kern_synch.c revision 1.310 1 1.310 christos /* $NetBSD: kern_synch.c,v 1.310 2016/04/04 20:47:57 christos Exp $ */
2 1.63 thorpej
3 1.63 thorpej /*-
4 1.260 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 1.260 ad * The NetBSD Foundation, Inc.
6 1.63 thorpej * All rights reserved.
7 1.63 thorpej *
8 1.63 thorpej * This code is derived from software contributed to The NetBSD Foundation
9 1.63 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 1.188 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 1.188 yamt * Daniel Sieger.
12 1.63 thorpej *
13 1.63 thorpej * Redistribution and use in source and binary forms, with or without
14 1.63 thorpej * modification, are permitted provided that the following conditions
15 1.63 thorpej * are met:
16 1.63 thorpej * 1. Redistributions of source code must retain the above copyright
17 1.63 thorpej * notice, this list of conditions and the following disclaimer.
18 1.63 thorpej * 2. Redistributions in binary form must reproduce the above copyright
19 1.63 thorpej * notice, this list of conditions and the following disclaimer in the
20 1.63 thorpej * documentation and/or other materials provided with the distribution.
21 1.63 thorpej *
22 1.63 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.63 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.63 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.63 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.63 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.63 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.63 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.63 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.63 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.63 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.63 thorpej * POSSIBILITY OF SUCH DAMAGE.
33 1.63 thorpej */
34 1.26 cgd
35 1.26 cgd /*-
36 1.26 cgd * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 1.26 cgd * The Regents of the University of California. All rights reserved.
38 1.26 cgd * (c) UNIX System Laboratories, Inc.
39 1.26 cgd * All or some portions of this file are derived from material licensed
40 1.26 cgd * to the University of California by American Telephone and Telegraph
41 1.26 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 1.26 cgd * the permission of UNIX System Laboratories, Inc.
43 1.26 cgd *
44 1.26 cgd * Redistribution and use in source and binary forms, with or without
45 1.26 cgd * modification, are permitted provided that the following conditions
46 1.26 cgd * are met:
47 1.26 cgd * 1. Redistributions of source code must retain the above copyright
48 1.26 cgd * notice, this list of conditions and the following disclaimer.
49 1.26 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.26 cgd * notice, this list of conditions and the following disclaimer in the
51 1.26 cgd * documentation and/or other materials provided with the distribution.
52 1.136 agc * 3. Neither the name of the University nor the names of its contributors
53 1.26 cgd * may be used to endorse or promote products derived from this software
54 1.26 cgd * without specific prior written permission.
55 1.26 cgd *
56 1.26 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.26 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.26 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.26 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.26 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.26 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.26 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.26 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.26 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.26 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.26 cgd * SUCH DAMAGE.
67 1.26 cgd *
68 1.50 fvdl * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 1.26 cgd */
70 1.106 lukem
71 1.106 lukem #include <sys/cdefs.h>
72 1.310 christos __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.310 2016/04/04 20:47:57 christos Exp $");
73 1.48 mrg
74 1.109 yamt #include "opt_kstack.h"
75 1.110 briggs #include "opt_perfctrs.h"
76 1.277 darran #include "opt_dtrace.h"
77 1.26 cgd
78 1.174 ad #define __MUTEX_PRIVATE
79 1.174 ad
80 1.26 cgd #include <sys/param.h>
81 1.26 cgd #include <sys/systm.h>
82 1.26 cgd #include <sys/proc.h>
83 1.26 cgd #include <sys/kernel.h>
84 1.111 briggs #if defined(PERFCTRS)
85 1.110 briggs #include <sys/pmc.h>
86 1.111 briggs #endif
87 1.188 yamt #include <sys/cpu.h>
88 1.290 christos #include <sys/pserialize.h>
89 1.26 cgd #include <sys/resourcevar.h>
90 1.55 ross #include <sys/sched.h>
91 1.179 dsl #include <sys/syscall_stats.h>
92 1.174 ad #include <sys/sleepq.h>
93 1.174 ad #include <sys/lockdebug.h>
94 1.190 ad #include <sys/evcnt.h>
95 1.199 ad #include <sys/intr.h>
96 1.207 ad #include <sys/lwpctl.h>
97 1.209 ad #include <sys/atomic.h>
98 1.295 njoly #include <sys/syslog.h>
99 1.47 mrg
100 1.47 mrg #include <uvm/uvm_extern.h>
101 1.47 mrg
102 1.231 ad #include <dev/lockstat.h>
103 1.231 ad
104 1.276 darran #include <sys/dtrace_bsd.h>
105 1.279 darran int dtrace_vtime_active=0;
106 1.276 darran dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
107 1.276 darran
108 1.271 rmind static void sched_unsleep(struct lwp *, bool);
109 1.188 yamt static void sched_changepri(struct lwp *, pri_t);
110 1.188 yamt static void sched_lendpri(struct lwp *, pri_t);
111 1.250 rmind static void resched_cpu(struct lwp *);
112 1.122 thorpej
113 1.174 ad syncobj_t sleep_syncobj = {
114 1.174 ad SOBJ_SLEEPQ_SORTED,
115 1.174 ad sleepq_unsleep,
116 1.184 yamt sleepq_changepri,
117 1.184 yamt sleepq_lendpri,
118 1.184 yamt syncobj_noowner,
119 1.174 ad };
120 1.174 ad
121 1.174 ad syncobj_t sched_syncobj = {
122 1.174 ad SOBJ_SLEEPQ_SORTED,
123 1.174 ad sched_unsleep,
124 1.184 yamt sched_changepri,
125 1.184 yamt sched_lendpri,
126 1.184 yamt syncobj_noowner,
127 1.174 ad };
128 1.122 thorpej
129 1.289 rmind /* "Lightning bolt": once a second sleep address. */
130 1.289 rmind kcondvar_t lbolt __cacheline_aligned;
131 1.223 ad
132 1.289 rmind u_int sched_pstats_ticks __cacheline_aligned;
133 1.289 rmind
134 1.289 rmind /* Preemption event counters. */
135 1.289 rmind static struct evcnt kpreempt_ev_crit __cacheline_aligned;
136 1.289 rmind static struct evcnt kpreempt_ev_klock __cacheline_aligned;
137 1.289 rmind static struct evcnt kpreempt_ev_immed __cacheline_aligned;
138 1.231 ad
139 1.237 rmind void
140 1.270 elad synch_init(void)
141 1.237 rmind {
142 1.237 rmind
143 1.237 rmind cv_init(&lbolt, "lbolt");
144 1.237 rmind
145 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
146 1.237 rmind "kpreempt", "defer: critical section");
147 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
148 1.237 rmind "kpreempt", "defer: kernel_lock");
149 1.239 ad evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
150 1.237 rmind "kpreempt", "immediate");
151 1.237 rmind }
152 1.237 rmind
153 1.26 cgd /*
154 1.174 ad * OBSOLETE INTERFACE
155 1.174 ad *
156 1.255 skrll * General sleep call. Suspends the current LWP until a wakeup is
157 1.255 skrll * performed on the specified identifier. The LWP will then be made
158 1.174 ad * runnable with the specified priority. Sleeps at most timo/hz seconds (0
159 1.174 ad * means no timeout). If pri includes PCATCH flag, signals are checked
160 1.26 cgd * before and after sleeping, else signals are not checked. Returns 0 if
161 1.26 cgd * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
162 1.26 cgd * signal needs to be delivered, ERESTART is returned if the current system
163 1.26 cgd * call should be restarted if possible, and EINTR is returned if the system
164 1.26 cgd * call should be interrupted by the signal (return EINTR).
165 1.26 cgd */
166 1.26 cgd int
167 1.297 rmind tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
168 1.26 cgd {
169 1.122 thorpej struct lwp *l = curlwp;
170 1.174 ad sleepq_t *sq;
171 1.244 ad kmutex_t *mp;
172 1.26 cgd
173 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
174 1.272 pooka KASSERT(ident != &lbolt);
175 1.204 ad
176 1.174 ad if (sleepq_dontsleep(l)) {
177 1.174 ad (void)sleepq_abort(NULL, 0);
178 1.174 ad return 0;
179 1.26 cgd }
180 1.78 sommerfe
181 1.204 ad l->l_kpriority = true;
182 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
183 1.244 ad sleepq_enter(sq, l, mp);
184 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
185 1.297 rmind return sleepq_block(timo, priority & PCATCH);
186 1.26 cgd }
187 1.26 cgd
188 1.187 ad int
189 1.187 ad mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
190 1.187 ad kmutex_t *mtx)
191 1.187 ad {
192 1.187 ad struct lwp *l = curlwp;
193 1.187 ad sleepq_t *sq;
194 1.244 ad kmutex_t *mp;
195 1.188 yamt int error;
196 1.187 ad
197 1.204 ad KASSERT((l->l_pflag & LP_INTR) == 0);
198 1.272 pooka KASSERT(ident != &lbolt);
199 1.204 ad
200 1.187 ad if (sleepq_dontsleep(l)) {
201 1.187 ad (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
202 1.187 ad return 0;
203 1.187 ad }
204 1.187 ad
205 1.204 ad l->l_kpriority = true;
206 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
207 1.244 ad sleepq_enter(sq, l, mp);
208 1.204 ad sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
209 1.187 ad mutex_exit(mtx);
210 1.188 yamt error = sleepq_block(timo, priority & PCATCH);
211 1.187 ad
212 1.187 ad if ((priority & PNORELOCK) == 0)
213 1.187 ad mutex_enter(mtx);
214 1.297 rmind
215 1.187 ad return error;
216 1.187 ad }
217 1.187 ad
218 1.26 cgd /*
219 1.174 ad * General sleep call for situations where a wake-up is not expected.
220 1.26 cgd */
221 1.174 ad int
222 1.182 thorpej kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
223 1.26 cgd {
224 1.174 ad struct lwp *l = curlwp;
225 1.244 ad kmutex_t *mp;
226 1.174 ad sleepq_t *sq;
227 1.174 ad int error;
228 1.26 cgd
229 1.284 pooka KASSERT(!(timo == 0 && intr == false));
230 1.284 pooka
231 1.174 ad if (sleepq_dontsleep(l))
232 1.174 ad return sleepq_abort(NULL, 0);
233 1.26 cgd
234 1.174 ad if (mtx != NULL)
235 1.174 ad mutex_exit(mtx);
236 1.204 ad l->l_kpriority = true;
237 1.244 ad sq = sleeptab_lookup(&sleeptab, l, &mp);
238 1.244 ad sleepq_enter(sq, l, mp);
239 1.204 ad sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
240 1.188 yamt error = sleepq_block(timo, intr);
241 1.174 ad if (mtx != NULL)
242 1.174 ad mutex_enter(mtx);
243 1.83 thorpej
244 1.174 ad return error;
245 1.139 cl }
246 1.139 cl
247 1.26 cgd /*
248 1.174 ad * OBSOLETE INTERFACE
249 1.174 ad *
250 1.255 skrll * Make all LWPs sleeping on the specified identifier runnable.
251 1.26 cgd */
252 1.26 cgd void
253 1.174 ad wakeup(wchan_t ident)
254 1.26 cgd {
255 1.174 ad sleepq_t *sq;
256 1.244 ad kmutex_t *mp;
257 1.83 thorpej
258 1.261 rmind if (__predict_false(cold))
259 1.174 ad return;
260 1.83 thorpej
261 1.244 ad sq = sleeptab_lookup(&sleeptab, ident, &mp);
262 1.244 ad sleepq_wake(sq, ident, (u_int)-1, mp);
263 1.63 thorpej }
264 1.63 thorpej
265 1.63 thorpej /*
266 1.255 skrll * General yield call. Puts the current LWP back on its run queue and
267 1.117 gmcgarry * performs a voluntary context switch. Should only be called when the
268 1.255 skrll * current LWP explicitly requests it (eg sched_yield(2)).
269 1.117 gmcgarry */
270 1.117 gmcgarry void
271 1.117 gmcgarry yield(void)
272 1.117 gmcgarry {
273 1.122 thorpej struct lwp *l = curlwp;
274 1.117 gmcgarry
275 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
276 1.174 ad lwp_lock(l);
277 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
278 1.188 yamt KASSERT(l->l_stat == LSONPROC);
279 1.204 ad l->l_kpriority = false;
280 1.188 yamt (void)mi_switch(l);
281 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
282 1.69 thorpej }
283 1.69 thorpej
284 1.69 thorpej /*
285 1.255 skrll * General preemption call. Puts the current LWP back on its run queue
286 1.156 rpaulo * and performs an involuntary context switch.
287 1.69 thorpej */
288 1.69 thorpej void
289 1.174 ad preempt(void)
290 1.69 thorpej {
291 1.122 thorpej struct lwp *l = curlwp;
292 1.69 thorpej
293 1.174 ad KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
294 1.174 ad lwp_lock(l);
295 1.217 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
296 1.188 yamt KASSERT(l->l_stat == LSONPROC);
297 1.204 ad l->l_kpriority = false;
298 1.174 ad l->l_nivcsw++;
299 1.188 yamt (void)mi_switch(l);
300 1.174 ad KERNEL_LOCK(l->l_biglocks, l);
301 1.69 thorpej }
302 1.69 thorpej
303 1.234 ad /*
304 1.234 ad * Handle a request made by another agent to preempt the current LWP
305 1.234 ad * in-kernel. Usually called when l_dopreempt may be non-zero.
306 1.234 ad *
307 1.234 ad * Character addresses for lockstat only.
308 1.234 ad */
309 1.231 ad static char in_critical_section;
310 1.231 ad static char kernel_lock_held;
311 1.231 ad static char is_softint;
312 1.262 yamt static char cpu_kpreempt_enter_fail;
313 1.231 ad
314 1.231 ad bool
315 1.231 ad kpreempt(uintptr_t where)
316 1.231 ad {
317 1.231 ad uintptr_t failed;
318 1.231 ad lwp_t *l;
319 1.264 ad int s, dop, lsflag;
320 1.231 ad
321 1.231 ad l = curlwp;
322 1.231 ad failed = 0;
323 1.231 ad while ((dop = l->l_dopreempt) != 0) {
324 1.231 ad if (l->l_stat != LSONPROC) {
325 1.231 ad /*
326 1.231 ad * About to block (or die), let it happen.
327 1.231 ad * Doesn't really count as "preemption has
328 1.231 ad * been blocked", since we're going to
329 1.231 ad * context switch.
330 1.231 ad */
331 1.231 ad l->l_dopreempt = 0;
332 1.231 ad return true;
333 1.231 ad }
334 1.231 ad if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
335 1.231 ad /* Can't preempt idle loop, don't count as failure. */
336 1.261 rmind l->l_dopreempt = 0;
337 1.261 rmind return true;
338 1.231 ad }
339 1.231 ad if (__predict_false(l->l_nopreempt != 0)) {
340 1.231 ad /* LWP holds preemption disabled, explicitly. */
341 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
342 1.234 ad kpreempt_ev_crit.ev_count++;
343 1.231 ad }
344 1.231 ad failed = (uintptr_t)&in_critical_section;
345 1.231 ad break;
346 1.231 ad }
347 1.231 ad if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
348 1.261 rmind /* Can't preempt soft interrupts yet. */
349 1.261 rmind l->l_dopreempt = 0;
350 1.261 rmind failed = (uintptr_t)&is_softint;
351 1.261 rmind break;
352 1.231 ad }
353 1.231 ad s = splsched();
354 1.231 ad if (__predict_false(l->l_blcnt != 0 ||
355 1.231 ad curcpu()->ci_biglock_wanted != NULL)) {
356 1.231 ad /* Hold or want kernel_lock, code is not MT safe. */
357 1.231 ad splx(s);
358 1.231 ad if ((dop & DOPREEMPT_COUNTED) == 0) {
359 1.234 ad kpreempt_ev_klock.ev_count++;
360 1.231 ad }
361 1.231 ad failed = (uintptr_t)&kernel_lock_held;
362 1.231 ad break;
363 1.231 ad }
364 1.231 ad if (__predict_false(!cpu_kpreempt_enter(where, s))) {
365 1.231 ad /*
366 1.231 ad * It may be that the IPL is too high.
367 1.231 ad * kpreempt_enter() can schedule an
368 1.231 ad * interrupt to retry later.
369 1.231 ad */
370 1.231 ad splx(s);
371 1.262 yamt failed = (uintptr_t)&cpu_kpreempt_enter_fail;
372 1.231 ad break;
373 1.231 ad }
374 1.231 ad /* Do it! */
375 1.231 ad if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
376 1.234 ad kpreempt_ev_immed.ev_count++;
377 1.231 ad }
378 1.231 ad lwp_lock(l);
379 1.231 ad mi_switch(l);
380 1.231 ad l->l_nopreempt++;
381 1.231 ad splx(s);
382 1.231 ad
383 1.231 ad /* Take care of any MD cleanup. */
384 1.231 ad cpu_kpreempt_exit(where);
385 1.231 ad l->l_nopreempt--;
386 1.231 ad }
387 1.231 ad
388 1.264 ad if (__predict_true(!failed)) {
389 1.264 ad return false;
390 1.264 ad }
391 1.264 ad
392 1.231 ad /* Record preemption failure for reporting via lockstat. */
393 1.264 ad atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
394 1.264 ad lsflag = 0;
395 1.264 ad LOCKSTAT_ENTER(lsflag);
396 1.264 ad if (__predict_false(lsflag)) {
397 1.264 ad if (where == 0) {
398 1.264 ad where = (uintptr_t)__builtin_return_address(0);
399 1.264 ad }
400 1.264 ad /* Preemption is on, might recurse, so make it atomic. */
401 1.264 ad if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
402 1.264 ad (void *)where) == NULL) {
403 1.264 ad LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
404 1.264 ad l->l_pfaillock = failed;
405 1.231 ad }
406 1.231 ad }
407 1.264 ad LOCKSTAT_EXIT(lsflag);
408 1.264 ad return true;
409 1.231 ad }
410 1.231 ad
411 1.69 thorpej /*
412 1.231 ad * Return true if preemption is explicitly disabled.
413 1.230 ad */
414 1.231 ad bool
415 1.231 ad kpreempt_disabled(void)
416 1.231 ad {
417 1.261 rmind const lwp_t *l = curlwp;
418 1.231 ad
419 1.231 ad return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
420 1.231 ad (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
421 1.231 ad }
422 1.230 ad
423 1.230 ad /*
424 1.231 ad * Disable kernel preemption.
425 1.230 ad */
426 1.230 ad void
427 1.231 ad kpreempt_disable(void)
428 1.230 ad {
429 1.230 ad
430 1.231 ad KPREEMPT_DISABLE(curlwp);
431 1.230 ad }
432 1.230 ad
433 1.230 ad /*
434 1.231 ad * Reenable kernel preemption.
435 1.230 ad */
436 1.231 ad void
437 1.231 ad kpreempt_enable(void)
438 1.230 ad {
439 1.230 ad
440 1.231 ad KPREEMPT_ENABLE(curlwp);
441 1.230 ad }
442 1.230 ad
443 1.230 ad /*
444 1.188 yamt * Compute the amount of time during which the current lwp was running.
445 1.130 nathanw *
446 1.188 yamt * - update l_rtime unless it's an idle lwp.
447 1.188 yamt */
448 1.188 yamt
449 1.199 ad void
450 1.212 yamt updatertime(lwp_t *l, const struct bintime *now)
451 1.188 yamt {
452 1.188 yamt
453 1.261 rmind if (__predict_false(l->l_flag & LW_IDLE))
454 1.188 yamt return;
455 1.188 yamt
456 1.212 yamt /* rtime += now - stime */
457 1.212 yamt bintime_add(&l->l_rtime, now);
458 1.212 yamt bintime_sub(&l->l_rtime, &l->l_stime);
459 1.188 yamt }
460 1.188 yamt
461 1.188 yamt /*
462 1.245 ad * Select next LWP from the current CPU to run..
463 1.245 ad */
464 1.245 ad static inline lwp_t *
465 1.245 ad nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
466 1.245 ad {
467 1.245 ad lwp_t *newl;
468 1.245 ad
469 1.245 ad /*
470 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
471 1.245 ad * If no LWP is runnable, select the idle LWP.
472 1.245 ad *
473 1.245 ad * Note that spc_lwplock might not necessary be held, and
474 1.245 ad * new thread would be unlocked after setting the LWP-lock.
475 1.245 ad */
476 1.245 ad newl = sched_nextlwp();
477 1.245 ad if (newl != NULL) {
478 1.245 ad sched_dequeue(newl);
479 1.245 ad KASSERT(lwp_locked(newl, spc->spc_mutex));
480 1.274 rmind KASSERT(newl->l_cpu == ci);
481 1.245 ad newl->l_stat = LSONPROC;
482 1.248 ad newl->l_pflag |= LP_RUNNING;
483 1.245 ad lwp_setlock(newl, spc->spc_lwplock);
484 1.245 ad } else {
485 1.245 ad newl = ci->ci_data.cpu_idlelwp;
486 1.245 ad newl->l_stat = LSONPROC;
487 1.248 ad newl->l_pflag |= LP_RUNNING;
488 1.245 ad }
489 1.261 rmind
490 1.245 ad /*
491 1.245 ad * Only clear want_resched if there are no pending (slow)
492 1.245 ad * software interrupts.
493 1.245 ad */
494 1.245 ad ci->ci_want_resched = ci->ci_data.cpu_softints;
495 1.245 ad spc->spc_flags &= ~SPCF_SWITCHCLEAR;
496 1.245 ad spc->spc_curpriority = lwp_eprio(newl);
497 1.245 ad
498 1.245 ad return newl;
499 1.245 ad }
500 1.245 ad
501 1.245 ad /*
502 1.188 yamt * The machine independent parts of context switch.
503 1.188 yamt *
504 1.188 yamt * Returns 1 if another LWP was actually run.
505 1.26 cgd */
506 1.122 thorpej int
507 1.199 ad mi_switch(lwp_t *l)
508 1.26 cgd {
509 1.246 rmind struct cpu_info *ci;
510 1.76 thorpej struct schedstate_percpu *spc;
511 1.188 yamt struct lwp *newl;
512 1.174 ad int retval, oldspl;
513 1.212 yamt struct bintime bt;
514 1.199 ad bool returning;
515 1.26 cgd
516 1.188 yamt KASSERT(lwp_locked(l, NULL));
517 1.231 ad KASSERT(kpreempt_disabled());
518 1.188 yamt LOCKDEBUG_BARRIER(l->l_mutex, 1);
519 1.174 ad
520 1.174 ad kstack_check_magic(l);
521 1.83 thorpej
522 1.212 yamt binuptime(&bt);
523 1.199 ad
524 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
525 1.267 yamt KASSERT((l->l_pflag & LP_RUNNING) != 0);
526 1.231 ad KASSERT(l->l_cpu == curcpu());
527 1.196 ad ci = l->l_cpu;
528 1.196 ad spc = &ci->ci_schedstate;
529 1.199 ad returning = false;
530 1.190 ad newl = NULL;
531 1.190 ad
532 1.199 ad /*
533 1.199 ad * If we have been asked to switch to a specific LWP, then there
534 1.199 ad * is no need to inspect the run queues. If a soft interrupt is
535 1.199 ad * blocking, then return to the interrupted thread without adjusting
536 1.199 ad * VM context or its start time: neither have been changed in order
537 1.199 ad * to take the interrupt.
538 1.199 ad */
539 1.190 ad if (l->l_switchto != NULL) {
540 1.204 ad if ((l->l_pflag & LP_INTR) != 0) {
541 1.199 ad returning = true;
542 1.199 ad softint_block(l);
543 1.248 ad if ((l->l_pflag & LP_TIMEINTR) != 0)
544 1.212 yamt updatertime(l, &bt);
545 1.199 ad }
546 1.190 ad newl = l->l_switchto;
547 1.190 ad l->l_switchto = NULL;
548 1.190 ad }
549 1.204 ad #ifndef __HAVE_FAST_SOFTINTS
550 1.204 ad else if (ci->ci_data.cpu_softints != 0) {
551 1.204 ad /* There are pending soft interrupts, so pick one. */
552 1.204 ad newl = softint_picklwp();
553 1.204 ad newl->l_stat = LSONPROC;
554 1.248 ad newl->l_pflag |= LP_RUNNING;
555 1.204 ad }
556 1.204 ad #endif /* !__HAVE_FAST_SOFTINTS */
557 1.190 ad
558 1.180 dsl /* Count time spent in current system call */
559 1.199 ad if (!returning) {
560 1.199 ad SYSCALL_TIME_SLEEP(l);
561 1.180 dsl
562 1.199 ad /*
563 1.199 ad * XXXSMP If we are using h/w performance counters,
564 1.199 ad * save context.
565 1.199 ad */
566 1.174 ad #if PERFCTRS
567 1.199 ad if (PMC_ENABLED(l->l_proc)) {
568 1.199 ad pmc_save_context(l->l_proc);
569 1.199 ad }
570 1.199 ad #endif
571 1.212 yamt updatertime(l, &bt);
572 1.174 ad }
573 1.113 gmcgarry
574 1.246 rmind /* Lock the runqueue */
575 1.246 rmind KASSERT(l->l_stat != LSRUN);
576 1.246 rmind mutex_spin_enter(spc->spc_mutex);
577 1.246 rmind
578 1.113 gmcgarry /*
579 1.174 ad * If on the CPU and we have gotten this far, then we must yield.
580 1.113 gmcgarry */
581 1.246 rmind if (l->l_stat == LSONPROC && l != newl) {
582 1.217 ad KASSERT(lwp_locked(l, spc->spc_lwplock));
583 1.188 yamt if ((l->l_flag & LW_IDLE) == 0) {
584 1.188 yamt l->l_stat = LSRUN;
585 1.246 rmind lwp_setlock(l, spc->spc_mutex);
586 1.246 rmind sched_enqueue(l, true);
587 1.285 rmind /*
588 1.285 rmind * Handle migration. Note that "migrating LWP" may
589 1.285 rmind * be reset here, if interrupt/preemption happens
590 1.285 rmind * early in idle LWP.
591 1.285 rmind */
592 1.285 rmind if (l->l_target_cpu != NULL) {
593 1.285 rmind KASSERT((l->l_pflag & LP_INTR) == 0);
594 1.246 rmind spc->spc_migrating = l;
595 1.216 rmind }
596 1.246 rmind } else
597 1.188 yamt l->l_stat = LSIDL;
598 1.174 ad }
599 1.174 ad
600 1.245 ad /* Pick new LWP to run. */
601 1.190 ad if (newl == NULL) {
602 1.245 ad newl = nextlwp(ci, spc);
603 1.199 ad }
604 1.199 ad
605 1.204 ad /* Items that must be updated with the CPU locked. */
606 1.199 ad if (!returning) {
607 1.204 ad /* Update the new LWP's start time. */
608 1.212 yamt newl->l_stime = bt;
609 1.204 ad
610 1.199 ad /*
611 1.204 ad * ci_curlwp changes when a fast soft interrupt occurs.
612 1.204 ad * We use cpu_onproc to keep track of which kernel or
613 1.204 ad * user thread is running 'underneath' the software
614 1.204 ad * interrupt. This is important for time accounting,
615 1.204 ad * itimers and forcing user threads to preempt (aston).
616 1.199 ad */
617 1.204 ad ci->ci_data.cpu_onproc = newl;
618 1.188 yamt }
619 1.188 yamt
620 1.241 ad /*
621 1.241 ad * Preemption related tasks. Must be done with the current
622 1.241 ad * CPU locked.
623 1.241 ad */
624 1.241 ad cpu_did_resched(l);
625 1.231 ad l->l_dopreempt = 0;
626 1.231 ad if (__predict_false(l->l_pfailaddr != 0)) {
627 1.231 ad LOCKSTAT_FLAG(lsflag);
628 1.231 ad LOCKSTAT_ENTER(lsflag);
629 1.231 ad LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
630 1.231 ad LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
631 1.231 ad 1, l->l_pfailtime, l->l_pfailaddr);
632 1.231 ad LOCKSTAT_EXIT(lsflag);
633 1.231 ad l->l_pfailtime = 0;
634 1.231 ad l->l_pfaillock = 0;
635 1.231 ad l->l_pfailaddr = 0;
636 1.231 ad }
637 1.231 ad
638 1.188 yamt if (l != newl) {
639 1.188 yamt struct lwp *prevlwp;
640 1.174 ad
641 1.209 ad /* Release all locks, but leave the current LWP locked */
642 1.246 rmind if (l->l_mutex == spc->spc_mutex) {
643 1.209 ad /*
644 1.209 ad * Drop spc_lwplock, if the current LWP has been moved
645 1.209 ad * to the run queue (it is now locked by spc_mutex).
646 1.209 ad */
647 1.217 ad mutex_spin_exit(spc->spc_lwplock);
648 1.188 yamt } else {
649 1.209 ad /*
650 1.209 ad * Otherwise, drop the spc_mutex, we are done with the
651 1.209 ad * run queues.
652 1.209 ad */
653 1.188 yamt mutex_spin_exit(spc->spc_mutex);
654 1.188 yamt }
655 1.188 yamt
656 1.209 ad /*
657 1.253 skrll * Mark that context switch is going to be performed
658 1.209 ad * for this LWP, to protect it from being switched
659 1.209 ad * to on another CPU.
660 1.209 ad */
661 1.209 ad KASSERT(l->l_ctxswtch == 0);
662 1.209 ad l->l_ctxswtch = 1;
663 1.209 ad l->l_ncsw++;
664 1.267 yamt KASSERT((l->l_pflag & LP_RUNNING) != 0);
665 1.248 ad l->l_pflag &= ~LP_RUNNING;
666 1.209 ad
667 1.209 ad /*
668 1.209 ad * Increase the count of spin-mutexes before the release
669 1.209 ad * of the last lock - we must remain at IPL_SCHED during
670 1.209 ad * the context switch.
671 1.209 ad */
672 1.287 matt KASSERTMSG(ci->ci_mtx_count == -1,
673 1.301 rmind "%s: cpu%u: ci_mtx_count (%d) != -1 "
674 1.301 rmind "(block with spin-mutex held)",
675 1.291 jym __func__, cpu_index(ci), ci->ci_mtx_count);
676 1.209 ad oldspl = MUTEX_SPIN_OLDSPL(ci);
677 1.209 ad ci->ci_mtx_count--;
678 1.209 ad lwp_unlock(l);
679 1.209 ad
680 1.218 ad /* Count the context switch on this CPU. */
681 1.218 ad ci->ci_data.cpu_nswtch++;
682 1.188 yamt
683 1.209 ad /* Update status for lwpctl, if present. */
684 1.209 ad if (l->l_lwpctl != NULL)
685 1.209 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
686 1.209 ad
687 1.199 ad /*
688 1.199 ad * Save old VM context, unless a soft interrupt
689 1.199 ad * handler is blocking.
690 1.199 ad */
691 1.199 ad if (!returning)
692 1.199 ad pmap_deactivate(l);
693 1.188 yamt
694 1.209 ad /*
695 1.275 skrll * We may need to spin-wait if 'newl' is still
696 1.209 ad * context switching on another CPU.
697 1.209 ad */
698 1.261 rmind if (__predict_false(newl->l_ctxswtch != 0)) {
699 1.209 ad u_int count;
700 1.209 ad count = SPINLOCK_BACKOFF_MIN;
701 1.209 ad while (newl->l_ctxswtch)
702 1.209 ad SPINLOCK_BACKOFF(count);
703 1.209 ad }
704 1.207 ad
705 1.276 darran /*
706 1.276 darran * If DTrace has set the active vtime enum to anything
707 1.276 darran * other than INACTIVE (0), then it should have set the
708 1.276 darran * function to call.
709 1.276 darran */
710 1.278 darran if (__predict_false(dtrace_vtime_active)) {
711 1.276 darran (*dtrace_vtime_switch_func)(newl);
712 1.276 darran }
713 1.276 darran
714 1.188 yamt /* Switch to the new LWP.. */
715 1.305 mlelstv #ifdef MULTIPROCESSOR
716 1.304 matt KASSERT(curlwp == ci->ci_curlwp);
717 1.305 mlelstv #endif
718 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
719 1.204 ad prevlwp = cpu_switchto(l, newl, returning);
720 1.207 ad ci = curcpu();
721 1.305 mlelstv #ifdef MULTIPROCESSOR
722 1.304 matt KASSERT(curlwp == ci->ci_curlwp);
723 1.305 mlelstv #endif
724 1.304 matt KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
725 1.304 matt l, curlwp, prevlwp);
726 1.207 ad
727 1.188 yamt /*
728 1.209 ad * Switched away - we have new curlwp.
729 1.209 ad * Restore VM context and IPL.
730 1.188 yamt */
731 1.209 ad pmap_activate(l);
732 1.265 rmind uvm_emap_switch(l);
733 1.288 rmind pcu_switchpoint(l);
734 1.265 rmind
735 1.188 yamt if (prevlwp != NULL) {
736 1.209 ad /* Normalize the count of the spin-mutexes */
737 1.209 ad ci->ci_mtx_count++;
738 1.209 ad /* Unmark the state of context switch */
739 1.209 ad membar_exit();
740 1.209 ad prevlwp->l_ctxswtch = 0;
741 1.188 yamt }
742 1.209 ad
743 1.209 ad /* Update status for lwpctl, if present. */
744 1.219 ad if (l->l_lwpctl != NULL) {
745 1.209 ad l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
746 1.219 ad l->l_lwpctl->lc_pctr++;
747 1.219 ad }
748 1.174 ad
749 1.290 christos /* Note trip through cpu_switchto(). */
750 1.290 christos pserialize_switchpoint();
751 1.290 christos
752 1.231 ad KASSERT(l->l_cpu == ci);
753 1.231 ad splx(oldspl);
754 1.300 yamt /*
755 1.300 yamt * note that, unless the caller disabled preemption,
756 1.300 yamt * we can be preempted at any time after the above splx() call.
757 1.300 yamt */
758 1.188 yamt retval = 1;
759 1.188 yamt } else {
760 1.188 yamt /* Nothing to do - just unlock and return. */
761 1.246 rmind mutex_spin_exit(spc->spc_mutex);
762 1.188 yamt lwp_unlock(l);
763 1.122 thorpej retval = 0;
764 1.122 thorpej }
765 1.110 briggs
766 1.188 yamt KASSERT(l == curlwp);
767 1.188 yamt KASSERT(l->l_stat == LSONPROC);
768 1.188 yamt
769 1.110 briggs /*
770 1.174 ad * XXXSMP If we are using h/w performance counters, restore context.
771 1.231 ad * XXXSMP preemption problem.
772 1.26 cgd */
773 1.114 gmcgarry #if PERFCTRS
774 1.175 christos if (PMC_ENABLED(l->l_proc)) {
775 1.175 christos pmc_restore_context(l->l_proc);
776 1.166 christos }
777 1.114 gmcgarry #endif
778 1.180 dsl SYSCALL_TIME_WAKEUP(l);
779 1.188 yamt LOCKDEBUG_BARRIER(NULL, 1);
780 1.169 yamt
781 1.122 thorpej return retval;
782 1.26 cgd }
783 1.26 cgd
784 1.26 cgd /*
785 1.245 ad * The machine independent parts of context switch to oblivion.
786 1.245 ad * Does not return. Call with the LWP unlocked.
787 1.245 ad */
788 1.245 ad void
789 1.245 ad lwp_exit_switchaway(lwp_t *l)
790 1.245 ad {
791 1.245 ad struct cpu_info *ci;
792 1.245 ad struct lwp *newl;
793 1.245 ad struct bintime bt;
794 1.245 ad
795 1.245 ad ci = l->l_cpu;
796 1.245 ad
797 1.245 ad KASSERT(kpreempt_disabled());
798 1.245 ad KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
799 1.245 ad KASSERT(ci == curcpu());
800 1.245 ad LOCKDEBUG_BARRIER(NULL, 0);
801 1.245 ad
802 1.245 ad kstack_check_magic(l);
803 1.245 ad
804 1.245 ad /* Count time spent in current system call */
805 1.245 ad SYSCALL_TIME_SLEEP(l);
806 1.245 ad binuptime(&bt);
807 1.245 ad updatertime(l, &bt);
808 1.245 ad
809 1.245 ad /* Must stay at IPL_SCHED even after releasing run queue lock. */
810 1.245 ad (void)splsched();
811 1.245 ad
812 1.245 ad /*
813 1.245 ad * Let sched_nextlwp() select the LWP to run the CPU next.
814 1.245 ad * If no LWP is runnable, select the idle LWP.
815 1.245 ad *
816 1.245 ad * Note that spc_lwplock might not necessary be held, and
817 1.245 ad * new thread would be unlocked after setting the LWP-lock.
818 1.245 ad */
819 1.245 ad spc_lock(ci);
820 1.245 ad #ifndef __HAVE_FAST_SOFTINTS
821 1.245 ad if (ci->ci_data.cpu_softints != 0) {
822 1.245 ad /* There are pending soft interrupts, so pick one. */
823 1.245 ad newl = softint_picklwp();
824 1.245 ad newl->l_stat = LSONPROC;
825 1.248 ad newl->l_pflag |= LP_RUNNING;
826 1.245 ad } else
827 1.245 ad #endif /* !__HAVE_FAST_SOFTINTS */
828 1.245 ad {
829 1.245 ad newl = nextlwp(ci, &ci->ci_schedstate);
830 1.245 ad }
831 1.245 ad
832 1.245 ad /* Update the new LWP's start time. */
833 1.245 ad newl->l_stime = bt;
834 1.248 ad l->l_pflag &= ~LP_RUNNING;
835 1.245 ad
836 1.245 ad /*
837 1.245 ad * ci_curlwp changes when a fast soft interrupt occurs.
838 1.245 ad * We use cpu_onproc to keep track of which kernel or
839 1.245 ad * user thread is running 'underneath' the software
840 1.245 ad * interrupt. This is important for time accounting,
841 1.245 ad * itimers and forcing user threads to preempt (aston).
842 1.245 ad */
843 1.245 ad ci->ci_data.cpu_onproc = newl;
844 1.245 ad
845 1.245 ad /*
846 1.245 ad * Preemption related tasks. Must be done with the current
847 1.245 ad * CPU locked.
848 1.245 ad */
849 1.245 ad cpu_did_resched(l);
850 1.245 ad
851 1.245 ad /* Unlock the run queue. */
852 1.245 ad spc_unlock(ci);
853 1.245 ad
854 1.245 ad /* Count the context switch on this CPU. */
855 1.245 ad ci->ci_data.cpu_nswtch++;
856 1.245 ad
857 1.245 ad /* Update status for lwpctl, if present. */
858 1.245 ad if (l->l_lwpctl != NULL)
859 1.247 ad l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
860 1.245 ad
861 1.245 ad /*
862 1.275 skrll * We may need to spin-wait if 'newl' is still
863 1.245 ad * context switching on another CPU.
864 1.245 ad */
865 1.261 rmind if (__predict_false(newl->l_ctxswtch != 0)) {
866 1.245 ad u_int count;
867 1.245 ad count = SPINLOCK_BACKOFF_MIN;
868 1.245 ad while (newl->l_ctxswtch)
869 1.245 ad SPINLOCK_BACKOFF(count);
870 1.245 ad }
871 1.245 ad
872 1.279 darran /*
873 1.279 darran * If DTrace has set the active vtime enum to anything
874 1.279 darran * other than INACTIVE (0), then it should have set the
875 1.279 darran * function to call.
876 1.279 darran */
877 1.279 darran if (__predict_false(dtrace_vtime_active)) {
878 1.279 darran (*dtrace_vtime_switch_func)(newl);
879 1.279 darran }
880 1.276 darran
881 1.245 ad /* Switch to the new LWP.. */
882 1.245 ad (void)cpu_switchto(NULL, newl, false);
883 1.245 ad
884 1.251 uwe for (;;) continue; /* XXX: convince gcc about "noreturn" */
885 1.245 ad /* NOTREACHED */
886 1.245 ad }
887 1.245 ad
888 1.245 ad /*
889 1.271 rmind * setrunnable: change LWP state to be runnable, placing it on the run queue.
890 1.174 ad *
891 1.174 ad * Call with the process and LWP locked. Will return with the LWP unlocked.
892 1.26 cgd */
893 1.26 cgd void
894 1.122 thorpej setrunnable(struct lwp *l)
895 1.26 cgd {
896 1.122 thorpej struct proc *p = l->l_proc;
897 1.205 ad struct cpu_info *ci;
898 1.26 cgd
899 1.188 yamt KASSERT((l->l_flag & LW_IDLE) == 0);
900 1.229 ad KASSERT(mutex_owned(p->p_lock));
901 1.183 ad KASSERT(lwp_locked(l, NULL));
902 1.205 ad KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
903 1.83 thorpej
904 1.122 thorpej switch (l->l_stat) {
905 1.122 thorpej case LSSTOP:
906 1.33 mycroft /*
907 1.33 mycroft * If we're being traced (possibly because someone attached us
908 1.33 mycroft * while we were stopped), check for a signal from the debugger.
909 1.33 mycroft */
910 1.310 christos if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
911 1.174 ad signotify(l);
912 1.174 ad p->p_nrlwps++;
913 1.26 cgd break;
914 1.174 ad case LSSUSPENDED:
915 1.178 pavel l->l_flag &= ~LW_WSUSPEND;
916 1.174 ad p->p_nrlwps++;
917 1.192 rmind cv_broadcast(&p->p_lwpcv);
918 1.122 thorpej break;
919 1.174 ad case LSSLEEP:
920 1.174 ad KASSERT(l->l_wchan != NULL);
921 1.26 cgd break;
922 1.174 ad default:
923 1.174 ad panic("setrunnable: lwp %p state was %d", l, l->l_stat);
924 1.26 cgd }
925 1.139 cl
926 1.174 ad /*
927 1.286 pooka * If the LWP was sleeping, start it again.
928 1.174 ad */
929 1.174 ad if (l->l_wchan != NULL) {
930 1.174 ad l->l_stat = LSSLEEP;
931 1.183 ad /* lwp_unsleep() will release the lock. */
932 1.221 ad lwp_unsleep(l, true);
933 1.174 ad return;
934 1.174 ad }
935 1.139 cl
936 1.174 ad /*
937 1.174 ad * If the LWP is still on the CPU, mark it as LSONPROC. It may be
938 1.174 ad * about to call mi_switch(), in which case it will yield.
939 1.174 ad */
940 1.248 ad if ((l->l_pflag & LP_RUNNING) != 0) {
941 1.174 ad l->l_stat = LSONPROC;
942 1.174 ad l->l_slptime = 0;
943 1.174 ad lwp_unlock(l);
944 1.174 ad return;
945 1.174 ad }
946 1.122 thorpej
947 1.174 ad /*
948 1.205 ad * Look for a CPU to run.
949 1.205 ad * Set the LWP runnable.
950 1.174 ad */
951 1.205 ad ci = sched_takecpu(l);
952 1.205 ad l->l_cpu = ci;
953 1.236 ad spc_lock(ci);
954 1.236 ad lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
955 1.188 yamt sched_setrunnable(l);
956 1.174 ad l->l_stat = LSRUN;
957 1.122 thorpej l->l_slptime = 0;
958 1.174 ad
959 1.271 rmind sched_enqueue(l, false);
960 1.271 rmind resched_cpu(l);
961 1.271 rmind lwp_unlock(l);
962 1.26 cgd }
963 1.26 cgd
964 1.26 cgd /*
965 1.174 ad * suspendsched:
966 1.174 ad *
967 1.266 yamt * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
968 1.174 ad */
969 1.94 bouyer void
970 1.174 ad suspendsched(void)
971 1.94 bouyer {
972 1.174 ad CPU_INFO_ITERATOR cii;
973 1.174 ad struct cpu_info *ci;
974 1.122 thorpej struct lwp *l;
975 1.174 ad struct proc *p;
976 1.94 bouyer
977 1.94 bouyer /*
978 1.174 ad * We do this by process in order not to violate the locking rules.
979 1.94 bouyer */
980 1.228 ad mutex_enter(proc_lock);
981 1.174 ad PROCLIST_FOREACH(p, &allproc) {
982 1.229 ad mutex_enter(p->p_lock);
983 1.178 pavel if ((p->p_flag & PK_SYSTEM) != 0) {
984 1.229 ad mutex_exit(p->p_lock);
985 1.94 bouyer continue;
986 1.174 ad }
987 1.174 ad
988 1.309 pgoyette if (p->p_stat != SSTOP) {
989 1.309 pgoyette if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
990 1.309 pgoyette p->p_pptr->p_nstopchild++;
991 1.309 pgoyette p->p_waited = 0;
992 1.309 pgoyette }
993 1.309 pgoyette p->p_stat = SSTOP;
994 1.309 pgoyette }
995 1.174 ad
996 1.174 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
997 1.174 ad if (l == curlwp)
998 1.174 ad continue;
999 1.174 ad
1000 1.174 ad lwp_lock(l);
1001 1.122 thorpej
1002 1.97 enami /*
1003 1.174 ad * Set L_WREBOOT so that the LWP will suspend itself
1004 1.174 ad * when it tries to return to user mode. We want to
1005 1.174 ad * try and get to get as many LWPs as possible to
1006 1.174 ad * the user / kernel boundary, so that they will
1007 1.174 ad * release any locks that they hold.
1008 1.97 enami */
1009 1.178 pavel l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1010 1.174 ad
1011 1.174 ad if (l->l_stat == LSSLEEP &&
1012 1.178 pavel (l->l_flag & LW_SINTR) != 0) {
1013 1.174 ad /* setrunnable() will release the lock. */
1014 1.174 ad setrunnable(l);
1015 1.174 ad continue;
1016 1.174 ad }
1017 1.174 ad
1018 1.174 ad lwp_unlock(l);
1019 1.94 bouyer }
1020 1.174 ad
1021 1.229 ad mutex_exit(p->p_lock);
1022 1.94 bouyer }
1023 1.228 ad mutex_exit(proc_lock);
1024 1.174 ad
1025 1.174 ad /*
1026 1.174 ad * Kick all CPUs to make them preempt any LWPs running in user mode.
1027 1.174 ad * They'll trap into the kernel and suspend themselves in userret().
1028 1.174 ad */
1029 1.204 ad for (CPU_INFO_FOREACH(cii, ci)) {
1030 1.204 ad spc_lock(ci);
1031 1.204 ad cpu_need_resched(ci, RESCHED_IMMED);
1032 1.204 ad spc_unlock(ci);
1033 1.204 ad }
1034 1.174 ad }
1035 1.174 ad
1036 1.174 ad /*
1037 1.174 ad * sched_unsleep:
1038 1.174 ad *
1039 1.174 ad * The is called when the LWP has not been awoken normally but instead
1040 1.174 ad * interrupted: for example, if the sleep timed out. Because of this,
1041 1.174 ad * it's not a valid action for running or idle LWPs.
1042 1.174 ad */
1043 1.271 rmind static void
1044 1.221 ad sched_unsleep(struct lwp *l, bool cleanup)
1045 1.174 ad {
1046 1.174 ad
1047 1.174 ad lwp_unlock(l);
1048 1.174 ad panic("sched_unsleep");
1049 1.174 ad }
1050 1.174 ad
1051 1.250 rmind static void
1052 1.188 yamt resched_cpu(struct lwp *l)
1053 1.188 yamt {
1054 1.274 rmind struct cpu_info *ci = l->l_cpu;
1055 1.188 yamt
1056 1.250 rmind KASSERT(lwp_locked(l, NULL));
1057 1.204 ad if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1058 1.188 yamt cpu_need_resched(ci, 0);
1059 1.188 yamt }
1060 1.188 yamt
1061 1.188 yamt static void
1062 1.185 yamt sched_changepri(struct lwp *l, pri_t pri)
1063 1.174 ad {
1064 1.174 ad
1065 1.188 yamt KASSERT(lwp_locked(l, NULL));
1066 1.174 ad
1067 1.271 rmind if (l->l_stat == LSRUN) {
1068 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1069 1.204 ad sched_dequeue(l);
1070 1.204 ad l->l_priority = pri;
1071 1.204 ad sched_enqueue(l, false);
1072 1.204 ad } else {
1073 1.174 ad l->l_priority = pri;
1074 1.157 yamt }
1075 1.188 yamt resched_cpu(l);
1076 1.184 yamt }
1077 1.184 yamt
1078 1.188 yamt static void
1079 1.185 yamt sched_lendpri(struct lwp *l, pri_t pri)
1080 1.184 yamt {
1081 1.184 yamt
1082 1.188 yamt KASSERT(lwp_locked(l, NULL));
1083 1.184 yamt
1084 1.271 rmind if (l->l_stat == LSRUN) {
1085 1.204 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1086 1.204 ad sched_dequeue(l);
1087 1.204 ad l->l_inheritedprio = pri;
1088 1.204 ad sched_enqueue(l, false);
1089 1.204 ad } else {
1090 1.184 yamt l->l_inheritedprio = pri;
1091 1.184 yamt }
1092 1.188 yamt resched_cpu(l);
1093 1.184 yamt }
1094 1.184 yamt
1095 1.184 yamt struct lwp *
1096 1.184 yamt syncobj_noowner(wchan_t wchan)
1097 1.184 yamt {
1098 1.184 yamt
1099 1.184 yamt return NULL;
1100 1.151 yamt }
1101 1.151 yamt
1102 1.250 rmind /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1103 1.281 rmind const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1104 1.281 rmind
1105 1.281 rmind /*
1106 1.281 rmind * Constants for averages over 1, 5 and 15 minutes when sampling at
1107 1.281 rmind * 5 second intervals.
1108 1.281 rmind */
1109 1.281 rmind static const fixpt_t cexp[ ] = {
1110 1.281 rmind 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1111 1.281 rmind 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1112 1.281 rmind 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1113 1.281 rmind };
1114 1.134 matt
1115 1.134 matt /*
1116 1.188 yamt * sched_pstats:
1117 1.188 yamt *
1118 1.281 rmind * => Update process statistics and check CPU resource allocation.
1119 1.281 rmind * => Call scheduler-specific hook to eventually adjust LWP priorities.
1120 1.281 rmind * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1121 1.130 nathanw */
1122 1.113 gmcgarry void
1123 1.281 rmind sched_pstats(void)
1124 1.113 gmcgarry {
1125 1.281 rmind extern struct loadavg averunnable;
1126 1.281 rmind struct loadavg *avg = &averunnable;
1127 1.249 rmind const int clkhz = (stathz != 0 ? stathz : hz);
1128 1.281 rmind static bool backwards = false;
1129 1.281 rmind static u_int lavg_count = 0;
1130 1.188 yamt struct proc *p;
1131 1.281 rmind int nrun;
1132 1.113 gmcgarry
1133 1.188 yamt sched_pstats_ticks++;
1134 1.281 rmind if (++lavg_count >= 5) {
1135 1.281 rmind lavg_count = 0;
1136 1.281 rmind nrun = 0;
1137 1.281 rmind }
1138 1.228 ad mutex_enter(proc_lock);
1139 1.188 yamt PROCLIST_FOREACH(p, &allproc) {
1140 1.281 rmind struct lwp *l;
1141 1.281 rmind struct rlimit *rlim;
1142 1.296 dholland time_t runtm;
1143 1.281 rmind int sig;
1144 1.281 rmind
1145 1.271 rmind /* Increment sleep time (if sleeping), ignore overflow. */
1146 1.229 ad mutex_enter(p->p_lock);
1147 1.212 yamt runtm = p->p_rtime.sec;
1148 1.188 yamt LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1149 1.281 rmind fixpt_t lpctcpu;
1150 1.281 rmind u_int lcpticks;
1151 1.281 rmind
1152 1.249 rmind if (__predict_false((l->l_flag & LW_IDLE) != 0))
1153 1.188 yamt continue;
1154 1.188 yamt lwp_lock(l);
1155 1.212 yamt runtm += l->l_rtime.sec;
1156 1.188 yamt l->l_swtime++;
1157 1.242 rmind sched_lwp_stats(l);
1158 1.281 rmind
1159 1.281 rmind /* For load average calculation. */
1160 1.282 rmind if (__predict_false(lavg_count == 0) &&
1161 1.282 rmind (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1162 1.281 rmind switch (l->l_stat) {
1163 1.281 rmind case LSSLEEP:
1164 1.281 rmind if (l->l_slptime > 1) {
1165 1.281 rmind break;
1166 1.281 rmind }
1167 1.281 rmind case LSRUN:
1168 1.281 rmind case LSONPROC:
1169 1.281 rmind case LSIDL:
1170 1.281 rmind nrun++;
1171 1.281 rmind }
1172 1.281 rmind }
1173 1.282 rmind lwp_unlock(l);
1174 1.282 rmind
1175 1.282 rmind l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1176 1.282 rmind if (l->l_slptime != 0)
1177 1.282 rmind continue;
1178 1.282 rmind
1179 1.282 rmind lpctcpu = l->l_pctcpu;
1180 1.282 rmind lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1181 1.282 rmind lpctcpu += ((FSCALE - ccpu) *
1182 1.282 rmind (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1183 1.282 rmind l->l_pctcpu = lpctcpu;
1184 1.188 yamt }
1185 1.249 rmind /* Calculating p_pctcpu only for ps(1) */
1186 1.188 yamt p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1187 1.174 ad
1188 1.303 christos if (__predict_false(runtm < 0)) {
1189 1.303 christos if (!backwards) {
1190 1.303 christos backwards = true;
1191 1.303 christos printf("WARNING: negative runtime; "
1192 1.303 christos "monotonic clock has gone backwards\n");
1193 1.303 christos }
1194 1.303 christos mutex_exit(p->p_lock);
1195 1.303 christos continue;
1196 1.303 christos }
1197 1.303 christos
1198 1.188 yamt /*
1199 1.188 yamt * Check if the process exceeds its CPU resource allocation.
1200 1.293 apb * If over the hard limit, kill it with SIGKILL.
1201 1.293 apb * If over the soft limit, send SIGXCPU and raise
1202 1.293 apb * the soft limit a little.
1203 1.188 yamt */
1204 1.188 yamt rlim = &p->p_rlimit[RLIMIT_CPU];
1205 1.188 yamt sig = 0;
1206 1.249 rmind if (__predict_false(runtm >= rlim->rlim_cur)) {
1207 1.293 apb if (runtm >= rlim->rlim_max) {
1208 1.188 yamt sig = SIGKILL;
1209 1.293 apb log(LOG_NOTICE, "pid %d is killed: %s\n",
1210 1.293 apb p->p_pid, "exceeded RLIMIT_CPU");
1211 1.293 apb uprintf("pid %d, command %s, is killed: %s\n",
1212 1.293 apb p->p_pid, p->p_comm,
1213 1.293 apb "exceeded RLIMIT_CPU");
1214 1.293 apb } else {
1215 1.188 yamt sig = SIGXCPU;
1216 1.188 yamt if (rlim->rlim_cur < rlim->rlim_max)
1217 1.188 yamt rlim->rlim_cur += 5;
1218 1.188 yamt }
1219 1.188 yamt }
1220 1.229 ad mutex_exit(p->p_lock);
1221 1.303 christos if (__predict_false(sig)) {
1222 1.259 rmind KASSERT((p->p_flag & PK_SYSTEM) == 0);
1223 1.188 yamt psignal(p, sig);
1224 1.259 rmind }
1225 1.174 ad }
1226 1.228 ad mutex_exit(proc_lock);
1227 1.281 rmind
1228 1.281 rmind /* Load average calculation. */
1229 1.281 rmind if (__predict_false(lavg_count == 0)) {
1230 1.281 rmind int i;
1231 1.283 martin CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1232 1.281 rmind for (i = 0; i < __arraycount(cexp); i++) {
1233 1.281 rmind avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1234 1.281 rmind nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1235 1.281 rmind }
1236 1.281 rmind }
1237 1.281 rmind
1238 1.281 rmind /* Lightning bolt. */
1239 1.273 pooka cv_broadcast(&lbolt);
1240 1.113 gmcgarry }
1241