prevlwp);
    726      1.207        ad 
    727      1.188      yamt 		/*
    728      1.209        ad 		 * Switched away - we have new curlwp.
    729      1.209        ad 		 * Restore VM context and IPL.
    730      1.188      yamt 		 */
    731      1.209        ad 		pmap_activate(l);
    732      1.265     rmind 		uvm_emap_switch(l);
    733      1.288     rmind 		pcu_switchpoint(l);
    734      1.265     rmind 
    735      1.188      yamt 		if (prevlwp != NULL) {
    736      1.209        ad 			/* Normalize the count of the spin-mutexes */
    737      1.209        ad 			ci->ci_mtx_count++;
    738      1.209        ad 			/* Unmark the state of context switch */
    739      1.209        ad 			membar_exit();
    740      1.209        ad 			prevlwp->l_ctxswtch = 0;
    741      1.188      yamt 		}
    742      1.209        ad 
    743      1.209        ad 		/* Update status for lwpctl, if present. */
    744      1.219        ad 		if (l->l_lwpctl != NULL) {
    745      1.209        ad 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    746      1.219        ad 			l->l_lwpctl->lc_pctr++;
    747      1.219        ad 		}
    748      1.174        ad 
    749      1.290  christos 		/* Note trip through cpu_switchto(). */
    750      1.290  christos 		pserialize_switchpoint();
    751      1.290  christos 
    752      1.231        ad 		KASSERT(l->l_cpu == ci);
    753      1.231        ad 		splx(oldspl);
    754      1.300      yamt 		/*
    755      1.300      yamt 		 * note that, unless the caller disabled preemption,
    756      1.300      yamt 		 * we can be preempted at any time after the above splx() call.
    757      1.300      yamt 		 */
    758      1.188      yamt 		retval = 1;
    759      1.188      yamt 	} else {
    760      1.188      yamt 		/* Nothing to do - just unlock and return. */
    761      1.246     rmind 		mutex_spin_exit(spc->spc_mutex);
    762      1.188      yamt 		lwp_unlock(l);
    763      1.122   thorpej 		retval = 0;
    764      1.122   thorpej 	}
    765      1.110    briggs 
    766      1.188      yamt 	KASSERT(l == curlwp);
    767      1.188      yamt 	KASSERT(l->l_stat == LSONPROC);
    768      1.188      yamt 
    769      1.110    briggs 	/*
    770      1.174        ad 	 * XXXSMP If we are using h/w performance counters, restore context.
    771      1.231        ad 	 * XXXSMP preemption problem.
    772       1.26       cgd 	 */
    773      1.114  gmcgarry #if PERFCTRS
    774      1.175  christos 	if (PMC_ENABLED(l->l_proc)) {
    775      1.175  christos 		pmc_restore_context(l->l_proc);
    776      1.166  christos 	}
    777      1.114  gmcgarry #endif
    778      1.180       dsl 	SYSCALL_TIME_WAKEUP(l);
    779      1.188      yamt 	LOCKDEBUG_BARRIER(NULL, 1);
    780      1.169      yamt 
    781      1.122   thorpej 	return retval;
    782       1.26       cgd }
    783       1.26       cgd 
    784       1.26       cgd /*
    785      1.245        ad  * The machine independent parts of context switch to oblivion.
    786      1.245        ad  * Does not return.  Call with the LWP unlocked.
    787      1.245        ad  */
    788      1.245        ad void
    789      1.245        ad lwp_exit_switchaway(lwp_t *l)
    790      1.245        ad {
    791      1.245        ad 	struct cpu_info *ci;
    792      1.245        ad 	struct lwp *newl;
    793      1.245        ad 	struct bintime bt;
    794      1.245        ad 
    795      1.245        ad 	ci = l->l_cpu;
    796      1.245        ad 
    797      1.245        ad 	KASSERT(kpreempt_disabled());
    798      1.245        ad 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    799      1.245        ad 	KASSERT(ci == curcpu());
    800      1.245        ad 	LOCKDEBUG_BARRIER(NULL, 0);
    801      1.245        ad 
    802      1.245        ad 	kstack_check_magic(l);
    803      1.245        ad 
    804      1.245        ad 	/* Count time spent in current system call */
    805      1.245        ad 	SYSCALL_TIME_SLEEP(l);
    806      1.245        ad 	binuptime(&bt);
    807      1.245        ad 	updatertime(l, &bt);
    808      1.245        ad 
    809      1.245        ad 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    810      1.245        ad 	(void)splsched();
    811      1.245        ad 
    812      1.245        ad 	/*
    813      1.245        ad 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    814      1.245        ad 	 * If no LWP is runnable, select the idle LWP.
    815      1.245        ad 	 *
    816      1.245        ad 	 * Note that spc_lwplock might not necessary be held, and
    817      1.245        ad 	 * new thread would be unlocked after setting the LWP-lock.
    818      1.245        ad 	 */
    819      1.245        ad 	spc_lock(ci);
    820      1.245        ad #ifndef __HAVE_FAST_SOFTINTS
    821      1.245        ad 	if (ci->ci_data.cpu_softints != 0) {
    822      1.245        ad 		/* There are pending soft interrupts, so pick one. */
    823      1.245        ad 		newl = softint_picklwp();
    824      1.245        ad 		newl->l_stat = LSONPROC;
    825      1.248        ad 		newl->l_pflag |= LP_RUNNING;
    826      1.245        ad 	} else
    827      1.245        ad #endif	/* !__HAVE_FAST_SOFTINTS */
    828      1.245        ad 	{
    829      1.245        ad 		newl = nextlwp(ci, &ci->ci_schedstate);
    830      1.245        ad 	}
    831      1.245        ad 
    832      1.245        ad 	/* Update the new LWP's start time. */
    833      1.245        ad 	newl->l_stime = bt;
    834      1.248        ad 	l->l_pflag &= ~LP_RUNNING;
    835      1.245        ad 
    836      1.245        ad 	/*
    837      1.245        ad 	 * ci_curlwp changes when a fast soft interrupt occurs.
    838      1.245        ad 	 * We use cpu_onproc to keep track of which kernel or
    839      1.245        ad 	 * user thread is running 'underneath' the software
    840      1.245        ad 	 * interrupt.  This is important for time accounting,
    841      1.245        ad 	 * itimers and forcing user threads to preempt (aston).
    842      1.245        ad 	 */
    843      1.245        ad 	ci->ci_data.cpu_onproc = newl;
    844      1.245        ad 
    845      1.245        ad 	/*
    846      1.245        ad 	 * Preemption related tasks.  Must be done with the current
    847      1.245        ad 	 * CPU locked.
    848      1.245        ad 	 */
    849      1.245        ad 	cpu_did_resched(l);
    850      1.245        ad 
    851      1.245        ad 	/* Unlock the run queue. */
    852      1.245        ad 	spc_unlock(ci);
    853      1.245        ad 
    854      1.245        ad 	/* Count the context switch on this CPU. */
    855      1.245        ad 	ci->ci_data.cpu_nswtch++;
    856      1.245        ad 
    857      1.245        ad 	/* Update status for lwpctl, if present. */
    858      1.245        ad 	if (l->l_lwpctl != NULL)
    859      1.247        ad 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    860      1.245        ad 
    861      1.245        ad 	/*
    862      1.275     skrll 	 * We may need to spin-wait if 'newl' is still
    863      1.245        ad 	 * context switching on another CPU.
    864      1.245        ad 	 */
    865      1.261     rmind 	if (__predict_false(newl->l_ctxswtch != 0)) {
    866      1.245        ad 		u_int count;
    867      1.245        ad 		count = SPINLOCK_BACKOFF_MIN;
    868      1.245        ad 		while (newl->l_ctxswtch)
    869      1.245        ad 			SPINLOCK_BACKOFF(count);
    870      1.245        ad 	}
    871      1.245        ad 
    872      1.279    darran 	/*
    873      1.279    darran 	 * If DTrace has set the active vtime enum to anything
    874      1.279    darran 	 * other than INACTIVE (0), then it should have set the
    875      1.279    darran 	 * function to call.
    876      1.279    darran 	 */
    877      1.279    darran 	if (__predict_false(dtrace_vtime_active)) {
    878      1.279    darran 		(*dtrace_vtime_switch_func)(newl);
    879      1.279    darran 	}
    880      1.276    darran 
    881      1.245        ad 	/* Switch to the new LWP.. */
    882      1.245        ad 	(void)cpu_switchto(NULL, newl, false);
    883      1.245        ad 
    884      1.251       uwe 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    885      1.245        ad 	/* NOTREACHED */
    886      1.245        ad }
    887      1.245        ad 
    888      1.245        ad /*
    889      1.271     rmind  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    890      1.174        ad  *
    891      1.174        ad  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    892       1.26       cgd  */
    893       1.26       cgd void
    894      1.122   thorpej setrunnable(struct lwp *l)
    895       1.26       cgd {
    896      1.122   thorpej 	struct proc *p = l->l_proc;
    897      1.205        ad 	struct cpu_info *ci;
    898       1.26       cgd 
    899      1.188      yamt 	KASSERT((l->l_flag & LW_IDLE) == 0);
    900      1.229        ad 	KASSERT(mutex_owned(p->p_lock));
    901      1.183        ad 	KASSERT(lwp_locked(l, NULL));
    902      1.205        ad 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    903       1.83   thorpej 
    904      1.122   thorpej 	switch (l->l_stat) {
    905      1.122   thorpej 	case LSSTOP:
    906       1.33   mycroft 		/*
    907       1.33   mycroft 		 * If we're being traced (possibly because someone attached us
    908       1.33   mycroft 		 * while we were stopped), check for a signal from the debugger.
    909       1.33   mycroft 		 */
    910  1.308.6.2     skrll 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
    911      1.174        ad 			signotify(l);
    912      1.174        ad 		p->p_nrlwps++;
    913       1.26       cgd 		break;
    914      1.174        ad 	case LSSUSPENDED:
    915      1.178     pavel 		l->l_flag &= ~LW_WSUSPEND;
    916      1.174        ad 		p->p_nrlwps++;
    917      1.192     rmind 		cv_broadcast(&p->p_lwpcv);
    918      1.122   thorpej 		break;
    919      1.174        ad 	case LSSLEEP:
    920      1.174        ad 		KASSERT(l->l_wchan != NULL);
    921       1.26       cgd 		break;
    922      1.174        ad 	default:
    923      1.174        ad 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    924       1.26       cgd 	}
    925      1.139        cl 
    926      1.174        ad 	/*
    927      1.286     pooka 	 * If the LWP was sleeping, start it again.
    928      1.174        ad 	 */
    929      1.174        ad 	if (l->l_wchan != NULL) {
    930      1.174        ad 		l->l_stat = LSSLEEP;
    931      1.183        ad 		/* lwp_unsleep() will release the lock. */
    932      1.221        ad 		lwp_unsleep(l, true);
    933      1.174        ad 		return;
    934      1.174        ad 	}
    935      1.139        cl 
    936      1.174        ad 	/*
    937      1.174        ad 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    938      1.174        ad 	 * about to call mi_switch(), in which case it will yield.
    939      1.174        ad 	 */
    940      1.248        ad 	if ((l->l_pflag & LP_RUNNING) != 0) {
    941      1.174        ad 		l->l_stat = LSONPROC;
    942      1.174        ad 		l->l_slptime = 0;
    943      1.174        ad 		lwp_unlock(l);
    944      1.174        ad 		return;
    945      1.174        ad 	}
    946      1.122   thorpej 
    947      1.174        ad 	/*
    948      1.205        ad 	 * Look for a CPU to run.
    949      1.205        ad 	 * Set the LWP runnable.
    950      1.174        ad 	 */
    951      1.205        ad 	ci = sched_takecpu(l);
    952      1.205        ad 	l->l_cpu = ci;
    953      1.236        ad 	spc_lock(ci);
    954      1.236        ad 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    955      1.188      yamt 	sched_setrunnable(l);
    956      1.174        ad 	l->l_stat = LSRUN;
    957      1.122   thorpej 	l->l_slptime = 0;
    958      1.174        ad 
    959      1.271     rmind 	sched_enqueue(l, false);
    960      1.271     rmind 	resched_cpu(l);
    961      1.271     rmind 	lwp_unlock(l);
    962       1.26       cgd }
    963       1.26       cgd 
    964       1.26       cgd /*
    965      1.174        ad  * suspendsched:
    966      1.174        ad  *
    967      1.266      yamt  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    968      1.174        ad  */
    969       1.94    bouyer void
    970      1.174        ad suspendsched(void)
    971       1.94    bouyer {
    972      1.174        ad 	CPU_INFO_ITERATOR cii;
    973      1.174        ad 	struct cpu_info *ci;
    974      1.122   thorpej 	struct lwp *l;
    975      1.174        ad 	struct proc *p;
    976       1.94    bouyer 
    977       1.94    bouyer 	/*
    978      1.174        ad 	 * We do this by process in order not to violate the locking rules.
    979       1.94    bouyer 	 */
    980      1.228        ad 	mutex_enter(proc_lock);
    981      1.174        ad 	PROCLIST_FOREACH(p, &allproc) {
    982      1.229        ad 		mutex_enter(p->p_lock);
    983      1.178     pavel 		if ((p->p_flag & PK_SYSTEM) != 0) {
    984      1.229        ad 			mutex_exit(p->p_lock);
    985       1.94    bouyer 			continue;
    986      1.174        ad 		}
    987      1.174        ad 
    988  1.308.6.1     skrll 		if (p->p_stat != SSTOP) {
    989  1.308.6.1     skrll 			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
    990  1.308.6.1     skrll 				p->p_pptr->p_nstopchild++;
    991  1.308.6.1     skrll 				p->p_waited = 0;
    992  1.308.6.1     skrll 			}
    993  1.308.6.1     skrll 			p->p_stat = SSTOP;
    994  1.308.6.1     skrll 		}
    995      1.174        ad 
    996      1.174        ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    997      1.174        ad 			if (l == curlwp)
    998      1.174        ad 				continue;
    999      1.174        ad 
   1000      1.174        ad 			lwp_lock(l);
   1001      1.122   thorpej 
   1002       1.97     enami 			/*
   1003      1.174        ad 			 * Set L_WREBOOT so that the LWP will suspend itself
   1004      1.174        ad 			 * when it tries to return to user mode.  We want to
   1005      1.174        ad 			 * try and get to get as many LWPs as possible to
   1006      1.174        ad 			 * the user / kernel boundary, so that they will
   1007      1.174        ad 			 * release any locks that they hold.
   1008       1.97     enami 			 */
   1009      1.178     pavel 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1010      1.174        ad 
   1011      1.174        ad 			if (l->l_stat == LSSLEEP &&
   1012      1.178     pavel 			    (l->l_flag & LW_SINTR) != 0) {
   1013      1.174        ad 				/* setrunnable() will release the lock. */
   1014      1.174        ad 				setrunnable(l);
   1015      1.174        ad 				continue;
   1016      1.174        ad 			}
   1017      1.174        ad 
   1018      1.174        ad 			lwp_unlock(l);
   1019       1.94    bouyer 		}
   1020      1.174        ad 
   1021      1.229        ad 		mutex_exit(p->p_lock);
   1022       1.94    bouyer 	}
   1023      1.228        ad 	mutex_exit(proc_lock);
   1024      1.174        ad 
   1025      1.174        ad 	/*
   1026      1.174        ad 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1027      1.174        ad 	 * They'll trap into the kernel and suspend themselves in userret().
   1028      1.174        ad 	 */
   1029      1.204        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
   1030      1.204        ad 		spc_lock(ci);
   1031      1.204        ad 		cpu_need_resched(ci, RESCHED_IMMED);
   1032      1.204        ad 		spc_unlock(ci);
   1033      1.204        ad 	}
   1034      1.174        ad }
   1035      1.174        ad 
   1036      1.174        ad /*
   1037      1.174        ad  * sched_unsleep:
   1038      1.174        ad  *
   1039      1.174        ad  *	The is called when the LWP has not been awoken normally but instead
   1040      1.174        ad  *	interrupted: for example, if the sleep timed out.  Because of this,
   1041      1.174        ad  *	it's not a valid action for running or idle LWPs.
   1042      1.174        ad  */
   1043      1.271     rmind static void
   1044      1.221        ad sched_unsleep(struct lwp *l, bool cleanup)
   1045      1.174        ad {
   1046      1.174        ad 
   1047      1.174        ad 	lwp_unlock(l);
   1048      1.174        ad 	panic("sched_unsleep");
   1049      1.174        ad }
   1050      1.174        ad 
   1051      1.250     rmind static void
   1052      1.188      yamt resched_cpu(struct lwp *l)
   1053      1.188      yamt {
   1054      1.274     rmind 	struct cpu_info *ci = l->l_cpu;
   1055      1.188      yamt 
   1056      1.250     rmind 	KASSERT(lwp_locked(l, NULL));
   1057      1.204        ad 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1058      1.188      yamt 		cpu_need_resched(ci, 0);
   1059      1.188      yamt }
   1060      1.188      yamt 
   1061      1.188      yamt static void
   1062      1.185      yamt sched_changepri(struct lwp *l, pri_t pri)
   1063      1.174        ad {
   1064      1.174        ad 
   1065      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
   1066      1.174        ad 
   1067      1.271     rmind 	if (l->l_stat == LSRUN) {
   1068      1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1069      1.204        ad 		sched_dequeue(l);
   1070      1.204        ad 		l->l_priority = pri;
   1071      1.204        ad 		sched_enqueue(l, false);
   1072      1.204        ad 	} else {
   1073      1.174        ad 		l->l_priority = pri;
   1074      1.157      yamt 	}
   1075      1.188      yamt 	resched_cpu(l);
   1076      1.184      yamt }
   1077      1.184      yamt 
   1078      1.188      yamt static void
   1079      1.185      yamt sched_lendpri(struct lwp *l, pri_t pri)
   1080      1.184      yamt {
   1081      1.184      yamt 
   1082      1.188      yamt 	KASSERT(lwp_locked(l, NULL));
   1083      1.184      yamt 
   1084      1.271     rmind 	if (l->l_stat == LSRUN) {
   1085      1.204        ad 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1086      1.204        ad 		sched_dequeue(l);
   1087      1.204        ad 		l->l_inheritedprio = pri;
   1088  1.308.6.3     skrll 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1089      1.204        ad 		sched_enqueue(l, false);
   1090      1.204        ad 	} else {
   1091      1.184      yamt 		l->l_inheritedprio = pri;
   1092  1.308.6.3     skrll 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
   1093      1.184      yamt 	}
   1094      1.188      yamt 	resched_cpu(l);
   1095      1.184      yamt }
   1096      1.184      yamt 
   1097      1.184      yamt struct lwp *
   1098      1.184      yamt syncobj_noowner(wchan_t wchan)
   1099      1.184      yamt {
   1100      1.184      yamt 
   1101      1.184      yamt 	return NULL;
   1102      1.151      yamt }
   1103      1.151      yamt 
   1104      1.250     rmind /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1105      1.281     rmind const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
   1106      1.281     rmind 
   1107      1.281     rmind /*
   1108      1.281     rmind  * Constants for averages over 1, 5 and 15 minutes when sampling at
   1109      1.281     rmind  * 5 second intervals.
   1110      1.281     rmind  */
   1111      1.281     rmind static const fixpt_t cexp[ ] = {
   1112      1.281     rmind 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
   1113      1.281     rmind 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
   1114      1.281     rmind 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
   1115      1.281     rmind };
   1116      1.134      matt 
   1117      1.134      matt /*
   1118      1.188      yamt  * sched_pstats:
   1119      1.188      yamt  *
   1120      1.281     rmind  * => Update process statistics and check CPU resource allocation.
   1121      1.281     rmind  * => Call scheduler-specific hook to eventually adjust LWP priorities.
   1122      1.281     rmind  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
   1123      1.130   nathanw  */
   1124      1.113  gmcgarry void
   1125      1.281     rmind sched_pstats(void)
   1126      1.113  gmcgarry {
   1127      1.281     rmind 	extern struct loadavg averunnable;
   1128      1.281     rmind 	struct loadavg *avg = &averunnable;
   1129      1.249     rmind 	const int clkhz = (stathz != 0 ? stathz : hz);
   1130      1.281     rmind 	static bool backwards = false;
   1131      1.281     rmind 	static u_int lavg_count = 0;
   1132      1.188      yamt 	struct proc *p;
   1133      1.281     rmind 	int nrun;
   1134      1.113  gmcgarry 
   1135      1.188      yamt 	sched_pstats_ticks++;
   1136      1.281     rmind 	if (++lavg_count >= 5) {
   1137      1.281     rmind 		lavg_count = 0;
   1138      1.281     rmind 		nrun = 0;
   1139      1.281     rmind 	}
   1140      1.228        ad 	mutex_enter(proc_lock);
   1141      1.188      yamt 	PROCLIST_FOREACH(p, &allproc) {
   1142      1.281     rmind 		struct lwp *l;
   1143      1.281     rmind 		struct rlimit *rlim;
   1144      1.296  dholland 		time_t runtm;
   1145      1.281     rmind 		int sig;
   1146      1.281     rmind 
   1147      1.271     rmind 		/* Increment sleep time (if sleeping), ignore overflow. */
   1148      1.229        ad 		mutex_enter(p->p_lock);
   1149      1.212      yamt 		runtm = p->p_rtime.sec;
   1150      1.188      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1151      1.281     rmind 			fixpt_t lpctcpu;
   1152      1.281     rmind 			u_int lcpticks;
   1153      1.281     rmind 
   1154      1.249     rmind 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1155      1.188      yamt 				continue;
   1156      1.188      yamt 			lwp_lock(l);
   1157      1.212      yamt 			runtm += l->l_rtime.sec;
   1158      1.188      yamt 			l->l_swtime++;
   1159      1.242     rmind 			sched_lwp_stats(l);
   1160      1.281     rmind 
   1161      1.281     rmind 			/* For load average calculation. */
   1162      1.282     rmind 			if (__predict_false(lavg_count == 0) &&
   1163      1.282     rmind 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
   1164      1.281     rmind 				switch (l->l_stat) {
   1165      1.281     rmind 				case LSSLEEP:
   1166      1.281     rmind 					if (l->l_slptime > 1) {
   1167      1.281     rmind 						break;
   1168      1.281     rmind 					}
   1169      1.281     rmind 				case LSRUN:
   1170      1.281     rmind 				case LSONPROC:
   1171      1.281     rmind 				case LSIDL:
   1172      1.281     rmind 					nrun++;
   1173      1.281     rmind 				}
   1174      1.281     rmind 			}
   1175      1.282     rmind 			lwp_unlock(l);
   1176      1.282     rmind 
   1177      1.282     rmind 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1178      1.282     rmind 			if (l->l_slptime != 0)
   1179      1.282     rmind 				continue;
   1180      1.282     rmind 
   1181      1.282     rmind 			lpctcpu = l->l_pctcpu;
   1182      1.282     rmind 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1183      1.282     rmind 			lpctcpu += ((FSCALE - ccpu) *
   1184      1.282     rmind 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1185      1.282     rmind 			l->l_pctcpu = lpctcpu;
   1186      1.188      yamt 		}
   1187      1.249     rmind 		/* Calculating p_pctcpu only for ps(1) */
   1188      1.188      yamt 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1189      1.174        ad 
   1190      1.303  christos 		if (__predict_false(runtm < 0)) {
   1191      1.303  christos 			if (!backwards) {
   1192      1.303  christos 				backwards = true;
   1193      1.303  christos 				printf("WARNING: negative runtime; "
   1194      1.303  christos 				    "monotonic clock has gone backwards\n");
   1195      1.303  christos 			}
   1196      1.303  christos 			mutex_exit(p->p_lock);
   1197      1.303  christos 			continue;
   1198      1.303  christos 		}
   1199      1.303  christos 
   1200      1.188      yamt 		/*
   1201      1.188      yamt 		 * Check if the process exceeds its CPU resource allocation.
   1202      1.293       apb 		 * If over the hard limit, kill it with SIGKILL.
   1203      1.293       apb 		 * If over the soft limit, send SIGXCPU and raise
   1204      1.293       apb 		 * the soft limit a little.
   1205      1.188      yamt 		 */
   1206      1.188      yamt 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1207      1.188      yamt 		sig = 0;
   1208      1.249     rmind 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1209      1.293       apb 			if (runtm >= rlim->rlim_max) {
   1210      1.188      yamt 				sig = SIGKILL;
   1211      1.293       apb 				log(LOG_NOTICE, "pid %d is killed: %s\n",
   1212      1.293       apb 					p->p_pid, "exceeded RLIMIT_CPU");
   1213      1.293       apb 				uprintf("pid %d, command %s, is killed: %s\n",
   1214      1.293       apb 					p->p_pid, p->p_comm,
   1215      1.293       apb 					"exceeded RLIMIT_CPU");
   1216      1.293       apb 			} else {
   1217      1.188      yamt 				sig = SIGXCPU;
   1218      1.188      yamt 				if (rlim->rlim_cur < rlim->rlim_max)
   1219      1.188      yamt 					rlim->rlim_cur += 5;
   1220      1.188      yamt 			}
   1221      1.188      yamt 		}
   1222      1.229        ad 		mutex_exit(p->p_lock);
   1223      1.303  christos 		if (__predict_false(sig)) {
   1224      1.259     rmind 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1225      1.188      yamt 			psignal(p, sig);
   1226      1.259     rmind 		}
   1227      1.174        ad 	}
   1228      1.228        ad 	mutex_exit(proc_lock);
   1229      1.281     rmind 
   1230      1.281     rmind 	/* Load average calculation. */
   1231      1.281     rmind 	if (__predict_false(lavg_count == 0)) {
   1232      1.281     rmind 		int i;
   1233      1.283    martin 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
   1234      1.281     rmind 		for (i = 0; i < __arraycount(cexp); i++) {
   1235      1.281     rmind 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
   1236      1.281     rmind 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
   1237      1.281     rmind 		}
   1238      1.281     rmind 	}
   1239      1.281     rmind 
   1240      1.281     rmind 	/* Lightning bolt. */
   1241      1.273     pooka 	cv_broadcast(&lbolt);
   1242      1.113  gmcgarry }
   1243